201
|
Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res 2016; 365:483-93. [PMID: 27256396 DOI: 10.1007/s00441-016-2424-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023]
Abstract
From the moment we are born, every injury to the skin has the potential to form a scar, many of which can impair form and/or function. As such, scar management constitutes a billion-dollar industry. However, effectively promoting scarless wound healing remains an elusive goal. The complex interactions of wound healing contribute to our inability to recapitulate scarless wound repair as it occurs in nature, such as in fetal skin and the oral mucosa. However, many new advances have occurred in recent years, some of which have translated scientific findings from bench to bedside. In vivo lineage tracing has helped establish a variety of novel cellular culprits that may act as key drivers of the fibrotic response. These newly characterized cell populations present further targets for therapeutic intervention, some of which have previously demonstrated promising results in animal models. Here, we discuss several recent studies that identify exciting approaches for diminishing scar formation. Particular attention will also be paid to the canonical Wnt/β-catenin signaling pathway, which plays an important role in both embryogenesis and tissue repair. New insights into the differential effects of Wnt signaling on heterogeneous fibroblast and keratinocyte populations within the skin further demonstrate methods by which wound healing can be re-directed to a more fetal scarless phenotype. Graphical abstract Recent approaches to reducing scar formation. Representation showing novel scientific approaches for decreasing scar formation, including the targeting of pro-fibrotic cell populations based on surface molecule expression (e.g. DPP4(+) fibroblasts, ADAM12(+) pericytes). Modulation of cellular mechanotransduction pathways are another means to reduce scar formation, both at the molecular level or, macroscopically with dressings designed to offload tension, at cutaneous wound sites (ADAM12 a disintegrin and metalloprotease 12, DPP4 dipeptidyl peptidase-4, FAK focal adhesion kinase).
Collapse
Affiliation(s)
- Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | - Clement D Marshall
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - Leandra A Barnes
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - H Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
202
|
Sanchez-Gurmaches J, Hung CM, Guertin DA. Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol 2016; 26:313-326. [PMID: 26874575 PMCID: PMC4844825 DOI: 10.1016/j.tcb.2016.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
203
|
Nam K, Maruyama CL, Trump BG, Buchmann L, Hunt JP, Monroe MM, Baker OJ. Post-Irradiated Human Submandibular Glands Display High Collagen Deposition, Disorganized Cell Junctions, and an Increased Number of Adipocytes. J Histochem Cytochem 2016; 64:343-52. [PMID: 27126825 DOI: 10.1369/0022155416646089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
Salivary glands are vital for maintaining oral health. Head and neck radiation therapy is one of the most common causes of salivary gland hypofunction. Little is known about the structural changes that occur in salivary glands after radiation therapy. The aim of this study is to understand the structural changes that occur in post-irradiated human (submandibular gland [SMG]) as compared with untreated ones. We determined changes in epithelial polarity, presence of collagen deposition, and alteration in adipose tissue. We used formalin-fixed paraffin-embedded human SMG from two female subjects exposed to head and neck irradiation. We utilized hematoxylin and eosin staining and Masson's Trichrome staining. The immunostained tissue sections were examined using confocal microscopy. The number and size of adipocytes per tissue section were calculated using ImageJ, Prism, and SPSS software. Post-irradiated human SMG displayed high collagen deposition, disorganized cell junctions, and an increased number of adipocytes as compared with non-irradiated controls. These findings are important to improve our understanding of the individual risk and variation in radiation-related salivary gland dysfunction.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, University of Utah, Salt Lake City, Utah (KN, CLM, BGT, OJB)
| | - Christina L Maruyama
- School of Dentistry, University of Utah, Salt Lake City, Utah (KN, CLM, BGT, OJB)
| | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, Utah (KN, CLM, BGT, OJB)
| | - Luke Buchmann
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah (LB, JPH, MMM)
| | - Jason P Hunt
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah (LB, JPH, MMM)
| | - Marcus M Monroe
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah (LB, JPH, MMM)
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah (KN, CLM, BGT, OJB)
| |
Collapse
|
204
|
Kruglikov IL, Scherer PE. Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot? Exp Dermatol 2016; 25:258-62. [PMID: 26781768 PMCID: PMC4805479 DOI: 10.1111/exd.12941] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
Adipocytes are widely distributed in the dermis, in a unique fat depot referred to as dermal white adipose tissue (dWAT). In rodents, dWAT is present as widespread thin layers, whereas in pigs and humans, it is present in clusters referred to as 'dermal cones' around the pilosebaceous units. This distinct layer of fat cells located above the subcutaneous white adipose tissue is important for proper hair follicle (HF) cycling in rodents. Murine HFs produce spatially restricted synchronous patches after their second postnatal cycle which correlates with the spatial heterogeneity of murine dWAT. Similarly, the cycling of HFs in humans may also be related to the spatial distribution of dWAT, making the difference between murine and human HF cycling of more quantitative than of qualitative nature. This should allow the production of small spatially correlated HF patches in human skin, and we propose that this process can be regulated by paracrine signalling involving a number of signalling modules, including the hedgehog pathway. This pathway is an established player in HF cycling, but is also involved in the regulation of adipogenesis and may therefore be a key regulator of the process across species. We also suggest that the spatial heterogeneity of dWAT is connected not only to HF cycling, but may also be related to other physiological and pathological processes in the skin.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
205
|
Kruglikov IL, Scherer PE. Dermal Adipocytes: From Irrelevance to Metabolic Targets? Trends Endocrinol Metab 2016; 27:1-10. [PMID: 26643658 PMCID: PMC4698208 DOI: 10.1016/j.tem.2015.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023]
Abstract
Dermal white adipose tissue (dWAT) has received little appreciation in the past as a distinct entity from the better recognized subcutaneous white adipose tissue (sWAT). However, recent work has established dWAT as an important contributor to a multitude of processes, including immune response, wound healing and scarring, hair follicle (HF) growth, and thermoregulation. Unique metabolic contributions have also been attributed to dWAT, at least in part due to its thermic insulation properties and response to cold exposure. Dermal adipocytes can also undergo an adipocyte-myofibroblast transition (AMT), a process that is suspected to have an important role in several pathophysiological processes within the skin. Here, we discuss emerging concepts regarding dWAT physiology and its significance to a variety of cellular processes.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
206
|
Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal. Int J Mol Sci 2015; 16:28098-107. [PMID: 26602926 PMCID: PMC4691026 DOI: 10.3390/ijms161226078] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes.
Collapse
|
207
|
Kruglikov IL, Wollina U. Soft tissue fillers as non-specific modulators of adipogenesis: change of the paradigm? Exp Dermatol 2015; 24:912-5. [PMID: 26309229 DOI: 10.1111/exd.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/15/2022]
Abstract
Dermal filler injection is a cornerstone of facial rejuvenation procedures. Based on available data in animal and human studies, we suppose that the activation and proliferation of adipose-derived stem cells and expansion of mature adipocytes play a crucial role in long-term effects of volumizing, tissue tightening and beautification.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|
208
|
Alexander CM, Kasza I, Yen CLE, Reeder SB, Hernando D, Gallo RL, Jahoda CAB, Horsley V, MacDougald OA. Dermal white adipose tissue: a new component of the thermogenic response. J Lipid Res 2015; 56:2061-9. [PMID: 26405076 DOI: 10.1194/jlr.r062893] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/19/2022] Open
Abstract
Recent literature suggests that the layer of adipocytes embedded in the skin below the dermis is far from being an inert spacer material. Instead, this layer of dermal white adipose tissue (dWAT) is a regulated lipid layer that comprises a crucial environmental defense. Among all the classes of biological molecules, lipids have the lowest thermal conductance and highest insulation potential. This property can be exploited by mammals to reduce heat loss, suppress brown adipose tissue activation, reduce the activation of thermogenic programs, and increase metabolic efficiency. Furthermore, this layer responds to bacterial challenge to provide a physical barrier and antimicrobial disinfection, and its expansion supports the growth of hair follicles and regenerating skin. In sum, this dWAT layer is a key defensive player with remarkable potential for modifying systemic metabolism, immune function, and physiology. In this review, we discuss the key literature illustrating the properties of this recently recognized adipose depot.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - C-L Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Scott B Reeder
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Diego Hernando
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA
| | - Colin A B Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
209
|
Kim BS, Rongisch R, Hager S, Grieb G, Nourbakhsh M, Rennekampff HO, Bucala R, Bernhagen J, Pallua N. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation. PLoS One 2015; 10:e0137366. [PMID: 26348853 PMCID: PMC4562638 DOI: 10.1371/journal.pone.0137366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/15/2015] [Indexed: 01/16/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell recruitment to the site of inflammation and wound healing.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Robert Rongisch
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stephan Hager
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gerrit Grieb
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mahtab Nourbakhsh
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hans-Oliver Rennekampff
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Juergen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery—Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
210
|
Martins V, Gonzalez De Los Santos F, Wu Z, Capelozzi V, Phan SH, Liu T. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2768-76. [PMID: 26261086 DOI: 10.1016/j.ajpath.2015.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/28/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Subcutaneous lipoatrophy characteristically accompanies dermal fibrosis with de novo emergence of myofibroblasts such as in systemic sclerosis or scleroderma. Recently dermal adipocytes were shown to have the capacity to differentiate to myofibroblasts in an animal model. Transforming growth factor β can induce this phenomenon in vitro; however its in vivo significance is unclear. Because found in inflammatory zone 1 (FIZZ1) is an inducer of myofibroblast differentiation but an inhibitor of adipocyte differentiation, we investigated its potential role in adipocyte transdifferentiation to myofibroblast in dermal fibrosis. FIZZ1 caused significant and rapid suppression of the expression of fatty acid binding protein 4 and peroxisome proliferator-activated receptor-γ in adipocytes, consistent with dedifferentiation with loss of lipid and Oil Red O staining. The suppression was accompanied subsequently with stimulation of α-smooth muscle actin and type I collagen expression, indicative of myofibroblast differentiation. In vivo FIZZ1 expression was significantly elevated in the murine bleomycin-induced dermal fibrosis model, which was associated with significant reduction in adipocyte marker gene expression and subcutaneous lipoatrophy. Finally, FIZZ1 knockout mice exhibited significantly reduced bleomycin-induced dermal fibrosis with greater preservation of the subcutaneous fat than wild-type mice. These findings suggested that the FIZZ1 induction of adipocyte transdifferentiation to myofibroblast might be a key pathogenic mechanism for the accumulation of myofibroblasts in dermal fibrosis.
Collapse
Affiliation(s)
- Vanessa Martins
- Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Zhe Wu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Vera Capelozzi
- Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sem H Phan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| | - Tianju Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
211
|
Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater 2015; 22:39-49. [PMID: 25934321 DOI: 10.1016/j.actbio.2015.04.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 12/15/2022]
Abstract
Promotion of skin repair for acute or chronic wounds through the use of tissue-engineered products is an active field of research. This study evaluates the effects mediated by tissue-engineered biological dressings containing human in vitro-differentiated adipocytes and adipose-derived stromal cells (ASCs). Re-epithelialization, granulation tissue formation and neovascularization of full-thickness cutaneous wounds were specifically assessed using a murine model featuring a fluorescent epidermis. In comparison with wounds that did not receive an adipocyte-containing biological dressing, treated wounds displayed a slight but significantly faster wound closure based on macroscopic observations over 18 days. Non-invasive imaging of GFP-expressing keratinocytes determined that the kinetics of re-epithelialization were similar for both groups. Treated wounds featured thicker granulation tissues (1.7-fold, P < 0.0001) enriched in collagens (1.3-fold, P < 0.0104). In addition, wound cryosections labeled for detection of CD31-expressing cells indicated a 2.2-fold (P < 0.0002) increased neovascularization for the treated wounds at the time of terminal biopsy. This is in accordance with the secretion of pro-angiogenic factors detected in media conditioned by the dressings. Taken together, these results establish that a new type of engineered substitutes featuring a mixture of adipocytes and ASCs can promote cutaneous healing when applied as temporary dressings, suggesting their potential relevance for chronic wound management studies.
Collapse
|
212
|
Sandhofer M, Schauer P. Nischenspezifischer Fetttransfer im Gesicht. JOURNAL FUR ASTHETISCHE CHIRURGIE 2015. [DOI: 10.1007/s12631-015-0014-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
213
|
Hu L, Yang G, Hägg D, Sun G, Ahn JM, Jiang N, Ricupero CL, Wu J, Rodhe CH, Ascherman JA, Chen L, Mao JJ. IGF1 Promotes Adipogenesis by a Lineage Bias of Endogenous Adipose Stem/Progenitor Cells. Stem Cells 2015; 33:2483-95. [PMID: 26010009 DOI: 10.1002/stem.2052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
Adipogenesis is essential for soft tissue reconstruction following trauma or tumor resection. We demonstrate that CD31(-)/34(+)/146(-) cells, a subpopulation of the stromal vascular fraction (SVF) of human adipose tissue, were robustly adipogenic. Insulin growth factor-1 (IGF1) promoted a lineage bias towards CD31(-)/34(+)/146(-) cells at the expense of CD31(-)/34(+)/146(+) cells. IGF1 was microencapsulated in poly(lactic-co-glycolic acid) scaffolds and implanted in the inguinal fat pad of C57Bl6 mice. Control-released IGF1 induced remarkable adipogenesis in vivo by recruiting endogenous cells. In comparison with the CD31(-)/34(+)/146(+) cells, CD31(-)/34(+)/146(-) cells had a weaker Wnt/β-catenin signal. IGF1 attenuated Wnt/β-catenin signaling by activating Axin2/PPARγ pathways in SVF cells, suggesting IGF1 promotes CD31(-)/34(+)/146(-) bias through tuning Wnt signal. PPARγ response element (PPRE) in Axin2 promoter was crucial for Axin2 upregulation, suggesting that PPARγ transcriptionally activates Axin2. Together, these findings illustrate an Axin2/PPARγ axis in adipogenesis that is particularly attributable to a lineage bias towards CD31(-)/34(+)/146(-) cells, with implications in adipose regeneration.
Collapse
Affiliation(s)
- Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Guodong Yang
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Daniel Hägg
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Guoming Sun
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Jeffrey M Ahn
- Department of Otolaryngology, New York, New York, USA
| | - Nan Jiang
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | | | - June Wu
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Christine Hsu Rodhe
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Jeffrey A Ascherman
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jeremy J Mao
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| |
Collapse
|
214
|
Kim BS, Pallua N, Bernhagen J, Bucala R. The macrophage migration inhibitory factor protein superfamily in obesity and wound repair. Exp Mol Med 2015; 47:e161. [PMID: 25930990 PMCID: PMC4454997 DOI: 10.1038/emm.2015.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
The rising number of obese individuals has become a major burden to the healthcare systems worldwide. Obesity includes not only the increase of adipose tissue mass but importantly also the altered cellular functions that collectively lead to a chronic state of adipose tissue inflammation, insulin resistance and impaired wound healing. Adipose tissue undergoing chronic inflammation shows altered cytokine expression and an accumulation of adipose tissue macrophages (ATM). The macrophage migration inhibitory factor (MIF) superfamily consists of MIF and the recently identified homolog D-dopachrome tautomerase (D-DT or MIF-2). MIF and D-DT, which both bind to the CD74/CD44 receptor complex, are differentially expressed in adipose tissue and have distinct roles in adipogenesis. MIF positively correlates with obesity as well as insulin resistance and contributes to adipose tissue inflammation by modulating ATM functions. D-DT, however, is negatively correlated with obesity and reverses glucose intolerance. In this review, their respective roles in adipose tissue homeostasis, adipose tissue inflammation, insulin resistance and impaired wound healing will be reviewed.
Collapse
Affiliation(s)
- Bong-Sung Kim
- 1] Department of Medicine, Yale University School of Medicine, New Haven, CT, USA [2] Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany [3] Department of Plastic and Reconstructive Surgery, Hand Surgery-Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery-Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
215
|
Strong AL, Bowles AC, MacCrimmon CP, Frazier TP, Lee SJ, Wu X, Katz AJ, Gawronska-Kozak B, Bunnell BA, Gimble JM. Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of adipogenesis in skin repair. Stem Cells Transl Med 2015; 4:632-42. [PMID: 25900728 DOI: 10.5966/sctm.2014-0235] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/05/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED More than 2.5 million patients in the U.S. require treatment for pressure ulcers annually, and the elderly are at particularly high risk for pressure ulcer development. Current therapy for pressure ulcers consists of conservative medical management for shallow lesions and aggressive debridement and surgery for deeper lesions. The current study uses a murine model to address the hypothesis that adipose-derived stromal/stem cell (ASC) treatment would accelerate and enhance pressure ulcer repair. The dorsal skin of both young (2 months old [mo]) and old (20 mo) C57BL/6J female mice was sandwiched between external magnets for 12 hours over 2 consecutive days to initiate a pressure ulcer. One day following the induction, mice were injected with ASCs isolated from congenic mice transgenic for the green fluorescent protein under a ubiquitous promoter. Relative to phosphate-buffered saline-treated controls, ASC-treated mice displayed a cell concentration-dependent acceleration of wound closure, improved epidermal/dermal architecture, increased adipogenesis, and reduced inflammatory cell infiltration. The ASC-induced improvements occurred in both young and elderly recipients, although the expression profile of angiogenic, immunomodulatory, and reparative mRNAs differed as a function of age. The results are consistent with clinical reports that fat grafting improved skin architecture in thermal injuries; the authors of this published study have invoked ASC-based mechanisms to account for their clinical outcomes. Thus, the current proof-of-principle study sets the stage for clinical translation of autologous and/or allogeneic ASC treatment of pressure ulcers. SIGNIFICANCE Adipose-derived stromal/stem cells (ASCs) promote the healing of pressure ulcer wounds in both young and old mice. ASCs enhance wound healing rates through adipogenic differentiation and regeneration of the underlying architecture of the skin.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Connor P MacCrimmon
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Trivia P Frazier
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Stephen J Lee
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Xiying Wu
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam J Katz
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Barbara Gawronska-Kozak
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine and Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA; LaCell LLC, New Orleans, Louisiana, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida, USA; Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Departments of Medicine, Surgery, and Structural and Cellular Biology, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
216
|
Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 2015; 67:1062-73. [PMID: 25504959 PMCID: PMC4472310 DOI: 10.1002/art.38990] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/04/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Accumulation of myofibroblasts in fibrotic skin is a hallmark of systemic sclerosis (SSc; scleroderma), but the origins of these cells remain unknown. Because loss of intradermal adipose tissue is a consistent feature of cutaneous fibrosis, we sought to examine the hypothesis that myofibroblasts populating fibrotic dermis derive from adipocytic progenitors. METHODS We performed genetic fate mapping studies to investigate the loss of intradermal adipose tissue and its potential role in fibrosis in mice with bleomycin-induced scleroderma. Modulation of adipocytic phenotypes ex vivo was investigated in adipose tissue-derived cells in culture. RESULTS A striking loss of intradermal adipose tissue and its replacement with fibrous tissue were consistently observed in mice with bleomycin-induced fibrosis. Loss of adipose tissue and a decline in the expression of canonical adipogenic markers in lesional skin preceded the onset of dermal fibrosis and expression of fibrogenic markers. Ex vivo, subcutaneous adipocytes were driven by transforming growth factor β to preferentially undergo fibrogenic differentiation. Cell fate mapping studies in mice with the adiponectin promoter-driven Cre recombinase transgenic construct indicated that adiponectin-positive progenitors that are normally confined to the intradermal adipose tissue compartment were distributed throughout the lesional dermis over time, lost their adipocytic markers, and expressed myofibroblast markers in bleomycin-treated mice. CONCLUSION These observations establish a novel link between intradermal adipose tissue loss and dermal fibrosis and demonstrate that adiponectin-positive intradermal progenitors give rise to dermal myofibroblasts. Adipose tissue loss and adipocyte-myofibroblast transition might be primary events in the pathogenesis of cutaneous fibrosis that represent novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Jun Wei
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tammara A. Wood
- Geisel School of Medicine at Dartmouth, Medical School, Hanover, New Hampshire
| | - Lauren V. Graham
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - John Varga
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
217
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|
218
|
Zhao H, Qiao J, Zhang S, Zhang H, Lei X, Wang X, Deng Z, Ning L, Cao Y, Guo Y, Liu S, Duan E. GPR39 marks specific cells within the sebaceous gland and contributes to skin wound healing. Sci Rep 2015; 5:7913. [PMID: 25604641 PMCID: PMC4300488 DOI: 10.1038/srep07913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/19/2014] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate multiple key biological processes in the body. The orphan receptor GPR39 has been reported to be involved in various pathophysiological events. However, the function of GPR39 in skin biology remains unknown. Using a genetically engineered mouse strain in which lacZ expression faithfully replaced endogenous Gpr39 expression, we discovered a unique expression pattern of Gpr39 in the sebaceous gland (SG). Using various methods, we confirmed that GPR39 marked a specific cell population at the opening of the SG and colocalised with the SG stem cell marker Blimp1. Further investigations showed that GPR39 was spatiotemporally expressed during skin wound repair. Although it was dispensable for skin development and homeostasis, GPR39 contributed positively to skin wound healing: its loss led to a delay in wound healing during the intermediate stage. The present study reveals a novel role of GPR39 in both dermatology and stem cell biology that has not been previously recognised.
Collapse
Affiliation(s)
- Huashan Zhao
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Qiao
- College of Animal Science and Technology, Beijing University of Agriculture, China
| | - Shoubing Zhang
- Department of Histology&Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huishan Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinyue Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhili Deng
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Lina Ning
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yujing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
219
|
Abstract
The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries.
Collapse
Affiliation(s)
- Makoto Takeo
- The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, New York 10016 Department of Cell Biology, New York University, School of Medicine, New York, New York 10016
| | - Wendy Lee
- The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, New York 10016 Department of Cell Biology, New York University, School of Medicine, New York, New York 10016
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, New York 10016 Department of Cell Biology, New York University, School of Medicine, New York, New York 10016
| |
Collapse
|
220
|
Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015; 347:67-71. [PMID: 25554785 PMCID: PMC4318537 DOI: 10.1126/science.1260972] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocytes have been suggested to be immunologically active, but their role in host defense is unclear. We observed rapid proliferation of preadipocytes and expansion of the dermal fat layer after infection of the skin by Staphylococcus aureus. Impaired adipogenesis resulted in increased infection as seen in Zfp423(nur12) mice or in mice given inhibitors of peroxisome proliferator-activated receptor γ. This host defense function was mediated through the production of cathelicidin antimicrobial peptide from adipocytes because cathelicidin expression was decreased by inhibition of adipogenesis, and adipocytes from Camp(-/-) mice lost the capacity to inhibit bacterial growth. Together, these findings show that the production of an antimicrobial peptide by adipocytes is an important element for protection against S. aureus infection of the skin.
Collapse
Affiliation(s)
- Ling-juan Zhang
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tissa Hata
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Sagar P Bapat
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, San Diego, La Jolla, CA 92037, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard L Gallo
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
221
|
Roubelakis MG, Trohatou O, Roubelakis A, Mili E, Kalaitzopoulos I, Papazoglou G, Pappa KI, Anagnou NP. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev Rep 2014; 10:417-28. [PMID: 24500853 DOI: 10.1007/s12015-013-9494-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Numerous studies have shown the presence of high levels of growth factors during the process of healing. Growth factors act by binding to the cell surface receptors and contribute to the subsequent activation of signal transduction mechanisms. Wound healing requires a complex of biological and molecular events that includes attraction and proliferation of different type of cells to the wound site, differentiation and angiogenesis. More specifically, migration of various cell types, such as endothelial cells and their precursors, mesenchymal stem/stromal cells (MSCs) or skin fibroblasts (DFs) plays an important role in the healing process. In recent years, the application of platelet rich plasma (PRP) to surgical wounds and skin ulcerations is becoming more frequent, as it is believed to accelerate the healing process. The local enrichment of growth factors at the wound after PRP application causes a stimulation of tissue regeneration. Herein, we studied: (i) the effect of autologous PRP in skin ulcers of patients of different aetiology, (ii) the proteomic profile of PRP, (iii) the migration potential of amniotic fluid MSCs and DFs in the presence of PRP extract in vitro, (iv) the use of the PRP extract as a substitute for serum in cultivating AF-MSCs. Considering its easy access, PRP may provide a valuable tool in multiple therapeutic approaches.
Collapse
Affiliation(s)
- Maria G Roubelakis
- Laboratory of Biology, University of Athens, School of Medicine, Michalakopoulou 176, Athens, 115 27, Greece,
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body's natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne 50937, Germany. Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany. Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne 50931, Germany.
| | - Paul Martin
- Schools of Biochemistry and Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK. School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
223
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
224
|
Abstract
Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural.
Collapse
Affiliation(s)
- Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
225
|
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2014; 25:92-9. [PMID: 25455110 DOI: 10.1016/j.tcb.2014.10.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
Fibroblasts are found in most tissues, yet they remain poorly characterised. Different fibroblast subpopulations with distinct functions have been identified in the skin. This functional heterogeneity reflects the varied fibroblast lineages that arise from a common embryonic precursor. In addition to autocrine signals, fibroblasts are highly responsive to Wnt-regulated signals from the overlying epidermis, which can act both locally, via extracellular matrix (ECM) deposition, and via secreted factors that impact the behaviour of fibroblasts in different dermal locations. These findings may explain some of the changes that occur in connective tissue during wound healing and cancer progression.
Collapse
Affiliation(s)
- Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK.
| |
Collapse
|
226
|
Driskell R, Jahoda CAB, Chuong CM, Watt F, Horsley V. Defining dermal adipose tissue. Exp Dermatol 2014; 23:629-31. [PMID: 24841073 PMCID: PMC4282701 DOI: 10.1111/exd.12450] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2014] [Indexed: 12/15/2022]
Abstract
Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.
Collapse
Affiliation(s)
- Ryan Driskell
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Colin A. B. Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Fiona Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
227
|
Srimani JK, Yao G, Neu J, Tanouchi Y, Lee TJ, You L. Linear population allocation by bistable switches in response to transient stimulation. PLoS One 2014; 9:e105408. [PMID: 25141235 PMCID: PMC4139379 DOI: 10.1371/journal.pone.0105408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.
Collapse
Affiliation(s)
- Jaydeep K. Srimani
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - John Neu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Yu Tanouchi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Tae Jun Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
228
|
Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact 2014; 219:101-12. [DOI: 10.1016/j.cbi.2014.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
|
229
|
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med 2014; 20:847-56. [PMID: 25100530 PMCID: PMC4358898 DOI: 10.1038/nm.3643] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. Thus, the skin provides a model for studying interactions between stem cells and their microenvironments, or niches. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny and about the mutual influences between skin stem cells and their niches. Such knowledge may offer novel avenues for therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- 1] Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA. [2]
| | - Lishi Li
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA
| |
Collapse
|
230
|
Prasad S, Hogaboam CM, Jarai G. Deficient repair response of IPF fibroblasts in a co-culture model of epithelial injury and repair. FIBROGENESIS & TISSUE REPAIR 2014; 7:7. [PMID: 24834127 PMCID: PMC4021590 DOI: 10.1186/1755-1536-7-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/17/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disorder marked by relentless fibrosis and damage of the lung architecture. A growing body of evidence now suggests that IPF progresses as a result of aberrant epithelial-fibroblast crosstalk. Injured epithelia are a major source of growth factors such as PDGF which guide resident fibroblasts to injury sites. RESULTS In this study, we utilized a novel co-culture system to investigate the effect of fibroblast phenotype on their response to epithelial injury. Fibroblasts from normal lungs (NHLF) responded to epithelial injury and populated the wound site forming a fibroblast plug/mechanical barrier which prevented epithelial wound closure. IPF fibroblasts were impaired in their response to epithelial injury. They also expressed reduced PDGFRα compared to NHLFs and were defective towards PDGF-AA mediated directional movement. Neutralization of PDGF-AA and pan-PDGF but not PDGF-BB reduced the injury response of NHLFs thereby preventing the formation of the mechanical barrier and promoting epithelial wound closure. Co-culture of epithelial cells with IPF fibroblasts led to marked increase in the levels of pro-fibrotic growth factors - bFGF and PDGF and significant depletion of anti-fibrotic HGF in the culture medium. Furthermore, IPF fibroblasts but not NHLFs induced a transient increase in mesenchymal marker expression in the wound lining epithelial cells. This was accompanied by increased migration and faster wound closure in co-cultures with IPF fibroblasts. CONCLUSIONS Our data demonstrate that the IPF fibroblasts have an aberrant repair response to epithelial injury.
Collapse
Affiliation(s)
- Sony Prasad
- Novartis Institutes of Biomedical Research, Respiratory Disease Area, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK
| | - Cory M Hogaboam
- Department of Medicine, Cedars Sinai Medical Center, AHSP Room A9108, 127 S. San Vicente Blvd, Los Angeles, CA 90048-3311, USA
| | - Gabor Jarai
- Novartis Institutes of Biomedical Research, Respiratory Disease Area, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK
| |
Collapse
|
231
|
Tokunaga M, Inoue M, Jiang Y, Barnes RH, Buchner DA, Chun TH. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells. Matrix Biol 2014; 36:28-38. [PMID: 24726953 DOI: 10.1016/j.matbio.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/19/2022]
Abstract
Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots.
Collapse
Affiliation(s)
- Masakuni Tokunaga
- Department of Internal Medicine, Division of MEND, University of Michigan Medical School, United States
| | - Mayumi Inoue
- Department of Internal Medicine, Division of MEND, University of Michigan Medical School, United States
| | - Yibin Jiang
- Department of Internal Medicine, Division of MEND, University of Michigan Medical School, United States; Biointerfaces Institute, University of Michigan, United States
| | - Richard H Barnes
- Department of Internal Medicine, Division of MEND, University of Michigan Medical School, United States; Biointerfaces Institute, University of Michigan, United States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, United States
| | - Tae-Hwa Chun
- Department of Internal Medicine, Division of MEND, University of Michigan Medical School, United States; Biointerfaces Institute, University of Michigan, United States.
| |
Collapse
|
232
|
Abstract
There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function. The past few years, in particular, have seen significant changes in the way that we classify adipocytes and how we view adipose development and differentiation. We have new perspective on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues. Finally, there has been significant progress in understanding how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health.
Collapse
Affiliation(s)
- Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Departments of Genetics and Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Bruce M Spiegelman
- Departments of Genetics and Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
233
|
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med 2014; 4:4/3/a015271. [PMID: 24591537 DOI: 10.1101/cshperspect.a015271] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipocytes are intimately associated with the dermal compartment of the skin, existing in a specialized dermal depot and displaying dynamic changes in size during tissue homeostasis. However, the roles of adipocytes in cutaneous biology and disease are not well understood. Traditionally, adipocytes within tissues were thought to act as reservoirs of energy, as thermal, or as structural support. In this review, we discuss recent studies revealing the cellular basis of the dynamic development and regenerative capacity of dermal adipocytes associated with the hair cycle and following injury. We discuss and speculate on potential roles of dermal adipocytes in cutaneous biology with an emphasis on communication during hair follicle growth and wound healing. Finally, we explore how alterations in the dermal adipose tissue may support clinical manifestations of cutaneous diseases such as lipodystrophy, obesity, and alopecia.
Collapse
Affiliation(s)
- Guillermo Rivera-Gonzalez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | | |
Collapse
|
234
|
Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2014; 504:277-281. [PMID: 24336287 PMCID: PMC3868929 DOI: 10.1038/nature12783] [Citation(s) in RCA: 889] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022]
Abstract
Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal β-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.
Collapse
|
235
|
Abstract
The skin is the first line of defense against dehydration and external environmental aggressions. It constantly renews itself throughout adult life mainly due to the activity of tissue-specific stem cells. In this review, we discuss fundamental characteristics of different stem cell populations within the skin and how they are able to contribute to normal skin homeostasis. We also examine the most recent results regarding the cell-intrinsic and -extrinsic components of the stem cell niche within the adult skin epithelium. Finally, we address the recent efforts to understand how abnormal regulation of stem cell activity contributes to the initiation and progression of skin-associated cancers.
Collapse
Affiliation(s)
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
236
|
Vu BG, Gourronc FA, Bernlohr DA, Schlievert PM, Klingelhutz AJ. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines. PLoS One 2013; 8:e77988. [PMID: 24205055 PMCID: PMC3813495 DOI: 10.1371/journal.pone.0077988] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs) on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. Methodology/Principal Findings Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT) and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. Conclusions/Significance Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to understand further the mechanism by which toxins are involved in wound healing and the development and clinical manifestations of obesity and diabetes.
Collapse
Affiliation(s)
- Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Francoise A. Gourronc
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - David A. Bernlohr
- Department of Biochemistry and Molecular Biology/Biophysics, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aloysius J. Klingelhutz
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
237
|
Goruppi S, Dotto GP. Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol 2013; 23:593-602. [PMID: 24074947 DOI: 10.1016/j.tcb.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
Multifocal and recurrent epithelial tumors, originating from either dormant or de novo cancer cells, are major causes of morbidity and mortality. The age-dependent increase of cancer incidence has long been assumed to result from the sequential accumulation of cancer-driving or -facilitating mutations with induction of cellular senescence as a protective mechanism. However, recent evidence suggests that the initiation and development of epithelial cancer results from a close interplay with its altered tissue microenvironment, with chronic inflammation, stromal senescence, autophagy, and the activation of cancer-associated fibroblasts (CAFs) playing possible primary roles. We will discuss recent progress in these areas, and highlight how this understanding may be used for devising novel preventive and therapeutic approaches to the epithelial cancer problem.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, 13th Street Building 149, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|