201
|
Higashitsuji H, Higashitsuji H, Nagao T, Nonoguchi K, Fujii S, Itoh K, Fujita J. A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis. Cancer Cell 2002; 2:335-46. [PMID: 12398897 DOI: 10.1016/s1535-6108(02)00152-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
NF-kappa B is a transcription factor that can protect from or contribute to apoptosis. Here we report identification of HSCO that binds to NF-kappa B and inhibits apoptosis. HSCO mRNA was overexpressed in 20 of 30 hepatocellular carcinomas analyzed. Overexpression of HSCO inhibited caspase 9 activation and apoptosis induced by DNA damaging agents, while it augmented apoptosis induced by TNFalpha. Like I kappa B alpha, HSCO inhibited NF-kappa B activity and abrogated p53-induced apoptosis. However, the underlying mechanism was different. HSCO is a nuclear-cytoplasmic shuttling protein, bound to RelA NF-kappa B, and HSCO sequestered it in the cytoplasm by accelerating its export from the nucleus. These results suggest that overexpression of HSCO suppresses p53-induced apoptosis by preventing nuclear localization of NF-kappa B during signaling and thus contributes to hepatocarcinogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/physiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Nucleus/metabolism
- Cloning, Molecular
- Cytoplasm/metabolism
- Drug Resistance, Neoplasm
- Electrophoretic Mobility Shift Assay
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Humans
- I-kappa B Proteins/metabolism
- Liver/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- Protein Transport
- Sequence Homology, Amino Acid
- Thiolester Hydrolases/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Hisako Higashitsuji
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, 54 shogoin Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
202
|
Kassed CA, Willing AE, Garbuzova-Davis S, Sanberg PR, Pennypacker KR. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning. Exp Neurol 2002; 176:277-88. [PMID: 12359170 DOI: 10.1006/exnr.2002.7967] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.
Collapse
Affiliation(s)
- C A Kassed
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa 33612, USA
| | | | | | | | | |
Collapse
|
203
|
Abstract
Among transcriptional regulatory proteins described, NF-kappaB seems particularly important in modulating the expression of immunoregulatory genes relevant in critical illness, inflammatory diseases, apoptosis, and cancer. In particular, NF-kappaB plays a central role in regulating the transcription of cytokines, adhesion molecules, and other mediators. The biochemical basis by which diverse stimuli converge to activate or intervene this family of transcription factors is still largely unknown. The NF-kappaB transcription factor family represents an important group of regulators of a broad range of genes involved in cellular responses to inflammatory and other kinds of signals. Knockout mouse studies have also revealed a key role for this family in broad physiological processes, including immune function and metabolism. Overall, specificity seems to exist in the role of each transcriptional complex in gene transcription and physiological function. Each NF-kappaB complex displays distinct affinities for the different DNA-binding sites present in the promoters of NF-kappaB-regulated genes, and this may contribute to some of the specificity exhibited. The identification of specific components of the NF-kappaB signal transduction pathway provides an opportunity to define mechanisms at the biochemical level by which specific members of the NF-kappaB family are activated. Furthermore, this may identify specific targets for selective inhibition or promotion of NF-kappaB functions. Further studies will be required to elucidate mechanisms regulating specificity and selectivity of NF-kappaB function, as well as its role in different diseases, prior to potential clinical application.
Collapse
Affiliation(s)
- Zhengwu Sun
- Department of Surgery, Lund University Hospital, Lund University, Sweden
| | | |
Collapse
|
204
|
Lee SH, Hannink M. Characterization of the nuclear import and export functions of Ikappa B(epsilon). J Biol Chem 2002; 277:23358-66. [PMID: 11970947 DOI: 10.1074/jbc.m111559200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Biochemistry Department University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
205
|
Abstract
The regulation of the transcription factor NF-kappaB activity occurs at several levels including controlled cytoplasmic-nuclear shuttling and modulation of its transcriptional activity. A critical component in NF-kappaB regulation is the IkappaB kinase (IKK) complex. This review is focused on recent progress as well as unanswered questions regarding the regulation and function of NF-kappaB and IKK.
Collapse
Affiliation(s)
- Sankar Ghosh
- Section of Immunobiology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
206
|
Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 2002; 277:10842-51. [PMID: 11801607 DOI: 10.1074/jbc.m112475200] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We aimed to investigate the dynamics of the NF-kappaB signaling pathway in living cells using GFP variants of p65-NF-kappaB, IkappaBalpha, tumor necrosis factor-receptor associated factor 2 (TRAF2), the NF-kappaB inducing kinase (NIK) and IkappaB kinases (IKK1 and IKK2). Detailed kinetic analysis of constitutive nucleocytoplasmic shuttling processes revealed that IkappaBalpha enters the nucleus faster than p65. Examination of signaling molecules upstream of NF-kappaB and IkappaBalpha revealed a predominant cytoplasmic localization at steady state. However, after addition of leptomycin B, NIK rapidly accumulated in the nucleus, whereas we could not detect any significant effect on TRAF2 or IKK2. Using various truncation mutants of NIK, we identified a functional nuclear export signal within the COOH-terminal region 795-805, which counteracts the inherent NLS at amino acids 143-149. Prolonged incubation in the presence of LMB also leads to nuclear accumulation of IKK1, which was dependent on a lysine residue at position 44, which is also essential for kinase activity. Investigation of endogenous protein levels by immunofluorescence staining and Western blots verified the results obtained with GFP chimeras. We conclude that NF-kappaB.IkappaB complexes and the upstream signaling kinases NIK and IKK1 shuttle between cytoplasm and nucleus of nonactivated cells and that this process leads to a basal transcriptional activity of NF-kappaB.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
207
|
Page M, Tuckerman EM, Li TC, Laird SM. Expression of nuclear factor kappa B components in human endometrium. J Reprod Immunol 2002; 54:1-13. [PMID: 11839392 DOI: 10.1016/s0165-0378(01)00122-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear factor kappa B (NFkappaB) is a family of transcription factors involved in signalling between IL1 and TNFalpha receptors and cytokines and adhesion molecules in a number of cell types, including those of the human endometrium. In this study, we used immunocytochemistry to investigate the in vivo expression of the p50, IkappaBalpha and IkappaBbeta NFkappaB components in endometrium obtained from normal fertile women throughout the menstrual cycle. All three components were expressed by both the stromal and epithelial cells of the endometrium and staining was predominately seen in the cytoplasm of the cells. Staining for p50 was more intense in the epithelial compartment than the stromal compartment. Staining in the stromal compartment was low to moderate throughout the cycle but, in the epithelial compartment, staining was cycle dependent and increased slightly during the mid-secretory phase. The staining patterns for IkappaBalpha and IkappaBbeta were similar. As for p50, staining for both proteins was greater in the epithelial compartment compared to the stromal compartment and stromal cell staining was low to moderate throughout the cycle. However, in contrast to p50, staining for the IkappaB proteins in epithelial cells decreased during the mid-secretory phase of the cycle. Although the immunocytochemistry technique used is only semi-quantitative, the results suggest an increased expression of the active and a decreased expression of the inhibitory NFkappaB components by the endometrium at the time of implantation. If confirmed, it would suggest that NFkappaB is involved in the control of factors important in the implantation process.
Collapse
Affiliation(s)
- M Page
- Division of Biomedical Sciences/BMRC, Sheffield Hallam University, City Campus, S1 1WB, Sheffield, UK
| | | | | | | |
Collapse
|
208
|
Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002; 16:439-51. [PMID: 11850407 PMCID: PMC155337 DOI: 10.1101/gad.218702] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Accepted: 12/15/2001] [Indexed: 11/24/2022]
Abstract
beta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein. This protein occupies E3RS in a specific and stoichiometric manner, stabilizes the E3 component, and is likely responsible for its nuclear localization. hnRNP-U binding was abolished by competition with a pIkappaB(alpha) peptide, or by a specific point mutation in the E3RS WD region, indicating an E3-substrate-type interaction. However, unlike pI(kappa)Balpha, which is targeted by SCF(beta-TrCP) for degradation, the E3-bound hnRNP-U is stable and is, therefore, a pseudosubstrate. Consequently, hnRNP-U engages a highly neddylated active SCF(beta-TrCP), which dissociates in the presence of a high-affinity substrate, resulting in ubiquitination of the latter. Our study points to a novel regulatory mechanism, which secures the localization, stability, substrate binding threshold, and efficacy of a specific protein-ubiquitin ligase.
Collapse
Affiliation(s)
- Matti Davis
- The Lautenberg Center for Immunology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Wang Z, Castresana MR, Detmer K, Newman WH. An IkappaB-alpha mutant inhibits cytokine gene expression and proliferation in human vascular smooth muscle cells. J Surg Res 2002; 102:198-206. [PMID: 11796019 DOI: 10.1006/jsre.2001.6320] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammatory reaction and intimal proliferation of smooth muscle cells are characteristics of vascular stenotic lesions. Nuclear factor kappaB (NF-kappaB) is involved in regulation of inflammation and cell survival in a variety of cell types. We tested a hypothesis that selective inhibition of NF-kappaB by expression of a mutated, nondegradable inhibitor of NF-kappaB, IkappaB-alphaM, would inhibit proinflammatory cytokine expression and proliferation in human vascular smooth muscle cell. MATERIALS AND METHODS Smooth muscle cells were cultured from internal mammary artery and infected with recombinant adenovirus vectors. RESULTS Adenoviral expression of IkappaB-alphaM inhibited diverse signal-triggered cellular IkappaB-alpha degradation, subsequent NF-kappaB activation, and transactivation of proinflammatory cytokine genes. Expression of IkappaB-alphaM in low-density VSMC led to a 60% reduction in serum-stimulated cell growth and a 10% increment in apoptotic incidence but was without effect in high-density cultures. Coexpression of NF-kappaB p65 attenuated apoptosis in low-density cells induced by IkappaB-alphaM. Therefore, the susceptibility to apoptosis induction in the low-density cells correlated with lower constitutive NF-kappaB activity. The induction of apoptosis by IkappaB-alphaM and the rescue by NF-kappaB p65 might be explained by mutual control of NF-kappaB p65 and IkappaB-alphaM access to the nucleus. CONCLUSION Our results suggest that expression of nondegradable IkappaB-alpha might have therapeutic potential in both vascular inflammatory reaction and smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Zhongbiao Wang
- Division of Basic Medical Science, Mercer University School of Medicine and Medical Center of Central Georgia, Macon, Georgia 31207, USA.
| | | | | | | |
Collapse
|
210
|
Sliva D, Rizzo MT, English D. Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 2002; 277:3150-7. [PMID: 11689575 DOI: 10.1074/jbc.m109579200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration is a fundamental aspect of the neoplastic cell metastasis. Here, we show that phosphatidylinositol (PI) 3-kinase is constitutively active and controls cell motility of highly invasive breast cancer cells by the activation of transcription factor, NF-kappaB. The urokinase-type plasminogen activator (uPA) promoter contains an NF-kappaB binding site, and uPA expression in MDA-MB-231 cells is induced by the constitutively active NF-kappaB. Thus, motility was inhibited by overexpression of a dominant negative p85alpha regulatory subunit of PI 3-kinase (p85DN), as well as by pretreatment of cells with specific inhibitors of the p110 catalytic subunit of PI 3-kinase, wortmannin and LY294002. The involvement of gene transcription in cell motility was suggested because treatment with actinomycin D and cycloheximide, which inhibit transcription and new protein synthesis, respectively, abolished endogenous migration of MDA-MB-231 cells. Although wortmannin, Ly294002, or overexpression of p85DN did not significantly reduce DNA binding activity of NF-kappaB in nuclear extracts, wortmannin, Ly294002, and the overexpression of p85DN or IkappaBalpha inhibited constitutive activation of NF-kappaB in a reporter gene assay. Highly invasive MDA-MB-231 cells constitutively secreted uPA in amounts significantly higher than poorly invasive MCF-7 cells. Furthermore, inhibition of NF-kappaB markedly attenuated endogenous migration, and inhibition of PI 3-kinase and NF-kappaB reduced secretion of uPA. Our data suggest a link between constitutively active PI 3-kinase, NF-kappaB, and secretion of uPA, which is responsible for the migration of highly invasive breast cancer cells. Thus, constitutively active PI 3-kinase controls cell motility by the regulation of expression of uPA through the activation of NF-kappaB.
Collapse
Affiliation(s)
- Daniel Sliva
- Cancer Research Laboratory, the Signal Transduction Laboratory, and the Experimental Cell Research Program, Methodist Research Institute, Clarian Health Partners Inc., Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
211
|
NF-κB Function in Inflammation, Cellular Stress and Disease. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1568-1254(02)80007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
212
|
Abstract
Protein modification via covalent attachment of ubiquitin has emerged as one of the most common regulatory processes in all eukaryotes; it is possibly second only to phosphorylation. In fact, ubiquitination and phosphorylation have much in common: both occur rapidly--often in response to an extracellular signal--and both are quickly reversed by a large set of dedicated enzymes termed deubiquitination enzymes and phosphatases, respectively. In addition, these two protein-modification events often cooperate in mobilizing a particular cellular pathway. Traditionally, ubiquitination has been associated with proteolytic events, mostly in conjunction with the 26S proteosome. Recently, however, ubiquitination has been implicated in other regulatory mechanisms. Some involve proteosome-independent protein degradation, whereas others are entirely proteolysis-independent, ranging from protein kinase activation to translation control. Therefore, it is not surprising that the ever-evolving immune system is an excellent mirror for the multiple roles played by ubiquitination within an organism.
Collapse
Affiliation(s)
- Yinon Ben-Neriah
- The Lautenberg Center for Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
213
|
|
214
|
Pentikäinen V, Suomalainen L, Erkkilä K, Martelin E, Parvinen M, Pentikäinen MO, Dunkel L. Nuclear factor-kappa B activation in human testicular apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:205-18. [PMID: 11786414 PMCID: PMC1867132 DOI: 10.1016/s0002-9440(10)64364-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Apoptotic cell death plays an important role in limiting testicular germ cell population during spermatogenesis and its dysregulation has been shown to be associated with male infertility. The growing evidence on the role of the transcription factor nuclear factor (NF)-kappa B in controlling apoptosis prompted us to investigate NF-kappa B activity in the normal human testis and its role in testis tissue undergoing excessive apoptosis in vitro. In electrophoretic mobility shift assays, low-level constitutive NF-kappa B DNA-binding activity was found and, by immunostaining of the RelA and p50 NF-kappa B subunits, was localized to Sertoli cell nuclei. During in vitro-induced testicular apoptosis, the Sertoli cell nuclear NF-kappa B levels and whole seminiferous tubule NF-kappa B DNA-binding activity increased previous detection of germ cells undergoing apoptosis. The anti-inflammatory drug sulfasalazine effectively suppressed stress-induced NF-kappa B DNA binding and NF-kappa B-mediated I kappa B alpha gene expression. Importantly, concomitantly with inhibiting NF-kappa B, sulfasalazine blocked germ cell apoptosis. These results suggest that during testicular stress Sertoli cell NF-kappa B proteins exert proapoptotic effects on germ cells, which raises the possibility that pharmacological inhibition of NF-kappa B could be a therapeutic target in transient stress situations involving excessive germ cell death.
Collapse
Affiliation(s)
- Virve Pentikäinen
- Program for Developmental and Reproductive Biology, Biomedicum Helsinki, Hospital for Children and Adolescents, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
215
|
Malek S, Chen Y, Huxford T, Ghosh G. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J Biol Chem 2001; 276:45225-35. [PMID: 11571291 DOI: 10.1074/jbc.m105865200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB dimers, inhibitor IkappaB proteins, and NF-kappaB.IkappaB complexes exhibit distinct patterns in partitioning between nuclear and cytoplasmic cellular compartments. IkappaB-dependent modulation of NF-kappaB subcellular localization represents one of the more poorly understood processes in the NF-kappaB signaling pathway. In this study, we have combined in vitro biochemical and cell-based methods to elucidate differences in NF-kappaB regulation exhibited by the inhibitors IkappaBbeta and IkappaBalpha. We show that although both IkappaBalpha and IkappaBbeta bind to NF-kappaB with similar global architecture and stability, significant differences exist that contribute to their unique functional roles. IkappaBbeta derives its high affinity toward NF-kappaB dimers by binding to both NF-kappaB subunit nuclear localization signals. In contrast, IkappaBalpha contacts only one NF-kappaB NLS and employs its carboxyl-terminal proline, glutamic acid, serine, and threonine-rich region for high affinity NF-kappaB binding. We show that the presence of one free NLS in the NF-kappaB.IkappaBalpha complex renders it a dynamic nucleocytoplasmic complex, whereas NF-kappaB.IkappaBbeta complexes are localized to the cytoplasm of resting cells.
Collapse
Affiliation(s)
- S Malek
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
216
|
Kretz-Remy C, Munsch B, Arrigo AP. NFkappa B-dependent transcriptional activation during heat shock recovery. Thermolability of the NF-kappaB.Ikappa B complex. J Biol Chem 2001; 276:43723-33. [PMID: 11559696 DOI: 10.1074/jbc.m010821200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heat shock induces the accumulation of misfolded proteins and results in the preferential expression of heat shock proteins, which help the cell to recover from thermal damage. Heat shock is a well known transcriptional activator of the human immunodeficiency virus type 1 long terminal repeat (LTR). We report here that mutations or deletions of the LTR kappaB sites impaired the LTR transcriptional activation by heat shock. Further analysis revealed that, during heat shock recovery, the NF-kappaB p65 and p50 subunits migrated into the nucleus of HeLa cells, bound to DNA, and induced kappaB-dependent reporter gene expression. This NF-kappaB activation did not depend on new transcriptional and/or translational events and on the pro-oxidant state generated by heat shock. It was not concomitant with IkappaBalpha phosphorylation and was not abolished by the expression of IkappaB kinase or IkappaBalpha dominant-negative mutants. Moreover, NF-kappaB activation and migration into the nucleus were not concomitant with IkappaBalpha/beta or p105 degradation. However, during heat shock recovery, NF-kappaB was dissociated from its complexing partners, allowing its migration into the nucleus. Hence, we describe here a novel mechanism for activation of NF-kappaB based on the thermolability of the NF-kappaB.IkappaB complex.
Collapse
Affiliation(s)
- C Kretz-Remy
- Laboratoire Stress Oxydant, Chaperons, et Apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS-UMR 5534, Université Claude Bernard Lyon I, F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
217
|
Hemelaar J, Bex F, Booth B, Cerundolo V, McMichael A, Daenke S. Human T-cell leukemia virus type 1 Tax protein binds to assembled nuclear proteasomes and enhances their proteolytic activity. J Virol 2001; 75:11106-15. [PMID: 11602750 PMCID: PMC114690 DOI: 10.1128/jvi.75.22.11106-11115.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates the HTLV-1 long terminal repeat and key regulatory proteins involved in inflammation, activation, and proliferation and may induce cell transformation. Tax is also the immunodominant target antigen for cytotoxic T cells in HTLV-1 infection. We found that Tax bound to assembled nuclear proteasomes, but Tax could not be detected in the cytoplasm. Confocal microscopy revealed a partial colocalization of Tax with nuclear proteasomes. As Tax translocated into the nucleus very quickly after synthesis, this process probably takes place prior to and independent of proteasome association. Tax mutants revealed that both the Tax N and C termini play a role in proteasome binding. We also found that proteasomes from Tax-transfected cells had enhanced proteolytic activity on prototypic peptide substrates. This effect was not due to the induction of the LMP2 and LMP7 proteasome subunits. Furthermore, Tax appeared to be a long-lived protein, with a half-life of around 15 h. These data suggest that the association of Tax with the proteasome and the enhanced proteolytic activity do not target Tax for rapid degradation and may not determine its immunodominance.
Collapse
Affiliation(s)
- J Hemelaar
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
Acute lung injury occurs as a result of a cascade of cellular events initiated by either infectious or noninfectious inflammatory stimuli. An elevated level of proinflammatory mediators combined with a decreased expression of anti-inflammatory molecules is a critical component of lung inflammation. Expression of proinflammatory genes is regulated by transcriptional mechanisms. Nuclear factor-kappa B (NF-kappa B) is one critical transcription factor required for maximal expression of many cytokines involved in the pathogenesis of acute lung injury. Activation and regulation of NF-kappa B are tightly controlled by a complicated signaling cascade. In acute lung injury caused by infection of bacteria, Toll-like receptors play a central role in initiating the innate immune system and activating NF-kappa B. Anti-inflammatory cytokines such as interleukin-10 and interleukin-13 have been shown to suppress inflammatory processes through inhibiting NF-kappa B activation. NF-kappa B can interact with other transcription factors, and these interactions thereby lead to greater transcriptional selectivity. Modification of transcription is likely to be a logical therapeutic target for acute lung injury.
Collapse
Affiliation(s)
- J Fan
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
219
|
Hughes K, Edin S, Antonsson A, Grundström T. Calmodulin-dependent kinase II mediates T cell receptor/CD3- and phorbol ester-induced activation of IkappaB kinase. J Biol Chem 2001; 276:36008-13. [PMID: 11470799 DOI: 10.1074/jbc.m106125200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous fundamental biological processes involve the NFkappaB family of transcription factors. The mechanisms by which this family of proteins is regulated are therefore of widespread importance. In most cells, NFkappaB is bound to inhibitory IkappaB proteins and sequestered in the cytoplasm. NFkappaB-inducing signals result in activation of a large multisubunit kinase complex, IKK, which phosphorylates IkappaB. IkappaB is subsequently degraded, releasing NFkappaB, which translocates to the nucleus. We previously reported that inhibitors of the calcium-binding protein calmodulin (CaM) prevent phorbol ester-induced phosphorylation of IkappaB. Here we show that KN93, an inhibitor of CaM-dependent kinases (CaMKs), also inhibits the phosphorylation of IkappaB. The effect of both CaM and CaMK inhibitors on IkappaB phosphorylation is due to the inhibition of the activity of CaMK II because neither drug has any effect when a derivative of CaMK II that is insensitive to these inhibitors is expressed. When CaMK II is inhibited, phorbol ester is no longer able to activate IKK, placing CaMK II in the signaling pathway that leads to IKK activation. CaM and CaMK inhibitors also block T cell receptor/CD3-induced activation but have no effect on the ability of the cytokine tumor necrosis factor alpha or the phosphatase inhibitor calyculin A to induce degradation of IkappaB. Finally we show that expression of a constitutively active CaMK II results in the activation of NFkappaB. The results identify CaMK II as a mediator of IKK activation specifically in response to T cell receptor/CD3 and phorbol ester stimulation.
Collapse
Affiliation(s)
- K Hughes
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
220
|
Jarosinski KW, Whitney LW, Massa PT. Specific deficiency in nuclear factor-kappaB activation in neurons of the central nervous system. J Transl Med 2001; 81:1275-88. [PMID: 11555675 DOI: 10.1038/labinvest.3780341] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expression and activation of nuclear factor-kappaB (NF-kappaB) in neurons and glia of the central nervous system (CNS) has been intensely investigated because of its potential importance in understanding how this multifunctional transcription factor controls developmental and pathological processes. In particular, there has been interest in how NF-kappaB may be differentially regulated in these two major functional subgroups of cells in the CNS to provide for specific responses to various stimuli. Of special interest are responses to both proinflammatory cytokines and microbial products that signal from specific cell receptors to activate NF-kappaB. In the present studies, both neurons and glia (astrocytes) in vivo expressed latent cytoplasmic NF-kappaB analyzed by immunofluorescence microscopy and electrophoretic mobility shift analysis. In vitro, neurons and astrocytes expressed comparable levels of latent NF-kappaB molecules, but NF-kappaB nuclear localization stimulated by proinflammatory cytokines or microbial products was markedly deficient in neurons. In accord with this finding, the rapid degradation of inhibitor of NF-kappaB alpha (IkappaBalpha) that is seen in astrocytes did not occur in neurons in response to these agents. However, long-term exposure to translational inhibitors resulted in IkappaBalpha decay and activation of latent NF-kappaB in neurons, indicating potential NF-kappaB activity in these cells. Analysis of NF-kappaB-responsive interferon regulatory factor-1 gene expression indicated that increased nuclear NF-kappaB in neurons had transcriptional potential. We conclude that mechanisms responsible for inducible targeting of IkappaBalpha are uniquely regulated in neurons and account for the hypo-responsiveness of these cells to signals generated during microbial infections in the CNS. Thus, modulation of signals that target IkappaBalpha degradation may be unique and a key component of specific NF-kappaB regulation in neurons.
Collapse
Affiliation(s)
- K W Jarosinski
- Department of Neurology, State University of New York Health Science Center, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
221
|
Eberhard DA, Karns LR, VandenBerg SR, Creutz CE. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 2001; 114:3155-66. [PMID: 11590242 DOI: 10.1242/jcs.114.17.3155] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated mechanisms controlling the nuclear-cytoplasmic partitioning of annexin II (AnxII). AnxII and its ligand, p11, were localized by immunofluorescence to the cytoplasmic compartment of U1242MG cells, with minimal AnxII or p11 detected within nuclei. Similarly, GFP-AnxII and GFP-p11 chimeras localized to the endogenous proteins. Likewise, GFP-AnxII(1-22) was excluded from nuclei, whereas GFP-AnxII(23-338) and GFP alone were distributed throughout the cells. Immunoprecipitation and biochemical studies showed that GFP-AnxII did not form heteromeric complexes with endogenous p11 and AnxII. Thus, the AnxII N-tail is necessary and sufficient to cause nuclear exclusion of the GFP fusion protein but this does not involve p11 binding. A nuclear export signal consensus sequence was found in the AnxII 3-12 region. The consensus mutant GFP-AnxII(L10A/L12A) confirmed that these residues are necessary for nuclear exclusion. The nuclear exclusion of GFP-AnxII(1-22) was temperature-dependent and reversible, and the nuclear export inhibitor leptomycin B (LmB) caused GFP-AnxII or overexpressed AnxII monomer to accumulate in nuclei. Therefore, AnxII monomer can enter the nucleus and is actively exported. However, LmB had little effect on the localization of AnxII/p11 complex in U1242MG cells, indicating that the complex is sequestered in the cytoplasm. By contrast, LmB treatment of v-src-transformed fibroblasts caused endogenous AnxII to accumulate in nuclei. The LmB-induced nuclear accumulation of AnxII was accelerated by pervanadate and inhibited by genistein, suggesting that phosphorylation promotes nuclear entry of AnxII. Thus, nuclear exclusion of AnxII results from nuclear export of the monomer and sequestration of AnxII/p11 complex, and may be modulated by phosphorylation.
Collapse
Affiliation(s)
- D A Eberhard
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
222
|
Abstract
The nuclear expression and action of the nuclear factor kappa B (NF-kappaB) transcription factor requires signal-coupled phosphorylation and degradation of the IkappaB inhibitors, which normally bind and sequester this pleiotropically active factor in the cytoplasm. The subsequent molecular events that regulate the termination of nuclear NF-kappaB action remain poorly defined, although the activation of de novo IkappaBalpha gene expression by NF-kappaB likely plays a key role. Our studies now demonstrate that the RelA subunit of NF-kappaB is subject to inducible acetylation and that acetylated forms of RelA interact weakly, if at all, with IkappaBalpha. Acetylated RelA is subsequently deacetylated through a specific interaction with histone deacetylase 3 (HDAC3). This deacetylation reaction promotes effective binding to IkappaBalpha and leads in turn to IkappaBalpha-dependent nuclear export of the complex through a chromosomal region maintenance-1 (CRM-1)-dependent pathway. Deacetylation of RelA by HDAC3 thus acts as an intranuclear molecular switch that both controls the duration of the NF-kappaB transcriptional response and contributes to the replenishment of the depleted cytoplasmic pool of latent NF-kappaB-IkappaBalpha complexes.
Collapse
|
223
|
Huang TT, Miyamoto S. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Mol Cell Biol 2001; 21:4737-47. [PMID: 11416149 PMCID: PMC87155 DOI: 10.1128/mcb.21.14.4737-4747.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most prominent NF-kappaB target genes in mammalian cells is the gene encoding one of its inhibitor proteins, IkappaBalpha. The increased synthesis of IkappaBalpha leads to postinduction repression of nuclear NF-kappaB activity. However, it is unknown why IkappaBalpha, among multiple IkappaB family members, is involved in this process and what significance this feedback regulation has beyond terminating NF-kappaB activity. Herein, we report an important IkappaBalpha-specific function dictated by its amino-terminal nuclear export sequence (N-NES). The IkappaBalpha N-NES is necessary for the postinduction export of nuclear NF-kappaB, which is a critical event in reestablishing a permissive condition for NF-kappaB to be rapidly reactivated. We show that although IkappaBalpha and another IkappaB member, IkappaBbeta, can enter the nucleus and repress NF-kappaB DNA-binding activity during the postinduction phase, only IkappaBalpha allows the efficient export of nuclear NF-kappaB. Moreover, swapping the N-terminal region of IkappaBbeta for the corresponding IkappaBalpha sequence is sufficient for the IkappaB chimera protein to export NF-kappaB similarly to IkappaBalpha during the postinduction state. Our findings provide a mechanistic explanation of why IkappaBalpha but not other IkappaB members is crucial for postrepression activation of NF-kappaB. We propose that this IkappaBalpha-specific function is important for certain physiological and pathological conditions where NF-kappaB needs to be rapidly reactivated.
Collapse
Affiliation(s)
- T T Huang
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
224
|
Tam WF, Wang W, Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol 2001; 21:4837-46. [PMID: 11416157 PMCID: PMC87179 DOI: 10.1128/mcb.21.14.4837-4846.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mature B lymphocytes are unique in containing nuclear Rel proteins prior to cell stimulation. This activity consists largely of p50-c-Rel heterodimers, and its importance for B-cell function is exemplified by reduced B-cell viability in several genetically altered mouse strains. Here we suggest a mechanism for the cell specificity and the subunit composition of constitutive B-cell NF-kappaB based on the observed properties of Rel homo- and heterodimers and IkappaBalpha. We show that c-Rel lacks a nuclear export sequence, making the removal of c-Rel-containing complexes from the nucleus less efficient than removal of p65-containing complexes. Second, the nuclear import potential of p65 and c-Rel homodimers but not p50-associated heterodimers was attenuated when they were complexed to IkappaBalpha, leading to a greater propensity of heterodimers to be nuclear. We propose that subunit composition of B-cell NF-kappaB reflects the inefficient retrieval of p50-c-Rel heterodimers from the nucleus. Cell specificity may be a consequence of c-Rel-IkappaBalpha complexes being present only in mature B cells, which leads to nuclear c-Rel due to IkappaBalpha turnover and shuttling of the complex.
Collapse
Affiliation(s)
- W F Tam
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
225
|
Lee SH, Hannink M. The N-terminal nuclear export sequence of IkappaBalpha is required for RanGTP-dependent binding to CRM1. J Biol Chem 2001; 276:23599-606. [PMID: 11319224 DOI: 10.1074/jbc.m011197200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of IkappaBalpha is mediated by the CRM1 nuclear export receptor. However, the identity of the nuclear export sequences NES(s) in IkappaBalpha that are responsible for binding of IkappaBalpha to CRM1 is controversial. Both a N-terminal NES-like region (amino acids 45-54) and a C-terminal NES-like region (amino acids 265-280) have, in a number of reports from different laboratories, been implicated in CRM1-dependent nuclear export of IkappaBalpha. We now demonstrate that the N-terminal NES-like region, but not the C-terminal NES-like region, is required for RanGTP-dependent binding of IkappaBalpha to CRM1. IkappaBalpha is a relatively weak substrate for CRM1, with an affinity for CRM1 that is 100-fold less than the minute virus of mice NS2 protein, a high affinity cargo protein for CRM1. We also demonstrate that IkappaBalpha functions as a physical adaptor between CRM1 and NFkappaB/Rel proteins. Both free IkappaBalpha and Rel-associated IkappaBalpha have comparable affinities for CRM1, suggesting that CRM1 does not discriminate between free IkappaBalpha and Rel-associated IkappaBalpha. Nuclear export of c-Rel by IkappaBalpha requires the N-terminal NES-like sequence of IkappaBalpha but is not affected by alanine substitutions within the C-terminal NES-like sequence of IkappaBalpha. In contrast, nuclear export of the v-Rel oncoprotein by IkappaBalpha is disrupted by alanine substitutions within either the N-terminal or the C-terminal NES-like sequences. However, alanine substitutions within the C-terminal NES-like sequence significantly reduce the affinity of IkappaBalpha for v-Rel, suggesting that loss of export function for this mutant is secondary to reduced association between IkappaBalpha and v-Rel. Taken together, our results demonstrate that the N-terminal NES-like sequence in IkappaBalpha is required for RanGTP-dependent binding of both free IkappaBalpha and NFkappaB/Rel-associated IkappaBalpha proteins to CRM1.
Collapse
Affiliation(s)
- S H Lee
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
226
|
Floyd ZE, Trausch-Azar JS, Reinstein E, Ciechanover A, Schwartz AL. The nuclear ubiquitin-proteasome system degrades MyoD. J Biol Chem 2001; 276:22468-75. [PMID: 11309375 DOI: 10.1074/jbc.m009388200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many short-lived nuclear proteins are targeted for degradation by the ubiquitin-proteasome pathway. The role of the nucleus in regulating the turnover of these proteins is not well defined, although many components of the ubiquitin-proteasome system are localized in the nucleus. We have used nucleoplasm from highly purified HeLa nuclei to examine the degradation of a physiological substrate of the ubiquitin-proteasome system (MyoD). In vitro studies using inhibitors of the system demonstrate MyoD is degraded via the ubiquitin-proteasome pathway in HeLa nucleoplasm. Purified nucleoplasm in vitro also supports the generation of high molecular mass MyoD-ubiquitin adducts. In addition, in vivo studies, using leptomycin B to inhibit nuclear export, demonstrate that MyoD is degraded in HeLa cells by the nuclear ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Z E Floyd
- Edward Mallinckrodt Department of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, and Division of Pediatric Hematology-Oncology, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
227
|
Affiliation(s)
- M S Cyert
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
228
|
Vancurova I, Miskolci V, Davidson D. NF-kappa B activation in tumor necrosis factor alpha-stimulated neutrophils is mediated by protein kinase Cdelta. Correlation to nuclear Ikappa Balpha. J Biol Chem 2001; 276:19746-52. [PMID: 11274209 DOI: 10.1074/jbc.m100234200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NF-kappaB is critical for the expression of multiple genes involved in inflammatory responses and apoptosis. However, the signal transduction pathways regulating NF-kappaB activation in human neutrophils in response to stimulation with tumor necrosis factor-alpha (TNFalpha) are undefined. Since recent studies implicated activation of NF-kappaB as well as protein kinase C-delta (PKCdelta) in neutrophil apoptosis, we investigated involvement of PKCdelta in the activation of NF-kappaB in TNFalpha-stimulated neutrophils. Specific inhibition of PKCdelta by rottlerin prevented IkappaBalpha degradation and NF-kappaB activation in TNFalpha-stimulated neutrophils. This regulation of NF-kappaB activation by PKCdelta was specific only for TNFalpha signaling, since lipopolysaccharide- or interleukin-1beta-induced NF-kappaB activation and IkappaBalpha degradation were not inhibited by rottlerin. In addition, we show that in human neutrophils, but not monocytes, IkappaBalpha localizes in significant amounts in the nucleus of unstimulated cells, and the amount of IkappaBalpha in the nucleus, as well as in the cytoplasm, correlates with the NF-kappaB DNA binding. These results suggest that in human neutrophils, the presence of IkappaBalpha in the nucleus may function as a safeguard against initiation of NF-kappaB dependent transcription of pro-inflammatory and anti-apoptotic genes, and represents a distinct and novel mechanism of NF-kappaB regulation.
Collapse
Affiliation(s)
- I Vancurova
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, Long Island Jewish Medical Center-The Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA.
| | | | | |
Collapse
|
229
|
Hay DC, Kemp GD, Dargemont C, Hay RT. Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol 2001; 21:3482-90. [PMID: 11313474 PMCID: PMC100270 DOI: 10.1128/mcb.21.10.3482-3490.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of NF-kappaB is mediated by signal-induced phosphorylation and degradation of its inhibitor, IkappaBalpha. NF-kappaB activation induces a rapid resynthesis of IkappaBalpha which is responsible for postinduction repression of transcription. Following resynthesis, IkappaBalpha translocates to the nucleus, removes template bound NF-kappaB, and exports NF-kappaB to the cytoplasm in a transcriptionally inactive form. Here we demonstrate that IkappaBalpha interacts directly with another nucleocytoplasmic shuttling protein, hnRNPA1, both in vivo and in vitro. This interaction requires one of the N-terminal RNA binding domains of hnRNPA1 and the C-terminal region of IkappaBalpha. Cells lacking hnRNPA1 are defective in NF-kappaB-dependent transcriptional activation, but the defect in these cells is complemented by ectopic expression of hnRNPA1. hnRNPA1 expression in these cells increased the amount of IkappaBalpha degradation, compared to that of the control cells, in response to activation by Epstein-Barr virus latent membrane protein 1. Thus in addition to regulating mRNA processing and transport, hnRNPA1 also contributes to the control of NF-kappaB-dependent transcription.
Collapse
Affiliation(s)
- D C Hay
- Institute of Biomolecular Sciences, School of Biology, University of St. Andrews, The North Haugh, St. Andrews, KY16 9ST, Scotland
| | | | | | | |
Collapse
|
230
|
Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654-9. [PMID: 11124955 DOI: 10.1074/jbc.m009476200] [Citation(s) in RCA: 595] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SUMO-1 is a small ubiquitin-related modifier that is covalently linked to many cellular protein targets. Proteins modified by SUMO-1 and the SUMO-1-activating and -conjugating enzymes are located predominantly in the nucleus. Here we define a transferable sequence containing the PsiKXE motif, where Psi represents a large hydrophobic amino acid, that confers the ability to be SUMO-1-modified on proteins to which it is linked. Whereas addition of short sequences from p53 and IkappaBalpha, containing the PsiKXE motif, to a carrier protein is sufficient for modification in vitro, modification in vivo requires the additional presence of a nuclear localization signal. Thus, protein substrates must be targeted to the nucleus to undergo SUMO-1 conjugation.
Collapse
Affiliation(s)
- M S Rodriguez
- School of Biology, Biomolecular Sciences Building, University of St. Andrews, St. Andrews, Fife KY169ST, United Kingdom
| | | | | |
Collapse
|
231
|
Huxford T, Malek S, Ghosh G. Structure and mechanism in NF-kappa B/I kappa B signaling. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:533-40. [PMID: 11232330 DOI: 10.1101/sqb.1999.64.533] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- T Huxford
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | |
Collapse
|
232
|
Rabson AB, Lin HC. NF-kappa B and HIV: linking viral and immune activation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:161-207. [PMID: 10987091 DOI: 10.1016/s1054-3589(00)48006-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- A B Rabson
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
233
|
Gozes I, Zamostiano R, Pinhasov A, Bassan M, Giladi E, Steingart RA, Brenneman DE. A novel VIP responsive gene. Activity dependent neuroprotective protein. Ann N Y Acad Sci 2001; 921:115-8. [PMID: 11193814 DOI: 10.1111/j.1749-6632.2000.tb06957.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activity dependent neuroprotective protein (ADNP, 828 amino acids, pI 5.99) is a glial-derived protein that contains a femtomolar active neuroprotective peptide, NAPVSIPQ (NAP). VIP induces a two- to threefold increase in ADNP mRNA in astrocytes, suggesting that ADNP is a VIP-responsive gene. ADNP is widely distributed in the mouse hippocampus, cerebellum, and cerebral cortex. VIP has been shown to possess neuroprotective activity that may be exerted through the activation of glial proteins. We suggest that ADNP may be part of the VIP protection pathway through the femtomolar-acting NAP and through putative interaction with other macromolecules.
Collapse
Affiliation(s)
- I Gozes
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | |
Collapse
|
234
|
Prigent M, Barlat I, Langen H, Dargemont C. IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2. J Biol Chem 2000; 275:36441-9. [PMID: 10969074 DOI: 10.1074/jbc.m004751200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IkappaBalpha inhibits the transcriptional activity of NF-kappaB both in the cytoplasm by preventing the nuclear translocation of NF-kappaB and in the nucleus where it dissociates NF-kappaB from DNA and transports it back to the cytoplasm. Cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes is controlled by mutual masking of nuclear import sequences of NF-kappaB p65 and IkappaBalpha and active CRM1-mediated nuclear export. Here, we describe an additional mechanism accounting for the cytoplasmic anchoring of IkappaBalpha or NF-kappaB/IkappaBalpha complexes. The N-terminal domain of IkappaBalpha contains a sequence responsible for the cytoplasmic retention of IkappaBalpha that is specifically recognized by G3BP2, a cytoplasmic protein that interacts with both IkappaBalpha and IkappaBalpha/NF-kappaB complexes. G3BP2 is composed of an N-terminal domain homologous to the NTF2 protein, followed by an acidic domain sufficient for the interaction with the IkappaBalpha cytoplasmic retention sequence, a region containing five PXXP motifs and a C-terminal domain containing RNA-binding motifs. Overexpression of G3BP2 directly promotes retention of IkappaBalpha in the cytoplasm, indicating that subcellular distribution of IkappaBalpha and NF-kappaB/IkappaBalpha complexes likely results from a equilibrium between nuclear import, nuclear export, and cytoplasmic retention. The molecular organization of G3BP2 suggests that this putative scaffold protein might connect the NF-kappaB signal transduction cascade with cellular functions such as nuclear transport or RNA metabolism.
Collapse
Affiliation(s)
- M Prigent
- Laboratoire de Transport Nucleocytoplasmique, Institut Curie-CNRS UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
235
|
De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 2000; 20:E83-8. [PMID: 11073859 DOI: 10.1161/01.atv.20.11.e83] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A variety of pathophysiological situations that affect cells of the vasculature, including endothelial and smooth muscle cells, leads to the expression of genes such as adhesion molecules and chemokines that are dependent on members of the nuclear factor (NF)-kappaB family of transcription factors. The corresponding gene products mediate important biological functions such as immune and inflammatory reactions, smooth muscle cell proliferation, and angiogenesis. The beneficial and usually transient NF-kappaB-dependent gene expression may be exaggerated in pathological situations and results in damage to the vessel wall and impaired vascular cell function. In this review, we will capitalize on the favorable and adverse roles of NF-kappaB in the context of vascular disease, eg, chronic and localized inflammation, arteriosclerosis, and neoangiogenesis.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiology
- Gene Expression Regulation
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
Collapse
Affiliation(s)
- R De Martin
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna International Research Cooperation Center, Vienna, Austria.
| | | | | | | |
Collapse
|
236
|
Abstract
Signal transducer and activator of transcription 1 (STAT1) mediates gene expression in response to cytokines and growth factors. Activation of STAT1 is achieved through its tyrosine phosphorylation, a process that involves Jak tyrosine kinases. Here we show that STAT1, although phosphorylated on Y701, is unable to localize in the nucleus in the absence of Jak1 or Jak1 kinase activity. In contrast, the nuclear accumulation of STAT1 in Tyk2-deficient cells remains intact. Nuclear presence of tyrosine-phosphorylated STAT1 could be restored in Jak1-deficient cells by leptomycin B, an inhibitor of nuclear export. Amino acids 197 to 205 of STAT1 were found to encode a leucine-rich nuclear export signal (NES). An L-->A mutation within the NES restored nuclear retention of STAT1 in Jak1-deficient cells. Impaired binding of the transcriptional coactivator CBP to tyrosine-phosphorylated STAT1 derived from Jak1-deficient cells offers a model for the intermolecular regulation of the nuclear export sequence.
Collapse
Affiliation(s)
- K Mowen
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
237
|
Phelps CB, Sengchanthalangsy LL, Huxford T, Ghosh G. Mechanism of I kappa B alpha binding to NF-kappa B dimers. J Biol Chem 2000; 275:29840-6. [PMID: 10882738 DOI: 10.1074/jbc.m004899200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray crystal structures of the NF-kappa B.I kappa B alpha complex revealed an extensive and complex protein-protein interface involving independent structural elements present in both I kappa B alpha and NF-kappa B. In this study, we employ a gel electrophoretic mobility shift assay to assess and quantitate the relative contributions of the observed interactions toward overall complex binding affinity. I kappa B alpha preferentially binds to the p50/p65 heterodimer and p65 homodimer, with binding to p50 homodimer being significantly weaker. Our results indicate that the nuclear localization sequence and the region C-terminal to it of the NF-kappa B p65 subunit is a major contributor to NF-kappa B. I kappa B alpha complex formation. Additionally, there are no contacts between the corresponding nuclear localization signal tetrapeptide of p50 and I kappa B alpha. A second set of interactions involving the acidic C-terminal/PEST-like region of I kappa B alpha and the NF-kappa B p65 subunit N-terminal domain also contributes binding energy toward formation of the complex. This interaction is highly dynamic and nonspecific in nature, as shown by oxidative cysteine cross-linking. Phosphorylation of the C-terminal/PEST-like region by casein kinase II further enhances binding.
Collapse
Affiliation(s)
- C B Phelps
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
238
|
Ricciardi R, Kim RD, McDade TP, Perugini RA, Veal TM, Quarfordt SH, Callery MP, Chari RS, Meyers WC. NFkappaB expression during cold ischemia correlates with postreperfusion graft function. J Surg Res 2000; 93:35-40. [PMID: 10945941 DOI: 10.1006/jsre.2000.5961] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In liver transplantation, activation of NFkappaB occurs upon reperfusion, yet few data exist regarding NFkappaB activation during cold ischemia. We hypothesized that activation of NFkappaB may initially occur during cold ischemia, prior to reperfusion, and serve as an important determinant of postreperfusion function. To test this hypothesis, serial biopsies during porcine liver harvest were obtained immediately upon laparotomy, upon completion of dissection, after 45 and 120 min of cold ischemia, and 60 and 180 min after reperfusion. Nuclear extracts were isolated for Western blot analysis of NFkappaB. Hepatic function was assessed through bile output and sorbitol dehydrogenase (SDH) activity. NFkappaB expression was maximal at 45 min of cold ischemia and decreased by 120 min. The expression at 120 min of cold ischemia correlated with markers of postreperfusion function, namely bile flow and SDH activity. During reperfusion a second distinct peak occurred at 180 min. Increased expression of NFkappaB at 180 min of reperfusion correlated directly with prior expression at 120 min during cold ischemia and with increased SDH activity. These data indicate that nuclear expression of NFkappaB demonstrate two distinct peaks of activity, one during cold ischemia and one after reperfusion. Enhanced expression of NFkappaB during cold ischemia not only correlates directly with NFkappaB expression during reperfusion, but also correlates inversely with postreperfusion graft function.
Collapse
Affiliation(s)
- R Ricciardi
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
NF-kappaB (nuclear factor-kappaB) is a collective name for inducible dimeric transcription factors composed of members of the Rel family of DNA-binding proteins that recognize a common sequence motif. NF-kappaB is found in essentially all cell types and is involved in activation of an exceptionally large number of genes in response to infections, inflammation, and other stressful situations requiring rapid reprogramming of gene expression. NF-kappaB is normally sequestered in the cytoplasm of nonstimulated cells and consequently must be translocated into the nucleus to function. The subcellular location of NF-kappaB is controlled by a family of inhibitory proteins, IkappaBs, which bind NF-kappaB and mask its nuclear localization signal, thereby preventing nuclear uptake. Exposure of cells to a variety of extracellular stimuli leads to the rapid phosphorylation, ubiquitination, and ultimately proteolytic degradation of IkappaB, which frees NF-kappaB to translocate to the nucleus where it regulates gene transcription. NF-kappaB activation represents a paradigm for controlling the function of a regulatory protein via ubiquitination-dependent proteolysis, as an integral part of a phosphorylationbased signaling cascade. Recently, considerable progress has been made in understanding the details of the signaling pathways that regulate NF-kappaB activity, particularly those responding to the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1. The multisubunit IkappaB kinase (IKK) responsible for inducible IkappaB phosphorylation is the point of convergence for most NF-kappaB-activating stimuli. IKK contains two catalytic subunits, IKKalpha and IKKbeta, both of which are able to correctly phosphorylate IkappaB. Gene knockout studies have shed light on the very different physiological functions of IKKalpha and IKKbeta. After phosphorylation, the IKK phosphoacceptor sites on IkappaB serve as an essential part of a specific recognition site for E3RS(IkappaB/beta-TrCP), an SCF-type E3 ubiquitin ligase, thereby explaining how IKK controls IkappaB ubiquitination and degradation. A variety of other signaling events, including phosphorylation of NF-kappaB, hyperphosphorylation of IKK, induction of IkappaB synthesis, and the processing of NF-kappaB precursors, provide additional mechanisms that modulate the level and duration of NF-kappaB activity.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, Laboratory of Gene Regulation and Signal Transduction University of California, San Diego, La Jolla, California 92093-0636, USA.
| | | |
Collapse
|
240
|
Schmid JA, Birbach A, Hofer-Warbinek R, Pengg M, Burner U, Furtmüller PG, Binder BR, de Martin R. Dynamics of NF kappa B and Ikappa Balpha studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNa by fluorescence resonance energy transfer. J Biol Chem 2000; 275:17035-42. [PMID: 10747893 DOI: 10.1074/jbc.m000291200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated the dynamics of nuclear transcription factor kappaB (NF-kappaB) by using fusion proteins of the p65 subunit with mutants of green fluorescent protein (GFP). GFP-NF-kappaB chimeras were functional both in vitro and in vivo, as demonstrated by electrophoretic mobility shift assays and reporter gene studies. GFP-p65 was regulated by IkappaBalpha similar to wild type p65 and associated with its inhibitor even if both proteins were linked to a GFP protein. This finding was also verified by fluorescence resonance energy transfer (FRET) microscopy and studies showing mutual regulation of the intracellular localization of both GFP chimerae. Incubation of GFP-p65 with fluorescently labeled NF-kappaB-binding oligonucleotides also resulted in FRET. This effect was DNA sequence-specific and exhibited saturation characteristics. Application of stopped-flow fluorometry to measure the kinetics of FRET between GFP-p65 and oligonucleotides revealed a fast increase of acceptor fluorescence with a plateau after about 10 ms. The observed initial binding rate showed a temperature-dependent linear correlation with the oligonucleotide concentration. The association constant calculated according to pre-steady state kinetics was 3 x 10(6) m(-1), although equilibrium binding studies implied significantly higher values. This observation suggests that the binding process involves a rapid association with a rather high off-rate followed by a conformational change resulting in an increase of the association constant.
Collapse
Affiliation(s)
- J A Schmid
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna A-1235, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
X-linked Emery-Dreifuss muscular dystrophy is caused by mutations in emerin, a novel nuclear membrane protein. Other major inherited neuromuscular diseases have now also been shown to involve proteins which localize and function at least partly in the cell nucleus. These include lamin A/C in autosomal dominant Emery-Dreifuss muscular dystrophy, SMN in spinal muscular atrophy, SIX5 in myotonic dystrophy, calpain3 in type 2A limb-girdle muscular dystrophy, PABP2 in oculopharyngeal dystrophy, androgen receptor in spinal and bulbar muscular atrophy and the ataxins in hereditary ataxias. This review compares the molecular basis for these various disorders and considers the role of cell death, including apoptosis, in their pathogenesis.
Collapse
Affiliation(s)
- G E Morris
- MRIC Biochemistry Group, The North East Wales Institute, LL11 2AW, Wrexham, UK.
| |
Collapse
|
242
|
Renard P, Percherancier Y, Kroll M, Thomas D, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F. Inducible NF-kappaB activation is permitted by simultaneous degradation of nuclear IkappaBalpha. J Biol Chem 2000; 275:15193-9. [PMID: 10809754 DOI: 10.1074/jbc.275.20.15193] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Signal-induced phosphorylation and ubiquitination of IkappaBalpha targets this inhibitor of NF-kappaB for proteasome-mediated degradation, thus permitting the release of active NF-kappaB. Upon cell stimulation, NF-kappaB activation results in neotranscription and neosynthesis of its own inhibitor, IkappaBalpha. As reported earlier, the neosynthesized inhibitor is then accumulated in the nucleus, where it rapidly binds to and terminates the function of nuclear NF-kappaB upon withdrawal of the stimulus. The present work was aimed at understanding how NF-kappaB activity is preserved while stimuli persist, despite intense, simultaneous IkappaBalpha neosynthesis, which would be expected to end NF-kappaB activity. We here show that incoming IkappaBalpha in the nucleus represents a target for resident nuclear proteasome complexes. Signal-induced, proteasome-dependent degradation of phosphorylated and ubiquitinated IkappaBalpha occurs in the nucleus, thus permitting the onset and persistence of NF-kappaB activity as long as stimulation is maintained. Our results suggest that intranuclear proteolysis of IkappaBalpha is necessarily required to avoid self-termination of NF-kappaB activity during cell activation.
Collapse
Affiliation(s)
- P Renard
- Unité d'Immunologie Virale, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
243
|
Schwarz EM, Lu AP, Goater JJ, Benz EB, Kollias G, Rosier RN, Puzas JE, O'Keefe RJ. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res 2000; 18:472-80. [PMID: 10937636 DOI: 10.1002/jor.1100180321] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to irreversible joint destruction caused by the various arthritides, more than 400,000 total joint arthroplasties are performed each year in the United States. As many as 20% of these require revision surgery because of aseptic loosening. The current paradigm to explain aseptic loosening is that wear debris generated from the prosthesis stimulates the release of proinflammatory cytokines (i.e., tumor necrosis factor-alpha and interleukins 1 and 6) following phagocytosis by resident macrophages. These cytokines, in turn, initiate an inflammatory response, with the development of an erosive pannus that stimulates bone resorption by osteoclasts. In support of this model, we have previously shown that human monocytes produce large quantities of tumor necrosis factor-alpha in response to titanium particles in vitro. In the current study, we characterized the role of tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in the proinflammatory response to titanium particles in vitro and in vivo. Using the mouse macrophage cell line J774, we showed that these cells produce an amount of tumor necrosis factor-alpha in response to titanium particles similar to that produced by human peripheral blood monocytes. The production of tumor necrosis factor-alpha was preceded by a drop in cellular levels of inhibitory factor-kappaBalpha protein and translocation of p50/p65 nuclear transcription factor-KB to the nucleus 30 minutes after stimulation. Levels of tumor necrosis factor-alpha and inhibitory factor-kappaBalpha mRNA increased 30 minutes after stimulation, consistent with the activation of nuclear transcription factor-kappaB. Interleukin-6 mRNA was first seen 4 hours after the addition of the titanium particles, indicating that the production of this cytokine is secondary to the immediate nuclear transcription factor-kappaB response. To test the relevance of tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in response to titanium particles in vivo, we adopted an animal model in which the particles were surgically implanted on the calvaria of mice. The animals displayed a dramatic histological response to the debris, with the formation of fibrous tissue and extensive bone resorption after only 1 week. With use of immunohistochemistry and tartrate-resistant acid phosphatase staining, tumor necrosis factor-alpha and osteoclasts were readily detected at the site of inflammation and bone resorption in the calvaria of the treated mice. By testing mice that genetically over-produce tumor necrosis factor-alpha (hTNFalpha-Tg), those defective in tumor necrosis factor-alpha signaling (TNF-RI-/-), and those that are nuclear transcription factor-kappaB1-deficient (NFkappaB1-/-), we evaluated the importance of tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in the biological processes responsible for aseptic loosening. The hTNFalpha-Tg mice had a grossly exaggerated response, the TNF-RI(-/-) mice showed little evidence of inflammation or bone resorption, and the nuclear transcription factor-kappaB1(-/-) mice had an inflammatory response without bone resorption. On the basis of these results, we propose a model for periprosthetic osteolysis in which wear debris particles are phagocytosed by macrophages, resulting in the activation of nuclear transcription factor-kappaB and the production of tumor necrosis factor-alpha. Tumor necrosis factor-alpha directly induces fibroblast proliferation and tissue fibrosis and recruits or activates, or both, osteoclasts to resorb adjacent bone.
Collapse
Affiliation(s)
- E M Schwarz
- Department of Medicine, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000; 28:1317-27. [PMID: 10924851 DOI: 10.1016/s0891-5849(00)00218-5] [Citation(s) in RCA: 513] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor, nuclear factor-kappaB (NF-kappaB) has been studied extensively due to its prominent role in the regulation of immune and inflammatory genes, apoptosis, and cell proliferation. It has been known for more that a decade that NF-kappaB is a redox-sensitive transcription factor. The contribution of redox regulation and the location of potential redox-sensitive sites within the NF-kappaB activation pathway are subject to intense debate due to many conflicting reports. Redox regulation of NF-kappaB has been extensively addressed in this journal and the reader is referred to two comprehensive reviews on the subject [1,2]. With the identification of signaling intermediates proximal to the degradation of the inhibitor, IkappaB, the number of potential redox-sensitive sites is rapidly increasing. The purpose of this review is to address recent insights into the NF-kappaB signaling cascades that are triggered by proinflammatory cytokines such as TNF-alpha and IL-1beta. In addition, the role of nitrogen monoxide (.NO) in the regulation of NF-kappaB will be reviewed. Opportunities for redox regulation that occur upstream of IkappaB-alpha degradation, as well as the potential for redox control of phosphorylation of NF-kappaB subunits, will be discussed. Redox-sensitive steps are likely to depend on the nature of the NF-kappaB activator, the type of reactive oxygen or nitrogen species involved, the selectivity of signaling pathways activated, as well as the cell type under investigation. Lastly, it is discussed how redox regulation of NF-kappaB activation is likely to involve multiple subcellular compartments.
Collapse
|
245
|
Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res 2000; 256:213-24. [PMID: 10739668 DOI: 10.1006/excr.2000.4825] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear export sequences (NESs) have been identified in many cellular proteins, but it remains unclear how different NESs compare in activity. We describe a sensitive new in vivo export assay which we have used to assess the relative export activity of different types of NES. The most common type of export sequence resembles that first identified in the HIV-1 Rev protein and typically comprises a core of large hydrophobic amino acids that specify recognition by the CRM1 export receptor. We compared 10 previously identified Rev-type NESs in our assay, and whereas all were functional, the relative export activities of these signals varied considerably. We further identified 3 new Rev-type NESs from a computer database search, and each export signal was assigned a score of 1 to 9 and ranked in order of activity (e.g., PKI > c-ABL > Ran-BP1 > FMRP > PML > IkappaB-alpha > hdm2). The weakest NESs were found in the p53 tumor suppressor and the p53-regulated proteins p21 and hdm2, which are all normally localized to the nucleus. All of the Rev-type NESs were inactivated by mutation of key hydrophobic residues and by treatment with the CRM1-specific export inhibitor, leptomycin B. In contrast, a different type of export signal, the KNS shuttling element derived from hnRNP K, exhibited a modest export activity that was insensitive to leptomycin B treatment. KNS thus appears to mediate export via a CRM1-independent pathway. Mutagenesis of the KNS sequence identified, for the first time, specific serines and acidic residues necessary for its export activity, thereby distinguishing KNS from other types of nuclear transport signal. We have shown that different nuclear export signals can vary profoundly in activity and therefore conclude that the nuclear export rate of a specific shuttling protein largely depends on both the strength and the accessibility of its NES.
Collapse
Affiliation(s)
- B R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead, New South Wales, 2145, Australia.
| | | |
Collapse
|
246
|
Ku PT, You M, Bose HR. Role and regulation of Rel/NF-kappaB activity in anti-immunoglobulin-induced apoptosis in WEHI-231 B lymphoma cells. Cell Signal 2000; 12:245-53. [PMID: 10781932 DOI: 10.1016/s0898-6568(00)00062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In WEHI-231 cells, anti-immunoglobulin (anti-Ig) treatment leads to both a decrease in the DNA-binding activity of p50/c-Rel/p53 protein complexes and a transient enhancement in the DNA-binding activity of p50 homodimeric complexes. These cells subsequently undergo apoptosis. Because IkappaB-alpha plays a pivotal role in the regulation of Rel/NF-kappaB activity, we have characterized both the nature and kinetics of the expression of IkappaB-alpha following anti-Ig-induced apoptosis in WEHI-231 cells. Anti-Ig treatment of WEHI-231 cells decreased the steady-state level of IkappaB-alpha mRNA, but enhanced the stability of IkappaB-alpha, leading to an accumulation of IkappaB-alpha in both the cytosol and nucleus. Concomitant with the increase in IkappaB-alpha expression there was a gradual decline in the nuclear expression of c-Rel. Because c-Rel plays an important role in the survival of WEHI-231 cells, these results suggest that post-transcriptional regulation of IkappaB-alpha expression might play a role in the anti-Ig-induced apoptosis in WEHI-231 cells.
Collapse
Affiliation(s)
- P T Ku
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-1095, USA
| | | | | |
Collapse
|
247
|
Abstract
Binding sites for the transcriptional regulatory factor nuclear factor kappa B (NF-kappaB) are present in the promoter regions of many of the proinflammatory cytokines and immunoregulatory mediators important in inducing acute inflammatory responses associated with critical illnesses. Because increased activation of NF-kappaB leads to enhanced expression of these proinflammatory mediators, NF-kappaB activation may be a central event in the development of multiple organ dysfunction associated with infection, blood loss, and ischemia-reperfusion injury. NF-kappaB is normally retained in the cytoplasm through its association with the inhibitory molecule I kappaB. Phosphorylation, ubiquination, and proteolysis of I kappaB allows NF-kappaB to translocate to the nucleus and induce transcription, once associated with the transcriptional cofactor CBP. The transcriptional activity of NF-kappaB can be regulated at multiple steps, including the amount of I kappaB present, NF-kappaB subunit composition, and competition for CBP binding. Because of the central role that NF-kappaB occupies in modulating immunoregulatory responses, further understanding of its regulation will be important in designing future therapies able to prevent or minimize acute inflammatory injury associated with critical illness.
Collapse
Affiliation(s)
- E Abraham
- Department of Medicine, University of Colorado Health Sciences Center, Denver, USA
| |
Collapse
|
248
|
Gill RM, Hamel PA. Subcellular compartmentalization of E2F family members is required for maintenance of the postmitotic state in terminally differentiated muscle. J Cell Biol 2000; 148:1187-201. [PMID: 10725332 PMCID: PMC2174298 DOI: 10.1083/jcb.148.6.1187] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Maintenance of cells in a quiescent state after terminal differentiation occurs through a number of mechanisms that regulate the activity of the E2F family of transcription factors. We report here that changes in the subcellular compartmentalization of the E2F family proteins are required to prevent nuclei in terminally differentiated skeletal muscle from reentering S phase. In terminally differentiated L6 myotubes, E2F-1, E2F-3, and E2F-5 were primarily cytoplasmic, E2F-2 was nuclear, whereas E2F-4 became partitioned between both compartments. In these same cells, pRB family members, pRB, p107, and p130 were also nuclear. This compartmentalization of the E2F-1 and E2F-4 in differentiated muscle cells grown in vitro reflected their observed subcellular location in situ. We determined further that exogenous E2F-1 or E2F-4 expressed in myotubes at levels fourfold greater than endogenous proteins compartmentalized identically to their endogenous counterparts. Only when overexpressed at higher levels was inappropriate subcellular location for these proteins observed. At these levels, induction of the E2F-regulated genes, cyclins A and E, and suppression of factors associated with myogenesis, myogenin, and p21(Cip1) was observed. Only at these levels of E2F expression did nuclei in these terminally differentiated cells enter S phase. These data demonstrate that regulation of the subcellular compartmentalization of E2F-family members is required to maintain nuclei in a quiescent state in terminally differentiated cells.
Collapse
Affiliation(s)
- R. Montgomery Gill
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Paul A. Hamel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
249
|
Sachdev S, Bagchi S, Zhang DD, Mings AC, Hannink M. Nuclear import of IkappaBalpha is accomplished by a ran-independent transport pathway. Mol Cell Biol 2000; 20:1571-82. [PMID: 10669735 PMCID: PMC85341 DOI: 10.1128/mcb.20.5.1571-1582.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibitor of kappa B alpha (IkappaBalpha) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IkappaBalpha. IkappaBalpha contains multiple functional domains that contribute to shuttling of IkappaBalpha between the cytoplasm and the nucleus. Nuclear import of IkappaBalpha is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IkappaBalpha is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin beta. However, in contrast to classical nuclear import pathways, nuclear import of IkappaBalpha is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IkappaBalpha is mediated by an N-terminal nuclear export sequence. Nuclear export of IkappaBalpha requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IkappaBalpha is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IkappaBalpha is mediated via a CRM1-dependent pathway.
Collapse
Affiliation(s)
- S Sachdev
- Biochemistry Department, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
250
|
Tam WF, Lee LH, Davis L, Sen R. Cytoplasmic sequestration of rel proteins by IkappaBalpha requires CRM1-dependent nuclear export. Mol Cell Biol 2000; 20:2269-84. [PMID: 10688673 PMCID: PMC110843 DOI: 10.1128/mcb.20.6.2269-2284.2000] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1999] [Accepted: 12/07/1999] [Indexed: 11/20/2022] Open
Abstract
Rel and IkappaB protein families form a complex cellular regulatory network. A major regulatory function of IkappaB proteins is to retain Rel proteins in the cell cytoplasm. In addition, IkappaB proteins have also been postulated to serve nuclear functions. These include the maintenance of inducible NF-kappaB-dependent gene transcription, as well as termination of inducible transcription. We show that IkappaBalpha shuttles between the nucleus and the cytoplasm, utilizing the nuclear export receptor CRM1. A CRM1-binding export sequence was identified in the N-terminal domain of IkappaBalpha but not in that of IkappaBbeta or IkappaBepsilon. By reconstituting major aspects of NF-kappaB-IkappaB sequestration in yeast, we demonstrate that cytoplasmic retention of p65 (also called RelA) by IkappaBalpha requires Crm1p-dependent nuclear export. In mammalian cells, inhibition of CRM1 by leptomycin B resulted in nuclear localization of cotransfected p65 and IkappaBalpha in COS cells and enhanced nuclear relocation of endogenous p65 in T cells. These observations suggest that the main function of IkappaBalpha is that of a nuclear export chaperone rather than a cytoplasmic tether. We propose that the nucleus is the major site of p65-IkappaBalpha association, from where these complexes must be exported in order to create the cytoplasmic pool.
Collapse
Affiliation(s)
- W F Tam
- Rosenstiel Basic Medical Sciences Research Center, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|