201
|
Luu L, Johnston LJ, Derricott H, Armstrong SD, Randle N, Hartley CS, Duckworth CA, Campbell BJ, Wastling JM, Coombes JL. An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium. Front Cell Infect Microbiol 2019; 9:300. [PMID: 31555604 PMCID: PMC6723115 DOI: 10.3389/fcimb.2019.00300] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.
Collapse
Affiliation(s)
- Lisa Luu
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Luke J. Johnston
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hayley Derricott
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Stuart D. Armstrong
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nadine Randle
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Catherine S. Hartley
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Wastling
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Janine L. Coombes
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
202
|
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell 2019; 178:1115-1131.e15. [PMID: 31442404 PMCID: PMC6732196 DOI: 10.1016/j.cell.2019.07.048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes βOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous βOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, βOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through βOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of βOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
Collapse
Affiliation(s)
- Chia-Wei Cheng
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Moshe Biton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nuray Gunduz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - George Eng
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | - Liam T Gaynor
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Surya Tripathi
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Gizem Calibasi-Kocal
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Vincent L Butty
- BioMicro Center at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | | | - Ameena M Iqbal
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | | | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mehmet Sefa Ulutas
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, Siirt University, Science and Arts Faculty, 56100 Siirt, Turkey
| | | | - Mark T Whary
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Stuart S Levine
- BioMicro Center at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | | | - James G Fox
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Christopher Terranova
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunal Rai
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| | - Aviv Regev
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
203
|
Qiu Y, Yang S, Pan T, Yu L, Liu J, Zhu Y, Wang H. ANKRD22 is involved in the progression of prostate cancer. Oncol Lett 2019; 18:4106-4113. [PMID: 31516611 PMCID: PMC6732940 DOI: 10.3892/ol.2019.10738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common malignant tumor in elderly men. As a novel metabolic-reprogramming molecule, the role of ankyrin repeat domain 22 (ANKRD22) in the tumorigenesis and progression of prostate cancer remains unknown. In the present study, mouse monoclonal antibodies against human ANKRD22 were prepared using recombinant ANKRD22 from prokaryotic expression and validated. Subsequently, these antibodies were used to evaluate ANKRD22 levels via immunohistochemical staining in prostate cancer tissues. Finally, the association between ANKRD22 levels and prostate cancer progression was analyzed in 636 samples of prostate cancer using The Cancer Genome Atlas (TCGA) database. A total of four anti-ANKRD22 monoclonal antibodies were generated and validated, which could be effectively blocked by recombinant ANKRD22 protein. Using these antibodies for immunohistochemical staining, ANKRD22 was detected in prostate cancer cells in both the cytoplasm and nucleus. Bioinformatics analysis demonstrated that the mRNA level of ANKRD22 was inversely associated with prostate cancer stage (P<0.05) and Gleason score (P<0.01) in TCGA database. Patients with higher ANKRD22 mRNA levels exhibited longer disease-free survival following radical prostatectomy. These findings suggest that ANKRD22 may negatively regulate the progression of prostate cancer. The prepared ANKRD22 antibodies with high specificity provide a powerful tool in ANKRD22 research.
Collapse
Affiliation(s)
- Yiqing Qiu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Saisai Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lin Yu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hongping Wang
- Department of Gerontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
204
|
Dekaney CM, King S, Sheahan B, Cortes JE. Mist1 Expression Is Required for Paneth Cell Maturation. Cell Mol Gastroenterol Hepatol 2019; 8:549-560. [PMID: 31330316 PMCID: PMC6889789 DOI: 10.1016/j.jcmgh.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Paneth cells are professional secretory cells found within the small intestinal crypt epithelium. Although their role as part of the innate immune complex providing antimicrobial secretory products is well-known, the mechanisms that control secretory capacity are not well-understood. MIST1 is a scaling factor that is thought to control secretory capacity of exocrine cells. METHODS Mist1+/+ and Mist1-/- mice were used to evaluate the function of MIST1 in small intestinal Paneth cells. We used histologic and immunofluorescence staining to evaluate small intestinal tissue for proliferation and lineage allocation. Total RNA was isolated to evaluate gene expression. Enteroid culture was used to evaluate the impact of the absence of MIST1 expression on intestinal stem cell function. RESULTS Absence of MIST1 resulted in increased numbers of Paneth cells exhibiting an intermediate cell phenotype but otherwise did not alter overall epithelial cell lineage allocation. Muc2 and lysozyme staining confirmed the presence of intermediate cells at the crypt base of Mist1-/- mice. These changes were not associated with changes in mRNA expression of transcription factors associated with lineage allocation, and they were not abrogated by inhibition of Notch signaling. However, the absence of MIST1 expression was associated with alterations in Paneth cell morphology including decreased granule size and distended rough endoplasmic reticulum. Absence of MIST1 was associated with increased budding of enteroid cultures; however, there was no evidence of increased intestinal stem cell numbers in vivo. CONCLUSIONS MIST1 plays an important role in organization of the Paneth cell secretory apparatus and managing endoplasmic reticulum stress. This role occurs downstream of Paneth cell lineage allocation.
Collapse
Affiliation(s)
- Christopher M Dekaney
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.
| | - Stephanie King
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Breanna Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jocsa E Cortes
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
205
|
Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation 2019; 108:8-16. [DOI: 10.1016/j.diff.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
206
|
Li XG, Zhu M, Chen MX, Fan HB, Fu HL, Zhou JY, Zhai ZY, Gao CQ, Yan HC, Wang XQ. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway. Toxicol Lett 2019; 305:19-31. [DOI: 10.1016/j.toxlet.2019.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
|
207
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
208
|
Role of lysophosphatidic acid in proliferation and differentiation of intestinal epithelial cells. PLoS One 2019; 14:e0215255. [PMID: 31017922 PMCID: PMC6481811 DOI: 10.1371/journal.pone.0215255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/28/2019] [Indexed: 11/19/2022] Open
Abstract
Intestinal epithelial cells (IECs) are regenerated continuously from intestinal stem cells (ISCs) near the base of intestinal crypts in order to maintain homeostasis and structural integrity of intestinal epithelium. Epidermal growth factor (EGF) is thought to be important to drive the proliferation and differentiation of IECs from ISCs, it remains unknown whether other growth factors or lipid mediators are also important for such regulation, however. Here we show that lysophosphatidic acid (LPA), instead of EGF, robustly promoted the development of intestinal organoids prepared from the mouse small intestine. Indeed, LPA exhibited the proliferative activity of IECs as well as induction of differentiation of IECs into goblet cells, Paneth cells, and enteroendocrine cells in intestinal organoids. Inhibitors for LPA receptor 1 markedly suppressed the LPA-promoted development of intestinal organoids. LPA also promoted the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in intestinal organoids, whereas inhibition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 significantly suppressed the development of, as well as the proliferative activity and differentiation of, intestinal organoids in response to LPA. Our results thus suggest that LPA is a key factor that drives the proliferation and differentiation of IECs.
Collapse
|
209
|
Huang J, Ren Y, Wu X, Li Z, Ren J. Gut bioengineering promotes gut repair and pharmaceutical research: a review. J Tissue Eng 2019; 10:2041731419839846. [PMID: 31037215 PMCID: PMC6475831 DOI: 10.1177/2041731419839846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract has a diverse set of physiological functions, including peristalsis, immune defense, and nutrient absorptions. These functions are mediated by various intestinal cells such as epithelial cells, interstitial cells, smooth muscle cells, and neurocytes. The loss or dysfunction of specific cells directly results in GI disease, while supplementation of normal cells promotes gut healing. Gut bioengineering has been developing for this purpose to reconstruct the damaged tissues. Moreover, GI tract provides an accessible route for drug delivery, but the collateral damages induced by side effects cannot be ignored. Bioengineered intestinal tissues provide three-dimensional platforms that mimic the in vivo environment to study drug functions. Given the importance of gut bioengineering in current research, in this review, we summarize the advances in the technologies of gut bioengineering and their applications. We were able to identify several ground-breaking discoveries in our review, while more work is needed to promote the clinical translation of gut bioengineering.
Collapse
Affiliation(s)
- Jinjian Huang
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xiuwen Wu
- Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Zongan Li
- School of NARI Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
210
|
Gonzalez LM, Stewart AS, Freund J, Kucera CR, Dekaney CM, Magness ST, Blikslager AT. Preservation of reserve intestinal epithelial stem cells following severe ischemic injury. Am J Physiol Gastrointest Liver Physiol 2019; 316:G482-G494. [PMID: 30714814 PMCID: PMC6483022 DOI: 10.1152/ajpgi.00262.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal ischemia is an abdominal emergency with a mortality rate >50%, leading to epithelial barrier loss and subsequent sepsis. Epithelial renewal and repair after injury depend on intestinal epithelial stem cells (ISC) that reside within the crypts of Lieberkühn. Two ISC populations critical to epithelial repair have been described: 1) active ISC (aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 positive, sex determining region Y-box 9 positive) and 2) reserve ISC [rISC; less proliferative; homeodomain only protein X (Hopx)+]. Yorkshire crossbred pigs (8-10 wk old) were subjected to 1-4 h of ischemia and 1 h of reperfusion or recovery by reversible mesenteric vascular occlusion. This study was designed to evaluate whether ISC-expressing biomarkers of aISCs or rISCs show differential resistance to ischemic injury and different contributions to the subsequent repair and regenerative responses. Our data demonstrate that, following 3-4 h ischemic injury, aISC undergo apoptosis, whereas rISC are preserved. Furthermore, these rISC are retained ex vivo in spheroids in which cell populations are enriched in the rISC biomarker Hopx. These cells appear to go on to provide a proliferative pool of cells during the recovery period. Taken together, these data indicate that Hopx+ cells are resistant to injury and are the likely source of epithelial renewal following prolonged ischemic injury. It is therefore possible that targeting reserve stem cells will lead to new therapies for patients with severe intestinal injury. NEW & NOTEWORTHY The population of reserve less-proliferative intestinal epithelial stem cells appears resistant to injury despite severe epithelial cell loss, including that of the active stem cell population, which results from prolonged mesenteric ischemia. These cells can change to an activated state and are likely indispensable to regenerative processes. Reserve stem cell targeted therapies may improve treatment and outcome of patients with ischemic disease.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Amy Stieler Stewart
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John Freund
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Kucera
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Christopher M. Dekaney
- 2Department of Molecular and Biological Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Scott T. Magness
- 3University of North Carolina, Chapel Hill, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Anthony T. Blikslager
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| |
Collapse
|
211
|
Kawamoto A, Nagata S, Anzai S, Takahashi J, Kawai M, Hama M, Nogawa D, Yamamoto K, Kuno R, Suzuki K, Shimizu H, Hiraguri Y, Yui S, Oshima S, Tsuchiya K, Nakamura T, Ohtsuka K, Kitagawa M, Okamoto R, Watanabe M. Ubiquitin D is Upregulated by Synergy of Notch Signalling and TNF-α in the Inflamed Intestinal Epithelia of IBD Patients. J Crohns Colitis 2019; 13:495-509. [PMID: 30395194 DOI: 10.1093/ecco-jcc/jjy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The intestinal epithelium of inflammatory bowel disease [IBD] patients is exposed to various pro-inflammatory cytokines, most notably tumour necrosis factor alpha [TNF-α]. We have previously shown that the Notch signalling pathway is also upregulated in such an epithelium, contributing to intestinal epithelial cell [IEC] proliferation and regeneration. We aimed to reproduce such environment in vitro and explore the gene regulation involved. METHODS Human IEC cell lines or patient-derived organoids were used to analyse Notch- and TNF-α-dependent gene expression. Immunohistochemistry was performed to analyse expression of ubiquitin D [UBD] in various patient-derived intestinal tissues. RESULTS In human IEC cell lines, we found that Notch signalling and TNF-α-induced NFκB signalling are reciprocally regulated to promote expression of a specific gene subset. Global gene expression analysis identified UBD to be one of the most highly upregulated genes, due to synergy of Notch and TNF-α. The synergistic expression of UBD was regulated at the transcriptional level, whereas the UBD protein had an extremely short half-life due to post-translational, proteasomal degradation. In uninflamed intestinal tissues from IBD patients, UBD expression was limited to IECs residing at the crypt bottom. In contrast, UBD-expressing IECs were seen throughout the crypt in inflamed tissues, indicating substantial induction by the local inflammatory environment. Analysis using patient-derived organoids consistently confirmed conserved Notch- and TNF-α-dependent expression of UBD. Notably, post-infliximab [IFX] downregulation of UBD reflected favourable outcome in IBD patients. CONCLUSION We propose that UBD is a novel inflammatory-phase protein expressed in IECs, with a highly rapid responsiveness to anti-TNF-α treatment.
Collapse
Affiliation(s)
- Ami Kawamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Kawai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minami Hama
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reiko Kuno
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Advanced Therapeutics in GI Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
212
|
HDAC1 and HDAC2 independently regulate common and specific intrinsic responses in murine enteroids. Sci Rep 2019; 9:5363. [PMID: 30926862 PMCID: PMC6441098 DOI: 10.1038/s41598-019-41842-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Both HDAC1 and HDAC2 are class I deacetylases acting as erasers of lysine-acetyl marks on histones and non-histone proteins. Several histone deacetylase inhibitors, either endogenous to the cell, such as the ketogenic β-hydroxybutyrate metabolite, or exogenous, such as butyrate, a microbial-derived metabolite, regulate HDAC activity. Different combinations of intestinal epithelial cell (IEC)-specific Hdac1 and/or Hdac2 deletion differentially alter mucosal homeostasis in mice. Thus, HDAC1 and HDAC2 could act as sensors and transmitters of environmental signals to the mucosa. In this study, enteroid culture models deleted for Hdac1 or Hdac2 were established to determine IEC-specific function as assessed by global transcriptomic and proteomic approaches. Results show that Hdac1 or Hdac2 deficiency altered differentiation of Paneth and goblet secretory cells, which sustain physical and chemical protection barriers, and increased intermediate secretory cell precursor numbers. Furthermore, IEC Hdac1- and Hdac2-dependent common and specific biological processes were identified, including oxidation-reduction, inflammatory responses, and lipid-related metabolic processes, as well as canonical pathways and upstream regulators related to environment-dependent signaling through steroid receptor pathways, among others. These findings uncover unrecognized regulatory similarities and differences between Hdac1 and Hdac2 in IEC, and demonstrate how HDAC1 and HDAC2 may complement each other to regulate the intrinsic IEC phenotype.
Collapse
|
213
|
Hartl L, Huelsz-Prince G, van Zon J, Tans SJ. Apical constriction is necessary for crypt formation in small intestinal organoids. Dev Biol 2019; 450:76-81. [PMID: 30914321 DOI: 10.1016/j.ydbio.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
Small intestinal organoids have become an important tool to study crypt homeostasis, cell fate dynamics and tissue biomechanics. Yet, the mechanisms that drive the budding of crypts from the smooth organoid epithelium remain incompletely understood. Locally enhanced proliferation has been suggested to induce tissue buckling and crypt initiation. Here we report that changes in cell morphology play a crucial role in crypt formation. Crypt formation is preceded by local epithelial thickening, apicobasal elongation, and apical narrowing, resulting in a wedge-like cell-shape, followed by apical evagination and crypt outgrowth. Myosin II activity is found to coincide with apical constriction of cells, while inhibition of myosin suppresses apical constriction and bud formation. The data suggest that myosin-driven apical constriction is a key driving force of bud initiation in small intestinal organoids.
Collapse
Affiliation(s)
- Leonie Hartl
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | | | - Jeroen van Zon
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Sander J Tans
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.
| |
Collapse
|
214
|
Zwick RK, Ohlstein B, Klein OD. Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and Drosophila. Am J Physiol Gastrointest Liver Physiol 2019; 316:G313-G322. [PMID: 30543448 PMCID: PMC6415738 DOI: 10.1152/ajpgi.00353.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal (GI) tract renews frequently to sustain nutrient digestion and absorption in the face of consistent tissue stress. In many species, proliferative intestinal stem cells (ISCs) are responsible for the repair of the damage arising from chemical and mechanical aspects of food breakdown and exposure to pathogens. As the cellular source of all mature cell types of the intestinal epithelium throughout adulthood, ISCs hold tremendous therapeutic potential for understanding and treating GI disease in humans. This review focuses on recent advances in our understanding of ISC identity, behavior, and regulation during homeostasis and injury-induced repair, as revealed by two major animal models used to study regeneration of the small intestine: Drosophila melanogaster and Mus musculus. We emphasize recent findings from Drosophila that are likely to translate to the mammalian GI system, as well as challenging topics in mouse ISC biology that may be ideally suited for investigation in flies. For context, we begin by reviewing major physiological similarities and distinctions between the Drosophila midgut and mouse small intestine.
Collapse
Affiliation(s)
- Rachel K. Zwick
- 1Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California
| | - Benjamin Ohlstein
- 2Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Ophir D. Klein
- 1Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California,3Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
215
|
Mourao L, Jacquemin G, Huyghe M, Nawrocki WJ, Menssouri N, Servant N, Fre S. Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells. Sci Rep 2019; 9:888. [PMID: 30696875 PMCID: PMC6351556 DOI: 10.1038/s41598-018-37301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Colon tumours are hierarchically organized and contain multipotent self-renewing cells, called Cancer Stem Cells (CSCs). We have previously shown that the Notch1 receptor is expressed in Intestinal Stem Cells (ISCs); given the critical role played by Notch signalling in promoting intestinal tumourigenesis, we explored Notch1 expression in tumours. Combining lineage tracing in two tumour models with transcriptomic analyses, we found that Notch1+ tumour cells are undifferentiated, proliferative and capable of indefinite self-renewal and of generating a heterogeneous clonal progeny. Molecularly, the transcriptional signature of Notch1+ tumour cells highly correlates with ISCs, suggestive of their origin from normal crypt cells. Surprisingly, Notch1+ expression labels a subset of CSCs that shows reduced levels of Lgr5, a reported CSCs marker. The existence of distinct stem cell populations within intestinal tumours highlights the necessity of better understanding their hierarchy and behaviour, to identify the correct cellular targets for therapy.
Collapse
Affiliation(s)
- Larissa Mourao
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Sorbonne University, UPMC University of Paris VI, F-75005, Paris, France.,Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Guillaume Jacquemin
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Sorbonne University, UPMC University of Paris VI, F-75005, Paris, France
| | - Mathilde Huyghe
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France
| | - Wojciech J Nawrocki
- Vrije Universiteit Amsterdam, Department of Physics and Astronomy, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands
| | - Naoual Menssouri
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Institut Curie, PSL Research University, INSERM U900, 75005, Paris, France
| | - Nicolas Servant
- Institut Curie, PSL Research University, INSERM U900, 75005, Paris, France.,Mines ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006, Paris, France
| | - Silvia Fre
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.
| |
Collapse
|
216
|
Abstract
Intestinal homeostasis and regeneration are driven by intestinal stem cells (ISCs) lying in the crypt. In addition to the actively cycling ISCs that maintain daily homeostasis, accumulating evidence supports the existence of other pools of stem/progenitor cells with the capacity to repair damaged tissue and facilitate rapid restoration of intestinal integrity after injuries. Appropriate control of ISCs and other populations of intestinal epithelial cells with stem cell activity is essential for intestinal homeostasis and regeneration while their deregulation is implicated in colorectal tumorigenesis. In this review, we will summarize the recent findings about ISC identity and cellular plasticity in intestine, discuss regulatory mechanisms that control ISCs for intestinal homeostasis and regeneration, and put a particular emphasis on extrinsic niche-derived signaling and intrinsic epigenetic regulation. Moreover, we highlight several fundamental questions about the precise mechanisms conferring robust capacity for intestine to maintain physiological homeostasis and repair injuries.
Collapse
Affiliation(s)
- Deqing Hu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Heping, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Heping, Tianjin, China
| | - Han Yan
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Heping, Tianjin, China
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, USA.,Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, China
| |
Collapse
|
217
|
Parham LR, Williams PA, Chatterji P, Whelan KA, Hamilton KE. RNA regulons are essential in intestinal homeostasis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G197-G204. [PMID: 30520692 PMCID: PMC6383383 DOI: 10.1152/ajpgi.00403.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cells are among the most rapidly proliferating cell types in the human body. There are several different subtypes of epithelial cells, each with unique functional roles in responding to the ever-changing environment. The epithelium's ability for rapid and customized responses to environmental changes requires multitiered levels of gene regulation. An emerging paradigm in gastrointestinal epithelial cells is the regulation of functionally related mRNA families, or regulons, via RNA-binding proteins (RBPs). RBPs represent a rapid and efficient mechanism to regulate gene expression and cell function. In this review, we will provide an overview of intestinal epithelial RBPs and how they contribute specifically to intestinal epithelial stem cell dynamics. In addition, we will highlight key gaps in knowledge in the global understanding of RBPs in gastrointestinal physiology as an opportunity for future studies.
Collapse
Affiliation(s)
- Louis R. Parham
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Patrick A. Williams
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Priya Chatterji
- 2Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A. Whelan
- 3Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania,4Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kathryn E. Hamilton
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
218
|
Li D, Dong H, Kohan AB. The Isolation, Culture, and Propagation of Murine Intestinal Enteroids for the Study of Dietary Lipid Metabolism. Methods Mol Biol 2019; 1576:195-204. [PMID: 28929461 DOI: 10.1007/7651_2017_69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the initial report in 2009 by Sato and Clevers, primary enteroids have been of major interest in the fields of stem cell biology and gastrointestinal (GI) tract biology. More recently, we and others have made major inroads into the physiological relevance of these enteroid models and have shown that enteroids derived from the stomach, intestine, or colon recapitulate major functions of these tissues, namely, gastric acid secretion, lipid absorption and lipoprotein secretion, and ion transport. Here, we detail the isolation of stem cells from the small intestine and the culture and propagation of those stem cells into mature three-dimensional enteroids. We will also detail how we use enteroids to determine intestinal mechanisms behind dietary lipid absorption and lipoprotein secretion. The primary enteroid model is a powerful tool that significantly expands our ability to model GI tract function in vitro.
Collapse
Affiliation(s)
- Diana Li
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Road, Unit 4010, Storrs, CT, 06269-4010, USA
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Road, Unit 4010, Storrs, CT, 06269-4010, USA
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Road, Unit 4010, Storrs, CT, 06269-4010, USA.
| |
Collapse
|
219
|
Abstract
The intestinal epithelium is one the fastest renewing tissues in mammals and is endowed with extensive adaptability. The more traditional view of a hierarchical organization of the gut has recently given way to a more dynamic model in which various cell types within the intestinal epithelium can de-differentiate and function as an alternative source of stem cells upon tissue damage and stress conditions such as inflammation and tumorigenesis. Here, we will review the mechanistic principles and key players involved in intestinal plasticity and discuss potential therapeutic implications of cellular plasticity in regenerative medicine and cancer.
Collapse
|
220
|
Scavuzzo MA, Chmielowiec J, Yang D, Wamble K, Chaboub LS, Duraine L, Tepe B, Glasgow SM, Arenkiel BR, Brou C, Deneen B, Borowiak M. Pancreatic Cell Fate Determination Relies on Notch Ligand Trafficking by NFIA. Cell Rep 2018; 25:3811-3827.e7. [PMID: 30590051 DOI: 10.1016/j.celrep.2018.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
Notch is activated globally in pancreatic progenitors; however, for progenitors to differentiate into endocrine cells, they must escape Notch activation to express Neurogenin-3. Here, we find that the transcription factor nuclear factor I/A (NFIA) promotes endocrine development by regulating Notch ligand Dll1 trafficking. Pancreatic deletion of NFIA leads to cell fate defects, with increased duct and decreased endocrine formation, while ectopic expression promotes endocrine formation in mice and human pancreatic progenitors. NFIA-deficient mice exhibit dysregulation of trafficking-related genes including increased expression of Mib1, which acts to target Dll1 for endocytosis. We find that NFIA binds to the Mib1 promoter, with loss of NFIA leading to an increase in Dll1 internalization and enhanced Notch activation with rescue of the cell fate defects after Mib1 knockdown. This study reveals NFIA as a pro-endocrine factor in the pancreas, acting to repress Mib1, inhibit Dll1 endocytosis and thus promote escape from Notch activation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katrina Wamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stacey M Glasgow
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christel Brou
- Department of Cell Biology and Infection, Institute Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
221
|
Gagné-Sansfacon J, Langlois A, Langlois MJ, Coulombe G, Tremblay S, Vaillancourt-Lavigueur V, Qu CK, Menendez A, Rivard N. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration. J Pathol 2018; 247:135-146. [PMID: 30376595 PMCID: PMC6519201 DOI: 10.1002/path.5177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/30/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
Abstract
The Src homology‐2 domain‐containing tyrosine phosphatase 2 (SHP‐2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP‐2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)‐specific deletion of Shp‐2 in mice (Shp‐2IEC‐KO) leads to chronic colitis and colitis‐associated cancer. This suggests that SHP‐2‐dependent signaling protects the colonic epithelium against inflammation and colitis‐associated cancer development. To verify this hypothesis, we generated mice expressing the Shp‐2 E76K activated form specifically in IEC. Our results showed that sustained Shp‐2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp‐2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical‐ and Citrobacter rodentium‐induced colitis. In contrast, mice with IEC‐specific Shp‐2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp‐2‐deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp‐2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfacon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sarah Tremblay
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Vanessa Vaillancourt-Lavigueur
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfredo Menendez
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
222
|
Jones JC, Brindley CD, Elder NH, Myers MG, Rajala MW, Dekaney CM, McNamee EN, Frey MR, Shroyer NF, Dempsey PJ. Cellular Plasticity of Defa4 Cre-Expressing Paneth Cells in Response to Notch Activation and Intestinal Injury. Cell Mol Gastroenterol Hepatol 2018; 7:533-554. [PMID: 30827941 PMCID: PMC6402430 DOI: 10.1016/j.jcmgh.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Loss of leucine-rich repeat-containing G-protein-coupled receptor 5-positive crypt base columnar cells provides permissive conditions for different facultative stem cell populations to dedifferentiate and repopulate the stem cell compartment. In this study, we used a defensin α4-Cre recombinase (Defa4Cre) line to define the potential of Paneth cells to dedifferentiate and contribute to intestinal stem cell (ISC) maintenance during normal homeostasis and after intestinal injury. METHODS Small intestine and enteroids from Defa4Cre;Rosa26 tandem dimer Tomato (tdTomato), a red fluoresent protein, (or Rosa26 Enhanced Yellow Fluorescent Protein (EYFP)) reporter, Notch gain-of-function (Defa4Cre;Rosa26 Notch Intracellular Domain (NICD)-ires-nuclear Green Fluorescent Protein (nGFP) and Defa4Cre;Rosa26reverse tetracycline transactivator-ires Enhanced Green Fluorescent Protein (EGFP);TetONICD), A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) loss-of-function (Defa4Cre;ADAM10flox/flox), and Adenomatous polyposis coli (APC) inactivation (Defa4Cre;APCflox/flox) mice were analyzed. Doxorubicin treatment was used as an acute intestinal injury model. Lineage tracing, proliferation, and differentiation were assessed in vitro and in vivo. RESULTS Defa4Cre-expressing cells are fated to become mature Paneth cells and do not contribute to ISC maintenance during normal homeostasis in vivo. However, spontaneous lineage tracing was observed in enteroids, and fluorescent-activated cell sorter-sorted Defa4Cre-marked cells showed clonogenic enteroid growth. Notch activation in Defa4Cre-expressing cells caused dedifferentiation to multipotent ISCs in vivo and was required for adenoma formation. ADAM10 deletion had no significant effect on crypt homeostasis. However, after acute doxorubicin-induced injury, Defa4Cre-expressing cells contributed to regeneration in an ADAM10-Notch-dependent manner. CONCLUSIONS Our studies have shown that Defa4Cre-expressing Paneth cells possess cellular plasticity, can dedifferentiate into multipotent stem cells upon Notch activation, and can contribute to intestinal regeneration in an acute injury model.
Collapse
Affiliation(s)
- Jennifer C. Jones
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Medical School, Aurora, Colorado
| | - Constance D. Brindley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado
| | - Nicholas H. Elder
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado
| | - Martin G. Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael W. Rajala
- Division of Gastroenterology, Department of Digestive Disease and Transplantation, Einstein Health Network, Philadelphia, Pennsylvania
| | - Christopher M. Dekaney
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Eoin N. McNamee
- Mucosal Immunology Program, University of Colorado Medical School, Aurora, Colorado
| | - Mark R. Frey
- Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Noah F. Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter J. Dempsey
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Medical School, Aurora, Colorado,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado,Correspondence Address correspondence to: Peter J. Dempsey, PhD, Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, 12700 East 19th Avenue, Building RC2 Room 6113, Aurora, Colorado 80045. fax: (303) 724-6538.
| |
Collapse
|
223
|
|
224
|
Pérez Saturnino A, Lust K, Wittbrodt J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 2018; 145:dev.169698. [PMID: 30337377 PMCID: PMC6240314 DOI: 10.1242/dev.169698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo. Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages. Summary: Mutually exclusive activity of Notch and Atoh7 in the ciliary marginal zone gives rise to two distinct lineages resulting in specification of the full complement of cell types in medaka retina.
Collapse
Affiliation(s)
- Alicia Pérez Saturnino
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
225
|
Ihara S, Hirata Y, Hikiba Y, Yamashita A, Tsuboi M, Hata M, Konishi M, Suzuki N, Sakitani K, Kinoshita H, Hayakawa Y, Nakagawa H, Ijichi H, Tateishi K, Koike K. Adhesive Interactions between Mononuclear Phagocytes and Intestinal Epithelium Perturb Normal Epithelial Differentiation and Serve as a Therapeutic Target in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:1219-1231. [PMID: 29917067 DOI: 10.1093/ecco-jcc/jjy088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Disturbance of intestinal homeostasis is associated with the development of inflammatory bowel disease [IBD], and TGF-β signalling impairment in mononuclear phagocytes [MPs] causes murine colitis with goblet cell depletion. Here, we examined an organoid-MP co-culture system to study the role of MPs in intestinal epithelial differentiation and homeostasis. METHODS Intestinal organoids were co-cultured with lamina propria leukocytes and bone marrow-derived dendritic cells [BMDCs] from CD11c-cre Tgfbr2fl/fl mice. Organoid-MP adhesive interactions were evaluated by microscopy, RT-PCR, and flow cytometry. Murine colitis models (dextran sodium sulphate [DSS], CD11c-cre Tgfbr2fl/fl, T-cell-transfer) were used for histological and immunohistochemical analysis. Anti-E-cadherin antibody treatment or CD11c+-cell-specific CDH1 gene deletion were performed for E-cadherin neutralization or knockout. Colonic biopsies from patients with ulcerative colitis were analysed by flow cytometry. RESULTS Intestinal organoids co-cultured with CD11c+ lamina propria leukocytes or BMDCs from CD11c-cre Tgfbr2fl/fl mice showed morphological changes and goblet cell depletion with Notch signal activation, analogous to CD11c-cre Tgfbr2fl/fl colitis. E-cadherin was upregulated in CD11c+ MPs, especially CX3CR1+CCR2+ monocytes, of CD11c-cre Tgfbr2fl/fl mice. E-cadherin-mediated BMDC adhesion promoted Notch activation and cystic changes in organoids. Anti-E-cadherin antibody treatment attenuated colitis in CD11c-cre Tgfbr2fl/fl and T-cell-transferred mice. In addition, E-cadherin deletion in CD11c+ cells attenuated colitis in both CD11c-cre Tgfbr2fl/fl and DSS-treated mice. In patients with ulcerative colitis, E-cadherin expressed by intestinal CD11c+ leukocytes was enhanced compared with that in healthy controls. CONCLUSIONS E-cadherin-mediated MP-epithelium adhesion is associated with the development of colitis, and blocking these adhesions may have therapeutic potential for IBD.
Collapse
Affiliation(s)
- Sozaburo Ihara
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yohko Hikiba
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Aya Yamashita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuru Konishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Kosuke Sakitani
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
226
|
Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B, Lo YH, Bao K, Starmer J, Raab JR, Shroyer NF, Reinhardt RL, Magness ST. Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates. Gastroenterology 2018; 155:1508-1523.e10. [PMID: 30055169 PMCID: PMC6232678 DOI: 10.1053/j.gastro.2018.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The intestinal epithelium is maintained by intestinal stem cells (ISCs), which produce postmitotic absorptive and secretory epithelial cells. Initial fate specification toward enteroendocrine, goblet, and Paneth cell lineages requires the transcription factor Atoh1, which regulates differentiation of the secretory cell lineage. However, less is known about the origin of tuft cells, which participate in type II immune responses to parasite infections and appear to differentiate independently of Atoh1. We investigated the role of Sox4 in ISC differentiation. METHODS We performed experiments in mice with intestinal epithelial-specific disruption of Sox4 (Sox4fl/fl:vilCre; SOX4 conditional knockout [cKO]) and mice without disruption of Sox4 (control mice). Crypt- and single-cell-derived organoids were used in assays to measure proliferation and ISC potency. Lineage allocation and gene expression changes were studied by immunofluorescence, real-time quantitative polymerase chain reaction, and RNA-seq analyses. Intestinal organoids were incubated with the type 2 cytokine interleukin 13 and gene expression was analyzed. Mice were infected with the helminth Nippostrongylus brasiliensis and intestinal tissues were collected 7 days later for analysis. Intestinal tissues collected from mice that express green fluorescent protein regulated by the Atoh1 promoter (Atoh1GFP mice) and single-cell RNA-seq analysis were used to identify cells that coexpress Sox4 and Atoh1. We generated SOX4-inducible intestinal organoids derived from Atoh1fl/fl:vilCreER (ATOH1 inducible knockout) mice and assessed differentiation. RESULTS Sox4cKO mice had impaired ISC function and secretory differentiation, resulting in decreased numbers of tuft and enteroendocrine cells. In control mice, numbers of SOX4+ cells increased significantly after helminth infection, coincident with tuft cell hyperplasia. Sox4 was activated by interleukin 13 in control organoids; SOX4cKO mice had impaired tuft cell hyperplasia and parasite clearance after infection with helminths. In single-cell RNA-seq analysis, Sox4+/Atoh1- cells were enriched for ISC, progenitor, and tuft cell genes; 12.5% of Sox4-expressing cells coexpressed Atoh1 and were enriched for enteroendocrine genes. In organoids, overexpression of Sox4 was sufficient to induce differentiation of tuft and enteroendocrine cells-even in the absence of Atoh1. CONCLUSIONS We found Sox4 promoted tuft and enteroendocrine cell lineage allocation independently of Atoh1. These results challenge the longstanding model in which Atoh1 is the sole regulator of secretory differentiation in the intestine and are relevant for understanding epithelial responses to parasitic infection.
Collapse
Affiliation(s)
- Adam D Gracz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Leigh Ann Samsa
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J Fordham
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danny C Trotier
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuan-Hung Lo
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Katherine Bao
- Department of Immunology, Duke University, Durham, North Carolina
| | - Joshua Starmer
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jesse R Raab
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Noah F Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - R Lee Reinhardt
- Department of Immunology, Duke University, Durham, North Carolina
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina.
| |
Collapse
|
227
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
228
|
Staphylococcus aureus alpha toxin activates Notch in vascular cells. Angiogenesis 2018; 22:197-209. [PMID: 30324336 DOI: 10.1007/s10456-018-9650-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Staphylococcus aureus infection is one of the leading causes of morbidity in hospitalized patients in the United States, an effect compounded by increasing antibiotic resistance. The secreted agent hemolysin alpha toxin (Hla) requires the receptor A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10) to mediate its toxic effects. We hypothesized that these effects are in part regulated by Notch signaling, for which ADAM10 activation is essential. Notch proteins function in developmental and pathological angiogenesis via the modulation of key pathways in endothelial and perivascular cells. Thus, we hypothesized that Hla would activate Notch in vascular cells. Human umbilical vein endothelial cells were treated with recombinant Hla (rHla), Hla-H35L (genetically inactivated Hla), or Hank's solution (HBSS), and probed by different methods. Luciferase assays showed that Hla (0.01 µg/mL) increased Notch activation by 1.75 ± 0.5-fold as compared to HBSS controls (p < 0.05), whereas Hla-H35L had no effect. Immunocytochemistry and Western blotting confirmed these findings and revealed that ADAM10 and γ-secretase are required for Notch activation after inhibitor and siRNA assays. Retinal EC in mice engineered to express yellow fluorescent protein (YFP) upon Notch activation demonstrated significantly greater YFP intensity after Hla injection than controls. Aortic rings from Notch reporter mice embedded in matrix and incubated with rHla or Hla-H35L demonstrate increased Notch activation occurs at tip cells during sprouting. These mice also had higher skin YFP intensity and area of expression after subcutaneous inoculation of S. aureus expressing Hla than a strain lacking Hla in both EC and pericytes assessed by microscopy. Human liver displayed strikingly higher Notch expression in EC and pericytes during S. aureus infection by immunohistochemistry than tissues from uninfected patients. In sum, our results demonstrate that the S. aureus toxin Hla can potently activate Notch in vascular cells, an effect which may contribute to the pathobiology of infection with this microorganism.
Collapse
|
229
|
Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, Klein OD, Moore DD, Ingraham HA. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun 2018; 9:4055. [PMID: 30305617 PMCID: PMC6180039 DOI: 10.1038/s41467-018-06137-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Epithelial dysfunction and crypt destruction are defining features of inflammatory bowel disease (IBD). However, current IBD therapies targeting epithelial dysfunction are lacking. The nuclear receptor LRH-1 (NR5A2) is expressed in intestinal epithelium and thought to contribute to epithelial renewal. Here we show that LRH-1 maintains intestinal epithelial health and protects against inflammatory damage. Knocking out LRH-1 in murine intestinal organoids reduces Notch signaling, increases crypt cell death, distorts the cellular composition of the epithelium, and weakens the epithelial barrier. Human LRH-1 (hLRH-1) rescues epithelial integrity and when overexpressed, mitigates inflammatory damage in murine and human intestinal organoids, including those derived from IBD patients. Finally, hLRH-1 greatly reduces disease severity in T-cell-mediated murine colitis. Together with the failure of a ligand-incompetent hLRH-1 mutant to protect against TNFα-damage, these findings provide compelling evidence that hLRH-1 mediates epithelial homeostasis and is an attractive target for intestinal disease. Inflammatory bowel disease is characterised by epithelial dysfunction. Here the authors show that loss of the nuclear receptor LRH-1 leads to epithelial disruption by altering Notch signaling in mouse intestinal organoids, and that LRH-1 overexpression ameliorates immune-mediated colitis in a mouse model.
Collapse
Affiliation(s)
- James R Bayrer
- Department of Pediatrics, Division of Gastroenterology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Hongtao Wang
- Department of Pediatrics, Division of Gastroenterology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Roy Nattiv
- Department of Pediatrics, Division of Gastroenterology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Miyuki Suzawa
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Hazel S Escusa
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Ophir D Klein
- Department of Orofacial Sciences & Program in Craniofacial Biology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA.,Department of Pediatrics, Division of Genetics, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, Mission Bay Campus, San Francisco, CA, 94158, USA.
| |
Collapse
|
230
|
Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T. Effects of Dietary Zinc Oxide Nanoparticles on Growth, Diarrhea, Mineral Deposition, Intestinal Morphology, and Barrier of Weaned Piglets. Biol Trace Elem Res 2018; 185:364-374. [PMID: 29468613 DOI: 10.1007/s12011-018-1266-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
This study was conducted to investigate effects of dietary zinc oxide nanoparticles (nano-ZnOs) on growth, diarrhea rate, mineral deposition (Zn, Fe, and Mn), intestinal morphology, and barrier of weaned piglets. A total of 384 weaned piglets (Duroc × Landrace × Yorkshire) in 4 groups were fed a basal diet supplemented with 0, 400, and 800 mg/kg nano-ZnOs or 3000 mg/kg ZnO for 14 days. Compared with the control group, 800 mg/kg nano-ZnOs and 3000 mg/kg ZnO significantly increased average daily gain and decreased diarrhea rate of weaned piglets. There was no significant difference among ZnO and nano-ZnO groups. ZnO and nano-ZnOs did not affect serum activities of glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase. However, ZnO and 800 mg/kg nano-ZnOs significantly increased zinc concentrations in plasma, liver, pancreas, and tibia, without affecting Fe and Mn concentrations. Compared with the control group, 800 mg/kg nano-ZnOs significantly reduced plasma diamine oxidase activity, decreased total aerobic bacterial population in mesenteric lymph node, enhanced mRNA expressions of occludin, ZO-1, IL-1β, IL-10, TNF-α, and ki67 in ileal mucosa, and increased villous height, width, crypt depth, and surface area. Compared to ZnO group, 800 mg/kg nano-ZnOs significantly decreased aerobic bacterial population, enhanced mRNA expressions of occludin, IL-1β, IL-10, and TNF-α, and reduced fecal zinc concentration. These results indicated that 800 mg/kg nano-ZnOs might be a potential substitute for 3000 mg/kg ZnO in diets of weaned piglets.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ligen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
231
|
Beumer J, Clevers H. ROCKin' Intestinal Cell Fate: A Potential Avenue to Improve Glucose Sensitivity. Gastroenterology 2018; 155:974-976. [PMID: 30201364 DOI: 10.1053/j.gastro.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and Cancer Genomics Netherlands, UMC Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and Cancer Genomics Netherlands, and Princess Máxima Center, and Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
232
|
Eriguchi Y, Nakamura K, Yokoi Y, Sugimoto R, Takahashi S, Hashimoto D, Teshima T, Ayabe T, Selsted ME, Ouellette AJ. Essential role of IFN-γ in T cell-associated intestinal inflammation. JCI Insight 2018; 3:121886. [PMID: 30232288 DOI: 10.1172/jci.insight.121886] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Paneth cells contribute to small intestinal homeostasis by secreting antimicrobial peptides and constituting the intestinal stem cell (ISC) niche. Certain T cell-mediated enteropathies are characterized by extensive Paneth cell depletion coincident with mucosal destruction and dysbiosis. In this study, mechanisms of intestinal crypt injury have been investigated by characterizing responses of mouse intestinal organoids (enteroids) in coculture with mouse T lymphocytes. Activated T cells induced enteroid damage, reduced Paneth cell and Lgr5+ ISC mRNA levels, and induced Paneth cell death through a caspase-3/7-dependent mechanism. IFN-γ mediated these effects, because IFN-γ receptor-null enteroids were unaffected by activated T cells. In mice, administration of IFN-γ induced enteropathy with crypt hyperplasia, villus shortening, Paneth cell depletion, and modified ISC marker expression. IFN-γ exacerbated radiation enteritis, which was ameliorated by treatment with a selective JAK1/2 inhibitor. Thus, IFN-γ induced Paneth cell death and impaired regeneration of small intestinal epithelium in vivo, suggesting that IFN-γ may be a useful target for treating defective mucosal regeneration in enteric inflammation.
Collapse
Affiliation(s)
- Yoshihiro Eriguchi
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kiminori Nakamura
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Yokoi
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Rina Sugimoto
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
233
|
Zha JM, Li HS, Lin Q, Kuo WT, Jiang ZH, Tsai PY, Ding N, Wu J, Xu SF, Wang YT, Pan J, Zhou XM, Chen K, Tao M, Odenwald MA, Tamura A, Tsukita S, Turner JR, He WQ. Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5 + Stem Cells via Inhibition of Wnt and Notch Signaling. Cell Mol Gastroenterol Hepatol 2018; 7:255-274. [PMID: 30686779 PMCID: PMC6352747 DOI: 10.1016/j.jcmgh.2018.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Epithelial regeneration is essential for homeostasis and repair of the mucosal barrier. In the context of infectious and immune-mediated intestinal disease, interleukin (IL) 22 is thought to augment these processes. We sought to define the mechanisms by which IL22 promotes mucosal healing. METHODS Intestinal stem cell cultures and mice were treated with recombinant IL22. Cell proliferation, death, and differentiation were assessed in vitro and in vivo by morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry. RESULTS IL22 increased the size and number of proliferating cells within enteroids but decreased the total number of enteroids. Enteroid size increases required IL22-dependent up-regulation of the tight junction cation and water channel claudin-2, indicating that enteroid enlargement reflected paracellular flux-induced swelling. However, claudin-2 did not contribute to IL22-dependent enteroid loss, depletion of Lgr5+ stem cells, or increased epithelial proliferation. IL22 induced stem cell apoptosis but, conversely, enhanced proliferation within and expanded numbers of transit-amplifying cells. These changes were associated with reduced wnt and notch signaling, both in vitro and in vivo, as well as skewing of epithelial differentiation, with increases in Paneth cells and reduced numbers of enteroendocrine cells. CONCLUSIONS IL22 promotes transit-amplifying cell proliferation but reduces Lgr5+ stem cell survival by inhibiting notch and wnt signaling. IL22 can therefore promote or inhibit mucosal repair, depending on whether effects on transit-amplifying or stem cells predominate. These data may explain why mucosal healing is difficult to achieve in some inflammatory bowel disease patients despite markedly elevated IL22 production.
Collapse
Affiliation(s)
- Juan-Min Zha
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pathology, University of Chicago, Chicago, Illinois
| | - Hua-Shan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Ting Kuo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhi-Hui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pei-Yun Tsai
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Ning Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao-Fang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Tang Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jian Pan
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Xiu-Min Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Wei-Qi He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pathology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
234
|
Spit M, Koo BK, Maurice MM. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol 2018; 8:rsob.180120. [PMID: 30209039 PMCID: PMC6170508 DOI: 10.1098/rsob.180120] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Rapidly renewing tissues such as the intestinal epithelium critically depend on the activity of small-sized stem cell populations that continuously generate new progeny to replace lost and damaged cells. The complex and tightly regulated process of intestinal homeostasis is governed by a variety of signalling pathways that balance cell proliferation and differentiation. Accumulating evidence suggests that stem cell control and daughter cell fate determination is largely dictated by the microenvironment. Here, we review recent developments in the understanding of intestinal stem cell dynamics, focusing on the roles, mechanisms and interconnectivity of prime signalling pathways that regulate stem cell behaviour in intestinal homeostasis. Furthermore, we discuss how mutational activation of these signalling pathways endows colorectal cancer cells with niche-independent growth advantages during carcinogenesis.
Collapse
Affiliation(s)
- Maureen Spit
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- IMBA - Institute of Molecular Biotechnology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands .,Oncode Institute, The Netherlands
| |
Collapse
|
235
|
Dunkin D, Iuga AC, Mimouna S, Harris CL, Haure-Mirande JV, Bozec D, Yeretssian G, Dahan S. Intestinal epithelial Notch-1 protects from colorectal mucinous adenocarcinoma. Oncotarget 2018; 9:33536-33548. [PMID: 30323897 PMCID: PMC6173356 DOI: 10.18632/oncotarget.26086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence links Notch-1 signaling with the maintenance of intestinal architecture and homeostasis. Dysfunction in the common Notch-1 pathway transcription factor recombinant binding protein suppressor of hairless (RBP-J) is associated with loss of epithelial barrier integrity and aberrant conversion of proliferative crypt cells into goblet cells. Furthermore, we have recently discovered that epithelial Notch-1 is indispensable in bridging innate and adaptive immunity in the gut and is required for supporting protective epithelial pro-inflammatory responses. Yet, the epithelial specific function of Notch-1 in intestinal tumorigenesis remains unknown. We generated Villin-Cre/Notch-1fl/fl (VN-/-) mice that are selectively deficient in Notch-1 in intestinal epithelial cells. Intestinal epithelial Notch-1 preserved barrier function and integrity, whereas lack of epithelial Notch-1 induced goblet cell hyperplasia, spontaneous serrated lesions, multifocal low- and high-grade dysplasia and colonic mucinous neoplasms in mice. Over time, VN-/- mice displayed high occurrence of colorectal mucinous adenocarcinomas, which correlated with increased levels of mitogenic, angiogenic and pro-tumorigenic gene expression. Finally, we found that the expression of Notch-1 is significantly reduced in human colorectal mucinous adenocarcinoma when compared to colorectal adenocarcinoma. Taken together, our findings reveal a novel and critical protective role for Notch-1 in controlling intestinal tumorigenesis.
Collapse
Affiliation(s)
- David Dunkin
- Department of Pediatric Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alina C Iuga
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sanda Mimouna
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Immunology and Autoimmunity Research Department, Hospital for Special Surgery Research Institute, New York, NY 10021, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolyn L Harris
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean-Vianney Haure-Mirande
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dominique Bozec
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Garabet Yeretssian
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY 10169, USA
| | - Stephanie Dahan
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sobi, Inc. Waltham, MA 02452, USA
| |
Collapse
|
236
|
Santos AJM, Lo YH, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends Cell Biol 2018; 28:1062-1078. [PMID: 30195922 DOI: 10.1016/j.tcb.2018.08.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium is a rapidly renewing cellular compartment. This constant regeneration is a hallmark of intestinal homeostasis and requires a tightly regulated balance between intestinal stem cell (ISC) proliferation and differentiation. Since intestinal epithelial cells directly contact pathogenic environmental factors that continuously challenge their integrity, ISCs must also actively divide to facilitate regeneration and repair. Understanding niche adaptations that maintain ISC activity during homeostatic renewal and injury-induced intestinal regeneration is therefore a major and ongoing focus for stem cell biology. Here, we review recent concepts and propose an active interconversion of the ISC niche between homeostasis and injury-adaptive states that is superimposed upon an equally dynamic equilibrium between active and reserve ISC populations.
Collapse
Affiliation(s)
- António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
237
|
Ap4 is rate limiting for intestinal tumor formation by controlling the homeostasis of intestinal stem cells. Nat Commun 2018; 9:3573. [PMID: 30177706 PMCID: PMC6120921 DOI: 10.1038/s41467-018-06001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023] Open
Abstract
The gene encoding the transcription factor TFAP4/AP4 represents a direct target of the c-MYC oncoprotein. Here, we deleted Ap4 in ApcMin mice, a preclinical model of inherited colorectal cancer. Ap4 deficiency extends their average survival by 110 days and decreases the formation of intestinal adenomas and tumor-derived organoids. The effects of Ap4 deletion are presumably due to the reduced number of functional intestinal stem cells (ISCs) amenable to adenoma-initiating mutational events. Deletion of Ap4 also decreases the number of colonic stem cells and increases the number of Paneth cells. Expression profiling revealed that ISC signatures, as well as the Wnt/β-catenin and Notch signaling pathways are downregulated in Ap4-deficient adenomas and intestinal organoids. AP4-associated signatures are conserved between murine adenomas and human colorectal cancer samples. Our results establish Ap4 as rate-limiting mediator of adenoma initiation, as well as regulator of intestinal and colonic stem cell and Paneth cell homeostasis.
Collapse
|
238
|
Chacón-Martínez CA, Koester J, Wickström SA. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 2018; 145:145/15/dev165399. [PMID: 30068689 DOI: 10.1242/dev.165399] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have the ability to self-renew and differentiate along multiple lineages, driving tissue homeostasis and regeneration. Paradigms of unidirectional, hierarchical differentiation trajectories observed in embryonic and hematopoietic stem cells have traditionally been applied to tissue-resident stem cells. However, accumulating evidence implicates stemness as a bidirectional, dynamic state that is largely governed by the niche, which facilitates plasticity and adaptability to changing conditions. In this Review, we discuss mechanisms of cell fate regulation through niche-derived cues, with a particular focus on epithelial stem cells of the mammalian skin, intestine and lung. We discuss a spectrum of niche-derived biochemical, mechanical and architectural inputs that define stem cell states during morphogenesis, homeostasis and regeneration, and highlight how these diverse inputs influence stem cell plasticity.
Collapse
Affiliation(s)
- Carlos Andrés Chacón-Martínez
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Janis Koester
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany .,Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
239
|
Manic Fringe deficiency imposes Jagged1 addiction to intestinal tumor cells. Nat Commun 2018; 9:2992. [PMID: 30065304 PMCID: PMC6068201 DOI: 10.1038/s41467-018-05385-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Delta ligands regulate Notch signaling in normal intestinal stem cells, while Jagged1 activates Notch in intestinal adenomas carrying active β-catenin. We used the ApcMin/+ mouse model, tumor spheroid cultures, and patient-derived orthoxenografts to address this divergent ligand-dependent Notch function and its implication in disease. We found that intestinal-specific Jag1 deletion or antibody targeting Jag1 prevents tumor initiation in mice. Addiction to Jag1 is concomitant with the absence of Manic Fringe (MFNG) in adenoma cells, and its ectopic expression reverts Jag1 dependence. In 239 human colorectal cancer patient samples, MFNG imposes a negative correlation between Jag1 and Notch, being high Jag1 in the absence of MFNG predictive of poor prognosis. Jag1 antibody treatment reduces patient-derived tumor orthoxenograft growth without affecting normal intestinal mucosa. Our data provide an explanation to Jag1 dependence in cancer, and reveal that Jag1-Notch1 interference provides therapeutic benefit in a subset of colorectal cancer and FAP syndrome patients.
Collapse
|
240
|
Yu S, Tong K, Zhao Y, Balasubramanian I, Yap GS, Ferraris RP, Bonder EM, Verzi MP, Gao N. Paneth Cell Multipotency Induced by Notch Activation following Injury. Cell Stem Cell 2018; 23:46-59.e5. [PMID: 29887318 PMCID: PMC6035085 DOI: 10.1016/j.stem.2018.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 01/08/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/β-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.
Collapse
Affiliation(s)
- Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kevin Tong
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | | | - George S Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
241
|
Zwarycz B, Gracz AD, Rivera KR, Williamson IA, Samsa LA, Starmer J, Daniele MA, Salter-Cid L, Zhao Q, Magness ST. IL22 Inhibits Epithelial Stem Cell Expansion in an Ileal Organoid Model. Cell Mol Gastroenterol Hepatol 2018; 7:1-17. [PMID: 30364840 PMCID: PMC6199238 DOI: 10.1016/j.jcmgh.2018.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Background & Aims Crohn's disease is an inflammatory bowel disease that affects the ileum and is associated with increased cytokines. Although interleukin (IL)6, IL17, IL21, and IL22 are increased in Crohn's disease and are associated with disrupted epithelial regeneration, little is known about their effects on the intestinal stem cells (ISCs) that mediate tissue repair. We hypothesized that ILs may target ISCs and reduce ISC-driven epithelial renewal. Methods A screen of IL6, IL17, IL21, or IL22 was performed on ileal mouse organoids. Computational modeling was used to predict microenvironment cytokine concentrations. Organoid size, survival, proliferation, and differentiation were characterized by morphometrics, quantitative reverse-transcription polymerase chain reaction, and immunostaining on whole organoids or isolated ISCs. ISC function was assayed using serial passaging to single cells followed by organoid quantification. Single-cell RNA sequencing was used to assess Il22ra1 expression patterns in ISCs and transit-amplifying (TA) progenitors. An IL22-transgenic mouse was used to confirm the impact of increased IL22 on proliferative cells in vivo. Results High IL22 levels caused decreased ileal organoid survival, however, resistant organoids grew larger and showed increased proliferation over controls. Il22ra1 was expressed on only a subset of ISCs and TA progenitors. IL22-treated ISCs did not show appreciable differentiation defects, but ISC biomarker expression and self-renewal-associated pathway activity was reduced and accompanied by an inhibition of ISC expansion. In vivo, chronically increased IL22 levels, similar to predicted microenvironment levels, showed increases in proliferative cells in the TA zone with no increase in ISCs. Conclusions Increased IL22 limits ISC expansion in favor of increased TA progenitor cell expansion.
Collapse
Key Words
- BSA, bovine serum albumin
- EGFP, enhanced green fluorescent protein
- FACS, fluorescence-activated cell sorter
- IBD, inflammatory bowel disease
- IL, interleukin
- IL22RA1, IL22 receptor A1
- IL22TG, IL22 transgenic
- ILC, innate lymphoid cell
- ILC3, IL22-secreting lymphocyte
- ISC, intestinal stem cell
- Inflammatory Bowel Disease
- Interleukin-22
- Intestinal Stem Cells
- OFE, organoid forming efficiency
- STAT3, signal transducer and activator of transcription 3
- TA, transit-amplifying
- TBS, Tris-buffered saline
- cDNA, complementary DNA
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam D Gracz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristina R Rivera
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Ian A Williamson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Leigh A Samsa
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josh Starmer
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | | | | | - Scott T Magness
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
242
|
Jeon MK, Kaemmerer E, Schneider U, Schiffer M, Klaus C, Hennings J, Clahsen T, Ackerstaff T, Niggemann M, Schippers A, Longerich T, Sellge G, Trautwein C, Wagner N, Liedtke C, Gassler N. Notch inhibition counteracts Paneth cell death in absence of caspase-8. Virchows Arch 2018; 473:71-83. [PMID: 29770852 DOI: 10.1007/s00428-018-2368-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
Abstract
Opposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8∆int) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity. Here, we found that pharmacological Notch inhibition with dibenzazepine (DBZ) is able to essentially rescue the loss of Paneth cells, deescalate the inflammatory phenotype, and reduce intestinal permeability in casp8∆int mice. The secretory cell metaplasia in DBZ-treated casp8∆int animals is proliferative, indicating for Notch activities partially insensitive to gamma-secretase inhibition in a casp8∆int background. Our data suggest that casp8 acts in the intestinal Notch network.
Collapse
Affiliation(s)
- M K Jeon
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - E Kaemmerer
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Department of Pediatrics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - U Schneider
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - M Schiffer
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - C Klaus
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - J Hennings
- Department of Medicine III, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - T Clahsen
- Department of Pediatrics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - T Ackerstaff
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - M Niggemann
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - A Schippers
- Department of Pediatrics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - T Longerich
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - G Sellge
- Department of Medicine III, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - C Trautwein
- Department of Medicine III, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - N Wagner
- Department of Pediatrics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - C Liedtke
- Department of Medicine III, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - N Gassler
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Klinikum Braunschweig, Institute of Pathology, Celler Strasse 28, 38114, Braunschweig, Germany.
| |
Collapse
|
243
|
Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA, de Sauvage FJ, Locksley RM, Klein OD. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 2018. [PMID: 29950724 DOI: 10.1038/s41586‐018‐0257‐1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial surfaces form critical barriers to the outside world and are continuously renewed by adult stem cells1. Whereas dynamics of epithelial stem cells during homeostasis are increasingly well understood, how stem cells are redirected from a tissue-maintenance program to initiate repair after injury remains unclear. Here we examined infection by Heligmosomoides polygyrus, a co-evolved pathosymbiont of mice, to assess the epithelial response to disruption of the mucosal barrier. H. polygyrus disrupts tissue integrity by penetrating the duodenal mucosa, where it develops while surrounded by a multicellular granulomatous infiltrate2. Crypts overlying larvae-associated granulomas did not express intestinal stem cell markers, including Lgr53, in spite of continued epithelial proliferation. Granuloma-associated Lgr5- crypt epithelium activated an interferon-gamma (IFN-γ)-dependent transcriptional program, highlighted by Sca-1 expression, and IFN-γ-producing immune cells were found in granulomas. A similar epithelial response accompanied systemic activation of immune cells, intestinal irradiation, or ablation of Lgr5+ intestinal stem cells. When cultured in vitro, granuloma-associated crypt cells formed spheroids similar to those formed by fetal epithelium, and a sub-population of H. polygyrus-induced cells activated a fetal-like transcriptional program, demonstrating that adult intestinal tissues can repurpose aspects of fetal development. Therefore, re-initiation of the developmental program represents a fundamental mechanism by which the intestinal crypt can remodel itself to sustain function after injury.
Collapse
Affiliation(s)
- Ysbrand M Nusse
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Adam K Savage
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Axel K M Rosendahl-Huber
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Tyler A Landman
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | | | - Richard M Locksley
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology & Immunology, University of California, San Francisco, CA, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA. .,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
244
|
Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 2018; 559:109-113. [PMID: 29950724 PMCID: PMC6042247 DOI: 10.1038/s41586-018-0257-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Epithelial surfaces form critical barriers to the outside world and are continuously renewed by adult stem cells1. Whereas epithelial stem cell dynamics during homeostasis are increasingly well understood, how stem cells are redirected from a tissue-maintenance program to initiate repair after injury remains unclear. Here, we examined infection by Heligmosomoides polygyrus (Hp), a co-evolved pathosymbiont of mice, to assess the epithelial response to disruption of the mucosal barrier. Hp disrupts tissue integrity by penetrating the duodenal mucosa, where it develops while surrounded by a multicellular granulomatous infiltrate2. Unexpectedly, intestinal stem cell (ISC) markers, including Lgr53, were lost in crypts overlying larvae-associated granulomas, despite continued epithelial proliferation. Granuloma-associated Lgr5− crypt epithelia activated an interferon-gamma (IFNγ)-dependent transcriptional program, highlighted by Sca-1 expression, and IFNγ-producing immune cells were found in granulomas. A similar epithelial response accompanied systemic activation of immune cells, intestinal irradiation, or ablation of Lgr5+ ISCs. Granuloma-associated crypt cells generated fetal-like spheroids in culture, and a sub-population of Hp-induced cells activated a fetal-like transcriptional program, demonstrating that adult intestinal tissues can repurpose aspects of fetal development. Thus, re-initiation of the developmental program represents a fundamental mechanism by which the intestinal crypt can remodel to sustain function after injury.
Collapse
|
245
|
Yip HYK, Tan CW, Hirokawa Y, Burgess AW. Colon organoid formation and cryptogenesis are stimulated by growth factors secreted from myofibroblasts. PLoS One 2018; 13:e0199412. [PMID: 29928021 PMCID: PMC6013242 DOI: 10.1371/journal.pone.0199412] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Although small intestinal epithelial stem cells form crypts when using intestinal culture conditions, colon stem cells usually form colonospheres. Colon mesenchymal cell feeder layers can stimulate colon crypts to form organoids and produce crypts. We have investigated whether conditioned medium from colon mesenchymal cells can also stimulate colonosphere and organoid cryptogenesis. We prepared conditioned medium (CM) from WEHI-YH2 cells (mouse colon myofibroblasts); the CM stimulated both colonosphere formation and organoid cryptogenesis in vitro. The colon organoid-stimulating factors in WEHI-YH2 CM are inactivated by heating and trypsin digestion and proteins can be concentrated by ultrafiltration. Both the colonosphere- and organoid cryptogenesis- stimulatory effects of the CM are independent of canonical Wnt and Notch signaling. In contrast, bone morphogenetic protein 4 (BMP4) abolishes colonosphere formation and organoid cryptogenesis. The Transforming Growth Factor beta (TGFβ) Type I receptor kinase inhibitor (A83-01) stimulates colonosphere formation, whereas the Epidermal Growth Factor receptor (EGFR) kinase inhibitor (AG1478) reduces the formation of colonospheres, but in the presence of EGF, a “just-right” concentration of AG1478 increases colon organoid cryptogenesis.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chin Wee Tan
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (CWT); (AWB)
| | - Yumiko Hirokawa
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Antony Wilks Burgess
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
- * E-mail: (CWT); (AWB)
| |
Collapse
|
246
|
Wang JJ, Zhang WX, Wang KF, Zhang S, Han X, Guan WJ, Ma YH. Isolation and biological characteristics of multipotent mesenchymal stromal cells derived from chick embryo intestine. Br Poult Sci 2018; 59:521-530. [PMID: 29914266 DOI: 10.1080/00071668.2018.1490495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. Over the past decade, rapid advancement in isolation methods for identifying markers of the once elusive intestinal stem cell (ISC) populations has laid the foundation for unravelling their complex interrelationships during homeostasis. Study on ISC in avian intestinal tissue might play a pivotal foundation for further studies on the epithelial-to-mesenchymal transition (EMT) in gastrointestinal disease and cell-based therapy as well as intestinal tissue engineering. 2. The following experiment isolated a population of fibroblast-like, plastic adhering cells derived from chick embryo intestine, showing a strong self-renewing and proliferative ability, which was maintained in vitro up to passage 25. The findings included growth characteristics, detected expression of cell surface markers and characterised the capability of these cells to differentiate towards the osteogenic, adipogenic, and chondrogenic cell lineages. 3. RT-PCR analysis showed that these cells from chick embryos expressed mesenchymal stromal cell markers CD44, CD90 and VIMENTIN as well as ISC-specific genes LGR5, MI1, SMOC2, BMI1, and HOPX. Immunofluorescence and flow cytometry confirmed this biology characterisation further. 4. In conclusion, cells were isolated from the intestine of 18-day-old chicken embryos that exhibited the biological characteristics of mesenchymal stromal cells as well as markers of intestinal stem cells. Our findings may provide a novel insight for in vitro cell culture and characteristics of ISCs in avian species, which may also indicate a benefit for obtaining cell source for intestinal tissue engineering as well as cell-based investigation for gastrointestinal disease and treatment.
Collapse
Affiliation(s)
- J J Wang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China.,b Department of Kinesiology and Health , Harbin Sport University , Harbin , Heilongjiang , China
| | - W X Zhang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - K F Wang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - S Zhang
- c Research Center for Sports Scientific Experiment , Harbin Sport University , Harbin , Heilongjiang , China
| | - X Han
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - W J Guan
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Y H Ma
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| |
Collapse
|
247
|
Mead BE, Ordovas-Montanes J, Braun AP, Levy LE, Bhargava P, Szucs MJ, Ammendolia DA, MacMullan MA, Yin X, Hughes TK, Wadsworth MH, Ahmad R, Rakoff-Nahoum S, Carr SA, Langer R, Collins JJ, Shalek AK, Karp JM. Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types. BMC Biol 2018; 16:62. [PMID: 29871632 PMCID: PMC5989470 DOI: 10.1186/s12915-018-0527-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Single-cell genomic methods now provide unprecedented resolution for characterizing the component cell types and states of tissues such as the epithelial subsets of the gastrointestinal tract. Nevertheless, functional studies of these subsets at scale require faithful in vitro models of identified in vivo biology. While intestinal organoids have been invaluable in providing mechanistic insights in vitro, the extent to which organoid-derived cell types recapitulate their in vivo counterparts remains formally untested, with no systematic approach for improving model fidelity. RESULTS Here, we present a generally applicable framework that utilizes massively parallel single-cell RNA-seq to compare cell types and states found in vivo to those of in vitro models such as organoids. Furthermore, we leverage identified discrepancies to improve model fidelity. Using the Paneth cell (PC), which supports the stem cell niche and produces the largest diversity of antimicrobials in the small intestine, as an exemplar, we uncover fundamental gene expression differences in lineage-defining genes between in vivo PCs and those of the current in vitro organoid model. With this information, we nominate a molecular intervention to rationally improve the physiological fidelity of our in vitro PCs. We then perform transcriptomic, cytometric, morphologic and proteomic characterization, and demonstrate functional (antimicrobial activity, niche support) improvements in PC physiology. CONCLUSIONS Our systematic approach provides a simple workflow for identifying the limitations of in vitro models and enhancing their physiological fidelity. Using adult stem cell-derived PCs within intestinal organoids as a model system, we successfully benchmark organoid representation, relative to that in vivo, of a specialized cell type and use this comparison to generate a functionally improved in vitro PC population. We predict that the generation of rationally improved cellular models will facilitate mechanistic exploration of specific disease-associated genes in their respective cell types.
Collapse
Affiliation(s)
- Benjamin E Mead
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Jose Ordovas-Montanes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Divisions of Infectious Diseases and Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra P Braun
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lauren E Levy
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Prerna Bhargava
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | | | - Dustin A Ammendolia
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Xiaolei Yin
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Travis K Hughes
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Marc H Wadsworth
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Rushdy Ahmad
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Seth Rakoff-Nahoum
- Divisions of Infectious Diseases and Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA,, USA
| | - James J Collins
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Synthetic Biology Center, MIT, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Alex K Shalek
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jeffrey M Karp
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
248
|
Kamdar K, Johnson AMF, Chac D, Myers K, Kulur V, Truevillian K, DePaolo RW. Innate Recognition of the Microbiota by TLR1 Promotes Epithelial Homeostasis and Prevents Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:230-242. [PMID: 29794015 DOI: 10.4049/jimmunol.1701216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
There is cross-talk between the intestinal epithelium and the microbiota that functions to maintain a tightly regulated microenvironment and prevent chronic inflammation. This communication is partly mediated through the recognition of bacterial proteins by host-encoded innate receptors, such as TLRs. However, studies examining the role of TLR signaling on colonic homeostasis have given variable and conflicting results. Despite its critical role in mediating immunity during enteric infection of the small intestine, TLR1-mediated recognition of microbiota-derived ligands and their influence on colonic homeostasis has not been well studied. In this study, we demonstrate that defective TLR1 recognition of the microbiome by epithelial cells results in disruption of crypt homeostasis specifically within the secretory cell compartment, including a defect in the mucus layer, ectopic Paneth cells in the colon, and an increase in the number of rapidly dividing cells at the base of the crypt. As a consequence of the perturbed epithelial barrier, we found an increase in mucosal-associated and translocated commensal bacteria and chronic low-grade inflammation characterized by an increase in lineage-negative Sca1+Thy1hi innate lymphoid-like cells that exacerbate inflammation and worsen outcomes in a model of colonic injury and repair. Our findings demonstrate that sensing of the microbiota by TLR1 may provide key signals that regulate the colonic epithelium, thereby limiting inflammation through the prevention of bacterial attachment to the mucosa and exposure to the underlying immune system.
Collapse
Affiliation(s)
- Karishma Kamdar
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Andrew M F Johnson
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - Denise Chac
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - Kalisa Myers
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Vrishika Kulur
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Kyle Truevillian
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| | - R William DePaolo
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and .,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98105
| |
Collapse
|
249
|
Taracena ML, Bottino-Rojas V, Talyuli OAC, Walter-Nuno AB, Oliveira JHM, Angleró-Rodriguez YI, Wells MB, Dimopoulos G, Oliveira PL, Paiva-Silva GO. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus. PLoS Negl Trop Dis 2018; 12:e0006498. [PMID: 29782512 PMCID: PMC5983868 DOI: 10.1371/journal.pntd.0006498] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Aedes aegypti is the vector of some of the most important vector-borne diseases like dengue, chikungunya, zika and yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in reactive oxygen species (ROS) production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence. Aedes mosquitoes are important vectors of arboviruses, representing a major threat to public health. While feeding on blood, mosquitoes address the challenges of digestion and preservation of midgut homeostasis. Damaged or senescent cells must be constantly replaced by new cells to maintain midgut epithelial integrity. In this study, we show that the intestinal stem cells (ISCs) of blood-fed mosquitoes are able to respond to abiotic and biotic challenges. Exposing midgut cells to different types of stress, such as the inhibition of the peritrophic matrix formation, changes in the midgut redox state, or infection with entomopathogenic bacteria or viruses, resulted in an increased number of mitotic cells in blood-fed mosquitoes. Mosquito strains with different susceptibilities to DENV infection presented different time course of cell regeneration in response to viral infection. Knockdown of the Notch pathway in a refractory mosquito strain limited cell division after infection with DENV and resulted in increased mosquito susceptibility to the virus. Conversely, inducing midgut cell proliferation made a susceptible strain more resistant to viral infection. Therefore, the effectiveness of midgut cellular renewal during viral infection proved to be an important factor in vector competence. These findings can contribute to the understanding of virus-host interactions and help to develop more successful strategies of vector control.
Collapse
Affiliation(s)
- Mabel L. Taracena
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Octavio A. C. Talyuli
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - José Henrique M. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Yesseinia I. Angleró-Rodriguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Michael B. Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States of America
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Pedro L. Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O. Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
250
|
Dai Q, Duan C, Ren W, Li F, Zheng Q, Wang L, Li W, Lu X, Ni W, Zhang Y, Chen Y, Wen T, Yu Y, Yu H. Notch Signaling Regulates Lgr5 + Olfactory Epithelium Progenitor/Stem Cell Turnover and Mediates Recovery of Lesioned Olfactory Epithelium in Mouse Model. Stem Cells 2018; 36:1259-1272. [PMID: 29664186 DOI: 10.1002/stem.2837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates stem cell proliferation and differentiation in multiple tissues and organs, and is required for tissue maintenance. However, the role of Notch in regulation of olfactory epithelium (OE) progenitor/stem cells to maintain tissue function is still not clear. A recent study reported that leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is expressed in globose basal cells (GBCs) localized in OE. Through lineage tracing in vivo, we found that Lgr5+ cells act as progenitor/stem cells in OE. The generation of daughter cells from Lgr5+ progenitor/stem cells is delicately regulated by the Notch signaling pathway, which not only controls the proliferation of Lgr5+ cells and their immediate progenies but also affects their subsequent terminal differentiation. In conditionally cultured OE organoids in vitro, inhibition of Notch signaling promotes neuronal differentiation. Besides, OE lesion through methimazole administration in mice induces generation of more Notch1+ cells in the horizontal basal cell (HBC) layer, and organoids derived from lesioned OE possesses more proliferative Notch1+ HBCs. In summary, we concluded that Notch signaling regulates Lgr5+ GBCs by controlling cellular proliferation and differentiation as well as maintaining epithelial cell homeostasis in normal OE. Meanwhile, Notch1 also marks HBCs in lesioned OE and Notch1+ HBCs are transiently present in OE after injury. This implies that Notch1+ cells in OE may have dual roles, functioning as GBCs in early development of OE and HBCs in restoring the lesioned OE. Stem Cells 2018;36:1259-1272.
Collapse
Affiliation(s)
- Qi Dai
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Chen Duan
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Ren
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Fangqi Li
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Li Wang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Xiaoling Lu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Ni
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yanping Zhang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Tieqiao Wen
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China.,School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|