201
|
Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 2008; 112:3601-14. [PMID: 18728246 DOI: 10.1182/blood-2008-03-144766] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report that angiotensin-converting enzyme (ACE), a critical physiologic regulator of blood pressure, angiogenesis, and inflammation, is a novel marker for identifying hemangioblasts differentiating from human embryonic stem cells (hESC). We demonstrate that ACE+CD45-CD34+/- hemangioblasts are common yolk sac (YS)-like progenitors for not only endothelium but also both primitive and definitive human lymphohematopoietic cells. Thrombopoietin and basic fibroblast growth factor are identified as critical factors for the proliferation of human hemangioblasts. The developmental sequence of human embryoid body hematopoiesis is remarkably congruent to the timeline of normal human YS development, which occurs during weeks 2 to 6 of human gestation. Furthermore, ACE and the renin-angiotensin system (RAS) directly regulate hemangioblast expansion and differentiation via signaling through the angiotensin II receptors AGTR1 and AGTR2. ACE enzymatic activity is required for hemangioblast expansion, and differentiation toward either endothelium or multipotent hematopoietic progenitors is dramatically augmented after manipulation of angiotensin II signaling with either AGTR1- or AGTR2-specific inhibitors. The RAS can therefore be exploited to direct the hematopoietic or endothelial fate of hESC-derived hemangioblasts, thus providing novel opportunities for human tissue engineering. Moreover, the initial events of human hematoendotheliogenesis can be delineated in a manner previously impossible because of inaccessibility to early human embryonic tissues.
Collapse
|
202
|
Abstract
Human erythropoiesis is a complex multistep process that involves the differentiation of early erythroid progenitors to mature erythrocytes. Here we show that it is feasible to differentiate and mature human embryonic stem cells (hESCs) into functional oxygen-carrying erythrocytes on a large scale (10(10)-10(11) cells/6-well plate hESCs). We also show for the first time that the oxygen equilibrium curves of the hESC-derived cells are comparable with normal red blood cells and respond to changes in pH and 2,3-diphosphoglyerate. Although these cells mainly expressed fetal and embryonic globins, they also possessed the capacity to express the adult beta-globin chain on further maturation in vitro. Polymerase chain reaction and globin chain specific immunofluorescent analysis showed that the cells increased expression of beta-globin (from 0% to > 16%) after in vitro culture. Importantly, the cells underwent multiple maturation events, including a progressive decrease in size, increase in glycophorin A expression, and chromatin and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to more than 60% of the cells generating red blood cells with a diameter of approximately 6 to 8 mum. The results show that it is feasible to differentiate and mature hESCs into functional oxygen-carrying erythrocytes on a large scale.
Collapse
|
203
|
Lu SJ, Hipp JA, Feng Q, Hipp JD, Lanza R, Atala A. GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes. Genome Biol 2008; 8:R240. [PMID: 17999768 PMCID: PMC2258184 DOI: 10.1186/gb-2007-8-11-r240] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/10/2007] [Accepted: 11/13/2007] [Indexed: 12/22/2022] Open
Abstract
Transcriptional profiling of human embryonic stem cells differentiating into blast cells reveals that erythroblasts are the predominant cell type in the blast cell population. In silico comparisons with publicly available data sets revealed the presence of endothelia, cardiomyocytes and hematopoietic lineages. Background Microarrays are being used to understand human embryonic stem cell (hESC) differentiation. Most differentiation protocols use a multi-stage approach that induces commitment along a particular lineage. Therefore, each stage represents a more mature and less heterogeneous phenotype. Thus, characterizing the heterogeneous progenitor populations upon differentiation are of increasing importance. Here we describe a novel method of data analysis using a recently developed differentiation protocol involving the formation of functional hemangioblasts from hESCs. Blast cells are multipotent and can differentiate into multiple lineages of hematopoeitic cells (erythroid, granulocyte and macrophage), endothelial and smooth muscle cells. Results Large-scale transcriptional analysis was performed at distinct time points of hESC differentiation (undifferentiated hESCs, embryoid bodies, and blast cells, the last of which generates both hematopoietic and endothelial progenies). Identifying genes enriched in blast cells relative to hESCs revealed a genetic signature indicative of erythroblasts, suggesting that erythroblasts are the predominant cell type in the blast cell population. Because of the heterogeneity of blast cells, numerous comparisons were made to publicly available data sets in silico, some of which blast cells are capable of differentiating into, to assess and characterize the blast cell population. Biologically relevant comparisons masked particular genetic signatures within the heterogeneous population and identified genetic signatures indicating the presence of endothelia, cardiomyocytes, and hematopoietic lineages in the blast cell population. Conclusion The significance of this microarray study is in its ability to assess and identify cellular populations within a heterogeneous population through biologically relevant in silico comparisons of publicly available data sets. In conclusion, multiple in silico comparisons were necessary to characterize tissue-specific genetic signatures within a heterogeneous hemangioblast population.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Advanced Cell Technology, Worcester, MA 01605, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Chang KH, Nelson AM, Fields PA, Hesson JL, Ulyanova T, Cao H, Nakamoto B, Ware CB, Papayannopoulou T. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res 2008; 314:2930-40. [PMID: 18692044 DOI: 10.1016/j.yexcr.2008.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/02/2023]
Abstract
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls. Curr Opin Hematol 2008; 15:312-8. [PMID: 18536568 DOI: 10.1097/moh.0b013e328302f429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic development from embryonic stem cells has been one of the most productive areas of stem cell biology. Recent studies have progressed from work with mouse to human embryonic stem cells. Strategies to produce defined blood cell populations can be used to better understand normal and abnormal hematopoiesis, as well as potentially improve the generation of hematopoietic cells with therapeutic potential. RECENT FINDINGS Molecular profiling, phenotypic and functional analyses have all been utilized to demonstrate that hematopoietic cells derived from embryonic stem cells most closely represent a stage of hematopoiesis that occurs at embryonic/fetal developmental stages. Generation of hematopoietic stem/progenitor cells comparable to hematopoietic stem cells found in the adult sources, such as bone marrow and cord blood, still remains challenging. However, genetic manipulation of intrinsic factors during hematopoietic differentiation has proven a suitable approach to induce adult definitive hematopoiesis from embryonic stem cells. SUMMARY Concrete evidence has shown that embryonic stem cells provide a powerful approach to study the early stage of hematopoiesis. Multiple hematopoietic lineages can be generated from embryonic stem cells, although most of the evidence suggests that hematopoietic development from embryonic stem cells mimics an embryonic/fetal stage of hematopoiesis.
Collapse
|
206
|
Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood 2008; 112:2730-7. [PMID: 18621931 DOI: 10.1182/blood-2008-01-133801] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34(+) cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34(+) cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34(+) cells also did not produce B cells in vitro. In contrast, CD34(+) cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor-induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs.
Collapse
|
207
|
Abstract
PURPOSE OF REVIEW The present study review examines the current understanding of the ontogeny of erythropoiesis with a focus on the emergence of the embryonic (primitive) erythroid lineage and on the similarities and differences between the primitive and the fetal/adult (definitive) forms of erythroid cell maturation. RECENT FINDINGS Primitive erythroid precursors in the mouse embryo and cultured in vitro from human embryonic stem cells undergo 'maturational' globin switching as they differentiate terminally. The appearance of a transient population of primitive 'pyrenocytes' (extruded nuclei) in the fetal bloodstream indicates that primitive erythroblasts enucleate by nuclear extrusion. In-vitro differentiation of human embryonic stem cells recapitulates hematopoietic ontogeny reminiscent of the murine yolk sac, including overlapping waves of hemangioblast, primitive, erythroid, and definitive erythroid progenitors. Definitive erythroid potential in zebrafish embryos, like that in mice, initially arises prior to, and independent of, hematopoietic stem cell emergence in the region of the aorta. Maturation of definitive erythroid cells within macrophage islands promotes erythroblast-erythroblast and erythroblast-stromal interactions that regulate red cell output. SUMMARY The study of embryonic development in several different model systems, as well as in cultured human embryonic stem cells, continues to provide important insights into the ontogeny of erythropoiesis. Contrasting the similarities and differences between primitive and definitive erythropoiesis will lead to an improved understanding of erythroblast maturation and the terminal steps of erythroid differentiation.
Collapse
|
208
|
Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:133-47. [PMID: 18454639 DOI: 10.1089/teb.2007.0304] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are of great interest because of their potential in cell therapy for vascular diseases and ischemic tissue, tissue engineering for vascular grafts and vascularized tissue beds, and modeling for pharmaceutical transport across endothelial barriers. However, limited availability and proliferation capability of mature endothelial cells hampers development of these applications. Recent advances in stem cell technology have enabled researchers to derive endothelial or endothelial-like cells from stem cells or other precursor populations. The current state of these cell sources and their in vitro differentiation, selection, and applications are discussed in this review.
Collapse
Affiliation(s)
- Saejeong Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
209
|
Cameron CM, Harding F, Hu WS, Kaufman DS. Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood) 2008; 233:1044-57. [PMID: 18535160 DOI: 10.3181/0709-rm-263] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxygen tension can provide an important determinant for differentiation and development of many cells and tissues. Genetic regulation of hemato-endothelial commitment is known to respond to oxygen deprivation via stimulation of hypoxia inducible factors (HIFs). Here, we use a closed bioreactor system to monitor and control the dissolved oxygen during differentiation of human embryonic stem cells (hESCs) via formation of embryoid bodies (hEBs). Exposing hESC-derived EBs to ambient oxygen at or below 5% results in stabilization of HIF-1alpha and increased transcription of hypoxic responsive genes. Interestingly, we find that rather than HIF-1alpha expression being stable over prolonged (7-16 days) culture in hypoxic conditions, HIF-1alpha expression peaks after approximately 48 hours of hypoxic exposure, and then declines to near undetectable levels, despite constant hypoxic exposure. This transient stabilization of HIF-1alpha during hESC-derived EB culture is demonstrated for four distinct stages of differentiation. Furthermore, we demonstrate hEB cell expansion is slowed by hypoxic exposure, with increased apoptosis. However, hEB cell proliferation returns to normal rates upon return to normoxic conditions. Therefore, although hypoxia effectively stimulates hypoxic responsive genes, this single variable was not sufficient to improve development of hemato-endothelial cells from hESCs.
Collapse
Affiliation(s)
- C M Cameron
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
210
|
Miñana MD, Carbonell-Uberos F, Mirabet V, Marín S, Encabo A. IFATS collection: Identification of hemangioblasts in the adult human adipose tissue. Stem Cells 2008; 26:2696-704. [PMID: 18450825 DOI: 10.1634/stemcells.2007-0988] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stromal-vascular fraction (SVF) of human adipose tissue contains, among other cell types, mesenchymal stem cells and precursors of adipocyte and endothelial cells. Here we show that, in addition, the nonhematopoietic fraction of the SVF has hematopoietic activity, since all types of hematopoietic colony-forming units (CFUs) developed when cultured in methylcellulose-based medium. This hematopoietic activity was restricted to the CD45(-)CD105(+) cell subset, well correlated with KDR(+) cell content, and increased after culture with a combination of early-acting hematopoietic cytokines. Most of the CD45(-)KDR(+)CD105(+) cells were nonadherent and did not express CD31, and this subset included both CD34(-) and CD34(+) cells. Moreover, these nonadherent cells migrated in response to KDR gradient, and when they were cultured in the presence of both hematopoietic and endothelial growth factors, a wave of CFUs was followed by a wave of mixed colonies comprising adherent elongated and nonadherent round hematopoietic cells. These mixed hematopoietic-endothelial (Hem-End) colonies were able to generate secondary Hem-End colonies and exhibited both hematopoietic and endothelial activity, as demonstrated by in vitro functional assays. These findings demonstrate for the first time the existence of primitive mesodermal progenitors within the SVF of human adipose tissue that exhibit in vitro hematopoietic and hemangioblastic activities, susceptible to being used in cell therapy and basic cell research. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
211
|
Abstract
Red cells are required not only for adult well-being but also for survival and growth of the mammalian embryo beyond early postimplantation stages of development. The embryo's first "primitive" erythroid cells, derived from a transient wave of committed progenitors, emerge from the yolk sac as immature precursors and differentiate as a semisynchronous cohort in the bloodstream. Surprisingly, this maturational process in the mammalian embryo is characterized by globin gene switching and ultimately by enucleation. The yolk sac also synthesizes a second transient wave of "definitive" erythroid progenitors that enter the bloodstream and seed the liver of the fetus. At the same time, hematopoietic stem cells within the embryo also seed the liver and are the presumed source of long-term erythroid potential. Fetal definitive erythroid precursors mature in macrophage islands within the liver, enucleate, and enter the bloodstream as erythrocytes. Toward the end of gestation, definitive erythropoiesis shifts to its final location, the bone marrow. It has recently been recognized that the yolk sac-derived primitive and fetal definitive erythroid lineages, like their adult definitive erythroid counterpart, are each hierarchically associated with the megakaryocyte lineage. Continued comparative studies of primitive and definitive erythropoiesis in mammalian and nonmammalian embryos will lead to an improved understanding of terminal erythroid maturation and globin gene regulation.
Collapse
Affiliation(s)
- Kathleen McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
212
|
Chan KM, Bonde S, Klump H, Zavazava N. Hematopoiesis and immunity of HOXB4-transduced embryonic stem cell-derived hematopoietic progenitor cells. Blood 2008; 111:2953-2961. [PMID: 18056836 PMCID: PMC2265445 DOI: 10.1182/blood-2007-10-117366] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/28/2007] [Indexed: 11/20/2022] Open
Abstract
The ability of embryonic stem (ES) cells to form cells and tissues from all 3 germ layers can be exploited to generate cells that can be used to treat diseases. In particular, successful generation of hematopoietic cells from ES cells could provide safer and less immunogenic cells than bone marrow cells, which require severe host preconditioning when transplanted across major histocompatibility complex barriers. Here, we exploited the self-renewal properties of ectopically expressed HOXB4, a homeobox transcription factor, to generate hematopoietic progenitor cells (HPCs) that successfully induce high-level mixed chimerism and long-term engraftment in recipient mice. The HPCs partially restored splenic architecture in Rag2(-/-)gamma(c)(-/-)-immunodeficient mice. In addition, HPC-derived newly generated T cells were able to mount a peptide-specific response to lymphocytic choriomeningitis virus and specifically secreted interleukin-2 and interferon-gamma upon CD3 stimulation. In addition, HPC-derived antigen presenting cells in chimeric mice efficiently presented viral antigen to wild-type T cells. These results demonstrate for the first time that leukocytes derived from ES cells ectopically expressing HOXB4 are immunologically functional, opening up new opportunities for the use of ES cell-derived HPCs in the treatment of hematologic and immunologic diseases.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Department of Internal Medicine, University of Iowa and Veteran Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
213
|
Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132:661-80. [PMID: 18295582 DOI: 10.1016/j.cell.2008.02.008] [Citation(s) in RCA: 1242] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential to generate virtually any differentiated cell type from embryonic stem cells (ESCs) offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Embryology has offered important insights into key pathways regulating ESC differentiation, resulting in advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, and ectoderm and many of their downstream derivatives. This has led to the identification of new multipotential progenitors for the hematopoietic, neural, and cardiovascular lineages and to the development of protocols for the efficient generation of a broad spectrum of cell types including hematopoietic cells, cardiomyocytes, oligodendrocytes, dopamine neurons, and immature pancreatic beta cells. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of human disease.
Collapse
Affiliation(s)
- Charles E Murry
- Departments of Pathology and Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
214
|
Vodyanik MA, Slukvin II. Hematoendothelial differentiation of human embryonic stem cells. ACTA ACUST UNITED AC 2008; Chapter 23:Unit 23.6. [PMID: 18228507 DOI: 10.1002/0471143030.cb2306s36] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human embryonic stem cells (hESCs) represent a unique population of cells capable of self-renewal and differentiation into all types of somatic cells, including hematopoietic and endothelial cells. Since the pattern of hematopoietic and endothelial development observed in the embryo can be reproduced using ESCs differentiated in culture, hESCs can be used as a model for studies of specification and diversification of hematoendothelial progenitors. In addition, hESCs can be seen as a scalable source of hematopoietic and endothelial cells for in vitro studies. This unit describes a method for efficient differentiation of hESCs into hematopoietic progenitors and endothelial cells through coculture with mouse OP9 bone marrow stromal cells, as well as an approach for their analysis and isolation. Support protocols are provided for culture of mouse embryonic fibroblasts, evaluation of hematopoietic and endothelial differentiation by flow cytometry and colony-forming assay, removal of OP9 cells, and propagation of hESC-derived endothelial cells. Curr. Protoc.
Collapse
|
215
|
Abstract
The successful isolation and characterization of human embryonic stem cells (hESCs) provides a powerful tool to study the cellular and genetic mechanisms that mediate cell-fate decisions toward distinct developmental lineages. hESC-derived cells may also be suitable for novel cellular therapies. Significant progress in hematopoietic development of hESCs has demonstrated production of many types of blood cells from hESCs including myeloid, erythroid and lymphoid lineage cells, and possibly hematopoietic stem cells. Current established approaches to generate specific hematopoietic lineages are based on the initial pre-differentiation of hESCs into a heterogeneous mixture of cell populations. In this chapter, we describe two methods that have been successfully used in our laboratory: (1) co-culture with stromal cells derived from hematopoietic microenvironments and (2) x embryoid body (EB) formation. Subsequent to this early differentiation step, distinct progenitor cell populations can be derived, sorted, and utilized for further lineage-specific developmental studies.
Collapse
Affiliation(s)
- Xinghui Tian
- Stem Cell Institute and Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
216
|
Nakamura Y. In vitro Production of Transfusable Red Blood Cells. Biotechnol Genet Eng Rev 2008; 25:187-201. [DOI: 10.5661/bger-25-187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
217
|
In Vitro hESC Technology: State of the Art and Future Perspectives. Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
218
|
Hasegawa T, McLeod DS, Bhutto IA, Prow T, Merges CA, Grebe R, Lutty GA. The embryonic human choriocapillaris develops by hemo-vasculogenesis. Dev Dyn 2007; 236:2089-100. [PMID: 17654716 PMCID: PMC4943668 DOI: 10.1002/dvdy.21231] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to characterize normal human choroidal vascular development from 6-23 weeks gestation (WG). Markers of endothelial cells (EC) (CD34, CD31, vWf), angioblasts and EC (CD39), leukocytes (CD45), erythroblasts (epsilon chain of hemoglobin, Hb-e), proliferating cells (Ki67), and VEGFR-2 were employed. At 6-7 WG, many erythroblasts were observed within islands of precursor cells in the choriocapillaris layer and others were independent from the islands. Many erythroblasts (Hb-epsilon(+)) were also positive for EC markers and/or VEGFR-2. By 8-12 WG, most of the Hb-epsilon cells had disappeared and vascular lumens became apparent. At 14-23 WG, some EC were proliferating on the scleral side of choriocapillaris in association with forming deeper vessels. In conclusion, embryonic choriocapillaris appears to form initially by hemo-vasculogenesis (blood vessels and blood cells form simultaneously from common precursors) while angiogenesis appears to be the mode of intermediate and large choroidal vessel development in the fetus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gerard A. Lutty
- Correspondence to: Gerard A. Lutty, Ph.D., 170 Woods Research Building, Johns Hopkins Hospital, 600 North Wolfe St., Baltimore, MD 21287-9115.
| |
Collapse
|
219
|
Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 2007; 34:1635-42. [PMID: 17157159 DOI: 10.1016/j.exphem.2006.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/12/2006] [Accepted: 07/11/2006] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. MATERIALS AND METHODS Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. RESULTS CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. CONCLUSIONS We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.
Collapse
Affiliation(s)
- Emmanuel N Olivier
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
220
|
Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 2007; 111:2400-8. [PMID: 18024790 DOI: 10.1182/blood-2007-07-102087] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II, the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature, fetal liver-like erythroblasts, that are smaller, express mostly fetal hemoglobin, and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated, and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary, because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
Collapse
|
221
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
222
|
Abstract
Custom-designed zinc finger nucleases (ZFNs)--proteins designed to cut at specific DNA sequences--combine the non-specific cleavage domain (N) of Fok I restriction endonuclease with zinc finger proteins (ZFPs). Because the recognition specificities of the ZFPs can be easily manipulated experimentally, ZFNs offer a general way to deliver a targeted site-specific double-strand break (DSB) to the genome. They have become powerful tools for enhancing gene targeting--the process of replacing a gene within a genome of cells via homologous recombination (HR)--by several orders of magnitude. ZFN-mediated gene targeting thus confers molecular biologists with the ability to site-specifically and permanently alter not only plant and mammalian genomes but also many other organisms by stimulating HR via a targeted genomic DSB. Site-specific engineering of the plant and mammalian genome in cells so far has been hindered by the low frequency of HR. In ZFN-mediated gene targeting, this is circumvented by using designer ZFNs to cut at the desired chromosomal locus inside the cells. The DNA break is then patched up using the new investigator-provided genetic information and the cells' own repair machinery. The accuracy and high efficiency of the HR process combined with the ability to design ZFNs that target most DNA sequences (if not all) makes ZFN technology not only a powerful research tool for site-specific manipulation of the plant and mammalian genomes, but also potentially for human therapeutics in the future, in particular for targeted engineering of the human genome of clinically transplantable stem cells.
Collapse
Affiliation(s)
- J. Wu
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| | - K. Kandavelou
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| | - S. Chandrasegaran
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| |
Collapse
|
223
|
Woll PS, Morris JK, Painschab MS, Marcus RK, Kohn AD, Biechele TL, Moon RT, Kaufman DS. Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 2007; 111:122-31. [PMID: 17875805 PMCID: PMC2200802 DOI: 10.1182/blood-2007-04-084186] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human embryonic stem cells (hESCs) provide an important means to effectively study soluble and cell-bound mediators that regulate development of early blood and endothelial cells in a human model system. Here, several complementary methods are used to demonstrate canonical Wnt signaling is important for development of hESC-derived cells with both hematopoietic and endothelial potential. Analyses using both standard flow cy-tometry, as well the more detailed high-throughput image scanning flow cytometry, characterizes sequential development of distinct early developing CD34(bright)CD31(+)Flk1(+) cells and a later population of CD34(dim)CD45(+) cells. While the CD34(bright)CD31(+)Flk1(+) have a more complex morphology and can develop into both endothelial cells and hematopoietic cells, the CD34(dim)CD45(+) cells have a simpler morphology and give rise to only hematopoietic cells. Treatment with dickkopf1 to inhibit Wnt signaling results in a dramatic decrease in development of cells with hematoendothelial potential. In addition, activation of the canonical Wnt signaling pathway in hESCs by coculture with stromal cells that express Wnt1, but not use of noncanonical Wnt5-expressing stromal cells, results in an accelerated differentiation and higher percentage of CD34(bright)CD31(+)Flk1(+) cells at earlier stages of differentiation. These studies effectively demonstrate the importance of canonical Wnt signaling to mediate development of early hematoendothelial progenitors during human development.
Collapse
Affiliation(s)
- Petter S Woll
- . Stem Cell Institute and Department of Medicine, University of Minnesota, Translational Research Facility, 2001 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Ma F, Wang D, Hanada S, Ebihara Y, Kawasaki H, Zaike Y, Heike T, Nakahata T, Tsuji K. Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells. Int J Hematol 2007; 85:371-9. [PMID: 17562610 DOI: 10.1532/ijh97.06203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We propose a novel method for the efficient production of hematopoietic progenitors from human embryonic stem cells (hESC) via coculture with murine fetal liver-derived stromal cells, in which embryonic hematopoiesis dramatically expands at midgestation. We generated various hematopoietic progenitors in coculture, and this hematopoietic activity was concentrated in cobblestone-like cells derived from differentiated hESC. The cobblestone-like cells mostly expressed CD34 and retained an endothelial cell potential. They also contained hematopoietic colony-forming cells, especially erythroid and multilineage colony-forming cells at high frequency. The multipotential hematopoietic progenitors abundant among the cobblestone-like cells produced almost all types of mature blood cells, including adult-type alpha-globin-expressing erythrocytes and tryptase/chymase double-positive mast cells. These progenitors showed neither the immature properties of ESC nor the potential to differentiate into endoderm and ectoderm at a clonal level. The coculture system developed for hESC can provide a novel source of hematopoietic and blood cells for applications in cellular therapy and drug screening.
Collapse
Affiliation(s)
- Feng Ma
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Chen D, Wang P, Lewis RL, Daigh CA, Ho C, Chen X, Thomson JA, Kendziorski C. A microarray analysis of the emergence of embryonic definitive hematopoiesis. Exp Hematol 2007; 35:1344-57. [PMID: 17761287 DOI: 10.1016/j.exphem.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 04/19/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Human embryonic stem (ES) cells provide a unique model for studying the development and function of human tissues and have proven utility in a number of areas. However, results from ES cell-based studies have been limited by the paucity of information available about early human hematopoietic development. METHODS To better understand early development of the hematopoietic lineage, we use microarray analysis to examine the temporal patterns of gene expression in embryoid bodies derived from human ES cells, focusing around the time of the emergence of definitive hematopoiesis. We use an empirical Bayes hierarchical modeling approach, called EBarrays, to classify genes into each of the possible temporal patterns of gene expression for five different time points, and correlate those patterns with the emergence of hematopoiesis. RESULTS We find a distinct group of genes previously identified as important in adult hematopoietic self-renewal (such as PIK3R1, ABCB1/MDR-1, RGS18, IRS1, SENP6/SUMO-1, and Wnt5A, etc.) temporally correlates with the emergence of the definitive hematopoiesis. Microarray-based results are further supported via flow cytometry and reverse transcription-polymerase chain reaction studies. CONCLUSION The novel genes demonstrating the same expression pattern as this group could further facilitate the understanding of the molecular mechanisms of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
Pluripotent human embryonic stem cells (hESCs) differentiate into most of the cell types of the adult human body, including vascular cells. Vascular cells, such as endothelial cells and vascular smooth muscle cells (SMCs) are significant contributors to tissue repair and regeneration. In addition to their potential applications for treatment of vascular diseases and stimulation of ischemic tissue growth, it is also possible that endothelial cells and SMCs derived from hESCs can be used to engineer artificial vessels to repair damaged vessels and form vessel networks in engineered tissues. Here we review the current status of directing hESCs to differentiate to vascular cells.
Collapse
Affiliation(s)
- H Bai
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | |
Collapse
|
227
|
Kim J, Moon SH, Lee SH, Lee DR, Koh GY, Chung HM. Effective isolation and culture of endothelial cells in embryoid body differentiated from human embryonic stem cells. Stem Cells Dev 2007; 16:269-80. [PMID: 17521238 DOI: 10.1089/scd.2006.0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe the isolation of endothelial cells from the center region of the attached embryoid body (EB) by a two-step enzyme treatment. The isolated cells from the center and outgrowth region of the EB were characterized separately. As human embryonic stem (hES) cells differentiated in EB, they lost expression of the undifferentiated marker Oct-4, whereas expression levels of endothelial-specific markers were increased. Using RT-PCR, fluorescence-activated cell sorting (FACS) analysis, and immunofluorescence, we have shown that various endothelial cell markers, including platelet/endothelial cell adhesion molecule (PECAM), von Willebrand factor (vWF), Flk-1, and Tie2, were expressed on the attached EB. Compared with the outgrowth region of EB, the center region had a higher population of cells with these endothelial cell markers. Once isolated by the twostep enzyme treatment, cells from the center region continued to differentiate into endothelial cell lineage while expression level of endothelial cell markers in cells from the outgrowth region decreased in subcultures. This study has demonstrated that the isolation of EB by a two-step enzyme treatment is a useful technique to obtain endothelial cell marker-positive cells with high yield. Furthermore, a similar approach can be taken to identify the location and distribution of specific cell types in EB and thereby allow us to isolate and expand specific cell types.
Collapse
Affiliation(s)
- Jumi Kim
- Stem Cell Research Laboratory, CHA Stem Cell Institute, Pochon CHA University and CHA Biotech Co., Ltd., Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
228
|
Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res 2007; 101:286-94. [PMID: 17569886 DOI: 10.1161/circresaha.107.150201] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.
Collapse
MESH Headings
- Animals
- Antigens, CD34/biosynthesis
- Becaplermin
- Biomarkers
- Blood Vessels/cytology
- Blood Vessels/ultrastructure
- Cattle
- Cell Differentiation/drug effects
- Cell Lineage
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/transplantation
- Collagen
- Culture Media/pharmacology
- Drug Combinations
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/transplantation
- Endothelial Cells/cytology
- Fetal Blood
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Humans
- Injections, Subcutaneous
- Laminin
- Mice
- Mice, Nude
- Morphogenesis
- Muscle Proteins/biosynthesis
- Myocytes, Smooth Muscle/cytology
- Neovascularization, Physiologic
- Organ Specificity
- Platelet-Derived Growth Factor/pharmacology
- Proteoglycans
- Proto-Oncogene Proteins c-sis
- Tissue Engineering
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Lino S Ferreira
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 2007; 25:2206-14. [PMID: 17556598 DOI: 10.1634/stemcells.2006-0713] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have utilized a serum- and stromal cell-free "spin embryoid body (EB)" differentiation system to investigate the roles of four growth factors, bone morphogenetic protein 4 (BMP4), vascular endothelial growth factor (VEGF), stem cell factor (SCF), and basic fibroblast growth factor (FGF2), singly and in combination, on the generation of hematopoietic cells from human embryonic stem cells (HESCs). Of the four factors, only BMP4 induced expression of genes that signaled the emergence of the primitive streak-like population required for the subsequent development of hematopoietic mesoderm. In addition, BMP4 initiated the expression of genes marking hematopoietic mesoderm and supported the generation of hematopoietic progenitor cells at a low frequency. However, the appearance of robust numbers of hematopoietic colony forming cells and their mature progeny required the inclusion of VEGF. Finally, the combination of BMP4, VEGF, SCF, and FGF2 further enhanced the total yield of hematopoietic cells. These data demonstrate the utility of the serum-free spin EB system in dissecting the roles of specific growth factors required for the directed differentiation of HESCs toward the hematopoietic lineage.
Collapse
Affiliation(s)
- Marjorie Pick
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
230
|
Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 2007; 109:2679-87. [PMID: 17148580 PMCID: PMC1852226 DOI: 10.1182/blood-2006-09-047704] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The onset of hematopoiesis in the mouse embryo and in the embryonic stem (ES) cell differentiation model is defined by the emergence of the hemangioblast, a progenitor with both hematopoietic and vascular potential. While there is evidence for the existence of a hemangioblast in the mouse, it is unclear if this progenitor develops during the establishment of the human hematopoietic system. In this report, we have mapped hematopoietic development in human ES cell (hESC) differentiation cultures and demonstrated that a comparable hemangioblast population exists. The human hemangioblasts were identified by their capacity to generate blast colonies that display both hematopoietic and vascular potential. These colony-forming cells express the receptor tyrosine kinase KDR (VEGF receptor 2) and represent a transient population that develops in BMP-4-stimulated embryoid bodies (EBs) between 72 and 96 hours of differentiation, prior to the onset of the primitive erythroid program. Two distinct types of hemangioblasts were identified, those that give rise to primitive erythroid cells, macrophages, and endothelial cells and those that generate only the primitive erythroid population and endothelial cells. These findings demonstrate for the first time the existence of the human hemangioblast and in doing so identify the earliest stage of hematopoietic commitment.
Collapse
Affiliation(s)
- Marion Kennedy
- Department of Gene and Cell Medicine, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York. NY 10029, USA
| | | | | | | | | |
Collapse
|
231
|
Abstract
With the isolation of human embryonic stem cells (hESCs) in 1998 came the realization of a long-sought aspiration for an unlimited source of human tissue. The difficulty of differentiating ESCs to pure, clinically exploitable cell populations to treat genetic and degenerative diseases is being solved in part with the help of genetically modified cell lines. With progress in genome editing and somatic cell nuclear transfer, it is theoretically possible to obtain genetically repaired isogenic cells. Moreover, the prospect of being able to select, isolate and expand a single cell to a vast population of cells could achieve a unique level of quality control, until now unattainable in the field of gene therapy. Most of the tools necessary to develop these strategies already exist in the mouse ESC system. We review here the advances accomplished in those fields and present some possible applications to hESC research.
Collapse
Affiliation(s)
- F Yates
- Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
232
|
Lu SJ, Feng Q, Caballero S, Chen Y, Moore MAS, Grant MB, Lanza R. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 2007; 4:501-9. [PMID: 17486087 PMCID: PMC3766360 DOI: 10.1038/nmeth1041] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 03/20/2007] [Indexed: 01/20/2023]
Abstract
Recent evidence suggests the existence of progenitor cells in adult tissues that are capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Here we describe an efficient and reproducible method for generating large numbers of these bipotential progenitors-known as hemangioblasts-from human embryonic stem (hES) cells using an in vitro differentiation system. Blast cells expressed gene signatures characteristic of hemangioblasts, and could be expanded, cryopreserved and differentiated into multiple hematopoietic lineages as well as into endothelial cells. When we injected these cells into rats with diabetes or into mice with ischemia-reperfusion injury of the retina, they localized to the site of injury in the damaged vasculature and appeared to participate in repair. Injection of the cells also reduced the mortality rate after myocardial infarction and restored blood flow in hind limb ischemia in mouse models. Our data suggest that hES-derived blast cells (hES-BCs) could be important in vascular repair.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Advanced Cell Technology, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Bettiol E, Sartiani L, Chicha L, Krause KH, Cerbai E, Jaconi ME. Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation 2007; 75:669-81. [PMID: 17459089 DOI: 10.1111/j.1432-0436.2007.00174.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.
Collapse
Affiliation(s)
- Esther Bettiol
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CMU, 1 rue Michel-Servet, 1211 Geneva 4, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
234
|
Abstract
Growing interest in using endothelial cells for therapeutic purposes has led to exploring human embryonic stem cells as a potential source for endothelial progenitor cells. Embryonic stem cells are advantageous when compared with other endothelial cell origins, due to their high proliferation capability, pluripotency, and low immunogenity. However, there are many challenges and obstacles to overcome before the vision of using embryonic endothelial progenitor cells in the clinic can be realized. Among these obstacles is the development of a productive method of isolating endothelial cells from human embryonic stem cells and elucidating their differentiation pathway. This review will focus on the endothelial potential of human embryonic stem cells that is described in current studies, with respect to the differentiation of human embryonic stem cells to endothelial cells, their isolation, and their characterization.
Collapse
Affiliation(s)
- Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | |
Collapse
|
235
|
Menendez P, Bueno C, Wang L. Human embryonic stem cells: A journey beyond cell replacement therapies. Cytotherapy 2007; 8:530-41. [PMID: 17148029 DOI: 10.1080/14653240601026654] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Success in the derivation of human embryonic stem cell (hESC) lines has opened up a new area of research in biomedicine. Human ESC not only raise hope for cell replacement therapies but also provide a potential novel system to better understand early human normal development, model human abnormal development and disease, and perform drug-screening and toxicity studies. The realization of these potentials, however, depends on expanding our knowledge about the cellular and molecular mechanisms that regulate self-renewal and lineage specification. Here, we briefly highlight the potential applications of hESC and review how flow cytometry has contributed to the initial characterization of both undifferentiated hESC cultures and hematopoietic development arising from hESC. We envision that a combination of state-of-the-art technologies, including cytomics, proteomics and genomics, will be instrumental in moving the field forward, ultimately lending invaluable knowledge to research areas such as human embryology, oncology and immunology.
Collapse
Affiliation(s)
- P Menendez
- Section of Hemato-Oncology, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|
236
|
Zambidis ET, Sinka L, Tavian M, jokubaitis V, Park TS, Simmons P, Péault B. Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells. Ann N Y Acad Sci 2007; 1106:223-32. [PMID: 17360801 PMCID: PMC3510976 DOI: 10.1196/annals.1392.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human hematopoiesis proceeds transiently in the extraembryonic yolk sac and embryonic, then fetal liver before being stabilized in the bone marrow during the third month of gestation. In addition to this classic developmental sequence, we have previously shown that the aorta-gonad-mesonephros (AGM) embryonic territory produces stem cells for definitive hematopoiesis from 27 to 40 days of human development, through an intermediate blood-forming endothelium stage. These studies have relied on the use of traditional markers of human hematopoietic and endothelial cells. In addition, we have recently identified and characterized a novel surface molecule, BB9, which typifies the earliest founders of the human angiohematopoietic system. BB9, which was initially identified with a monoclonal antibody raised to Stro-1(+) bone marrow stromal cells, recognizes in the adult the most primitive Thy-1(+) CD133(+) Lin(-), non-obese diabetic--severe combined immunodeficiency disease (NOD-SCID) mouse engrating hematopoietic stem cells (HSCs). In the 3- to 4-week embryo, BB9 expression typifies a subset of splanchnopleural mesodermal cells that migrate dorsally and colonize the ventral aspect of the aorta where they establish a population of hemogenic endothelial cells. We have indeed confirmed that hematopoietic potential in the human embryo, as assessed by long-term culture-initiating cell (LTC-IC) and SCID mouse reconstituting cell (SRC) activities, is confined to BB9-expressing cells. We have further validated these results in the model of human embryonic stem cells (hESCs) in which we have modeled, through the development of hematopoietic embryoid bodies (EBs), primitive and definitive hematopoieses. In this setting, we have documented the emergence of BB9(+) hemangioblast-like clonogenic angiohematopoietic progenitors that currently represent the earliest known founders of the human vascular and blood systems.
Collapse
Affiliation(s)
- Elias T. Zambidis
- Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Lidia Sinka
- INSERM U602, H�pital Paul Brousse, Villejuif 94807, France
| | - Manuela Tavian
- INSERM U602, H�pital Paul Brousse, Villejuif 94807, France
| | | | - Tea Soon Park
- Stem Cell Research Center at Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15213, USA
| | - Paul Simmons
- The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Bruno Péault
- Stem Cell Research Center at Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
237
|
Georgantas RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 2007; 104:2750-5. [PMID: 17293455 PMCID: PMC1796783 DOI: 10.1073/pnas.0610983104] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a recently identified class of epigenetic elements consisting of small noncoding RNAs that bind to the 3' untranslated region of mRNAs and down-regulate their translation to protein. miRNAs play critical roles in many different cellular processes including metabolism, apoptosis, differentiation, and development. We found 33 miRNAs expressed in CD34+ hematopoietic stem-progenitor cells (HSPCs) from normal human bone marrow and mobilized human peripheral blood stem cell harvests. We then combined these data with human HSPC mRNA expression data and with miRNA-mRNA target predictions, into a previously undescribed miRNA:mRNA interaction database called the Transcriptome Interaction Database. The in silico predictions from the Transcriptome Interaction Database pointed to miRNA control of hematopoietic differentiation through translational control of mRNAs critical to hematopoiesis. From these predictions, we formulated a model for miRNA control of stages of hematopoiesis in which many of the genes specifying hematopoietic differentiation are expressed by HSPCs, but are held in check by miRNAs until differentiation occurs. We validated miRNA control of several of these target mRNAs by demonstrating that their translation in fact is decreased by miRNAs. Finally, we chose miRNA-155 for functional characterization in hematopoiesis, because we predicted that it would control both myelopoiesis and erythropoiesis. As predicted, miRNA-155 transduction greatly reduced both myeloid and erythroid colony formation of normal human HSPCs.
Collapse
Affiliation(s)
- Robert W Georgantas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21204, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Prindull G. Hemangioblasts representing a functional endothelio-hematopoietic entity in ontogeny, postnatal life, and CML neovasculogenesis. ACTA ACUST UNITED AC 2007; 1:277-84. [PMID: 17142866 DOI: 10.1385/scr:1:3:277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life-long interdependencies/interactions between hemato- and endotheliopoiesis suggest that they form a supplementary functional entity. This view is compatible with the concept of stem cell plasticity as a reversible continuum and is substantiated by the common hematopoietic-endothelial stem cell, i.e., hemangioblasts, with bidirectional, reversible gene transcription and persistence in postnatal life. Indeed, embryonal stem cells/hemangioblasts appear to form a reservior in the adult with the possibility of dedifferentiation of more differentiated progenitor cells back to hemangioblasts. The recent detection of BCR/ABL fusion proteins in endothelial cells during vascular neoangiogenesis in CML suggests that endothelial cells are part of the neoplastic clone, and extends the concept of a functional entity to include CML angiogenesis. Thus, hemangioblasts rather than committed hematopoietic stem cells appear to be target cells for the first oncogenic hit in CML, which could occur as early as during the first steps of embryonal stem cell differentiation towards hemato-endotheliopoiesis and/or in hemangioblasts persisting in adults. The relation of the other leukemias to hemangioblasts is not known.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
Collapse
Affiliation(s)
- Gregor Prindull
- Pediatric Hematology/Oncology, University of Göttingen, Germany.
| |
Collapse
|
239
|
Abstract
Embryonic stem cells represent a pluripotent population of cells capable of self-renewal, large-scale expansion, and differentiation in various cell lineages including cells of hematopoietic lineage. In this chapter, we describe a three-step cell culture method for directed differentiation of human embryonic stem cells (hESCs) to dendritic cells (DCs) that includes (1) hESC differentiation into hematopoietic progenitors by coculture with OP9 stromal cells, (2) expansion of myeloid DC precursors in suspension bulk cultures with granulocyte monocyte-colony stimulating factor (GM-CSF), and (3) differentiation of myeloid precursors to DCs in the serum-free medium with GM-CSF and interleukin-4 (IL-4). The method employs cell culture conditions selecting an almost pure population of myeloid DC precursors and does not require isolation of hematopoietic progenitors. With this method, hESCs can be differentiated to functional DCs within 30 days at an efficiency of at least four DCs per single undifferentiated hESC. Directed differentiation of DCs from hESCs could be useful for studying cellular and molecular mechanisms of DC development and potentially for the generation of antigen-presenting cells for cellular immunotherapy.
Collapse
|
240
|
Abstract
AbstractThe most common human cell-based therapy applied today is hematopoietic stem cell (HSC) transplantation. HSCs can be defined by two essential properties: self-renewal and multilineage hematopoietic differentiation. These combined HSC properties allow them to differentiate into all blood cell types (multilineage) in a sustained manner for the lifetime of the animal, which requires their ability to make cellular copies of themselves (self-renewal). These features can be tested by transplantation from donor to recipient and provide a functional basis to define and identify HSCs. Currently, human bone marrow (BM), mobilized peripheral blood, and umbilical cord blood (CB) represent the major sources of transplantable HSCs, but their availability for use is limited by both quantity and compatibility. Although increasing evidence suggests that somatic HSCs can be expanded to meet current needs, their in vivo potential is concomitantly compromised after ex vivo culture. Pluripotent human embryonic stem cells (hESCs) may provide an alternative. hESCs possess indefinite proliferative capacity in vitro, and have been shown to differentiate into the hematopoietic cell fate, giving rise to erythroid, myeloid, and lymphoid lineages using a variety of differentiation procedures. In most cases, hESC-derived hematopoietic cells show similar clonogenic progenitor capacity and primitive phenotype to somatic sources of hematopoietic progenitors, but possess limited in vivo repopulating capacity when transplanted into immunodeficient mice. Although this suggests HSC function can be derived from hESCs, the efficiency and quality of these cells must be characterized using surrogate models for potential clinical applications.
Collapse
|
241
|
Trivedi P, Hematti P. Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Exp Hematol 2007; 35:146-54. [PMID: 17198883 DOI: 10.1016/j.exphem.2006.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Human embryonic stem cells (hESCs) have been shown to generate CD34(+) primitive hematopoietic cells after several days of coculturing with the OP9 murine stromal cell line. CD73(+) multipotent mesenchymal cells have also been isolated from hESC/OP9 cocultures after several weeks. We hypothesized that generation of CD34(+) hematopoietic cells and CD73(+) mesenchymal stem cells (MSCs) may follow similar kinetics, so we investigated the generation of CD73(+) cells in the first 2 weeks of hESC/OP9 cocultures, at a time when CD34(+) cells are generated. MATERIALS AND METHODS We cocultured hESCs with OP9 cells and examined the time course of appearance of human CD34(+) and CD73(+) cells using flow cytometry. We tested the hematopoietic progenitor potentials of CD34(+) cells generated using hematopoietic colony-forming assays, and the multipotent mesenchymal properties of CD73(+) cells generated using in vitro differentiation assays. RESULTS We observed that in the first 2 weeks of the hESC/OP9 coculture system CD34(+) hematopoietic and CD73(+) MSC generation follows a similar pattern. We sorted the CD34(+) cells and showed that they can generate hematopoietic progenitor colonies. Starting with cocultured cells on day 8, and through an enrichment procedure, we also could generate a pure population of MSCs. These hESC-derived MSCs had typical morphological and cell surface marker characteristics of adult bone marrow-derived MSCs, and could be differentiated toward osteogenic, adipogenic, and chondrogenic cells in vitro, a hallmark property of MSCs. CONCLUSIONS OP9 cells when cocultured with hESCs support simultaneous generation of CD34(+) primitive hematopoietic cells and CD73(+) MSCs from hESCs.
Collapse
Affiliation(s)
- Parul Trivedi
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
242
|
Shinoda G, Umeda K, Heike T, Arai M, Niwa A, Ma F, Suemori H, Luo HY, Chui DHK, Torii R, Shibuya M, Nakatsuji N, Nakahata T. alpha4-Integrin(+) endothelium derived from primate embryonic stem cells generates primitive and definitive hematopoietic cells. Blood 2006; 109:2406-15. [PMID: 17090646 DOI: 10.1182/blood-2006-06-031039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanism of commencement of hematopoiesis in blood islands of the yolk sac and the aorta-gonad-mesonephros (AGM) region during primate embryogenesis remains elusive. In this study, we demonstrated that VE-cadherin(+)CD45(-) endothelial cells derived from nonhuman primate embryonic stem cells are able to generate primitive and definitive hematopoietic cells sequentially, as revealed by immunostaining of floating erythrocytes and colony-forming assay in cultures. Single bipotential progenitors for hematopoietic and endothelial lineages are included in this endothelial cell population. Furthermore, hemogenic activity of these endothelial cells is observed exclusively in the alpha4-integrin(+) subpopulation; bipotential progenitors are 4-fold enriched in this subpopulation. The kinetics of this hemogenic subpopulation is similar to that of hemogenic endothelial cells previously reported in the yolk sac and the AGM region in vivo in that they emerge for only a limited time. We suggest that VE-cadherin(+)CD45(-)alpha4-integrin(+) endothelial cells are involved in primitive and definitive hematopoiesis during primate embryogenesis, though VE-cadherin(-)CD45(-)alpha4-integrin(+) cells are the primary sources for primitive hematopoiesis.
Collapse
Affiliation(s)
- Gen Shinoda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Chen T, Bai H, Shao Y, Arzigian M, Janzen V, Attar E, Xie Y, Scadden DT, Wang ZZ. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro. Stem Cells 2006; 25:392-401. [PMID: 17038674 DOI: 10.1634/stemcells.2006-0145] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.
Collapse
MESH Headings
- Animals
- Antigens, CD34
- Benzylamines
- Capillaries/drug effects
- Cell Differentiation/drug effects
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis/drug effects
- Cyclams
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Gene Expression Regulation/drug effects
- Heterocyclic Compounds/pharmacology
- Humans
- Mice
- Neovascularization, Physiologic/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Tong Chen
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Zambidis ET, Oberlin E, Tavian M, Péault B. Blood-forming endothelium in human ontogeny: lessons from in utero development and embryonic stem cell culture. Trends Cardiovasc Med 2006; 16:95-101. [PMID: 16546690 PMCID: PMC3498094 DOI: 10.1016/j.tcm.2006.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/17/2022]
Abstract
During the early weeks of human gestation, hematopoietic cells first emerge within the extraembryonic yolk sac (primitive hematopoiesis) and secondarily within the truncal arteries of the embryo. This second wave includes the stem cells giving rise to adult-type lymphohematopoiesis. In both yolk sac blood islands and embryonic aorta, hematopoietic cells arise in the immediate vicinity of vascular endothelial cells. In vitro hematopoietic differentiation of endothelial cells stringently sorted from human embryonic and fetal blood-forming tissues has demonstrated that primitive endothelium lies at the origin of incipient hematopoiesis. These anatomically and temporally localized blood-forming endothelial cells are ultimately derived from a rare subset of mesodermal angio-hematopoietic stem cells, or hemangioblasts. The evidence for an early progenitor of blood-forming cells within the walls of human embryonic blood vessels concurs with parallel data obtained from lower vertebrate, avian, and murine models. Importantly, converging results have recently been obtained with in vitro differentiated human embryonic stem cells, in which we have modeled primitive and definitive hematopoiesis via an endothelium-like developmental intermediate.
Collapse
Affiliation(s)
| | | | | | - Bruno Péault
- Address correspondence to: Bruno Péault, Children's Hospital of Pittsburgh, 3302 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh PA 15213, USA. Tel.: (+1) 412-692-6526; fax: (+1) 412-692-5837;
| |
Collapse
|
245
|
Cameron CM, Hu WS, Kaufman DS. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 2006; 94:938-48. [PMID: 16547998 DOI: 10.1002/bit.20919] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cells (hESCs) represent an important resource for novel cell-based regenerative medical therapies. hESCs are known to differentiate into mature cells of defined lineages through the formation of embryoid bodies (EBs) which are amenable to suspension culture for several weeks. However, EBs derived from hESCs in standard static cultures are typically non-homogeneous, leading to inefficient cellular development. Here, we systematically compare the formation, growth, and differentiation capabilities of hESC-derived EBs in stirred and static suspension cultures. A 15-fold expansion in total number of EB-derived cells cultured for 21 days in a stirred flask was observed, compared to a fourfold expansion in static (non-stirred) cultures. Additionally, stirred vessel mediated cultures have a more homogeneous EB morphology and size. Importantly, the EBs cultivated in spinner flasks retained comparable ability to produce hematopoietic progenitor cells as those grown in static culture. These results demonstrate the decoupling between EB cultivation method and EB-derived cells' ability to form hematopoietic progenitors, and will allow for improved production of scalable quantities of hematopoietic cells or other differentiated cell lineages from hESCs in a controlled environment.
Collapse
Affiliation(s)
- C M Cameron
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
246
|
Keller MA, Addya S, Vadigepalli R, Banini B, Delgrosso K, Huang H, Surrey S. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Physiol Genomics 2006; 28:114-28. [PMID: 16940433 DOI: 10.1152/physiolgenomics.00055.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Deciphering the molecular basis for human erythropoiesis should yield information benefiting studies of the hemoglobinopathies and other erythroid disorders. We used an in vitro erythroid differentiation system to study the developing red blood cell transcriptome derived from adult CD34+ hematopoietic progenitor cells. mRNA expression profiling was used to characterize developing erythroid cells at six time points during differentiation (days 1, 3, 5, 7, 9, and 11). Eleven thousand seven hundred sixty-three genes (20,963 Affymetrix probe sets) were expressed on day 1, and 1,504 genes, represented by 1,953 probe sets, were differentially expressed (DE) with 537 upregulated and 969 downregulated. A subset of the DE genes was validated using real-time RT-PCR. The DE probe sets were subjected to a cluster metric and could be divided into two, three, four, five, or six clusters of genes with different expression patterns in each cluster. Genes in these clusters were examined for shared transcription factor binding sites (TFBS) in their promoters by comparing enrichment of each TFBS relative to a reference set using transcriptional regulatory network analysis. The sets of TFBS enriched in genes up- and downregulated during erythropoiesis were distinct. This analysis identified transcriptional regulators critical to erythroid development, factors recently found to play a role, as well as a new list of potential candidates, including Evi-1, a potential silencer of genes upregulated during erythropoiesis. Thus this transcriptional regulatory network analysis has yielded a focused set of factors and their target genes whose role in differentiation of the hematopoietic stem cell into distinct blood cell lineages can be elucidated.
Collapse
Affiliation(s)
- M A Keller
- Cardeza Foundation of Hematologic Research, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Umeda K, Heike T, Nakata-Hizume M, Niwa A, Arai M, Shinoda G, Ma F, Suemori H, Luo HY, Chui DHK, Torii R, Shibuya M, Nakatsuji N, Nakahata T. Sequential analysis of alpha- and beta-globin gene expression during erythropoietic differentiation from primate embryonic stem cells. Stem Cells 2006; 24:2627-36. [PMID: 16888280 DOI: 10.1634/stemcells.2006-0199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The temporal pattern of embryonic, fetal, and adult globin expression in the alpha (zeta --> alpha) and beta (epsilon --> gamma and gamma --> beta) clusters were quantitatively analyzed at the transcriptional and translational levels in erythrocytes induced from primate embryonic stem cells in vitro. When vascular endothelial growth factor receptor-2(high) CD34(+) cells were harvested and reseeded onto OP9 stromal cells, two-wave erythropoiesis occurred sequentially. Immunostaining and real-time reverse transcription-polymerase chain reaction analyses of floating mature erythrocytes revealed that globin switches occurred in parallel with the erythropoietic transition. Colony-forming assays showed replacement of primitive clonogenic progenitor cells with definitive cells during culturing. A decline in embryonic zeta- and epsilon-globin expression at the translational level occurred in individual definitive erythroid progenitors. Expression of beta-globin in individual definitive erythroid progenitors was upregulated in the presence of OP9 stromal cells. Thus, this system reproduces early hematopoietic development in vitro and can serve as a model for analyzing the mechanisms of the globin switch in humans.
Collapse
Affiliation(s)
- Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Niakan KK, Davis EC, Clipsham RC, Jiang M, Dehart DB, Sulik KK, McCabe ERB. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol Genet Metab 2006; 88:261-71. [PMID: 16466956 DOI: 10.1016/j.ymgme.2005.12.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 11/26/2022]
Abstract
Cytomegalic adrenal hypoplasia congenita (AHC) is an X-linked disease caused by mutations in DAX1-encoding gene NR0B1, previously thought to function primarily in steroidogenesis. We sought to determine the expression pattern for Dax1 along with known network partners in early embryogenesis and to determine a steroidogenic capacity for the embryo prior to the establishment of the urogenital ridge at embryonic day 9 (E9). Here, we report that murine Dax1 is a unique marker in early embryonic development, distinguishing the extraembryonic (proximal) endoderm from the remainder of the developing embryo. We showed that Wilms tumor 1, steroidogenic factor 1, and estrogen receptor beta were expressed throughout the embryo, but the progesterone, estrogen alpha and androgen receptors, cytochrome P450 (Cyp11a1) and Nur77 were not observed in any of the embryonic layers. Lack of Cyp11A1 expression at this stage confirmed an absence of inherent steroidogenic capacity for the early embryo. The role of Nr0b1 in embryonic stem (ES) cells was investigated using siRNA knockdown, resulting in differentiation toward endoderm-like fate. Nr0b1 conditional knockout in ES cells led to differentiation, confirming our knockdown results. Our investigations suggest that Nr0b1 functions in a novel role in the maintenance of a relatively undifferentiated state. Our results further suggest that the failure of conventional murine Nr0b1 knockout attempts may be due to disregulated differentiation.
Collapse
Affiliation(s)
- Kathy K Niakan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|
250
|
Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 2006; 108:2095-105. [PMID: 16757688 PMCID: PMC1895535 DOI: 10.1182/blood-2006-02-003327] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During hematopoietic differentiation of human embryonic stem cells (hESCs), early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays, their phenotype has not been defined. Here, using hESC differentiation in coculture with OP9 stromal cells, we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45, persisted on differentiating hematopoietic cells, and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore, we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)), expressed KDR, VE-cadherin, and CD105 endothelial proteins, and expressed GATA-2, GATA-3, RUNX1, C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
Collapse
Affiliation(s)
- Maxim A Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI 53715, USA
| | | | | |
Collapse
|