201
|
Abstract
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.
Collapse
Affiliation(s)
- Samantha J Butler
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
202
|
|
203
|
Caspary T, Anderson KV. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 2003; 4:289-97. [PMID: 12671645 DOI: 10.1038/nrn1073] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tamara Caspary
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
204
|
Liu J, Wilson S, Reh T. BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev Biol 2003; 256:34-48. [PMID: 12654290 DOI: 10.1016/s0012-1606(02)00115-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work has documented the importance of BMPs in eye development. Loss-of-function studies in mice, with targeted deletions in either the Bmp7 or Bmp4 genes, have shown that these molecules are critical for early eye development. On the basis of the asymmetry in the dorsal-ventral expression patterns of several members of this family, it has been proposed that these molecules are critical for some aspect of dorsal-ventral patterning in the eye; however, it has been difficult to test this hypothesis because of the early requirement for BMPs in eye development. We have therefore examined the effects of loss of one of the BMP receptors, the BmprIb, on the development of the eye by using targeted deletion. We have found that BmprIb is expressed exclusively in the ventral retina during embryonic development and is required for normal ventral ganglion cell axon targeting to the optic nerve head. In mice with a targeted deletion of the BmprIb gene, many axons arising from the ventrally located ganglion cells fail to enter the optic nerve head, and instead, make abrupt turns in this region. A second phenotype in these mice is a significantly elevated inner retinal apoptosis during a distinct phase of postnatal development, at the end of neurogenesis. Our results therefore show two distinct requirements for BmprIb in mammalian retinal development.
Collapse
Affiliation(s)
- Janice Liu
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
205
|
Abstract
The transforming growth factor beta (TGFbeta) superfamily encompasses a number of structurally related proteins that can be divided into several subfamilies including TGFbetas, activins/inhibins and bone morphogenetic proteins (BMPs). The Smads are major intracellular mediators in transducing the signals of TGFbeta superfamily members, and are abundantly expressed in the developing epidermis and epidermal appendages. Moreover, the phenotypes of transgenic/knockout mice with altered components of the TGFbeta superfamily signaling pathway suggest that TGFbeta superfamily signaling is required for epidermal/appendage development. TGFbeta superfamily members are involved in most events during epidermal/appendage development through the TGFbeta signal transduction pathway and through cross talk with other signaling pathways. Future studies will be instrumental in defining the precise roles for TGFbeta superfamily signaling in epidermal/appendage development.
Collapse
Affiliation(s)
- Allen G Li
- Department of Dermatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
206
|
Josso N, Clemente ND. Transduction pathway of anti-Müllerian hormone, a sex-specific member of the TGF-beta family. Trends Endocrinol Metab 2003; 14:91-7. [PMID: 12591180 DOI: 10.1016/s1043-2760(03)00005-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, is a member of the transforming growth factor beta (TGF-beta) family that represses the development and function of reproductive organs. Not for nothing did Professor Alfred Jost, who first discovered its existence, christen it 'hormone inhibitrice'! Anti-Müllerian hormone is thought to exert its effects through two membrane-bound serine/threonine kinase receptors, type 2 and type 1. Upon ligand binding, these drive receptor-specific cytoplasmic substrates, the Smad molecules, into the nucleus where they act as transcription factors. A type 2 receptor specific for AMH was cloned through its homology with receptors of TGF-beta family members; the identity of the type 1 receptor(s) is controversial. Three type 1 receptors for bone morphogenetic proteins (BMPs) are possible candidates, each, not surprisingly, activating BMP-specific Smad molecules, Smads 1, 5 and 8. Each receptor could be involved, depending on the cellular context. To date, AMH signaling has been explored through BMP-specific genes, because a reporter gene related to a physiological AMH function and upregulated by the hormone has not yet been tested in a cell line strongly expressing the AMH receptor(s).
Collapse
Affiliation(s)
- Nathalie Josso
- Unité de Recherches sur l'Endocrinologie du Développement (INSERM), Institut Paris-Sud sur les Cytokines, 32 rue des Carnets, 92140 Clamart, France.
| | | |
Collapse
|
207
|
Abstract
During the past two decades, a significant amount of data has been accumulated revealing the intriguing functions of bone morphogenetic proteins (BMPs) in all aspects of embryonic development and organogenesis. Numerous genes encoding BMPs, BMP receptors, and their downstream signal transducers have been mutated in the mouse through targeted mutagenesis. This review focuses on what is known about the role of BMP signaling in gastrulation, mesoderm formation, left-right asymmetry, neural patterning, skeletal and limb development, organogenesis, and gametogenesis as revealed by BMP-signaling mutants.
Collapse
Affiliation(s)
- Guang-Quan Zhao
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
208
|
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor-beta superfamily regulating a large variety of biologic responses in many different cells and tissues during embryonic development and postnatal life. BMP exert their biologic effects via binding to two types of serine/threonine kinase BMP receptors, activation of which leads to phosphorylation and translocation into the nucleus of intracellular signaling molecules, including Smad1, Smad5, and Smad8 ("canonical" BMP signaling pathway). BMP effects are also mediated by activation of the mitogen-activated protein (MAP) kinase pathway ("noncanonical" BMP Signaling pathway). BMP activity is regulated by diffusible BMP antagonists that prevent BMP interactions with BMP receptors thus modulating BMP effects in tissues. During skin development, BMPs its receptors and antagonists show stringent spatiotemporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. In normal postnatal skin, BMP are involved in the control of epidermal homeostasis, hair follicle growth, and melanogenesis. Furthermore, BMP are implicated in a variety of pathobiologic processes in skin, including wound healing, psoriasis, and carcinogenesis. Therefore, BMPs represent new important players in the molecular network regulating homeostasis in normal and diseased skin. Pharmacologic modulation of BMP signaling may be used as a new approach for managing skin and hair disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
209
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
210
|
Chang W, ten Dijke P, Wu DK. BMP pathways are involved in otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Dev Biol 2002; 251:380-94. [PMID: 12435365 DOI: 10.1006/dbio.2002.0822] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vertebrate inner ear consists of a complex labyrinth of epithelial cells that is surrounded by a bony capsule. The molecular mechanisms coordinating the development of the membranous and bony labyrinths are largely unknown. Previously, using avian retrovirus encoding Noggin (RCAS-Noggin) or beads soaked with Noggin protein, we have shown that bone morphogenetic proteins (BMPs) are important for the development of the otic epithelium in the chicken inner ear. Here, using two additional recombinant avian retroviruses, dominant negative and constitutively active forms of BMP receptors IB (BMPRIB), we show that BMPs, possibly acting through BMPRIB, are important for otic capsule formation. We also show that Bmp2 is strongly expressed in the prospective semicircular canals starting from the canal outpouch stage, suggesting that BMP2 plays an important role in canal formation. In addition, by correlating expression patterns of Bmps, their receptors, and localization of phosphorylated R-Smad (phospho R-Smad) immunoreactivity, an indicator of BMP activation, we show that BMPs emanating from the otic epithelium influence chondrogenesis of the otic capsule including the cartilage surrounding the semicircular canals.
Collapse
Affiliation(s)
- Weise Chang
- National Institute on Deafness and Other Communications Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | |
Collapse
|
211
|
Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet 2002; 32:408-10. [PMID: 12368913 DOI: 10.1038/ng1003] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 08/12/2002] [Indexed: 11/09/2022]
Abstract
Elimination of the developing female reproductive tract in male fetuses is an essential step in mammalian sexual differentiation. In males, the fetal testis produces the transforming growth factor beta (TGF-beta) family member anti-Müllerian hormone (Amh, also known as Müllerian-inhibiting substance (Mis)), which causes regression of the Müllerian ducts, the primordia of the oviducts, uterus and upper vagina. Amh induces regression by binding to a specific type II receptor (Amhr2) expressed in the mesenchyme surrounding the ductal epithelium. Mutations in AMH or AMHR2 in humans and mice disrupt signaling, producing male pseudohermaphrodites that possess oviducts and uteri. The type I receptor and Smad proteins that are required in vivo for Müllerian duct regression have not yet been identified. Here we show that targeted disruption of the widely expressed type I bone morphogenetic protein (BMP) receptor Bmpr1a (also known as Alk3) in the mesenchymal cells of the Müllerian ducts leads to retention of oviducts and uteri in males. These results identify Bmpr1a as a type I receptor for Amh-induced regression of Müllerian ducts. Because Bmpr1a is evolutionarily conserved, these findings indicate that a component of the BMP signaling pathway has been co-opted during evolution for male sexual development in amniotes.
Collapse
Affiliation(s)
- Soazik P Jamin
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
212
|
Hébert JM, Mishina Y, McConnell SK. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 2002; 35:1029-41. [PMID: 12354394 DOI: 10.1016/s0896-6273(02)00900-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BMPs have been proposed to pattern the medial-lateral axis of the telencephalon in a concentration-dependent manner, thus helping to subdivide the embryonic telencephalon into distinct forebrain regions. Using a CRE/loxP genetic approach, we tested this hypothesis by disrupting the Bmpr1a gene in the telencephalon. In mutants, BMP signaling was compromised throughout the dorsal telencephalon, but only the most dorsalmedial derivative, the choroid plexus, failed to be specified or differentiate. Choroid plexus precursors remained proliferative and did not adopt the fate of their lateral telencephalic neighbors. These results demonstrate that BMP signaling is required for the formation of the most dorsal telencephalic derivative, the choroid plexus, and that BMP signaling plays an essential role in locally patterning the dorsal midline. Our data fail to support a more global, concentration-dependent role in specifying telencephalic cell fates.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Biological Sciences, Stanford University, 385 Serra Mall, CA 94305, USA
| | | | | |
Collapse
|
213
|
Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA. In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol 2002; 249:108-20. [PMID: 12217322 DOI: 10.1006/dbio.2002.0752] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of Bone morphogenetic protein (BMP) signaling in murine limb development in vivo, the keratin 14 promoter was used to drive expression of the BMP antagonist Noggin in transgenic mice. Phosphorylation and nuclear translocation of Smad1/5 were dramatically reduced in limbs of the transgenic animals, confirming the inhibition of BMP signaling. These mice developed extensive limb soft tissue syndactyly and postaxial polydactyly. Apoptosis in the developing limb necrotic zones was reduced with incomplete regression of the interdigital tissue. The postaxial extra digit is also consistent with a role for BMPs in regulating apoptosis. Furthermore, there was persistent expression of Fgf8, suggesting a delay in the regression of the AER. However, Msx1 and Msx2 expression was unchanged in these transgenic mice, implying that induction of these genes is not essential for mediating BMP-induced interdigital apoptosis in mice. These abnormalities were rescued by coexpressing BMP4 under the same promoter in double transgenic mice, suggesting that the limb abnormalities are a direct effect of inhibiting BMP signaling.
Collapse
Affiliation(s)
- Udayan Guha
- Department of Nueroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
214
|
Monget P, Fabre S, Mulsant P, Lecerf F, Elsen JM, Mazerbourg S, Pisselet C, Monniaux D. Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domest Anim Endocrinol 2002; 23:139-54. [PMID: 12142233 DOI: 10.1016/s0739-7240(02)00152-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.
Collapse
Affiliation(s)
- Philippe Monget
- INRA, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Zhao M, Harris SE, Horn D, Geng Z, Nishimura R, Mundy GR, Chen D. Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 2002; 157:1049-60. [PMID: 12058020 PMCID: PMC2174055 DOI: 10.1083/jcb.200109012] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functions of bone morphogenetic proteins (BMPs) are initiated by signaling through specific type I and type II serine/threonine kinase receptors. In previous studies, we have demonstrated that the type IB BMP receptor (BMPR-IB) plays an essential and specific role in osteoblast commitment and differentiation. To determine the role of BMP receptor signaling in bone formation in vivo, we generated transgenic mice, which express a truncated dominant-negative BMPR-IB targeted to osteoblasts using the type I collagen promoter. The mice are viable and fertile. Tissue-specific expression of the truncated BMPR-IB was demonstrated. Characterization of the phenotype of these transgenic mice showed impairment of postnatal bone formation in 1-mo-old homozygous transgenic mice. Bone mineral density, bone volume, and bone formation rates were severely reduced, but osteoblast and osteoclast numbers were not significantly changed in the transgenic mice. To determine whether osteoblast differentiation is impaired, we used primary osteoblasts isolated from the transgenic mice and showed that BMP signaling is blocked and BMP2-induced mineralized bone matrix formation was inhibited. These studies show the effects of alterations in BMP receptor function targeted to the osteoblast lineage and demonstrate a necessary role of BMP receptor signaling in postnatal bone growth and bone formation in vivo.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Medicine, Division of Endocrinology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, Yoshikawa H. Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res 2002; 17:898-906. [PMID: 12009021 DOI: 10.1359/jbmr.2002.17.5.898] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bone morphogenetic protein (BMP) family consists of a large number of members and has diverse biological activities during development. Various tissues express pleural BMP family members, which seem to cooperatively regulate developmental events. Here, multiple BMP signals were inactivated in chondrocytes to clarify the function of BMPs during skeletogenesis. To obtain tissue-specific inactivation, Noggin gene (Nog) was overexpressed in cartilage under the control of a2(XI) collagen gene (Collla2) promoter/enhancer sequences. The resultant transgenic mice lacked most of their cartilaginous components, suggesting that cartilage does not develop without BMP signals. These effects seem to be mediated through down-regulation of Sox9 expression. Conversely, specific BMP signals were activated in the skeleton by targeted expression of Bmp4 in cartilage and the resultant phenotype was compared with that of transgenic mice expressing growth and differentiation factor-5 (GDF-5), another BMP family member. Overactivity of Bmp4 in the skeleton caused an increase of cartilage production and enhanced chondrocyte differentiation, as GDF5 expression did, but it did not disturb joint formation as GDF5 did. During skeletogenesis, unique roles of each BMP may reside in the regulation of joint development. Together with the common effect on the cartilage overproduction by Bmp4 and GDF5 overactivation, loss of cartilage by inactivation of multiple BMPs in Noggin transgenic mice indicates that signals for cartilage production are reinforced by multiple BMPs exclusively. These conclusions may account for the reason why multiple BMPs are coexpressed in cartilage.
Collapse
|
217
|
de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001; 13:721-7. [PMID: 11698188 DOI: 10.1016/s0955-0674(00)00276-3] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three transcription factors of the Sox family have essential roles in different steps of the chondrocyte differentiation pathway. Because the transcription factor Cbfa1, which is needed for osteoblast differentiation, also stimulates hypertrophic chondrocyte maturation, it links the chondrocyte and osteoblast differentiation pathways in endochondral bone formation. Signaling molecules, including Indian Hedgehog, PTHrP and FGFs, also establish essential links either between these pathways, between steps in these pathways or between signaling molecules and transcription factors, so that a more comprehensive view of endochondral bone formation is emerging.
Collapse
Affiliation(s)
- B de Crombrugghe
- The University of Texas M.D. Anderson Cancer Center, Department of Molecular Genetics, 1515 Holcombe Boulevard, Box #11, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
218
|
Payne TL, Skobe Z, Yelick PC. Regulation of tooth development by the novel type I TGFbeta family member receptor Alk8. J Dent Res 2001; 80:1968-73. [PMID: 11759004 DOI: 10.1177/00220345010800110401] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have recently identified, in zebrafish, a novel type I receptor of the TGFbeta family, alk8, that participates in Bmp signaling pathways to mediate early dorsoventral patterning of neurectodermal and mesendodermal tissues. Since Bmps play significant roles in tooth specification, initiation, and differentiation, we hypothesized that alk8 may play a role in directing the Bmp-mediated epithelial mesenchymal cell interactions regulating tooth development. Immunohistochemical analysis demonstrates that Alk8 is expressed in developing zebrafish and mouse teeth. Examination of tooth development in zebrafish with disrupted alk8 signaling revealed specific defects in tooth development. Ectopic expression of constitutively active Alk8 results in the formation of elongated tooth structures, while expression of dominant-negative Alk8 results in arrested tooth development at the bud stage. These results are consistent with the established requirements for Bmp signaling in tooth development and demonstrate that Alk8 is a key regulator of tooth development.
Collapse
Affiliation(s)
- T L Payne
- The Forsyth Institute, Department of Cytokine Biology, Boston, MA 02115, USA
| | | | | |
Collapse
|
219
|
Teixeira J, Maheswaran S, Donahoe PK. Müllerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev 2001; 22:657-74. [PMID: 11588147 DOI: 10.1210/edrv.22.5.0445] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dr. Alfred Jost pioneered the field of reproductive endocrinology with his seminal observation that two hormones produced by the testes are required for the male embryo to develop a normal internal reproductive tract. T induces the Wolffian ducts to differentiate into epididymides, vasa deferens, and seminal vesicles. Müllerian inhibiting substance (MIS) causes regression of the Müllerian ducts, which in its absence would normally develop into the Fallopian tubes, uterus, and upper vagina as is observed in female embryos. This review will summarize our current understanding of molecular mechanisms underlying the function of MIS both as a fetal gonadal hormone that causes Müllerian duct regression and as an adult hormone, the roles for which are currently being investigated, i.e., inhibition of steroidogenesis, germ cell development, and cancer. We will also address the regulation of MIS expression as one of the first genes expressed after the commitment of the bipotential gonads to differentiate into testes under the influence of SRY, the gene on the sex-determining region of the Y chromosome. We will discuss what is known regarding MIS signal transduction, which as with other members of the TGFbeta family of growth and differentiation factors, occurs through a heteromeric complex of single transmembrane serine/threonine kinase receptors to effect downstream signaling events, including Smad, nuclear factor-kappaB, beta-catenin, and p16 activation. Finally, we will assess the clinical relevance of studying MIS in patients with persistent Müllerian duct syndrome and our efforts to determine the therapeutic value of MIS for patients with ovarian and other MIS receptor-expressing cancers.
Collapse
Affiliation(s)
- J Teixeira
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
220
|
Norlin EM, Alenius M, Gussing F, Hägglund M, Vedin V, Bohm S. Evidence for gradients of gene expression correlating with zonal topography of the olfactory sensory map. Mol Cell Neurosci 2001; 18:283-95. [PMID: 11591129 DOI: 10.1006/mcne.2001.1019] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signals regulating diversification of olfactory sensory neurons to express odorant receptors and other genes necessary for correct assembly of the olfactory sensory map persist in the olfactory epithelium of adult mouse. We have screened for genes with an expression pattern correlating with the topography odorant receptor-expression zones. The Msx1 homeobox gene and a semaphorin receptor (Neuropilin-2) showed graded expression patterns in the olfactory epithelium. The gradients of Msx1 and Neuropilin-2 expression in basal cells and neurons, respectively, correlated with expression of a retinoic acid-synthesizing enzyme (RALDH2) in lamina propria. A BMP-type I receptor (Alk6) showed a reverse gradient of expression in the supporting cells of the epithelium. Considering known functions of identified genes in cell specification and axon guidance this suggests that zonal division of the olfactory sensory map is maintained, during continuous neurogenesis, as a consequence of topographic counter gradients of positional information.
Collapse
Affiliation(s)
- E M Norlin
- Department of Molecular Biology, Umeå University, Umeå, S-901 87, Sweden
| | | | | | | | | | | |
Collapse
|
221
|
Clarke TR, Hoshiya Y, Yi SE, Liu X, Lyons KM, Donahoe PK. Müllerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces SMAD6 expression. Mol Endocrinol 2001; 15:946-59. [PMID: 11376113 DOI: 10.1210/mend.15.6.0664] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signal reception of Müllerian inhibiting substance (MIS) in the mesenchyme around the embryonic Müllerian duct in the male is essential for regression of the duct. Deficiency of MIS or of the MIS type II receptor, MISRII, results in abnormal reproductive development in the male due to the maintenance of the duct. MIS is a member of the transforming growth factor-beta (TGFbeta) superfamily of secreted protein hormones that signal through receptor complexes of type I and type II serine/threonine kinase receptors. To investigate candidate MIS type I receptors, we examined reporter construct activation by MIS. The bone morphogenetic protein (BMP)-responsive Tlx2 and Xvent2 promoter-driven reporter constructs were stimulated by MIS but the TGFbeta/activin-induced p3TP-lux or CAGA-luc reporter constructs were not. The induction of Tlx2-luc was dependent upon the kinase activity of MISRII and was blocked by a dominant negative truncated ALK2 (tALK2) receptor but not by truncated forms of the other BMP type I receptors ALK1, ALK3, or ALK6. MIS induced activation of a Gal4DBD-Smad1 but not a Gal4DBD-Smad2 fusion protein. This activation could also be blocked by tALK2. The BMP-induced inhibitory Smad, Smad6, was up-regulated by MIS endogenously in Leydig cell-derived lines and is expressed in male but not female Müllerian duct mesenchyme. ALK6 has been shown to function as an MIS type I receptor. Investigation of the pattern of ALK2, MISRII, and ALK6 in the developing urogenital system demonstrated overlapping expression of ALK2 and MISRII in the mesenchyme surrounding the duct while ALK6 was observed only in the epithelium. Examination of ALK6 -/- male animals revealed no defect in duct regression. The reporter construct analysis, pattern of expression of the receptors, and analysis of ALK6-deficient animals suggest that ALK2 is the MIS type I receptor involved in Müllerian duct regression.
Collapse
Affiliation(s)
- T R Clarke
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
222
|
Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen AP, Ingraham HA. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Mol Endocrinol 2001; 15:936-45. [PMID: 11376112 DOI: 10.1210/mend.15.6.0645] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Müllerian inhibiting substance (MIS or anti-Müllerian hormone) is a member of the transforming growth factor-beta family and plays a pivotal role in proper male sexual differentiation. Members of this family signal by the assembly of two related serine/threonine kinase receptors, referred to as type I or type II receptors, and downstream cytoplasmic Smad effector proteins. Although the MIS type II receptor (MISRII) has been identified, the identity of the type I receptor is unclear. Here we report that MIS activates a bone morphogenetic protein-like signaling pathway, which is solely dependent on the presence of the MISRII and bioactive MIS ligand. Among the multiple type I candidates tested, only ALK2 resulted in significant enhancement of the MIS signaling response. Furthermore, dominant-negative and antisense strategies showed that ALK2 is essential for MIS-induced signaling in two independent assays, the cellular Tlx-2 reporter gene assay and the Müllerian duct regression organ culture assay. In contrast, ALK6, the other candidate MIS type I receptor, was not required. Expression analyses revealed that ALK2 is present in all MIS target tissues including the mesenchyme surrounding the epithelial Müllerian duct. Collectively, we conclude that MIS employs a bone morphogenetic protein-like signaling pathway and uses ALK2 as its type I receptor. The use of this ubiquitously expressed type I receptor underscores the role of the MIS ligand and the MIS type II receptor in establishing the specificity of the MIS signaling cascade.
Collapse
MESH Headings
- Activin Receptors, Type I
- Animals
- Anti-Mullerian Hormone
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Cell Line
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/physiology
- Female
- Gene Expression Regulation/genetics
- Genes, Reporter
- Glycoproteins
- Growth Inhibitors/metabolism
- Male
- Mice
- Mullerian Ducts/embryology
- Oligonucleotides, Antisense
- Organ Culture Techniques
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Smad2 Protein
- Smad5 Protein
- Testicular Hormones/metabolism
- Trans-Activators/metabolism
- Transfection
Collapse
Affiliation(s)
- J A Visser
- Department of Physiology, University of California San Francisco, 513 Parnassus, San Francisco, CA 94143-0444, USA
| | | | | | | | | | | |
Collapse
|
223
|
Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, McKay RD. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 2001; 15:2094-110. [PMID: 11511541 PMCID: PMC312756 DOI: 10.1101/gad.894701] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2001] [Accepted: 06/19/2001] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) have diverse and sometimes paradoxical effects during embryonic development. To determine the mechanisms underlying BMP actions, we analyzed the expression and function of two BMP receptors, BMPR-IA and BMPR-IB, in neural precursor cells in vitro and in vivo. Neural precursor cells always express Bmpr-1a, but Bmpr-1b is not expressed until embryonic day 9 and is restricted to the dorsal neural tube surrounding the source of BMP ligands. BMPR-IA activation induces (and Sonic hedgehog prevents) expression of Bmpr-1b along with dorsal identity genes in precursor cells and promotes their proliferation. When BMPR-IB is activated, it limits precursor cell numbers by causing mitotic arrest. This results in apoptosis in early gestation embryos and terminal differentiation in mid-gestation embryos. Thus, BMP actions are first inducing (through BMPR-IA) and then terminating (through BMPR-IB), based on the accumulation of BMPR-IB relative to BMPR-IA. We describe a feed-forward mechanism to explain how the sequential actions of these receptors control the production and fate of dorsal precursor cells from neural stem cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Morphogenetic Protein Receptors
- Bone Morphogenetic Protein Receptors, Type I
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/physiology
- Cell Count
- Cell Differentiation/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Epithelial Cells/physiology
- Female
- Hedgehog Proteins
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/physiology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proteins/physiology
- Receptor Cross-Talk
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Growth Factor/metabolism
- Signal Transduction
- Trans-Activators
Collapse
Affiliation(s)
- D M Panchision
- Laboratory of Molecular Biology, NINDS, National Institutes of Health, Bethesda, Maryland 20892-4092, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A 2001; 98:7994-9. [PMID: 11416163 PMCID: PMC35456 DOI: 10.1073/pnas.141002798] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2001] [Indexed: 11/18/2022] Open
Abstract
Maintenance of female reproductive competence depends on the actions of several hormones and signaling factors. Recent reports suggest roles for bone morphogenetic proteins (BMPs) in early stages of folliculogenesis. A role for the type I BMP receptor BmprIB as a regulator of ovulation rates in sheep has been described recently, but little is known about the roles of BMP signaling pathways in other aspects of reproductive function. We report here that BMPRIB is essential for multiple aspects of female fertility. Mice deficient in BmprIB exhibit irregular estrous cycles and an impaired pseudopregnancy response. BmprIB mutants produce oocytes that can be fertilized in vitro, but defects in cumulus expansion prevent fertilization in vivo. This defect is associated with decreased levels of aromatase production in granulosa cells. Unexpectedly, levels of mRNA for cyclooxygenase 2, an enzyme required for cumulus expansion, are increased. BmprIB mutants also exhibit a failure in endometrial gland formation. The expression of BmprIB in uterine linings suggests that these defects are a direct consequence of loss of BMP signaling in this tissue. In summary, these studies demonstrate the importance of BMP signaling pathways for estrus cyclicity, estradiol biosynthesis, and cumulus cell expansion in vivo and reveal sites of action for BMP signaling pathways in reproductive tissues.
Collapse
Affiliation(s)
- S E Yi
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
225
|
Settle S, Marker P, Gurley K, Sinha A, Thacker A, Wang Y, Higgins K, Cunha G, Kingsley DM. The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev Biol 2001; 234:138-50. [PMID: 11356025 DOI: 10.1006/dbio.2001.0244] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial-mesenchymal interactions play an important role in the development of many different organs and tissues. The secretory glands of the male reproductive system, including the prostate and seminal vesicles, are derived from epithelial precursors. Signals from the underlying mesenchyme are required for normal growth, branching, and differentiation of the seminal vesicle epithelium. Here, we show that a member of the BMP family, Gdf7, is required for normal seminal vesicle development. Expression and tissue recombination experiments suggest that Gdf7 is a mesenchymal signal that acts in a paracrine fashion to control the differentiation of the seminal vesicle epithelium.
Collapse
Affiliation(s)
- S Settle
- Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, California 94305-5427, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
Anti-Müllerian hormone (AMH), a member of the transforming growth factor-beta family, is an important factor of male sex differentiation. It is produced by Sertoli cells from the time of fetal sex differentiation to puberty. AMH is also produced by granulosa cells from the time of birth to the end of ovarian activity. As other members of the transforming growth factor-beta family, AMH signals through two related but distinct receptors, both serine/threonine kinases with a single transmembrane domain, called type II and type I. The type II receptor has been cloned in 1994 and is expressed solely in AMH target organs. Engagement of the type I receptor BMPR-IB and downstream effector Smad1 by AMH has recently been demonstrated, however, its role in AMH biological actions remains to be proven.
Collapse
Affiliation(s)
- N Josso
- Unité de Recherches sur l'Endocrinologie du Développement (INSERM), Ecole Normale Supérieure, Département de Biologie, 1 rue Maurice-Arnoux, 92120 Montrouge, France.
| | | | | |
Collapse
|
227
|
MacLaughlin DT, Teixeira J, Donahoe PK. Perspective: reproductive tract development--new discoveries and future directions. Endocrinology 2001; 142:2167-72. [PMID: 11356658 DOI: 10.1210/endo.142.6.8262] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D T MacLaughlin
- Pediatric Surgical Research Laboratories Massachusetts General Hospital Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
228
|
Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 2001; 114:1483-9. [PMID: 11282024 DOI: 10.1242/jcs.114.8.1483] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-(β) superfamily, which regulate the differentiation of osteoprogenitor cells. Here we show that among members of the BMP family, BMP-4 and growth/differentiation factor 5 (GDF-5) induce osteoblast differentiation through the activation of three receptor-regulated Smads (i.e. Smad1, Smad5 and Smad8). By contrast, BMP-6 and BMP-7 induce alkaline phosphatase activity through Smad1 and Smad5, but not through Smad8. Consistent with these findings, BMP-4 induced phosphorylation and nuclear translocation of Smad1, Smad5 and Smad8, but BMP-6 activated only Smad1 and Smad5. BMP-4 and GDF-5 are known to bind to activin receptor-like kinase 3 (ALK-3) and/or ALK-6 (also termed BMP type IA and type IB receptors, respectively), whereas BMP-6 and BMP-7 preferentially bind to ALK-2. Compared with the effects induced by only one of the type I receptors, the combination of constitutively active forms of ALK-2 and ALK-3 (or ALK-6) more strongly induced alkaline phosphatase activity in C2C12 cells. Moreover, addition of BMP-4 and BMP-6 to C2C12 cells resulted in higher alkaline phosphatase activity than that of only one of these BMPs. The combination of ALK-2 and ALK-3 also induced higher transcriptional activity than either receptor alone. Thus, ALK-2 and ALK-3 (or ALK-6) might synergistically induce osteoblast differentiation of C2C12 cells, possibly through efficient activation of downstream signaling pathways.
Collapse
Affiliation(s)
- H Aoki
- Dept of Biochemistry, The JFCR Cancer Institute, and Research for the Future Program, the Japan Society for the Promotion of Science, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | |
Collapse
|
229
|
Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O'Connell AR, McNatty KP, Montgomery GW. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 2001; 64:1225-35. [PMID: 11259271 DOI: 10.1095/biolreprod64.4.1225] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.
Collapse
Affiliation(s)
- T Wilson
- AgResearch Molecular Biology Unit, Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Daluiski A, Yi SE, Lyons KM. The molecular control of upper extremity development: implications for congenital hand anomalies. J Hand Surg Am 2001; 26:8-22. [PMID: 11172363 DOI: 10.1053/jhsu.2001.9419] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the molecular aspects of limb development are being unraveled, more of the congenital anomalies seen by hand surgeons in the clinical setting will have an identifiable molecular basis. The majority of the data available regarding the molecular development of the upper extremity have come from experimental animal studies, specifically the mouse and chicken. These findings are being discovered by either direct surgical and molecular manipulation of the developing limb or by production of mice deficient in specific genes. Relatively few specific human mutations that cause limb abnormalities have been identified. Hand surgeons should be aware of the basic molecular pathways controlling limb development because they are in a unique position to be able to identify patients with such deformities. In turn, detailed clinical descriptions of congenital anomalies affecting the upper extremity will advance the understanding of the cellular events controlled by the molecular pathways of limb development. This review describes the general molecular basis of limb development and correlates it with disease processes affecting the upper extremity.
Collapse
Affiliation(s)
- A Daluiski
- Department of Orthopaedic Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | |
Collapse
|
231
|
Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001; 27:84-8. [PMID: 11138004 DOI: 10.1038/83810] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily. Many BMPs are produced in bone and show osteogenic activity, suggesting that they may be determinants of bone mass. BMP3 was originally purified from bone as osteogenin, which induces osteogenic differentiation. Recombinant BMP3 (rhBMP3) has no biological activity, however, leaving its role in skeletal growth unclear. Here we show that BMP3 is an antagonist of osteogenic BMPs: BMP3 dorsalizes Xenopus laevis embryos, inhibits BMP2-mediated induction of Msx2 and blocks BMP2-mediated differentiation of osteoprogenitor cells into osteoblasts. These effects appear to be mediated through activin receptors. Finally, Bmp3(-/-) mice have twice as much trabecular bone as wild-type littermates, indicating that BMP3, the most abundant BMP in adult bone, is a negative determinant of bone density.
Collapse
Affiliation(s)
- A Daluiski
- Department of Orthopaedic Surgery, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Gouédard L, Chen YG, Thevenet L, Racine C, Borie S, Lamarre I, Josso N, Massague J, di Clemente N. Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type II receptor. J Biol Chem 2000; 275:27973-8. [PMID: 10854429 DOI: 10.1074/jbc.m002704200] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-Müllerian hormone induces the regression of fetal Müllerian ducts and inhibits the transcription of gonadal steroidogenic enzymes. It belongs to the transforming growth factor-beta family whose members signal through a pair of serine/threonine kinase receptors and Smad effectors. Only the anti-Müllerian hormone type II receptor has been identified. Our goal was to determine whether anti-Müllerian hormone could share a type I receptor with another family member. Co-immunoprecipitation of known type I receptors with anti-Müllerian hormone type II receptor clearly showed that the bone morphogenetic protein type IB receptor was the only cloned type I receptor interacting in a ligand-dependent manner with this type II receptor. Anti-Müllerian hormone also activates the bone morphogenetic protein-specific Smad1 pathway and the XVent2 reporter gene, an anti-Müllerian hormone type II receptor-dependent effect abrogated by a dominant negative version of bone morphogenetic protein type IB receptor. Reverse amplification experiments showed that bone morphogenetic protein type IB receptor is co-expressed with anti-Müllerian hormone type II receptor in most anti-Müllerian hormone target tissues. Our data support a model in which a ligand, anti-Müllerian hormone, gains access to a shared type I receptor and Smad1 system through a highly restricted type II receptor.
Collapse
MESH Headings
- Animals
- Anti-Mullerian Hormone
- Bone Morphogenetic Protein Receptors, Type I
- Bone Morphogenetic Protein Receptors, Type II
- CHO Cells
- Cell Line
- Cricetinae
- DNA-Binding Proteins
- Genes, Reporter
- Glycoproteins
- Growth Inhibitors/pharmacology
- Humans
- Mice
- Protein Serine-Threonine Kinases/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proteins/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Growth Factor/drug effects
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/physiology
- Receptors, Peptide/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Receptors, Transforming Growth Factor beta
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Smad Proteins
- Smad1 Protein
- Testicular Hormones/pharmacology
- Trans-Activators
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Gouédard
- Unité de Recherches sur l'Endocrinologie du Développement (INSERM), Ecole Normale Supérieure, Département de Biologie, 1 Rue Maurice-Arnoux, 92120 Montrouge, France
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
Several advances have been made in our understanding of the control of the growth and patterning of embryonic limbs. Development of the vertebrate limb is dependent on reciprocal interactions between the ectoderm and mesoderm that regulate the structure and function of the apical ectodermal ridge. One key component of this regulatory program appears to be the precise control of signaling by members of the bone morphogenetic protein family via multiple antagonistic interactions.
Collapse
Affiliation(s)
- A T Dudley
- Department of Genetics, Harvard Medical School, Boston 02143, USA
| | | |
Collapse
|
234
|
Baur ST, Mai JJ, Dymecki SM. Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 2000; 127:605-19. [PMID: 10631181 DOI: 10.1242/dev.127.3.605] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we use a mouse insertional mutant to delineate gene activities that shape the distal limb skeleton. A recessive mutation that results in brachydactyly was found in a lineage of transgenic mice. Sequences flanking the transgene insertion site were cloned, mapped to chromosome 3, and used to identify the brachydactyly gene as the type IB bone morphogenetic protein receptor, BmprIB (ALK6). Expression analyses in wild-type mice revealed two major classes of BmprIB transcripts. Rather than representing unique coding RNAs generated by alternative splicing of a single pro-mRNA transcribed from one promoter, the distinct isoforms reflect evolution of two BmprIB promoters: one located distally, driving expression in the developing limb skeleton, and one situated proximally, initiating transcription in neural epithelium. The distal promoter is deleted in the insertional mutant, resulting in a regulatory allele (BmprIB(Tg)) lacking cis-sequences necessary for limb BmprIB expression. Mutants fail to generate digit cartilage, indicating that BMPRIB is the physiologic transducer for the formation of digit cartilage from the skeletal blastema. Expansion of BmprIB expression into the limb through acquisition of these distal cis-regulatory sequences appears, therefore, to be an important genetic component driving morphological diversity in distal extremities. GDF5 is a BMP-related signal, which is also required for proper digit formation. Analyses incorporating both Gdf5 and BmprIB(Tg) alleles revealed that BMPRIB regulates chondrogenesis and segmentation through both GDF5-dependent and -independent processes, and that, reciprocally, GDF5 acts through both IB and other type I receptors. Together, these findings provide in vivo support for the concept of combinatorial BMP signaling, in which distinct outcomes result both from a single receptor being triggered by different ligands and from a single ligand binding to different receptors.
Collapse
Affiliation(s)
- S T Baur
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|