201
|
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4:1238-46. [PMID: 14608381 DOI: 10.1038/ni1007] [Citation(s) in RCA: 631] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 10/14/2003] [Indexed: 12/20/2022]
Abstract
The zebrafish is firmly established as a genetic model for the study of vertebrate blood development. Here we have characterized the blood-forming system of adult zebrafish. Each major blood lineage can be isolated by flow cytometry, and with these lineal profiles, defects in zebrafish blood mutants can be quantified. We developed hematopoietic cell transplantation to study cell autonomy of mutant gene function and to establish a hematopoietic stem cell assay. Hematopoietic cell transplantation can rescue multilineage hematopoiesis in embryonic lethal gata1-/- mutants for over 6 months. Direct visualization of fluorescent donor cells in embryonic recipients allows engraftment and homing events to be imaged in real time. These results provide a cellular context in which to study the genetics of hematopoiesis.
Collapse
Affiliation(s)
- David Traver
- Children's Hospital Boston and the Howard Hughes Medical Institute, 320 Longwood Avenue, Enders 720, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
202
|
Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 2003; 263:191-202. [PMID: 14597195 DOI: 10.1016/j.ydbio.2003.07.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We used the Tc1/mariner family transposable element Sleeping Beauty (SB) for transgenesis and long-term expression studies in the zebrafish (Danio rerio), a popular organism for clinical disease, vertebrate patterning, and cell biology applications. SB transposase enhanced the transgenesis and expression rate sixfold (from 5 to 31%) and more than doubled the total number of tagged chromosomes over standard, plasmid injection-based transgenesis methods. Molecular analysis of these loci demonstrated a precise integration of these elements into recipient chromosomes with genetic footprints diagnostic of transposition. GFP expression from transposase-mediated integrants was Mendelian through the eighth generation. A blue-shifted GFP variant (BFP) and a red fluorescent protein (DsRed) were also useful transgenesis markers, indicating that multiple reporters are practical for use with SB in zebrafish. We showed that SB is suitable for tissue-specific transgene applications using an abbreviated gamma-crystallin GFP cassette. Finally, we describe a general utility transposon vector for chromosomal engineering and molecular genetics experiments in zebrafish. Together, these data indicate that SB is an efficient tool for transgenesis and expression in zebrafish, and that the transposon will be useful for gene expression in cell biology applications as well as an insertional mutagen for gene discovery during development.
Collapse
Affiliation(s)
- Ann E Davidson
- The Arnold and Mabel Beckman Center for Transposon Research, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Megason SG, Fraser SE. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 2003; 120:1407-20. [PMID: 14623446 DOI: 10.1016/j.mod.2003.07.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The field of biological imaging is progressing at an amazing rate. Advances in both laser-scanning microscopy and green fluorescent protein (GFP) technology are combining to make possible imaging-based approaches for studying developmental mechanisms that were previously impossible. Modern confocal and multi-photon microscopes are pushing the envelope of speed, sensitivity, spectral resolution, and depth resolution to allow in vivo imaging of whole, live embryos at cellular resolution over extended periods of time. In toto imaging, in which nearly every cell in an embryo or tissue can be tracked through space and time during development, may become a standard technique for small transparent embryos such as zebrafish and early stage chick and mouse embryos. GFP and its spectral variants can be used to mark a wide range of in vivo biological information for in toto imaging including gene expression patterns, mutant phenotypes, and protein subcellular localization patterns. Combining in toto imaging and GFP transgenic approaches on a large scale may usher in an explosion of in vivo, developmental data as has happened in the past several years with genomic data. There are significant challenges that must be met to reach these goals. This paper will discuss the current state-of-the-art, the challenges, and the prospects of in toto imaging in the areas of imaging, image analysis, and informatics.
Collapse
Affiliation(s)
- Sean G Megason
- Biological Imaging Center, Beckman Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
204
|
Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 2003; 308:58-63. [PMID: 12890479 DOI: 10.1016/s0006-291x(03)01282-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, new applications of the transgenic technology in developing novel varieties of ornamental fish and bioreactor fish were explored in a model fish, the zebrafish (Danio rerio). Three "living color" fluorescent proteins, green fluorescent protein (GFP), yellow fluorescent protein (YFP), and red fluorescent protein (RFP or dsRed), were expressed under a strong muscle-specific mylz2 promoter in stable lines of transgenic zebrafish. These transgenic zebrafish display vivid fluorescent colors (green, red, yellow, or orange) visible to unaided eyes under both daylight and ultraviolet light in the dark. The level of foreign protein expression is estimated between 3% and 17% of total muscle proteins, equivalent to 4.8-27.2mg/g wet muscle tissue. Thus, the fish muscle may be explored as another useful bioreactor system for production of recombinant proteins. In spite of the high level of foreign protein expression, the expression of endogenous mylz2 mRNAs was not negatively affected. Furthermore, compared to the wild-type fish, these fluorescent transgenic fish have no advantage in survival and reproduction.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
205
|
Abstract
Fish have a long history of use in cancer toxicology studies, because they develop neoplasms that are histologically similar to human cancers. Because of considerable progress in zebrafish genetics and genomics over the past few years, the zebrafish system has provided many useful tools for studying basic biological processes. These tools include forward genetic screens, transgenic models, specific gene disruptions and small-molecule screens. By combining carcinogenesis assays, genetic analyses and small-molecule screening techniques, the zebrafish is emerging as a powerful system for identifying novel cancer genes and for cancer drug discovery.
Collapse
Affiliation(s)
- Howard M Stern
- Howard Hughes Medical Institute, Children's Hospital of Boston, 300 Longwood Avenue, Enders 761, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
206
|
Liu NA, Huang H, Yang Z, Herzog W, Hammerschmidt M, Lin S, Melmed S. Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. Mol Endocrinol 2003; 17:959-66. [PMID: 12576489 DOI: 10.1210/me.2002-0392] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We characterized zebrafish proopiomelanocortin (POMC) gene promoter, and sequence analysis revealed that the promoter contains regulatory elements conserved among vertebrate species. To monitor the ontogeny of the pituitary POMC lineage in living vertebrates, we generated transgenic zebrafish expressing green fluorescent protein (GFP) driven by the POMC promoter. Zebrafish POMC-GFP is first expressed asymmetrically as two bilateral groups of cells most anterior to the neural ridge midline at 18-20 h post fertilization (hpf). POMC-GFP-positive cells then fuse into a single-cell mass within the pituitary anlage after 24 hpf and subsequently organize as distinct anterior and posterior domains between 48 and 64 hpf. Immunohistochemical studies with ACTH and alphaMSH antisera showed that POMC-GFP was mainly targeted to both anterior and posterior pituitary corticotrophs, whereas posterior pituitary region melanotrophs did not express GFP. To determine in vivo zebrafish corticotroph responses, dexamethasone (10(-5) m) was added to live embryos, which selectively suppressed POMC-GFP expression in the anterior group of corticotrophs, suggesting a distinct domain that is responsive to glucocorticoid feedback. Transgenic zebrafish with specific POMC-GFP expression in pituitary corticotrophs offers a powerful genetic system for in vivo study of vertebrate corticotroph lineage development.
Collapse
Affiliation(s)
- Ning-Ai Liu
- Department of Medicine, Cedars-Sinai Research Institute, University of California Los Angeles School of Medicine, 90048, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Ju B, Chong SW, He J, Wang X, Xu Y, Wan H, Tong Y, Yan T, Korzh V, Gong Z. Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the mylz2 promoter. Dev Dyn 2003; 227:14-26. [PMID: 12701095 DOI: 10.1002/dvdy.10273] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 1,934-bp muscle-specific promoter from the zebrafish mylz2 gene was isolated and characterized by transgenic analysis. By using a series of 5' promoter deletions linked to the green fluorescent protein (gfp) reporter gene, transient transgenic analysis indicated that the strength of promoter activity appeared to correlate to the number of muscle cis-elements in the promoter and that a minimal -77-bp region was sufficient for a relatively strong promoter activity in muscle cells. Stable transgenic lines were obtained from several mylz2-gfp constructs. GFP expression in the 1,934-bp promoter transgenic lines mimicked well the expression pattern of endogenous mylz2 mRNA in both somitic muscle and nonsomitic muscles, including fin, eye, jaw, and gill muscles. An identical pattern of GFP expression, although at a much lower level, was observed from a transgenic line with a shorter 871-bp promoter. Our observation indicates that there is no distinct cis-element for activation of mylz2 in different skeletal muscles. Furthermore, RNA encoding a dominant negative form of cAMP-dependent protein kinase A was injected into mylz2-gfp transgenic embryos and GFP expression was significantly reduced due to an expanded slow muscle development at the expense of GFP-expressing fast muscle. The mylz2-gfp transgene was also transferred into two zebrafish mutants, spadetail and chordino, and several novel phenotypes in muscle development in these mutants were discovered.
Collapse
Affiliation(s)
- Bensheng Ju
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Schwerte T, Fritsche R. Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:131-45. [PMID: 12727550 DOI: 10.1016/s1095-6433(03)00044-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zebrafish and Xenopus, genetically accessible vertebrates with an externally developing, optically clear embryo, are ideally suited for in vivo functional dissection of the embryonic development of the circulatory system. Physiological characterizations of the cardiovascular system are still imperative for a more complete understanding of the connections between genetic/epigenetic factors and cardiovascular development. Here, we review experimental tools and methods that have been developed to measure numerous cardiovascular parameters in these millimetre-sized animals.
Collapse
Affiliation(s)
- Thorsten Schwerte
- University of Innsbruck, Institute for Zoology and Limnology, Techniker Str. 25, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
209
|
Udvadia AJ, Linney E. Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 2003; 256:1-17. [PMID: 12654288 DOI: 10.1016/s0012-1606(02)00083-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The recent explosion of transgenic zebrafish lines in the literature demonstrates the value of this model system for detailed in vivo analysis of gene regulation and morphogenetic movements. The optical clarity and rapid early development of zebrafish provides the ability to follow these events as they occur in live, developing embryos. This article will review the development of transgenic technology in zebrafish as well as the current and future uses of transgenic zebrafish to explore the dynamic environment of the developing vertebrate embryo.
Collapse
Affiliation(s)
- Ava J Udvadia
- Department of Molecular Genetics and Microbiology, Box 3020, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
210
|
Her GM, Chiang CC, Chen WY, Wu JL. In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 2003; 538:125-33. [PMID: 12633865 DOI: 10.1016/s0014-5793(03)00157-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian liver fatty acid binding protein (L-FABP) is a small cytosolic protein in various tissues including liver, small intestine and kidney and is thought to play a crucial role in intracellular fatty acid trafficking and metabolism. To better understand its tissue-specific regulation during zebrafish hepatogenesis, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a green fluorescent protein (GFP) transgenic strategy to generate liver-specific transgenic zebrafish. The 2.8-kb 5'-flanking sequence of zebrafish L-FABP gene was sufficient to direct GFP expression in liver primordia, first observed in 2 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. F2 inheritance rates of 42-51% in all the seven transgenic lines were consistent with the ratio of Mendelian segregation. Further, hhex and zXbp-1 morphants displayed a visible liver defect, which suggests that it is possible to establish an in vivo system for screening genes required for liver development.
Collapse
Affiliation(s)
- Guor Mour Her
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Zoology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
211
|
Lekven AC, Buckles GR, Kostakis N, Moon RT. Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 2003; 254:172-87. [PMID: 12591239 DOI: 10.1016/s0012-1606(02)00044-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB.
Collapse
Affiliation(s)
- Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA.
| | | | | | | |
Collapse
|
212
|
Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003; 421:172-7. [PMID: 12520305 DOI: 10.1038/nature01282] [Citation(s) in RCA: 704] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 10/31/2002] [Indexed: 12/21/2022]
Abstract
The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.
Collapse
Affiliation(s)
- Jay R Hove
- Options of Bioengineering and Aeronautics, Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | |
Collapse
|
213
|
|
214
|
Yu YA, Szalay AA, Wang G, Oberg K. Visualization of molecular and cellular events with green fluorescent proteins in developing embryos: a review. LUMINESCENCE 2003; 18:1-18. [PMID: 12536374 DOI: 10.1002/bio.701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the past 5 years, green fluorescent protein (GFP) has become one of the most widely used in vivo protein markers for studying a number of different molecular processes during development, such as promoter activation, gene expression, protein trafficking and cell lineage determination. GFP fluorescence allows observation of dynamic developmental processes in real time, in both transiently and stably transformed cells, as well as in live embryos. In this review, we include the most up-to-date use of GFP during embryonic development and point out the unique contribution of GFP visualization, which resulted in novel discoveries.
Collapse
Affiliation(s)
- Yong A Yu
- Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
215
|
Abstract
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.
Collapse
Affiliation(s)
- Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
216
|
Asaoka Y, Mano H, Kojima D, Fukada Y. Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci U S A 2002; 99:15456-61. [PMID: 12438694 PMCID: PMC137738 DOI: 10.1073/pnas.232444199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Indexed: 11/18/2022] Open
Abstract
The pineal gland, sharing morphological and biochemical similarities with the retina, plays a unique and central role in the photoneuroendocrine system. The unique development of the pineal gland is directed by a specific combination of the expressed genes, but little is known about the regulatory mechanism underlying the pineal-specific gene expression. We isolated a 1.1-kbp fragment upstream of the zebrafish exo-rhodopsin (exorh) gene, which is expressed specifically in the pineal gland. Transgenic analysis using an enhanced green fluorescent protein reporter gene demonstrated that the proximal 147-bp region of the exorh promoter is sufficient to direct pineal-specific expression. This region contains three copies of a putative cone rod homeobox (Crx)Otx-binding site, which is known to be required for expression of both retina- and pineal-specific genes. Deletion and mutational analyses of the exorh promoter revealed that a previously uncharacterized sequence TGACCCCAATCT termed pineal expression-promoting element (PIPE) is required for pineal-specific promoter activity in addition to the CrxOtx-binding sites. By using the zebrafish rhodopsin (rh) promoter that drives retina-specific expression, we created a reporter construct having ectopic PIPE in the rh promoter at a position equivalent to that in the exorh promoter by introducing five nucleotide changes. Such a slight modification in the rh promoter induced ectopic enhanced green fluorescent protein expression in the pineal gland without affecting its retinal expression. These results identify PIPE as a critical cis-element contributing to the pineal-specific gene expression, in combination with the CrxOtx-binding site(s).
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
217
|
Abstract
Two decades of research have established the zebrafish (Danio rerio) as a significant model system for studying vertebrate development and gene structure-function relationships. Recent advances in mutation screening, the creation of genomic resources, including the Zebrafish Genome Project and the development of efficient transgenesis procedures, make this model increasingly attractive for immunological study.
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
218
|
Korzh V, Strähle U. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation 2002; 70:221-6. [PMID: 12190984 DOI: 10.1046/j.1432-0436.2002.700601.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A hundred years ago, Dr. Marshall A. Barber proposed a new technique - the microinjection technique. He developed this method initially to clone bacteria and to confirm the germ theory of Koch and Pasteur. Later on, he refined his approach and was able to manipulate nuclei in protozoa and to implant bacteria into plant cells. Continuous improvement and adaptation of this method to new applications dramatically changed experimental embryology and cytology and led to the formation of several new scientific disciplines including animal cloning as one of its latest applications. Interestingly, microinjection originated as a method at the crossroad of bacteriology and plant biology, demonstrating once again the unforeseen impact that basic research in an unrelated field can have on the development of entirely different disciplines.
Collapse
Affiliation(s)
- Vladimir Korzh
- Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, Singapore 117604.
| | | |
Collapse
|
219
|
Lee KY, Huang H, Ju B, Yang Z, Lin S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 2002; 20:795-9. [PMID: 12134167 DOI: 10.1038/nbt721] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although mammals have been cloned from genetically manipulated cultured cells, a comparable achievement has not been realized in lower vertebrates. Here we report that fertile transgenic zebrafish can be obtained by nuclear transfer using embryonic fibroblast cells from long-term cultures. The donor nuclei, modified by retroviral insertions expressing green fluorescent protein (GFP), were transplanted into manually enucleated eggs. Overall, a 2% success rate was achieved, resulting in 11 adult transgenic zebrafish expressing GFP. These nuclear transplants produced fertile, diploid offspring, and their F1/F2 progeny continued to express GFP in a pattern identical to that of the founder fish. This finding demonstrates that slowly dividing nuclei from cultured cells can be reprogrammed to support rapid embryonic development and sets up a foundation for targeted genetic manipulation in zebrafish.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
220
|
Gong Z, Ju B, Wang X, He J, Wan H, Sudha PM, Yan T. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 2002; 223:204-15. [PMID: 11836785 DOI: 10.1002/dvdy.10051] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A zebrafish cDNA encoding a novel keratin protein was characterized and named keratin8, or krt8. krt8 expression was initiated at 4.5 hr postfertilization, immediately after the time of zygotic genome activation. The expression is limited to a single layer of envelope cells on the surface of embryos and, in later stages, it also appears in the innermost epithelial layer of the anterior- and posteriormost portions of the digestive tract. In adult, its expression was limited to the surface layer of stratified epithelial tissues, including skin epidermis and epithelia of mouth, pharynx, esophagus, and rectum but not in the gastral and intestinal epithelia. By using a 2.2-kb promoter from krt8, several stable green fluorescent protein (gfp) transgenic zebrafish lines were established. All of these transgenic lines displayed GFP expression in tissues mentioned above except for the rectum; therefore, the pattern of transgenic GFP expression is essentially identical to that of the endogenous krt8 mRNAs. krt8-GFP fusion protein was also expressed in zebrafish embryos under a ubiquitous promoter, and the fusion protein was capable of assembling into intermediate filaments only in the epithelia that normally expressed krt8 mRNAs, indicating the specificity of keratin assembly in vivo.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
A technique for fertilizing zebrafish eggs by injection of sperm nuclei is described. Eggs that cleave normally can develop into swimming larvae and give rise to fertile adults. If sperm nuclei are preincubated for 20 min with DNA encoding the green fluorescent protein, transgene expression can be detected in all cells of the embryo. The use of condensed sperm nuclei allows injection with a small bore pipette, which is critical for successful injection of the relatively small zebrafish egg. This technique enables the generation of ubiquitously expressing transgenic zebrafish directly by microinjection. Hence, experiments involving transgenic fish can be completed in days, without the need for growing and breeding founders. This technique may also be used to generate transgenic lines, as transgene expression was visible in the offspring of transgenic founders. The method described here is likely to be applicable to other teleosts, such as medaka and salmon.
Collapse
Affiliation(s)
- Suresh Jesuthasan
- Fish Developmental Genetics Laboratory, IMA, 1 Research Link, NUS, 117604, Singapore.
| | | |
Collapse
|
222
|
Abstract
Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.
Collapse
Affiliation(s)
- Christine Thisse
- Institut de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université Louis Pasteur, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France
| | | |
Collapse
|
223
|
Abstract
This brief review summarizes features of the zebrafish, Danio rerio, that make it a suitable model organism for studies of regulatory physiology. The review presents the argument that random mutagenesis screens are a valuable gene-finding strategy to identify genes of functional importance and that their utility, although well established for developmental issues, will extend to a variety of topics of interest to the regulatory physiologist. Particular attention is drawn to the range of functional responses amenable to mutagenesis screens in larval zebrafish. Other virtues of the organism, the range of genomic tools, the potential for innovative optical methods, and the tractability for genetic and other experimental manipulations, are also described. Finally, the review provides examples of functional studies in zebrafish, including studies in sensory neurons, cardiac rhythm disturbances, gastrointestinal function, and studies of the developing kidney, that illustrate potential applications. Because of the relative ease with which combinatorial studies can be performed, the zebrafish may eventually be particularly valuable in understanding the functional interaction between subtle gene defects that cause polygenic disorders.
Collapse
Affiliation(s)
- Josephine P Briggs
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2560, USA.
| |
Collapse
|
224
|
Abstract
Odorant receptor genes comprise the largest known family of G-protein-coupled receptors in vertebrates. These receptor genes are tightly clustered in the genomes of every vertebrate organism investigated, including zebrafish, mice and humans, and they appear to have expanded and duplicated throughout evolution. In a mechanism that has yet to be elucidated, each olfactory neuron expresses a single receptor gene. This highly restricted expression pattern underlies the ability to distinguish between a wide variety of odorants. Here, we address the evolutionary expansion of odorant receptor genes and the role genomic organization of these genes might have in their tightly regulated expression.
Collapse
Affiliation(s)
- Erica Kratz
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
225
|
Du SJ, Dienhart M. Zebrafish tiggy-winkle hedgehog promoter directs notochord and floor plate green fluorescence protein expression in transgenic zebrafish embryos. Dev Dyn 2001; 222:655-66. [PMID: 11748834 DOI: 10.1002/dvdy.1219] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Zebrafish tiggy-winkle hedgehog (twhh) is a member of the hedgehog gene family that plays an important role in patterning brain, neural tube, somites, and eyes. To better understand the regulation of its tissue-specific expression, the activity of the twhh promoter was determined in zebrafish embryos by transient and transgenic expression analysis. Transient expression studies revealed that the 5.2-kb twhh promoter drove green fluorescence protein (GFP) expression in the notochord, floor plate, and branchial arches. Deletion analysis showed that distinct regions of the twhh promoter regulated the respective notochord or floor plate specific expression. To confirm the tissue specificity of the twhh promoter, transgenic zebrafish containing the twhh-GFP transgene were generated. GFP expression was analyzed in the F1, F2, and F3 generations of the transgenic embryos. The results confirmed the tissue-specific expression of the transgene in the notochord, floor plate, and branchial arches. In addition, GFP expression was also found in the pectoral fin buds, retina, and epithelial lining cells of the Kupffer's vesicle in the transgenic fish embryos. The expression pattern of the twhh-GFP transgene mimicked the expression of the endogenous twhh mRNAs in the floor plate, fin buds, branchial arches, retina, and epithelial lining cells of the Kupffer's vesicle. The expression in the notochord, however, did not mimic the pattern of the endogenous twhh expression. To determine whether no tail (ntl) or floating head (flh) mutants that have developmental defect in the notochord or the Kupffer's vesicle may affect the GFP expression in these regions, GFP expression was analyzed in ntl or flh transgenic embryos. No GFP expression could be detected in the midline region of the ntl transgenic embryos. However, in flh transgenic embryos, although GFP expression was affected in the midline region, its expression in the Kupffer's vesicle appeared normal. Together, these data indicated that the 5.2-kb twhh promoter contains regulatory elements for tissue-specific expression of twhh in the floor plate, pectoral fin bud, branchial arches, retina, and Kupffer's vesicle.
Collapse
Affiliation(s)
- S J Du
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA.
| | | |
Collapse
|
226
|
Abstract
Inventive genetic screens in zebrafish are revealing new genetic pathways that control vertebrate development, disease and behaviour. By exploiting the versatility of zebrafish, biological processes that had been previously obscured can be visualized and many of the responsible genes can be isolated. Coupled with gene knockdown and overexpression technologies, and small-molecule-induced phenotypes, genetic screens in zebrafish provide a powerful system by which to dissect vertebrate gene function and gene networks.
Collapse
Affiliation(s)
- E E Patton
- Howard Hughes Medical Institute, Children's Hospital of Boston, 300 Longwood Avenue, Enders 750, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
227
|
Kim J, Choi SC, Kim TH, Kim KD, Cho SY, Park SS, Lee SH. Isolation of neuronal precursors from differentiating P19 embryonal carcinoma cells by neuronal T alpha 1-promoter-driven GFP. Int J Dev Neurosci 2001; 19:631-8. [PMID: 11705667 DOI: 10.1016/s0736-5748(01)00049-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The induction of pluripotent P19 embryonal carcinoma (EC) cells with retinoic acid results in their differentiation into cells that resemble neurons, glia, and fibroblasts. To isolate and enrich the developing neurons from heterogeneously differentiating P19 EC cells, we used a recently introduced protocol combining the expression of green fluorescent protein (GFP) driven by a tissue-specific promoter and fluorescence-activated cell sorting. Cells were transfected with the gene for GFP, which is under the control of the neuronal T alpha 1 tubulin promoter. After four days of retinoic acid treatment, GFP was specifically detected in cells undergoing neuronal differentiation. Sorting of fluorescent differentiating P19 EC transfectants yielded populations highly enriched in neuronal precursors and neurons. Immunoreactivity for nestin and neurofilament was observed in 80 and 25% of the sorted cell population, respectively. These results demonstrate that differentiated neuronal precursor cells can be efficiently isolated from differentiating pluripotent embryonic cells in vitro, suggesting that this method can reproducibly provide homogeneous materials for further studies on neurogenesis.
Collapse
Affiliation(s)
- J Kim
- Division of Life Sciences, Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
228
|
Oates AC, Pratt SJ, Vail B, Ho RK, Johnson SL, Postlethwait JH, Zon LI. The zebrafish klf gene family. Blood 2001; 98:1792-801. [PMID: 11535513 DOI: 10.1182/blood.v98.6.1792] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like factor (KLF) family of genes encodes transcriptional regulatory proteins that play roles in differentiation of a diverse set of cells in mammals. For instance, the founding member KLF1 (also known as EKLF) is required for normal globin production in mammals. Five new KLF genes have been isolated from the zebrafish, Danio rerio, and the structure of their products, their genetic map positions, and their expression during development of the zebrafish have been characterized. Three genes closely related to mammalian KLF2 and KLF4 were found, as was an ortholog of mammalian KLF12. A fifth gene, apparently missing from the genome of mammals and closely related to KLF1 and KLF2, was also identified. Analysis demonstrated the existence of novel conserved domains in the N-termini of these proteins. Developmental expression patterns suggest potential roles for these zebrafish genes in diverse processes, including hematopoiesis, blood vessel function, and fin and epidermal development. The studies imply a high degree of functional conservation of the zebrafish genes with their mammalian homologs. These findings further the understanding of the KLF genes in vertebrate development and indicate an ancient role in hematopoiesis for the Krüppel-like factor gene family.
Collapse
Affiliation(s)
- A C Oates
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
229
|
Lieschke GJ. Zebrafish--an emerging genetic model for the study of cytokines and hematopoiesis in the era of functional genomics. Int J Hematol 2001; 73:23-31. [PMID: 11372751 DOI: 10.1007/bf02981899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Now that whole genomes are sequenced, the identification of gene function rather than gene discovery is a major challenge. Saturation mutagenesis and screening for mutant phenotypes are methods that allow sampling of the genome for lesions in genes critical for particular physiological processes. This approach promises to provide new insights into gene function, even for molecularly well-characterized processes such as hematopoiesis and cytokine signaling. Animal models for such genetic approaches have traditionally included Drosophila and the mouse. Recently, the zebrafish (Danio rerio) has emerged as a flexible and informative vertebrate for genetic studies. Zebrafish hematopoiesis has a morphological and molecular complexity closer to that of mammals than does Drosophila, providing scope for recognizing mutant zebrafish phenotypes representing finely tuned lesions in these processes. Compared to mice, zebrafish represent an economical, flexible, and genetically tractable animal model for mutagenesis studies. The structure of the teleost genome creates several phylogenetic issues in assessing zebrafish and piscine orthologues and paralogues of known mammalian genes, here exemplified by a cytokine ligand (interleukin-1beta), kinase receptors (c-kit and c-fins), and a family of intracellular signaling molecules (JAK kinases). Several anemic zebrafish mutants are now genetically characterized, and others present hematopoietic phenotypes that promise novel insights into the regulation of hematopoiesis.
Collapse
Affiliation(s)
- G J Lieschke
- Cytokine Biology Laboratory, Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch, The Royal Melbourne Hospital, Victoria, Australia.
| |
Collapse
|
230
|
Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, Look AT. Myelopoiesis in the zebrafish, Danio rerio. Blood 2001; 98:643-51. [PMID: 11468162 DOI: 10.1182/blood.v98.3.643] [Citation(s) in RCA: 353] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide chemical mutagenesis screens in the zebrafish (Danio rerio) have led to the identification of novel genes affecting vertebrate erythropoiesis. In determining if this approach could also be used to clarify the molecular genetics of myelopoiesis, it was found that the developmental hierarchy of myeloid precursors in the zebrafish kidney is similar to that in human bone marrow. Zebrafish neutrophils resembled human neutrophils, possessing segmented nuclei and myeloperoxidase-positive cytoplasmic granules. The zebrafish homologue of the human myeloperoxidase (MPO) gene, which is specific to cells of the neutrophil lineage, was cloned and used to synthesize antisense RNA probes for in situ hybridization analyses of zebrafish embryos. Granulocytic cells expressing zebrafish mpo were first evident at 18 hours after fertilization (hpf) in the posterior intermediate cell mass (ICM) and on the anterior yolk sac by 20 hpf. By 24 hpf, mpo-expressing cells were observed along the ICM and within the developing vascular system. Thus, the mpo gene should provide a useful molecular probe for identifying zebrafish mutants with defects in granulopoiesis. The expression of zebrafish homologues was also examined in 2 other mammalian hematopoietic genes, Pu.1, which appears to initiate a commitment step in normal mammalian myeloid development, and L-Plastin, a gene expressed by human monocytes and macrophages. The results demonstrate a high level of conservation of the spatio-temporal expression patterns of these genes between zebrafish and mammals. The morphologic and molecular genetic evidence presented here supports the zebrafish as an informative model system for the study of normal and aberrant human myelopoiesis. (Blood. 2001;98:643-651)
Collapse
Affiliation(s)
- C M Bennett
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Fadool JM. Understanding retinal cell fate determination through genetic manipulations. PROGRESS IN BRAIN RESEARCH 2001; 131:541-54. [PMID: 11420969 DOI: 10.1016/s0079-6123(01)31042-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- J M Fadool
- Department of Biological Science and Program in Neuroscience, Florida State University, 235 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA.
| |
Collapse
|
232
|
Barton LM, Gottgens B, Gering M, Gilbert JG, Grafham D, Rogers J, Bentley D, Patient R, Green AR. Regulation of the stem cell leukemia (SCL) gene: a tale of two fishes. Proc Natl Acad Sci U S A 2001; 98:6747-52. [PMID: 11381108 PMCID: PMC34424 DOI: 10.1073/pnas.101532998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Indexed: 11/18/2022] Open
Abstract
The stem cell leukemia (SCL) gene encodes a tissue-specific basic helix-loop-helix (bHLH) protein with a pivotal role in hemopoiesis and vasculogenesis. Several enhancers have been identified within the murine SCL locus that direct reporter gene expression to subdomains of the normal SCL expression pattern, and long-range sequence comparisons of the human and murine SCL loci have identified additional candidate enhancers. To facilitate the characterization of regulatory elements, we have sequenced and analyzed 33 kb of the SCL genomic locus from the pufferfish Fugu rubripes, a species with a highly compact genome. Although the pattern of SCL expression is highly conserved from mammals to teleost fish, the genes flanking pufferfish SCL were unrelated to those known to flank both avian and mammalian SCL genes. These data suggest that SCL regulatory elements are confined to the region between the upstream and downstream flanking genes, a region of 65 kb in human and 8.5 kb in pufferfish. Consistent with this hypothesis, the entire 33-kb pufferfish SCL locus directed appropriate expression to hemopoietic and neural tissue in transgenic zebrafish embryos, as did a 10.4-kb fragment containing the SCL gene and extending to the 5' and 3' flanking genes. These results demonstrate the power of combining the compact genome of the pufferfish with the advantages that zebrafish provide for studies of gene regulation during development. Furthermore, the pufferfish SCL locus provides a powerful tool for the manipulation of hemopoiesis and vasculogenesis in vivo.
Collapse
Affiliation(s)
- L M Barton
- Department of Hematology, Cambridge Institute for Medical Research, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Rothenberg EV. Mapping of complex regulatory elements by pufferfish/zebrafish transgenesis. Proc Natl Acad Sci U S A 2001; 98:6540-2. [PMID: 11390989 PMCID: PMC34387 DOI: 10.1073/pnas.131199098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- E V Rothenberg
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
234
|
Huang H, Vogel SS, Liu N, Melton DA, Lin S. Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol 2001; 177:117-24. [PMID: 11377827 DOI: 10.1016/s0303-7207(01)00408-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using DNA constructs containing regulatory sequences of the zebrafish Pdx-1 and insulin genes, germline transgenic zebrafish expressing the green fluorescent protein (GFP) reporter gene in the pancreas were generated. For both constructs, the GFP expression patterns in transgenic embryos were consistent with the mRNA expression patterns detected by RNA in situ hybridization. A deletion promoter analysis revealed that positive and negative cis-acting elements were involved in regulation of insulin gene expression. Three-dimensional reconstructions imaged from living embryos using two-photon laser-scanning microscopy (TPLSM) demonstrated that the zebrafish pancreas is formed from a single dorsal pancreatic cell mass. This is in contrast to mammals where the pancreas derives from both dorsal and ventral anlage. These transgenic fish should be useful for in vivo studies of factors involved in specifying and regulating pancreatic development and function.
Collapse
Affiliation(s)
- H Huang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
235
|
Hsiao CD, Hsieh FJ, Tsai HJ. Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 2001; 220:323-36. [PMID: 11307166 DOI: 10.1002/dvdy.1113] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mosaic expression of transgenes in the F0 generation severely hinders the study of transient expression in transgenic fish. To avoid mosaicism, enhanced green fluorescent protein (EGFP) gene cassettes were constructed and introduced into one-celled zebrafish embryos. These EGFP gene cassettes were flanked by inverted terminal repeats (ITRs) from adeno-associated virus (AAV) and driven by zebrafish alpha-actin (palpha-actin-EGFP-ITR) or medaka beta-actin promoters (pbeta-actin-EGFP-ITR). EGFP was expressed specifically and uniformly in the skeletal muscle of 56% +/- 8% of the palpha-actin-EGFP-ITR-injected survivors and in the entire body of 1.3% +/- 0.8% of the pbeta-actin-EGFP-ITR-injected survivors. Uniform transient expression never occurred in zebrafish embryos injected with EGFP genes that were not flanked by AAV-ITRs. In the F0 generation, uniformly distributed EGFP could mimic the stable expression in transgenic lines early in development. We established five transgenic lines derived from palpha-actin-EGFP-ITR-injected embryos crossed with wild-type fish and 11 transgenic lines derived from pbeta-actin-EGFP-ITR-injected embryos crossed with wild-type fish. None of these transgenic lines failed to express the transgene, a result confirmed by polymerase chain reaction analysis. Stable mendelian transmission of the transgenes was achieved in both alpha-actin and beta-actin transgenic lines without changing the patterns of expression and integration. Progeny inheritance test and Southern blot analysis results strongly suggest that transgenes flanked by AAV-ITRs were integrated randomly into the genome at a single locus with a concatamerized multiplier. Thus, incorporating AAV-ITRs into transgenes results in uniform gene expression in the F0 generation and stable transmission of transgenes in zebrafish.
Collapse
Affiliation(s)
- C D Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
236
|
Perz-Edwards A, Hardison NL, Linney E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 2001; 229:89-101. [PMID: 11133156 DOI: 10.1006/dbio.2000.9979] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.
Collapse
Affiliation(s)
- A Perz-Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
237
|
Dugas JC, Ngai J. Analysis and characterization of an odorant receptor gene cluster in the zebrafish genome. Genomics 2001; 71:53-65. [PMID: 11161797 DOI: 10.1006/geno.2000.6415] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 140.7-kb segment of zebrafish genomic DNA known to contain odorant receptor (OR) genes was fully sequenced to characterize more completely the organization of this gene cluster. A total of 20 OR genes were identified in this region. The most highly related genes are grouped in closest proximity to one another and in the same transcriptional orientation, indicating that a series of tandem duplications was responsible for the expansion of the OR gene family in teleost fish. Our analysis also revealed sequences that may be involved in the transcriptional regulation of OR genes within the cluster.
Collapse
Affiliation(s)
- J C Dugas
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, 269 Life Sciences Addition, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
238
|
Zhao Z, Cao Y, Li M, Meng A. Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev Biol 2001; 229:215-23. [PMID: 11133165 DOI: 10.1006/dbio.2000.9982] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the ability of dsRNA to inhibit gene functions in zebrafish using sequences targeted to the maternal gene pouII-1, the transgene GFP, and an intron of the zebrafish gene terra. We found that embryos injected with all of these dsRNAs at approximately 7.5 pg/embryo or higher had general growth arrest during gastrulation and displayed various nonspecific defects at 24 h postfertilization, although embryonic development was unaffected before the midblastula stage. Reducing dsRNA concentration could alleviate the global defects. Injection of GFP dsRNA (7.5-30 pg/embryo) did not inhibit GFP expression in transgenic fish, although abnormal embryos were induced. Co-injection of GFP mRNA with either GFP or non-GFP dsRNA caused reduction of GFP expression. Whole-mount in situ hybridization clearly showed that embryos injected with dsRNA degraded co-injected and endogenous mRNA without sequence specificity, indicating that dsRNA has a nonspecific effect at the posttranscriptional level. It appears that RNAi is not a viable technique for studying gene function in zebrafish embryos.
Collapse
Affiliation(s)
- Z Zhao
- Institute of Cellular and Developmental Biology, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
239
|
Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, Shin J, Yoo KW, Hibi M, Hirano T, Miki N, Chitnis AB, Huh TL. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 2000; 227:279-93. [PMID: 11071755 DOI: 10.1006/dbio.2000.9898] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HuC encodes an RNA binding protein homologous to Drosophila elav that serves as an excellent early marker for differentiating neurons. We have characterized the promoter of the zebrafish HuC gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos. We determined that 2.8 kb of the 5'-flanking sequence is sufficient to restrict GFP gene expression to neurons. The core promoter spans 251 base pairs and contains a CCAAT box and one SP1 sequence but no TATA box is present near the transcription start site. A putative MyT1 binding site and at least 17 E-box sequences are necessary to maintain the neuronal specificity of HuC expression. Interestingly, sequential removal of the putative MyT1 binding site and 14 distal E boxes does not appear to abolish neuronal expression; rather, it leads to a progressive expansion of GFP expression into muscle cells. Further removal of the three proximal E boxes eliminates neuronal and muscle specificity of GFP expression and leads to ubiquitous expression of GFP in the whole body. Identification of key components of the HuC promoter has led to the establishment of a stable zebrafish transgenic line (HuC-GFP) in which GFP is expressed specifically in neurons. We crossed mind bomb (mib) fish with this line to visualize their neurogenic phenotype in live mib(-/-) mutant embryos. This cross illustrates how HuC-GFP fish could be used in the future to identify and analyze zebrafish mutants with an aberrant pattern of early neurons.
Collapse
Affiliation(s)
- H C Park
- Department of Genetic Engineering, Kyungpook National University, Taegu, 702-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Malicki J. Harnessing the power of forward genetics--analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci 2000; 23:531-41. [PMID: 11074262 DOI: 10.1016/s0166-2236(00)01655-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The seven major cell classes of the vertebrate retina are organized with remarkable precision into distinct layers. The appearance of this architecture during embryogenesis raises two questions of general importance. How do individual cell classes acquire their specialized structures and functions if they all originate from a morphologically uniform cell population? What mechanisms are responsible for the formation of such a complex and exact pattern? Recent advances present an opportunity to apply the tools of forward genetic analysis to identify mutations that affect these mechanisms in zebrafish. Molecular characterization will follow, providing insight into the basis of neuronal patterning in the vertebrate CNS.
Collapse
Affiliation(s)
- J Malicki
- Dept of Ophthalmology, Harvard Medical School, Boston, MA 02134, USA. www.howelaboratory.harvard.edu/malicki/htm
| |
Collapse
|
241
|
Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 2000; 97:11403-8. [PMID: 11027340 PMCID: PMC17212 DOI: 10.1073/pnas.97.21.11403] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Tol2 element of the medaka fish Oryzias latipes belongs to the hAT family of transposons (hobo/Ac/Tam3). We report here identification of a functional transposase of Tol2 that is capable of catalyzing its transposition in the germ line of zebrafish Danio rerio. A transcript produced from Tol2 encodes a putative transposase. Zebrafish fertilized eggs were coinjected with mRNA transcribed in vitro, using cDNA of the Tol2 transcript as a template and a plasmid DNA harboring a mutant Tol2, which had a deletion in the putative transposase gene but retained necessary cis sequences. The injected fish were raised to adulthood and mated to noninjected fish, and genomic DNA of the progeny fish were analyzed by PCR and Southern hybridization. Half of F(1) fish obtained from one of eight injected fish contained the Tol2 DNA in their genomes but not the vector portion. Among these F(1) fish, Tol2 insertions at four different loci were identified, and some F(1) fish carried two or three different Tol2 insertions, indicating that the germ line of the founder fish is highly mosaic. Sequencing analyses revealed that, in all cases, Tol2 was surrounded by zebrafish genomic sequences, and an 8-bp duplication was created at the target site, indicating that Tol2 was integrated in the zebrafish genome through transposition. This study identifies an autonomous member of a DNA-based transposable element from a vertebrate genome. The Tol2 transposon system should thus be used to develop novel transgenesis and insertional mutagenesis methods in zebrafish and possibly in other fishes.
Collapse
Affiliation(s)
- K Kawakami
- Department of Tumor Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
242
|
Migliaccio AR, Bengra C, Ling J, Pi W, Li C, Zeng S, Keskintepe M, Whitney B, Sanchez M, Migliaccio G, Tuan D. Stable and unstable transgene integration sites in the human genome: extinction of the Green Fluorescent Protein transgene in K562 cells. Gene 2000; 256:197-214. [PMID: 11054549 DOI: 10.1016/s0378-1119(00)00353-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In gene transfer experiments including gene therapy studies, expression of the integrated transgenes in host cells often declines with time. The molecular basis of this phenomenon is not clearly understood. We have used the Green Fluorescent Protein (GFP) gene as both a selectable marker and a reporter to study long-term transgene integration and expression in K562 cells. Cells transfected with plasmids containing the GFP gene coupled to the HS2 or HS3 enhancer of the human beta-globin Locus Control Region (LCR) or the cytomegalovirus (CMV) enhancer were sorted by either fluorescence-activated-cell-sorting (FACS) alone or FACS combined with drug selection based on a co-integrated drug resistance gene. The two groups of selected cells were subsequently cultured for long periods up to 250 cell generations. Comparison of long-term GFP transgene integration and expression in these two groups of cells revealed that the K562 genome contains two types of transgene integration sites: i) abundant unstable sites that permit transcription but not long-term integration of the transgenes and thus eliminate the transgenes in 60-250 cell generations and ii) rare stable sites that permit both efficient transcription and long-term stable integration of the transgenes for at least 200 cell generations. Our results indicate that extinction of GFP expression with time is due at least in part to elimination of the gene from the host genome and not entirely to transcriptional silencing of the gene. However, long-term, stable expression of the transgene can be achieved in cells containing the transgene integrated into the rare, stable host sites.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Instituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
The vertebrate vasculature develops in remarkably similar fashion in all vertebrates. A cohort of unspecified mesodermal cells differentiates into primitive endothelial cells, which migrate to and occupy positions within the stereotypical blueprint of the primitive vasculature. Once in position, these cells coalesce and form cords, which lumenize and become ensheathed by supporting pericytes and smooth muscle cells. This primitive vascular network is extensively remodeled in some places, and expanded by sprouting in others. Various studies using the mouse, quail/chick, and frog have uncovered a number of signals that guide these complex processes but many gaps still exist in our understanding of the mechanisms by which the embryonic vasculature is built. Because many questions will require in vivo studies to be properly addressed, the zebrafish, with its unique accessibility to analysis by combined embryological, molecular, and genetic methods, should prove invaluable in identifying new molecules involved in blood vessel development and integrating pathways that influence embryonic blood vessel formation.
Collapse
Affiliation(s)
- B L Roman
- Unit on Vertebrate Organogenesis, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
244
|
Abstract
The Drosophila retina is patterned by a morphogenetic wave driven by the Hedgehog signaling protein. Hedgehog, secreted by the first neurons, induces neuronal differentiation and hedgehog expression in nearby uncommitted cells, thereby propagating the wave. Evidence is presented here that the zebrafish Hedgehog homolog, Sonic Hedgehog, is also expressed in the first retinal neurons, and that Sonic Hedgehog drives a wave of neurogenesis across the retina, strikingly similar to the wave in Drosophila. The conservation of this patterning mechanism is unexpected, given the highly divergent structures of vertebrate and invertebrate eyes, and supports a common evolutionary origin of the animal visual system.
Collapse
Affiliation(s)
- C J Neumann
- Max-Planck Institut fuer Entwicklungsbiologie, Spemannstrasse 35/III, D-72076 Tuebingen, Germany.
| | | |
Collapse
|
245
|
Long Q, Huang H, Shafizadeh E, Liu N, Lin S. Stimulation of erythropoiesis by inhibiting a new hematopoietic death receptor in transgenic zebrafish. Nat Cell Biol 2000; 2:549-52. [PMID: 10934476 DOI: 10.1038/35019592] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Q Long
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
246
|
Kaufman CD, Martínez-Rodriguez G, Hackett PB. Ectopic expression of c-ski disrupts gastrulation and neural patterning in zebrafish. Mech Dev 2000; 95:147-62. [PMID: 10906458 DOI: 10.1016/s0925-4773(00)00351-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The c-ski proto-oncogene encodes a transcriptional regulator that has been implicated in the development of different tissues at different times during vertebrate development. We identified two novel paralogues of the c-ski gene family, skiA and skiB in zebrafish (Danio rerio). The skiA protein is maternal and ubiquitous while skiB is zygotic. Overexpression of SkiA or SkiB disrupted gastrulation and resulted in a dorsalized phenotype. In situ analyses suggested that overexpression of Ski leads to a slight expansion of dorsal-axial mesoderm, diminishment or loss of ventral mesoderm and radialization of dorsal neuroectoderm. The dorsalized phenotype could be rescued by the ventral specifying factor, BMP4. These results provide evidence that Ski proteins participate in dorsal-ventral specification of both neuroectoderm and mesoderm.
Collapse
Affiliation(s)
- C D Kaufman
- Department of Genetics, Cell Biology and Development, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA
| | | | | |
Collapse
|
247
|
Leu JH, Yan SJ, Lee TF, Chou CM, Chen ST, Hwang PP, Chou CK, Huang CJ. Complete genomic organization and promoter analysis of the round-spotted pufferfish JAK1, JAK2, JAK3, and TYK2 genes. DNA Cell Biol 2000; 19:431-46. [PMID: 10945233 DOI: 10.1089/10445490050085924] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously reported the isolation of the JAK1 gene from the round-spotted pufferfish. In the present study, we cloned and characterized genomic sequences encoding pufferfish JAK2, JAK3, and TYK2, which are other members of JAK family. To our knowledge, this is the first report to demonstrate the existence of four JAK genes in fish. All pufferfish JAK genes except JAK1 are composed of 24 exons; JAK1 has an additional exon. A comparison of the exon-intron organization of these genes revealed that the splice sites of JAK genes are nearly identical. In addition, all pufferfish JAK genes have one intron in the 5' untranslated region. Taken together, these data suggest that the pufferfish JAK genes may have evolved from a common ancestor. By 5' rapid amplification of cDNA ends and sequence analysis, we deduced the promoter regions for all JAK genes and found they do not contain typical TATA or CCAAT boxes but rather numerous other potential binding sites for transcription factors. Interestingly, the TYK2 gene is linked to CDC37 in a head-to-tail manner with a small intergenic region of 292 bp. Within this region, there are two potential binding sites for transcriptional factors such as c-Myb and NF-IL6. The putative promoter regions of all JAK genes were tested either in a carp CF cell line or in zebrafish embryos using CAT or lacZ as reporter genes. Both assays confirmed the transcriptional activities of these promoters in vitro and in vivo.
Collapse
Affiliation(s)
- J H Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 2000; 127:1953-60. [PMID: 10751183 DOI: 10.1242/dev.127.9.1953] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.
Collapse
Affiliation(s)
- M C Halloran
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Drivenes O, Seo HC, Fjose A. Characterisation of the promoter region of the zebrafish six7 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:240-7. [PMID: 10760585 DOI: 10.1016/s0167-4781(00)00042-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Drosophila homeobox gene sine oculis and its murine homologue Six3 have both been shown to have regulatory functions in eye and brain development. In zebrafish, three Six3-related genes with conserved expression during early eye and head formation have been identified. One of these, six7, is first expressed at the gastrula stage in the involuting axial mesoderm, and later in the overlying neuroectoderm from which the forebrain and optic primordium develop. To elucidate the mechanisms regulating six7 expression, we isolated a 2.7-kb fragment of the 5'-flanking region. Three sequentially deleted fragments of this upstream region were used to produce GFP reporter constructs for analysis of tissue-specific expression in zebrafish embryos. The results show that a 625-bp upstream fragment is sufficient to direct strong expression of the reporter during gastrulation and early neurulation. The proximal part of the promoter contains binding sites for various constitutive transcription factors and an additional upstream element that was shown to be critical in directing expression to the anterior region of the zebrafish brain.
Collapse
Affiliation(s)
- O Drivenes
- Department of Molecular Biology, University of Bergen, P.O. Box 7800, N-5020, Bergen, Norway
| | | | | |
Collapse
|
250
|
Adám A, Bártfai R, Lele Z, Krone PH, Orbán L. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 2000; 256:282-90. [PMID: 10739675 DOI: 10.1006/excr.2000.4805] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat-inducibility of two reporter constructs expressing lacZ gene under the control of mouse and Xenopus hsp70 promoters was tested in zebrafish (Danio rerio) embryos using a transient expression system. Cells expressing beta-galactosidase were stained blue by histochemical staining and their average number per embryo was used as an indicator of the expression level of the reporter gene. Both constructs were heat-inducible in the embryonic tissues and showed similar heat dependence (increasing expression levels from 35-36 degrees C up to 39 degrees C with an apparent decrease at 40 degrees C), resembling that of the zebrafish hsp70 genes. However, their induction kinetics were different, which might be due to differences in their 5' UTRs. Spatial expression patterns of the two hsp/lacZ constructs and an endogenous hsp70 gene were mostly similar on the RNA level. These results indicate that our approach is applicable for in vivo analysis of the heat-shock response and that exogenous heat-shock promoters may be useful for inducible expression of transgenes in fish.
Collapse
Affiliation(s)
- A Adám
- Laboratory of Aquatic Molecular Biology, Agricultural Biotechnology Center, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|