201
|
Stock C. Circulating Tumor Cells: Does Ion Transport Contribute to Intravascular Survival, Adhesion, Extravasation, and Metastatic Organotropism? Rev Physiol Biochem Pharmacol 2021; 182:139-175. [DOI: 10.1007/112_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
202
|
Patel SA, Rodrigues P, Wesolowski L, Vanharanta S. Genomic control of metastasis. Br J Cancer 2021; 124:3-12. [PMID: 33144692 PMCID: PMC7782491 DOI: 10.1038/s41416-020-01127-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis remains the leading cause of cancer-associated mortality, and a detailed understanding of the metastatic process could suggest new therapeutic avenues. However, how metastatic phenotypes arise at the genomic level has remained a major open question in cancer biology. Comparative genetic studies of primary and metastatic cancers have revealed a complex picture of metastatic evolution with diverse temporal patterns and trajectories to dissemination. Whole-genome amplification is associated with metastatic cancer clones, but no metastasis-exclusive driver mutations have emerged. Instead, genetically activated oncogenic pathways that drive tumour initiation and early progression acquire metastatic traits by co-opting physiological programmes from stem cell, developmental and regenerative pathways. The functional consequences of oncogenic driver mutations therefore change via epigenetic mechanisms to promote metastasis. Increasing evidence is starting to uncover the molecular mechanisms that determine how specific oncogenic drivers interact with various physiological programmes, and what triggers their activation in support of metastasis. Detailed insight into the mechanisms that control metastasis is likely to reveal novel opportunities for intervention at different stages of metastatic progression.
Collapse
Affiliation(s)
- Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ludovic Wesolowski
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
203
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
204
|
GAS2L1 Is a Potential Biomarker of Circulating Tumor Cells in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123774. [PMID: 33333841 PMCID: PMC7765300 DOI: 10.3390/cancers12123774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is a malignant disease with high mortality and a dismal prognosis. Circulating tumor cell (CTC) detection and characterization have emerged as essential techniques for early detection, prognostication, and liquid biopsy in many solid malignancies. Unfortunately, due to the low EPCAM expression in pancreatic cancer CTCs, no specific marker is available to identify and isolate this rare cell population. This study analyzed single-cell RNA sequencing profiles of pancreatic CTCs from a genetically engineered mouse model (GEMM) and pancreatic cancer patients. Through dimensionality reduction analysis, murine pancreatic CTCs were grouped into three clusters with different biological functions. CLIC4 and GAS2L1 were shown to be overexpressed in pancreatic CTCs in comparison with peripheral blood mononuclear cells (PBMCs). Further analyses of PBMCs and RNA-sequencing datasets of enriched pancreatic CTCs were used to validate the overexpression of GAS2L1 in pancreatic CTCs. A combinatorial approach using both GAS2L1 and EPCAM expression leads to an increased detection rate of CTCs in PDAC in both GEMM and patient samples. GAS2L1 is thus proposed as a novel biomarker of pancreatic cancer CTCs.
Collapse
|
205
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
206
|
Ruan H, Zhou Y, Shen J, Zhai Y, Xu Y, Pi L, Huang R, Chen K, Li X, Ma W, Wu Z, Deng X, Wang X, Zhang C, Guan M. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med 2020; 10:e246. [PMID: 33377642 PMCID: PMC7737787 DOI: 10.1002/ctm2.246] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases explain the majority of mortality associated with lung cancer, which is the leading cause of cancer death. Cytology analysis of the cerebrospinal fluid (CSF) remains the diagnostic gold standard, however, the circulating tumor cells (CTCs) in CSF (CSF-CTCs) are not well defined at the molecular and transcriptome levels. METHODS We established an effective CSF-CTCs collection procedure and isolated individual CSF cells from five lung adenocarcinoma leptomeningeal metastases (LUAD-LM) patients and three controls. Three thousand seven hundred ninety-two single-cell transcriptomes were sequenced, and single-cell RNA sequencing (scRNA-seq) gene expression analysis was used to perform a comprehensive characterization of CSF cells. RESULTS Through clustering and expression analysis, we defined CSF-CTCs at the transcriptome level based on epithelial markers, proliferation markers, and genes with lung origin. The metastatic-CTC signature genes are enriched for metabolic pathway and cell adhesion molecule categories, which are crucial for the survival and metastases of tumor cells. We discovered substantial heterogeneity in patient CSF-CTCs. We quantified the degree of heterogeneity and found significantly greater among-patient heterogeneity compared to among-cell heterogeneity within a patient. This observation could be explained by spatial heterogeneity of metastatic sites, cell-cycle gene, and cancer-testis antigen (CTA) expression profiles as well as the proportion of CTCs displaying mesenchymal and cancer stem cell properties. In addition, our CSF-CTCs transcriptome profiling allowed us to determine the biomarkers during the progression of an LM patient with cancer of unknown primary site (CUP). CONCLUSIONS Our results will provide candidate genes for an RNA-based digital detection of CSF-CTCs from LUAD-LM and CUP-LM cases, and shed light on the therapy and mechanism of LUAD-LM.
Collapse
Affiliation(s)
- Haoyu Ruan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Yihang Zhou
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Department of PathobiologyAuburn UniversityAuburnAlabama
| | - Jie Shen
- 10K Genomics Technology Co., Ltd.ShanghaiChina
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Linyu Pi
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruofan Huang
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Kun Chen
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xiangyu Li
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Weizhe Ma
- Central LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Zhiyuan Wu
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xuan Deng
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Xu Wang
- Department of PathobiologyAuburn UniversityAuburnAlabama
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabama
- Alabama Agricultural Experiment StationAuburn UniversityAuburnAlabama
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ming Guan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
207
|
Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. J Mammary Gland Biol Neoplasia 2020; 25:337-350. [PMID: 33106923 PMCID: PMC7587543 DOI: 10.1007/s10911-020-09464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.
Collapse
Affiliation(s)
- Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Breanna M Moore
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Erin Greenwood
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
208
|
Gensbittel V, Busnelli I, Osmani N, Goetz JG. Nanoluminal Signaling Shapes Collective Metastasis. Trends Cancer 2020; 7:9-11. [PMID: 33262057 DOI: 10.1016/j.trecan.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023]
Abstract
Clustering of tumor cells is known to grant superior metastatic efficiency compared with single cells. However, the mechanisms involved remain elusive. Reporting in Cell, Wrenn et al. describe how sealed intercellular compartments, nanolumina, are used as growth factor reservoirs within tumor cell clusters to regulate tumor cell proliferation.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
209
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
210
|
Hu S, Shi X, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 cross-linking increases malignancy of breast cancer via upregulation of p-Moesin. Cancer Cell Int 2020; 20:563. [PMID: 33292278 PMCID: PMC7686781 DOI: 10.1186/s12935-020-01663-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background CD44 is highly expressed in most cancer cells and its cross-linking pattern is closely related to tumor migration and invasion. However, the underlying molecular mechanism regarding CD44 cross-linking during cancer cell metastasis is poorly understood. Therefore, the purpose of this study was to explore whether disruption of CD44 cross-linking in breast cancer cells could prevent the cells migration and invasion and determine the effects of CD44 cross-linking on the malignancy of the cancer cells. Methods The expression of CD44, CD44 cross-linking and Moesin phosphorylation in breast cancer cells was assessed by Western Blot assays. Effects of CD44 cross-linking on tumor metastasis were evaluated by Transwell assay. The effects of CD44 cross-linking disruption on cell viability were assessed using CCK-8 assays. The expression of p-Moesin between normal and breast cancer tissues was examined by immunohistochemical staining. Results High expression of CD44 cross-linking was found in invasive breast cancer cells (BT-549 and MDA-MB-231), which is associated with the malignancy of breast cancer. The expressions of ERM complex in a panel of breast cancer cell lines indicate that Moesin and its phosphorylation may play a significant role in cell metastasis. Moesin phosphorylation was inhibited by CD44 de-crosslinking in breast cancer cells and Moesin shRNA knockdown attenuated the promotion of CD44 cross-linking on cell migration and invasion. Finally, immunohistochemistry results demonstrated that p-Moesin was overexpressed in primary and metastatic cancers. Conclusions Our study suggested that CD44 cross-linking could elevate p-Moesin expression and further affect migration and invasion of breast cancer cells. These results also indicate that p-Moesin may be useful in future targeted cancer therapy.
Collapse
Affiliation(s)
- Song Hu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, 201103, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
211
|
Zhang Y, Lai H, Chen P, Li D, Khan I, Hsiao WLW, Fan X, Yao X, Wu Q, Wang M, Leung EL. Clinical significance of LSECtin and its association with PVR in non-small-cell lung cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1393. [PMID: 33313138 PMCID: PMC7723651 DOI: 10.21037/atm-20-3665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND Liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin) is one of the new generation immune checkpoint ligand molecules and plays an important role in the immune environment. Poliovirus receptor (PVR), as another immunosuppression-related molecule, is upregulated in various malignant tumors. However, the clinical value of LSECtin and the correlation of LSECtin with PVR in non-small-cell lung cancer (NSCLC) remain to be elucidated. In this study, a retrospective study was performed to address these issues. METHODS This retrospective study included 98 patients with NSCLC. Immunohistochemistry (IHC) was used to detect the expression of LSECtin and PVR in the paraffin-embedded tumor tissue specimens. LSECtin was analyzed for associations with the survival rate and overall survival (OS) of the subjects. The mRNA expression of LSECtin and PVR was assessed using the expression data from The Cancer Genome Atlas (TCGA) database. Clinical characteristics, prognosis, and the expression of LSECtin and PVR were included in the statistical analysis. RESULTS High positive rates of LSECtin were found in the patients with NSCLC who were nonsmokers, at advanced stages, or had lung adenocarcinoma. Patients with positive LSECtin expression had a significantly lower survival rate (P=0.008) and shorter OS (P=0.017) than those with negative LSECtin. Significant correlation was found between the LSECtin and PVR expression in the patients with NSCLC (P<0.001). CONCLUSIONS The increased expression of LSECtin was related to the poor prognosis of patients with NSCLC after tumor resection and has the potential value for predicting the prognosis of these patients. The positive correlation between LSECtin and PVR in NSCLC provides a theoretical basis for the future combination therapy of immune checkpoints.
Collapse
Affiliation(s)
- Yizhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huanling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Peipei Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dan Li
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wen Luan Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Elaine Laihan Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
212
|
Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M, Thomas AJ, Greenwood E, Rabena YF, Rahbar H, Partridge SC, Cheung KJ. Regulation of Collective Metastasis by Nanolumenal Signaling. Cell 2020; 183:395-410.e19. [PMID: 33007268 PMCID: PMC7772852 DOI: 10.1016/j.cell.2020.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Collective metastasis is defined as the cohesive migration and metastasis of multicellular tumor cell clusters. Disrupting various cell adhesion genes markedly reduces cluster formation and colonization efficiency, yet the downstream signals transmitted by clustering remain largely unknown. Here, we use mouse and human breast cancer models to identify a collective signal generated by tumor cell clusters supporting metastatic colonization. We show that tumor cell clusters produce the growth factor epigen and concentrate it within nanolumina-intercellular compartments sealed by cell-cell junctions and lined with microvilli-like protrusions. Epigen knockdown profoundly reduces metastatic outgrowth and switches clusters from a proliferative to a collective migratory state. Tumor cell clusters from basal-like 2, but not mesenchymal-like, triple-negative breast cancer cell lines have increased epigen expression, sealed nanolumina, and impaired outgrowth upon nanolumenal junction disruption. We propose that nanolumenal signaling could offer a therapeutic target for aggressive metastatic breast cancers.
Collapse
Affiliation(s)
- Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Ami Yamamoto
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Breanna M Moore
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aaron J Thomas
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erin Greenwood
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yuri F Rabena
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Breast Specimen Repository, Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Habib Rahbar
- Department of Radiology, University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle, WA 98109, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle, WA 98109, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
213
|
Hurtado P, Martínez-Pena I, Piñeiro R. Dangerous Liaisons: Circulating Tumor Cells (CTCs) and Cancer-Associated Fibroblasts (CAFs). Cancers (Basel) 2020; 12:E2861. [PMID: 33027902 PMCID: PMC7599894 DOI: 10.3390/cancers12102861] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The crosstalk between cancer cells and the tumor microenvironment (TME) is a key determinant of cancer metastasis. Cancer-associated fibroblasts (CAFs), one of the main cellular components of TME, promote cancer cell invasion and dissemination through mechanisms including cell-cell interactions and the paracrine secretion of growth factors, cytokines and chemokines. During metastasis, circulating tumor cells (CTCs) are shed from the primary tumor to the bloodstream, where they can be detected as single cells or clusters. The current knowledge about the biology of CTC clusters positions them as key actors in metastasis formation. It also indicates that CTCs do not act alone and that they may be aided by stromal and immune cells, which seem to shape their metastatic potential. Among these cells, CAFs are found associated with CTCs in heterotypic CTC clusters, and their presence seems to increase their metastatic efficiency. In this review, we summarize the current knowledge on the role that CAFs play on metastasis and we discuss their implication on the biogenesis, metastasis-initiating capacity of CTC clusters, and clinical implications. Moreover, we speculate about possible therapeutic strategies aimed to limit the metastatic potential of CTC clusters involving the targeting of CAFs as well as their difficulties and limitations.
Collapse
Affiliation(s)
- Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
| | - Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain
| |
Collapse
|
214
|
Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200009. [PMID: 37361495 PMCID: PMC10197281 DOI: 10.1515/almed-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 06/28/2023]
Abstract
The term liquid biopsy is used in contraposition to the traditional "solid" tissue biopsy. In the oncology field it has opened a new plethora of clinical opportunities as tumor-derived material is shedded into the different biofluids from where it can be isolated and analyzed. Common biofluids include blood, urine, saliva, cerebrospinal fluid (CSF), pleural effusion or bile. Starting from these biological specimens several analytes can be isolated, among which we will review the most widely used: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), proteins, metabolites, and exosomes. Regarding the nature of the biomarkers it will depend on the analyte, the type of tumor and the clinical application of the liquid biopsy and it includes, somatic point mutations, deletions, amplifications, gene-fusions, DNA-methylated marks, tumor-specific miRNAs, proteins or metabolites. Here we review the characteristics of the analytes and the methodologies used for their isolation. We also describe the applications of the liquid biopsy in the management of patients with cancer, from the early detection of cancers to treatment guidance in patients with advanced tumors. Finally, we also discuss some current limitations and still open questions.
Collapse
Affiliation(s)
- María Arechederra
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Matías A. Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| |
Collapse
|
215
|
Wu M, Ma M, Tan Z, Zheng H, Liu X. Neutrophil: A New Player in Metastatic Cancers. Front Immunol 2020; 11:565165. [PMID: 33101283 PMCID: PMC7546851 DOI: 10.3389/fimmu.2020.565165] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between cancer cells and immune cells is important for the cancer development. However, much attention has been given to T cells and macrophages. Being the most abundant leukocytes in the blood, the functions of neutrophils in cancer have been underdetermined. They have long been considered an “audience” in the development of cancer. However, emerging evidence indicate that neutrophils are a heterogeneous population with plasticity, and subpopulation of neutrophils (such as low density neutrophils, polymorphonuclear-myeloid-derived suppressor cells) are actively involved in cancer growth and metastasis. Here, we review the current understanding of the role of neutrophils in cancer development, with a specific focus on their pro-metastatic functions. We also discuss the potential and challenges of neutrophils as therapeutic targets. A better understanding the role of neutrophils in cancer will discover new mechanisms of metastasis and develop new immunotherapies by targeting neutrophils.
Collapse
Affiliation(s)
- Mengyue Wu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mutian Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Xia Liu
- Department of Toxicology and Cancer Biology, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
216
|
To B, Isaac D, Andrechek ER. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J Mammary Gland Biol Neoplasia 2020; 25:191-203. [PMID: 33034778 DOI: 10.1007/s10911-020-09460-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 03/23/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and the second most common cause of cancer-related deaths in the United States. Although early detection has significantly decreased breast cancer mortality, patients diagnosed with distant metastasis still have a very poor prognosis. The most common site that breast cancer spreads to are local lymph nodes. Therefore, the presence of lymph node metastasis remains one of most important prognostic factors in breast cancer patients. Given its significant clinical implications, increased efforts have been dedicated to better understand the molecular mechanism governing lymph node metastasis in breast cancer. The identification of lymphatic-specific biomarkers, including podoplanin and LYVE-1, has propelled the field of lymphatic metastasis forward. In addition, several animal models such as cell line-derived xenografts, patient-derived xenografts, and spontaneous tumor models have been developed to recreate the process of lymphatic metastasis. Moreover, the incorporation of various -omic platforms have provided further insight into the genetic drivers facilitating lymphatic metastasis, as well as potential biomarkers and therapeutic targets. Here, we highlight various models of lymphatic metastasis, their potential pitfalls, and other tools available to study lymphatic metastasis including imaging modalities and -omic studies.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Isaac
- Division of Hematology and Oncology, MSU Breslin Cancer Center, Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
217
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
218
|
Plygawko AT, Kan S, Campbell K. Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200087. [PMID: 32829692 PMCID: PMC7482222 DOI: 10.1098/rstb.2020.0087] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many cells possess epithelial–mesenchymal plasticity (EMP), which allows them to shift reversibly between adherent, static and more detached, migratory states. These changes in cell behaviour are driven by the programmes of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), both of which play vital roles during normal development and tissue homeostasis. However, the aberrant activation of these processes can also drive distinct stages of cancer progression, including tumour invasiveness, cell dissemination and metastatic colonization and outgrowth. This review examines emerging common themes underlying EMP during tissue morphogenesis and malignant progression, such as the context dependence of EMT transcription factors, a central role for partial EMTs and the nonlinear relationship between EMT and MET. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Andrew T Plygawko
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Shohei Kan
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
219
|
Lo HC, Xu Z, Kim IS, Pingel B, Aguirre S, Kodali S, Liu J, Zhang W, Muscarella AM, Hein SM, Krupnick AS, Neilson JR, Paust S, Rosen JM, Wang H, Zhang XHF. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. NATURE CANCER 2020; 1:709-722. [PMID: 35122036 DOI: 10.1038/s43018-020-0068-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Polyclonal metastases frequently arise from clusters of circulating tumor cells (CTCs). CTC clusters metastasize better than single CTCs, but the underlying molecular mechanisms are poorly understood. Here, we show that polyclonal metastatic seeds exhibit higher resistance to natural killer (NK) cell killing. Using breast cancer models, we observed higher proportions of polyclonal lung metastasis in immunocompetent mice compared with mice lacking NK cells. Depleting NK cells selectively increased monoclonal but not polyclonal metastases, suggesting that CTC clusters are less sensitive to NK-mediated suppression. Transcriptional analyses revealed that clusters have elevated expression of cell-cell adhesion and epithelial genes, which is associated with decreased expression of NK cell activating ligands. Furthermore, perturbing tumor cell epithelial status altered NK ligand expression and sensitivity to NK-mediated killing. Collectively, our findings show that NK cells can determine the fate of CTCs of different epithelial and mesenchymal states, and impact metastatic clonal evolution by favoring polyclonal seeding.
Collapse
Affiliation(s)
- Hin Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ik Sun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Bradley Pingel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Srikanth Kodali
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron M Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sarah M Hein
- Courier Therapeutics, Houston, TX, USA
- Texas Medical Center Innovation Institute, Houston, TX, USA
| | - Alexander S Krupnick
- Department of Surgery, Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Joel R Neilson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
220
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
221
|
Witschen PM, Chaffee TS, Brady NJ, Huggins DN, Knutson TP, LaRue RS, Munro SA, Tiegs L, McCarthy JB, Nelson AC, Schwertfeger KL. Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancer. Cancers (Basel) 2020; 12:E1325. [PMID: 32455980 PMCID: PMC7281239 DOI: 10.3390/cancers12051325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer has been conceptualized as a chronic wound with a predominance of tumor promoting inflammation. Given the accumulating evidence that the microenvironment supports tumor growth, we investigated hyaluronan (HA)-CD44 interactions within breast cancer cells, to determine whether this axis directly impacts the formation of an inflammatory microenvironment. Our results demonstrate that breast cancer cells synthesize and fragment HA and express CD44 on the cell surface. Using RNA sequencing approaches, we found that loss of CD44 in breast cancer cells altered the expression of cytokine-related genes. Specifically, we found that production of the chemokine CCL2 by breast cancer cells was significantly decreased after depletion of either CD44 or HA. In vivo, we found that CD44 deletion in breast cancer cells resulted in a delay in tumor formation and localized progression. This finding was accompanied by a decrease in infiltrating CD206+ macrophages, which are typically associated with tumor promoting functions. Importantly, our laboratory results were supported by human breast cancer patient data, where increased HAS2 expression was significantly associated with a tumor promoting inflammatory gene signature. Because high levels of HA deposition within many tumor types yields a poorer prognosis, our results emphasize that HA-CD44 interactions potentially have broad implications across multiple cancers.
Collapse
Affiliation(s)
- Patrice M. Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas S. Chaffee
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
| | - Nicholas J. Brady
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Danielle N. Huggins
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
| | - Todd P. Knutson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca S. LaRue
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah A. Munro
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lyubov Tiegs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew C. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.C.); (D.N.H.); (T.P.K.); (R.S.L.); (S.A.M.); (J.B.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
222
|
Costa C, Muinelo-Romay L, Cebey-López V, Pereira-Veiga T, Martínez-Pena I, Abreu M, Abalo A, Lago-Lestón RM, Abuín C, Palacios P, Cueva J, Piñeiro R, López-López R. Analysis of a Real-World Cohort of Metastatic Breast Cancer Patients Shows Circulating Tumor Cell Clusters (CTC-clusters) as Predictors of Patient Outcomes. Cancers (Basel) 2020; 12:cancers12051111. [PMID: 32365530 PMCID: PMC7281711 DOI: 10.3390/cancers12051111] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
Circulating tumor cell (CTC) enumeration has emerged as a powerful biomarker for the assessment of prognosis and the response to treatment in metastatic breast cancer (MBC). Moreover, clinical evidences show that CTC-cluster counts add prognostic information to CTC enumeration, however, their significance is not well understood, and more clinical evidences are needed. We aim to evaluate the prognostic value of longitudinally collected single CTCs and CTC-clusters in a heterogeneous real-world cohort of 54 MBC patients. Blood samples were longitudinally collected at baseline and follow up. CTC and CTC-cluster enumeration was performed using the CellSearch® system. Associations with progression-free survival (PFS) and overall survival (OS) were evaluated using Cox proportional hazards modelling. Elevated CTC counts and CTC-clusters at baseline were significantly associated with a shorter survival time. In joint analysis, patients with high CTC counts and CTC-cluster at baseline were at a higher risk of progression and death, and longitudinal analysis showed that patients with CTC-clusters had significantly shorter survival compared to patients without clusters. Moreover, patients with CTC-cluster of a larger size were at a higher risk of death. A longitudinal analysis of a real-world cohort of MBC patients indicates that CTC-clusters analysis provides additional prognostic value to single CTC enumeration, and that CTC-cluster size correlates with patient outcome.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain;
| | - Laura Muinelo-Romay
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.M.L.-L.)
| | - Victor Cebey-López
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (V.C.-L.); (P.P.); (J.C.)
| | - Thais Pereira-Veiga
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
| | - Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
| | - Manuel Abreu
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.M.L.-L.)
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.M.L.-L.)
| | - Ramón M. Lago-Lestón
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.M.L.-L.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
| | - Patricia Palacios
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (V.C.-L.); (P.P.); (J.C.)
| | - Juan Cueva
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (V.C.-L.); (P.P.); (J.C.)
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
- Correspondence: ; Tel.: +34-981-955-602
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.); (T.P.-V.); (I.M.-P.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.M.L.-L.)
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (V.C.-L.); (P.P.); (J.C.)
| |
Collapse
|
223
|
Relevance of CTC Clusters in Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:93-115. [PMID: 32304082 DOI: 10.1007/978-3-030-35805-1_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is the major cause of mortality in patients with breast cancer; however, the mechanisms of tumor cell dissemination and metastasis formation are not well established yet. The study of circulating tumour cells (CTCs), the metastatic precursors of distant disease, may help in this search. CTCs can be found in the blood of cancer patients as single cells or as tumor cell aggregates, known as CTC clusters. CTC clusters have differential biological features such as an enhanced survival and metastatic potential, and they hold great promises for the evaluation of prognosis, diagnosis and therapy of the metastatic cancer. The analysis of CTC clusters offers new insights into the mechanism of metastasis and can guide towards the development of new diagnostic and therapeutic strategies to suppress cancer metastasis. This has become possible thanks to the development of improved technologies for detection of CTCs and CTC clusters. However, more efficient methods are needed in order to address important questions regarding the metastatic potential of CTC and future clinical applications. In this chapter, we explore the current knowledge on the role of CTC clusters in breast cancer metastasis, their origin, metastatic advantages and clinical importance.
Collapse
|
224
|
Rakhymzhan A, Reuter L, Raspe R, Bremer D, Günther R, Leben R, Heidelin J, Andresen V, Cheremukhin S, Schulz-Hildebrandt H, Bixel MG, Adams RH, Radbruch H, Hüttmann G, Hauser AE, Niesner RA. Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging. Cytometry A 2020; 97:515-527. [PMID: 32293804 DOI: 10.1002/cyto.a.24012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Two-photon microscopy (2PM) has brought unique insight into the mechanisms underlying immune system dynamics and function since it enables monitoring of cellular motility and communication in complex systems within their genuine environment-the living organism. However, use of 2PM in clinical settings is limited. In contrast, optical coherence tomography (OCT), a noninvasive label-free diagnostic imaging method, which allows monitoring morphologic changes of large tissue regions in vivo, has found broad application in the clinic. Here we developed a combined multimodal technology to achieve near-instantaneous coregistered OCT, 2PM, and second harmonic generation (SHG) imaging over large volumes (up to 1,000 × 1,000 × 300 μm3 ) of tendons and other tissue compartments in mouse paws, as well as in mouse lymph nodes, spleens, and femurs. Using our multimodal imaging approach, we found differences in macrophage cell shape and motility behavior depending on whether they are located in tendons or in the surrounding tissue compartments of the mouse paw. The cellular shape of tissue-resident macrophages, indicative for their role in tissue, correlated with the supramolecular organization of collagen as revealed by SHG and OCT. Hence, the here-presented approach of coregistered OCT and 2PM has the potential to link specific cellular phenotypes and functions (as revealed by 2PM) to tissue morphology (as highlighted by OCT) and thus, to build a bridge between basic research knowledge and clinical observations. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Lucie Reuter
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Raphael Raspe
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Bremer
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Robert Günther
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Judith Heidelin
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | - Volker Andresen
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | | | | | - Maria G Bixel
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Ralf H Adams
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Anja E Hauser
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
225
|
A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas. Cell Commun Signal 2020; 18:61. [PMID: 32276641 PMCID: PMC7146875 DOI: 10.1186/s12964-020-00550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. Conclusion The discovery that miR-10b mediates an aspect of cancer stemness – that of enhanced tumor cell adhesion, known to facilitate metastatic colonization – provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.
Collapse
|
226
|
Amintas S, Bedel A, Moreau-Gaudry F, Boutin J, Buscail L, Merlio JP, Vendrely V, Dabernat S, Buscail E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int J Mol Sci 2020; 21:E2653. [PMID: 32290245 PMCID: PMC7177734 DOI: 10.3390/ijms21072653] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The presence of circulating tumor cells (CTCs) and CTC clusters, also known as tumor microemboli, in biological fluids has long been described. Intensive research on single CTCs has made a significant contribution in understanding tumor invasion, metastasis tropism, and intra-tumor heterogeneity. Moreover, their being minimally invasive biomarkers has positioned them for diagnosis, prognosis, and recurrence monitoring tools. Initially, CTC clusters were out of focus, but major recent advances in the knowledge of their biogenesis and dissemination reposition them as critical actors in the pathophysiology of cancer, especially metastasis. Increasing evidence suggests that "united" CTCs, organized in clusters, resist better and carry stronger metastatic capacities than "divided" single CTCs. This review gathers recent insight on CTC cluster origin and dissemination. We will focus on their distinct molecular package necessary to resist multiple cell deaths that all circulating cells normally face. We will describe the molecular basis of their increased metastatic potential as compared to single CTCs. We will consider their clinical relevance as prognostic biomarkers. Finally, we will propose future directions for research and clinical applications in this promising topic in cancer.
Collapse
Affiliation(s)
- Samuel Amintas
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Aurélie Bedel
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - François Moreau-Gaudry
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Julian Boutin
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Louis Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France; (L.B.); (E.B.)
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, 31000 Toulouse, France
| | - Jean-Philippe Merlio
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Véronique Vendrely
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Sandrine Dabernat
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France; (L.B.); (E.B.)
- INSERM UMR-1220, IRSD University of Toulouse III, 31000 Toulouse, France
| |
Collapse
|
227
|
Are Synapse-Like Structures a Possible Way for Crosstalk of Cancer with Its Microenvironment? Cancers (Basel) 2020; 12:cancers12040806. [PMID: 32230806 PMCID: PMC7226151 DOI: 10.3390/cancers12040806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/03/2023] Open
Abstract
The failure of therapies directed at targets within cancer cells highlight the necessity for a paradigm change in cancer therapy. The attention of researchers has shifted towards the disruption of cancer cell interactions with the tumor microenvironment. A typical example of such a disruption is the immune checkpoint cancer therapy that disrupts interactions between the immune and the cancer cells. The interaction of cancer antigens with T cells occurs in the immunological synapses. This is characterized by several special features, i.e., the proximity of the immune cells and their target cells, strong intercellular adhesion, and secretion of signaling cytokines into the intercellular cleft. Earlier, we hypothesized that the cancer-associated fibroblasts interacting with cancer cells through a synapse-like adhesion might play an important role in cancer tumors. Studies of the interactions between cancer cells and cancer-associated fibroblasts showed that their clusterization on the membrane surface determined their strength and specificity. The hundreds of interacting pairs are involved in the binding that may indicate the formation of synapse-like structures. These interactions may be responsible for successful metastasis of cancer cells, and their identification and disruption may open new therapeutic possibilities.
Collapse
|
228
|
Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med 2020; 12:31. [PMID: 32192534 PMCID: PMC7082968 DOI: 10.1186/s13073-020-00728-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.
| |
Collapse
|
229
|
Heterogeneity of Circulating Tumor Cells in Breast Cancer: Identifying Metastatic Seeds. Int J Mol Sci 2020; 21:ijms21051696. [PMID: 32121639 PMCID: PMC7084665 DOI: 10.3390/ijms21051696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis being the main cause of breast cancer (BC) mortality represents the complex and multistage process. The entrance of tumor cells into the blood vessels and the appearance of circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and presented by clusters and individual cells which consist of phenotypically and genetically distinct subpopulations. However, among this diversity, only a small number of CTCs is able to survive in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this review, we summarize the available literature addressing morphological, phenotypic and genetic heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
Collapse
|
230
|
Fabisiewicz A, Szostakowska-Rodzos M, Zaczek AJ, Grzybowska EA. Circulating Tumor Cells in Early and Advanced Breast Cancer; Biology and Prognostic Value. Int J Mol Sci 2020; 21:E1671. [PMID: 32121386 PMCID: PMC7084781 DOI: 10.3390/ijms21051671] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer metastasis is the leading cause of cancer deaths in women and is difficult to combat due to the long periods in which disseminated cells retain a potential to be re-activated and start the relapse. Assessing the number and molecular profile of circulating tumor cells (CTCs) in breast cancer patients, especially in early breast cancer, should help in identifying the possibility of relapse in time for therapeutic intervention to prevent or delay recurrence. While metastatic breast cancer is considered incurable, molecular analysis of CTCs still have a potential to define particular susceptibilities of the cells representing the current tumor burden, which may differ considerably from the cells of the primary tumor, and offer more tailored therapy to the patients. In this review we inspect the routes to metastasis and how they can be linked to specific features of CTCs, how CTC analysis may be used in therapy, and what is the current status of the research and efforts to include CTC analysis in clinical practice.
Collapse
Affiliation(s)
- Anna Fabisiewicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| | - Malgorzata Szostakowska-Rodzos
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| | - Anna J. Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Debinki 1, 80-211 Gdansk, Poland;
| | - Ewa A. Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| |
Collapse
|
231
|
Aghamir SMK, Heshmat R, Ebrahimi M, Khatami F. Liquid Biopsy: The Unique Test for Chasing the Genetics of Solid Tumors. Epigenet Insights 2020; 13:2516865720904052. [PMID: 32166219 PMCID: PMC7050026 DOI: 10.1177/2516865720904052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran Iran
| | - Fatemeh Khatami
- Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
232
|
Kawaguchi M, Dashzeveg N, Cao Y, Jia Y, Liu X, Shen Y, Liu H. Extracellular Domains I and II of cell-surface glycoprotein CD44 mediate its trans-homophilic dimerization and tumor cluster aggregation. J Biol Chem 2020; 295:2640-2649. [PMID: 31969394 PMCID: PMC7049959 DOI: 10.1074/jbc.ra119.010252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/16/2020] [Indexed: 01/09/2023] Open
Abstract
CD44 molecule (CD44) is a well-known surface glycoprotein on tumor-initiating cells or cancer stem cells. However, its utility as a therapeutic target for managing metastases remains to be fully evaluated. We previously demonstrated that CD44 mediates homophilic interactions for circulating tumor cell (CTC) cluster formation, which enhances cancer stemness and metastatic potential in association with an unfavorable prognosis. Furthermore, CD44 self-interactions activate the P21-activated kinase 2 (PAK2) signaling pathway. Here, we further examined the biochemical properties of CD44 in homotypic tumor cell aggregation. The standard CD44 form (CD44s) mainly assembled as intercellular homodimers (trans-dimers) in tumor clusters rather than intracellular dimers (cis-dimers) present in single cells. Machine learning-based computational modeling combined with experimental mutagenesis tests revealed that the extracellular Domains I and II of CD44 are essential for its trans-dimerization and predicted high-score residues to be required for dimerization. Substitutions of 10 these residues in Domain I (Ser-45, Glu-48, Phe-74, Cys-77, Arg-78, Tyr-79, Ile-88, Arg-90, Asn-94, and Cys-97) or 5 residues in Domain II (Ile-106, Tyr-155, Val-156, Gln-157, and Lys-158) abolished CD44 dimerization and reduced tumor cell aggregation in vitro Importantly, the substitutions in Domain II dramatically inhibited lung colonization in mice. The CD44 dimer-disrupting substitutions decreased downstream PAK2 activation without affecting the interaction between CD44 and PAK2, suggesting that PAK2 activation in tumor cell clusters is CD44 trans-dimer-dependent. These results shed critical light on the biochemical mechanisms of CD44-mediated tumor cell cluster formation and may help inform the development of therapeutic strategies to prevent tumor cluster formation and block cluster-mediated metastases.
Collapse
Affiliation(s)
- Madoka Kawaguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 6068501, Japan
| | - Nurmaa Dashzeveg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536.
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843.
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
233
|
Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, Zhang Y, Nagata K, Li Z, Zhou BP, Xu R. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A 2020; 117:3748-3758. [PMID: 32015106 PMCID: PMC7035603 DOI: 10.1073/pnas.1911951117] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increased expression of extracellular matrix (ECM) proteins in circulating tumor cells (CTCs) suggests potential function of cancer cell-produced ECM in initiation of cancer cell colonization. Here, we showed that collagen and heat shock protein 47 (Hsp47), a chaperone facilitating collagen secretion and deposition, were highly expressed during the epithelial-mesenchymal transition (EMT) and in CTCs. Hsp47 expression induced mesenchymal phenotypes in mammary epithelial cells (MECs), enhanced platelet recruitment, and promoted lung retention and colonization of cancer cells. Platelet depletion in vivo abolished Hsp47-induced cancer cell retention in the lung, suggesting that Hsp47 promotes cancer cell colonization by enhancing cancer cell-platelet interaction. Using rescue experiments and functional blocking antibodies, we identified type I collagen as the key mediator of Hsp47-induced cancer cell-platelet interaction. We also found that Hsp47-dependent collagen deposition and platelet recruitment facilitated cancer cell clustering and extravasation in vitro. By analyzing DNA/RNA sequencing data generated from human breast cancer tissues, we showed that gene amplification and increased expression of Hsp47 were associated with cancer metastasis. These results suggest that targeting the Hsp47/collagen axis is a promising strategy to block cancer cell-platelet interaction and cancer colonization in secondary organs.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Jie Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Guoying Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Shike Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Kunito Kawasaki
- Department of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Jieqing Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Yan Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Kazuhiro Nagata
- Department of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Zhenyu Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
234
|
He Y, Shi J, Schmidt B, Liu Q, Shi G, Xu X, Liu C, Gao Z, Guo T, Shan B. Circulating Tumor Cells as a Biomarker to Assist Molecular Diagnosis for Early Stage Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:841-854. [PMID: 32104066 PMCID: PMC7008188 DOI: 10.2147/cmar.s240773] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Objective Compared with tissue biopsy, liquid biopsy is the most preferable non-invasive promising method in personalized medicine, although it has many limitations in isolating circulating tumor cells (CTC). Lung cancer associated mortality is drastically increased due to a shortfall of early-stage detection, which remains a challenge. Herein, we aimed to detect lung cancer at an early-stage using CellCollector device. Methods 39,627 volunteers underwent low-dose computed tomography; 2508 cases with pulmonary nodules and 7080 with no pulmonary nodules were chosen. After follow-up, 24 patients were diagnosed with early-stage non-small cell lung cancer (NSCLC), and subjected to CTC detection using CellCollector, along with 72 healthy volunteers. Immunofluorescence staining for EpCAM/CKs and CD45 were performed for CTC validation. Results Fifteen out of twenty-four (stage I, n = 18; stage II, n = 6) early-stage lung cancer patients were found to be CTC-positive, whereas no CTC was found in the control group. Genetic mutation of TP53, ERBB2, PDGFRA, CFS1R and FGFR1 in the CTC revealed 71.6% of the mutation sites similar to the tumor tissues of 13 patients. Molecular characterization revealed higher expression of protein PD-LI in CTC (40%) as compared to tumor tissue (26.7%). Moreover, CTC clusters were detected in 40% of patients. Conclusion CTC detection using the CellCollector in early-stage NSCLC had a relative high capture rate. Moreover, CTC analysis is a prospective setting for molecular diagnostic in cases when tumor tissue biopsy is not desirable.
Collapse
Affiliation(s)
- Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Jin Shi
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Bernd Schmidt
- Department of Internal Medicine - Pneumology and Sleep Medicine, Central Emergency Room, Palliative Medicine, DRK Kliniken Berlin, Berlin 13359, Germany
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Gaofeng Shi
- Department of Radiology, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Xiaoli Xu
- Follow-Up Centre, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Congmin Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Zhaoyu Gao
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Tiantian Guo
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| | - Baoen Shan
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, People's Republic of China
| |
Collapse
|
235
|
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 2020; 20:107-124. [PMID: 31780785 DOI: 10.1038/s41568-019-0221-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.
Collapse
Affiliation(s)
- Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- CNRS SNC 505, Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
236
|
Aceto N. Bring along your friends: Homotypic and heterotypic circulating tumor cell clustering to accelerate metastasis. Biomed J 2020; 43:18-23. [PMID: 32200952 PMCID: PMC7090281 DOI: 10.1016/j.bj.2019.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
Metastasis formation is a hallmark of invasive cancers and it is achieved through the shedding of circulating tumor cells (CTCs) from the primary site into the blood circulation. There, CTCs are found as single cells or as multicellular clusters, with clusters carrying an elevated ability to survive within the bloodstream and initiate new metastatic lesions at distant sites. Clusters of CTCs include homotypic clusters made of cancer cells only, as well as heterotypic clusters that incorporate stromal or immune cells along with cancer cells. Both homotypic and heterotypic CTC clusters are characterized by a high metastasis-forming capability, high proliferation rate and by distinct molecular features compared to single CTCs, and their presence in the peripheral circulation of cancer patients is generally associated with a poor prognosis. In this short review, we summarize the current literature that describes homotypic and heterotypic CTC clusters, both in the context of their molecular characteristics as well as their value in the clinical setting. While CTC clusters have only recently emerged as key players in the metastatic process and many aspects of their biology remain to be investigated, a detailed understanding of their vulnerabilities may pave the way towards the generation of new metastasis-suppressing agents.
Collapse
Affiliation(s)
- Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
237
|
Biomimetic nanovesicles made from iPS cell-derived mesenchymal stem cells for targeted therapy of triple-negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102146. [DOI: 10.1016/j.nano.2019.102146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/05/2019] [Accepted: 12/11/2019] [Indexed: 12/28/2022]
|
238
|
Sprouffske K, Kerr G, Li C, Prahallad A, Rebmann R, Waehle V, Naumann U, Bitter H, Jensen MR, Hofmann F, Brachmann SM, Ferretti S, Kauffmann A. Genetic heterogeneity and clonal evolution during metastasis in breast cancer patient-derived tumor xenograft models. Comput Struct Biotechnol J 2020; 18:323-331. [PMID: 32099592 PMCID: PMC7026725 DOI: 10.1016/j.csbj.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic heterogeneity within a tumor arises by clonal evolution, and patients with highly heterogeneous tumors are more likely to be resistant to therapy and have reduced survival. Clonal evolution also occurs when a subset of cells leave the primary tumor to form metastases, which leads to reduced genetic heterogeneity at the metastatic site. Although this process has been observed in human cancer, experimental models which recapitulate this process are lacking. Patient-derived tumor xenografts (PDX) have been shown to recapitulate the patient's original tumor's intra-tumor genetic heterogeneity, as well as its genomics and response to treatment, but whether they can be used to model clonal evolution in the metastatic process is currently unknown. Here, we address this question by following genetic changes in two breast cancer PDX models during metastasis. First, we discovered that mouse stroma can be a confounding factor in assessing intra-tumor heterogeneity by whole exome sequencing, thus we developed a new bioinformatic approach to correct for this. Finally, in a spontaneous, but not experimental (tail-vein) metastasis model we observed a loss of heterogeneity in PDX metastases compared to their orthotopic "primary" tumors, confirming that PDX models can faithfully mimic the clonal evolution process undergone in human patients during metastatic spreading.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cheng Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anirudh Prahallad
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ramona Rebmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Verena Waehle
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Bitter
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Kauffmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
239
|
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19:341. [PMID: 31866766 PMCID: PMC6918690 DOI: 10.1186/s12935-019-1067-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings-CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
Collapse
Affiliation(s)
- Chang Yang
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Bai-Rong Xia
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Wei-Lin Jin
- 2Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China.,3National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China
| | - Ge Lou
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| |
Collapse
|
240
|
Lathia J, Liu H, Matei D. The Clinical Impact of Cancer Stem Cells. Oncologist 2019; 25:123-131. [PMID: 32043793 DOI: 10.1634/theoncologist.2019-0517] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
Patients with cancer can go though many stages in their disease, including diagnosis, recurrence, metastasis, and treatment failure. Cancer stem cells (CSCs) are a subgroup of cells within tumors that may explain the mechanism by which tumors recur and progress. CSCs can both self-renew and produce progenitor cells of more differentiated cancer cells as well as heterogeneously demonstrate resistance and the abilities to migrate and metastasize. These "stemness" characteristics are often the result of dysregulation of one or more pathways, which can be detected by various biomarkers. Although there has been considerable laboratory research conducted on CSCs, its relevance to the practicing oncologist may seem questionable. We sought to determine the clinical impact of CSCs on patients. A systematic literature search was conducted to identify analyses containing survival information based on the expression of known CSC biomarkers in any cancer. Overall, 234 survival analyses were identified, of which 82% reported that high expression of CSC biomarker(s) resulted in poor overall survival and/or disease-free survival compared with low or no expression of the biomarker. Elevated stemness biomarker levels were also associated with decreased tumor differentiation, altered TNM stage, and increased metastasis. This analysis would suggest that CSCs have a clinical impact on patients and that practicing oncologists need to start considering incorporating CSC-targeting therapies into their patients' treatment regimens. IMPLICATIONS FOR PRACTICE: Cancer stem cells (CSCs) may occur at any stage of cancer and are implicated in the occurrence of resistance, recurrence, and metastasis. A systematic literature analysis has shown that the presence of CSCs, identified via the upregulation of stemness pathway biomarkers, results in reduced survival across all cancers studied. Several CSC-targeting agents are currently approved, and several others are in clinical trials. Future treatment regimens will likely include CSC-targeting agents to enable the elimination of these holdouts to current therapies.
Collapse
Affiliation(s)
- Justin Lathia
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Huiping Liu
- Department of Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
241
|
Tuguzbaeva G, Yue E, Chen X, He L, Li X, Ju J, Qin Y, Pavlov V, Lu Y, Jia W, Bai Y, Niu Y, Yang B. PEP06 polypeptide 30 is a novel cluster-dissociating agent inhibiting α v integrin/FAK/Src signaling in oral squamous cell carcinoma cells. Acta Pharm Sin B 2019; 9:1163-1173. [PMID: 31867162 PMCID: PMC6900557 DOI: 10.1016/j.apsb.2019.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Collectively migrating tumor cells have been recently implicated in enhanced metastasis of epithelial malignancies. In oral squamous cell carcinoma (OSCC), αv integrin is a crucial mediator of multicellular clustering and collective movement in vitro; however, its contribution to metastatic spread remains to be addressed. According to the emerging therapeutic concept, dissociation of tumor clusters into single cells could significantly suppress metastasis-seeding ability of carcinomas. This study aimed to investigate the anti-OSCC potential of novel endostatin-derived polypeptide PEP06 as a cluster-dissociating therapeutic agent in vitro. Firstly, we found marked enrichment of αv integrin in collectively invading multicellular clusters in human OSCCs. Our study revealed that metastatic progression of OSCC was associated with augmented immunostaining of αv integrin in cancerous lesions. Following PEP06 treatment, cell clustering on fibronectin, migration, multicellular aggregation, anchorage-independent survival and colony formation of OSCC were significantly inhibited. Moreover, PEP06 suppressed αv integrin/FAK/Src signaling in OSCC cells. PEP06-induced loss of active Src and E-cadherin from cell–cell contacts contributed to diminished collective migration of OSCC in vitro. Overall, these results suggest that PEP06 polypeptide 30 inhibiting αv integrin/FAK/Src signaling and disrupting E-cadherin-based intercellular junctions possesses anti-metastatic potential in OSCC by acting as a cluster-dissociating therapeutic agent.
Collapse
|
242
|
A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. J Clin Med 2019; 8:jcm8111772. [PMID: 31652963 PMCID: PMC6912280 DOI: 10.3390/jcm8111772] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cell clusters (CTCcl) have a higher metastatic potential compared to single CTCs and predict long-term outcomes in breast cancer (BC) patients. Because of the rarity of CTCcls, molecular characterization of primary tumors that give rise to CTCcl hold significant promise for better diagnosis and target discovery to combat metastatic BC. In our study, we utilized the reverse-phase protein array (RPPA) and transcriptomic (RNA-Seq) data of 10 triple-negative BC patient-derived xenograft (TNBC PDX) transplantable models with CTCs and evaluated expression of upregulated candidate protein Bcl2 (B-cell lymphoma 2) by immunohistochemistry (IHC). The sample-set consisted of six CTCcl-negative (CTCcl-) and four CTCcl-positive (CTCcl+) models. We analyzed the RPPA and transcriptomic profiles of CTCcl- and CTCcl+ TNBC PDX models. In addition, we derived a CTCcl-specific gene signature for testing if it predicted outcomes using a publicly available dataset from 360 patients with basal-like BC. The RPPA analysis of CTCcl+ vs. CTCcl- TNBC PDX tumors revealed elevated expression of Bcl2 (false discovery rate (FDR) < 0.0001, fold change (FC) = 3.5) and reduced acetyl coenzyme A carboxylase-1 (ACC1) (FDR = 0.0005, FC = 0.3) in CTCcl+ compared to CTCcl- tumors. Genome-wide transcriptomic analysis of CTCcl+ vs. CTCcl- tumors revealed 549 differentially expressed genes associated with the presence of CTCcls. Apoptosis was one of the significantly downregulated pathways (normalized enrichment score (NES) = -1.69; FDR < 0.05) in TNBC PDX tumors associated with CTCcl positivity. Two out of four CTCcl+ TNBC PDX primary tumors had high Bcl2 expression by IHC (H-score > 34); whereas, only one of six CTCcl- TNBC PDX primary tumors met this criterion. Evaluation of epithelial-mesenchymal transition (EMT)-specific signature did not show significant differences between CTCcl+ and CTCcl- tumors. However, a gene signature associated with the presence of CTCcls in TNBC PDX models was associated with worse relapse-free survival in the publicly available dataset from 360 patients with basal-like BC. In summary, we identified the multigene signature of primary PDX tumors associated with the presence of CTCcls. Evaluation of additional TNBC PDX models and patients can further illuminate cellular and molecular pathways facilitating CTCcl formation.
Collapse
|
243
|
San Juan BP, Garcia-Leon MJ, Rangel L, Goetz JG, Chaffer CL. The Complexities of Metastasis. Cancers (Basel) 2019; 11:E1575. [PMID: 31623163 PMCID: PMC6826702 DOI: 10.3390/cancers11101575] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Therapies that prevent metastatic dissemination and tumor growth in secondary organs are severely lacking. A better understanding of the mechanisms that drive metastasis will lead to improved therapies that increase patient survival. Within a tumor, cancer cells are equipped with different phenotypic and functional capacities that can impact their ability to complete the metastatic cascade. That phenotypic heterogeneity can be derived from a combination of factors, in which the genetic make-up, interaction with the environment, and ability of cells to adapt to evolving microenvironments and mechanical forces play a major role. In this review, we discuss the specific properties of those cancer cell subgroups and the mechanisms that confer or restrict their capacity to metastasize.
Collapse
Affiliation(s)
- Beatriz P San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Maria J Garcia-Leon
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laura Rangel
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Christine L Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| |
Collapse
|
244
|
Rodrigues P, Vanharanta S. Circulating Tumor Cells: Come Together, Right Now, Over Metastasis. Cancer Discov 2019; 9:22-24. [PMID: 30626605 DOI: 10.1158/2159-8290.cd-18-1285] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating tumor cells (CTC) are the source of metastases, but only an infinitesimal fraction of them eventually succeed in colonizing a distant organ. New results show that CD44-dependent aggregation in the circulation provides CTCs with cancer stem cell-like characteristics, suggesting an explanation for the low metastatic efficiency of CTCs, but also avenues for therapeutic intervention.See related article by Liu et al., p. 96.
Collapse
Affiliation(s)
- Paulo Rodrigues
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Sakari Vanharanta
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
245
|
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 2019; 19:553-567. [PMID: 31455893 DOI: 10.1038/s41568-019-0180-2] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.
Collapse
Affiliation(s)
- Laura Keller
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
246
|
Labuschagne CF, Cheung EC, Blagih J, Domart MC, Vousden KH. Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metab 2019; 30:720-734.e5. [PMID: 31447323 PMCID: PMC6863392 DOI: 10.1016/j.cmet.2019.07.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Cancer metastasis depends on cell survival following loss of extracellular matrix attachment and dissemination through the circulation. The metastatic spread can be enhanced by the clustering of detached cancer cells and increased antioxidant defense. Here, we link these responses by describing how cell clustering limits reactive oxygen species (ROS). Loss of attachment causes mitochondrial perturbations and increased ROS production. The formation of cell clusters induces a hypoxic environment that drives hypoxia-inducible factor 1-alpha (Hif1α)-mediated mitophagy, clearing damaged mitochondria and limiting ROS. However, hypoxia and reduced mitochondrial capacity promote dependence on glycolysis for ATP production that is supported by cytosolic reductive metabolism. Preventing this metabolic adaptation or disruption of cell clusters results in ROS accumulation, cell death, and a reduction of metastatic capacity in vivo. Our results provide a mechanistic explanation for the role of cell clustering in supporting survival during extracellular matrix detachment and metastatic spread and may point to targetable vulnerabilities.
Collapse
Affiliation(s)
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
247
|
Tayoun T, Faugeroux V, Oulhen M, Aberlenc A, Pawlikowska P, Farace F. CTC-Derived Models: A Window into the Seeding Capacity of Circulating Tumor Cells (CTCs). Cells 2019; 8:E1145. [PMID: 31557946 PMCID: PMC6829286 DOI: 10.3390/cells8101145] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells. Therefore, detection and functional characterization of these subclones may offer insight into mechanisms underlying CTC tumorigenicity and inform on the complex biology behind metastatic spread. Although an in-depth mechanistic investigation is limited by the extremely low CTC count in circulation, significant progress has been made over the past few years to establish relevant systems from patient CTCs. CTC-derived xenograft (CDX) models and CTC-derived ex vivo cultures have emerged as tractable systems to explore tumor-initiating cells (TICs) and uncover new therapeutic targets. Here, we introduce basic knowledge of CTC biology, including CTC clusters and evidence for EMT/cancer stem cell (CSC) hybrid phenotypes. We report and evaluate the CTC-derived models generated to date in different types of cancer and shed a light on challenges and key findings associated with these novel assays.
Collapse
Affiliation(s)
- Tala Tayoun
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
- Faculty of Medicine, Université Paris Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicetre, France.
| | - Vincent Faugeroux
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Marianne Oulhen
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Agathe Aberlenc
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Patrycja Pawlikowska
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Françoise Farace
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| |
Collapse
|
248
|
Bocci F, Kumar Jolly M, Onuchic JN. A Biophysical Model Uncovers the Size Distribution of Migrating Cell Clusters across Cancer Types. Cancer Res 2019; 79:5527-5535. [DOI: 10.1158/0008-5472.can-19-1726] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
249
|
Kim K, Marquez-Palencia M, Malladi S. Metastatic Latency, a Veiled Threat. Front Immunol 2019; 10:1836. [PMID: 31447846 PMCID: PMC6691038 DOI: 10.3389/fimmu.2019.01836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Metastatic relapse is observed in cancer patients with no clinical evidence of disease for months to decades after initial diagnosis and treatment. Disseminated cancer cells that are capable of entering reversible cell cycle arrest are believed to be responsible for these late metastatic relapses. Dynamic interactions between the latent disseminated tumor cells and their surrounding microenvironment aid cancer cell survival and facilitate escape from immune surveillance. Here, we highlight findings from preclinical models that provide a conceptual framework to define and target the latent metastatic phase of tumor progression. The hope is by identifying patients harboring latent metastatic cells and providing therapeutic options to eliminate metastatic seeds prior to their emergence will result in long lasting cures.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mauricio Marquez-Palencia
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Srinivas Malladi
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
250
|
Du B, Wang Q, Yang Y, Du Q, Liu Y, Zhu W, Xu T, Shen G, Yao H, Wang L. Two-Way Cruise Nanosatellite Promotes Metastasis Inhibition by Immunochemotherapy. Biomacromolecules 2019; 20:2873-2887. [PMID: 31185162 DOI: 10.1021/acs.biomac.9b00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, immunochemotherapy based on tumor-associated macrophages (TAMs) is mainly used for elimination of M2 macrophages. However, these methods cannot make full use of the positive immune-modulatory effects of macrophages. This study explores a two-way cruise strategy for combining immunotherapy based on TAM phenotype reversal with classical chemotherapy, the nanosatellites (DOX@HFn-PGZL@Res) are proposed to accurately deliver the chemotherapeutic agents and immune activators to their respective target cells. When the delivery system is recruited to tumor microenvironment, the nanosatellites are separated into DOX@HFn and Res@GZL nanoparticles, which can enter cancer cells and M2-TAMs, respectively. The data show that DOX@HFn-PGZL@Res successfully re-educate M2 to M1 macrophages, resulting in an activated immune response and inhibition of tumor invasion and metastasis. In general, this work describes a two-way homing nanoplatform for the integration of immunotherapy and chemotherapy, which provides a new idea for the "attack-defense" integrated treatment of tumor.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Qinghui Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Yang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Qian Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Liu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Wanying Zhu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Tianguo Xu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Guopeng Shen
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Hanchun Yao
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Lei Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| |
Collapse
|