201
|
Saxena S, Singh M, Engisch K, Fukuda M, Kaur S. Rab proteins regulate epithelial sodium channel activity in colonic epithelial HT-29 cells. Biochem Biophys Res Commun 2005; 337:1219-23. [PMID: 16236259 DOI: 10.1016/j.bbrc.2005.09.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
ENaC, the sodium-selective amiloride-sensitive epithelial channel, mediates electrogenic sodium re-absorption in tight epithelia and is deeply associated with human hypertension. The ENaC expression at plasma membrane requires the regulated transport, processing, and macromolecular assembly in a defined and highly compartmentalized manner. Ras-related Rab GTPases regulate intracellular trafficking during endocytosis, regulated exocytosis, and secretion. To evaluate the role of these proteins in regulating amiloride-sensitive sodium channel activity, multiple Rab isoforms 3, 5, 6, and Rab27a were expressed in HT-29 cells. Rab3 and Rab27a inhibited ENaC currents, while the expression of other Rab isoforms failed to elicit any statistically significant effect on amiloride-sensitive currents. The immunoprecipitation experiments suggest protein-protein interaction of Rab3 and Rab27a with epithelial sodium channel. Biotinylation studies revealed that modulation of ENaC function is due to the reduced apical expression of channel proteins. Study also indicates that Rabs do not appear to affect the steady-state level of total cellular ENaC. Alternatively, introduction of isoform-specific small inhibitory RNA (SiRNA) reversed the Rab-dependent inhibition of amiloride-sensitive currents. These observations point to the involvement of multiple Rab proteins in ENaC transport through intracellular routes like exocytosis, recycling from ER to plasma membrane or degradation and thus serve as potential target for human hypertension.
Collapse
Affiliation(s)
- Sunil Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | |
Collapse
|
202
|
Strick DJ, Elferink LA. Rab15 effector protein: a novel protein for receptor recycling from the endocytic recycling compartment. Mol Biol Cell 2005; 16:5699-709. [PMID: 16195351 PMCID: PMC1289414 DOI: 10.1091/mbc.e05-03-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.
Collapse
Affiliation(s)
- David J Strick
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA
| | | |
Collapse
|
203
|
Saito-Nakano Y, Loftus BJ, Hall N, Nozaki T. The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 2005; 110:244-52. [PMID: 15955319 DOI: 10.1016/j.exppara.2005.02.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 01/31/2005] [Accepted: 02/16/2005] [Indexed: 11/23/2022]
Abstract
Rab proteins are ubiquitous small GTP-binding proteins that form a highly conserved family and regulate vesicular trafficking. Recent completion of the genome of the enteric protozoan parasite Entamoeba histolytica enabled us to identify an extremely large number (>90) of putative Rab genes. Multiple alignment and phylogenic analysis of amebic, human, and yeast Rab showed that only 22 amebic Rab proteins including EhRab1, EhRab2, EhRab5, EhRab7, EhRab8, EhRab11, and EhRab21 showed significant similarity to Rab from other organisms. The 69 remaining amebic Rab proteins showed only moderate similarity (<40% identity) to Rab proteins from other organisms. Approximately one-third of Rab proteins including Rab7, Rab11, and RabC form 15 subfamilies, which contain up to nine isoforms. Approximately 70% of amebic Rab genes contain single or multiple introns, and this proportion is significantly higher than that of common genes in this organism. Twenty-five Rabs possess an atypical carboxyl terminus such as CXXX, XCXX, XXCX, XXXC, and no cysteine. We propose annotation of amebic Rab genes and discuss biological significance of this extraordinary diversity of EhRab proteins in this organism.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
204
|
Khurana T, Brzostowski JA, Kimmel AR. A Rab21/LIM-only/CH-LIM complex regulates phagocytosis via both activating and inhibitory mechanisms. EMBO J 2005; 24:2254-64. [PMID: 15962002 PMCID: PMC1173156 DOI: 10.1038/sj.emboj.7600716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 05/24/2005] [Indexed: 11/08/2022] Open
Abstract
We have identified two LIM domain proteins, LimF and ChLim, from Dictyostelium that interact with each other and with the small, Rab5-related, Rab21 GTPase to collectively regulate phagocytosis. To investigate in vivo functions, we generated cell lines that lack or overexpress LimF and ChLim and strains that express activating or inhibiting variants of Rab21. Overexpression of LimF, loss of ChLim, or expression of constitutively active Rab21 increases the rate of phagocytosis above that of wild type. Conversely, loss of LimF, overexpression of ChLim, or expression of a dominant-negative Rab21 inhibits phagocytosis. Our studies using cells carrying multiple mutations in these genes further indicate that ChLim antagonizes the activating function of Rab21-GTP during phagocytosis; in turn, LimF is required for Rab21-GTP function. Finally, we demonstrate that ChLim and LimF localize to the phagocytic cup and phago-lysosomal vesicles. We suggest that LimF, ChLim, and activated Rab21-GTP participate as a novel signaling complex that regulates phagocytic activity.
Collapse
Affiliation(s)
- Taruna Khurana
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Brzostowski
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Cellular and Developmental Biology, National Institutes of Health, NIDDK, MMDS, Building 6/B1-22, NIH, Bethesda, MD 20892-2715, USA. Tel.: +1 301 496 3016; Fax: +1 301 496 5239; E-mail:
| |
Collapse
|
205
|
Welsch T, Endlich N, Gökce G, Doroshenko E, Simpson JC, Kriz W, Shaw AS, Endlich K. Association of CD2AP with dynamic actin on vesicles in podocytes. Am J Physiol Renal Physiol 2005; 289:F1134-43. [PMID: 15956777 DOI: 10.1152/ajprenal.00178.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The docking protein CD2AP (CD2-associated protein) serves a nonredundant function in podocytes as CD2AP knockout mice die of renal failure at the age of 6-7 wk. Furthermore, haploinsufficiency due to mutation of the CD2AP gene is associated with focal segmental glomerulosclerosis in humans. Although CD2AP has been shown to interact with proteins regulating actin polymerization, with proteins of the slit diaphragm, and with the endocytic machinery, its critical function in podocytes remains unclear. In conditionally immortalized mouse podocytes, we demonstrate that CD2AP colocalizes with cortactin and F-actin in spots of < or =0.5-microm diameter. Confocal time-lapse microscopy in living podocytes expressing GFP-CD2AP or GFP-actin revealed that spots are motile, possess a limited lifetime, and are frequently associated with vesicles. A significant portion of spot-associated vesicles belongs to a later endosomal-sorting compartment, characterized by delayed uptake of fluorescent dextran (10 kDa) and by colocalization with Rab4, but not Rab5 and AP-2. Rapid accumulation of microinjected G-actin in spots and abrogation of spot motility by jasplakinolide demonstrate that spot movements depend on actin polymerization. Furthermore, a high turnover (half-time < 10 s) of CD2AP in spots was demonstrated by FRAP (fluorescence recovery after photobleaching). Our results demonstrate that CD2AP is associated with dynamic actin in a specific late endosomal compartment in podocytes, suggesting that CD2AP might be crucially involved in endosomal sorting and/or trafficking via regulation of actin assembly on vesicles.
Collapse
Affiliation(s)
- Thilo Welsch
- Department of Anatomy and Cell Biology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Patrussi L, Savino MT, Pellegrini M, Paccani SR, Migliaccio E, Plyte S, Lanfrancone L, Pelicci PG, Baldari CT. Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene 2005; 24:2218-28. [PMID: 15688026 DOI: 10.1038/sj.onc.1208384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shc proteins participate in a variety of processes regulating cell proliferation, survival and apoptosis. The two ubiquitously expressed isoforms, p52Shc/p46Shc, couple tyrosine kinase receptors to Ras by recruiting Grb2/Sos complexes to a membrane-proximal localization. Tyrosine residues 239/240 and 317 become phosphorylated following receptor engagement and, as such, form two Grb2 binding sites, which have been proposed to be differentially coupled to Myc-dependent survival and to fos-dependent proliferation, respectively. Here, we have addressed the individual function of YY239/240 and Y317 in T-cell antigen receptor (TCR) signaling. We show that p52Shc is phosphorylated on both YY239/240 and Y317 following TCR engagement. Mutation of either YY239/240 or Y317 results in impaired interaction with Grb2 and inhibition of Ras/MAP kinase activation and CD69 induction, supporting a role for both Grb2 binding sites in this function. Substitution of either YY239/240 or Y317 also results in a defective activation of Rac and the coupled stress kinases JNK and p38. Furthermore, mutation of Y317 or, to a larger extent, of YY239/240, results in increased activation-induced cell death, which in cells expressing the FF239/240 mutant is accompanied by impaired TCR-dependent c-myc transcription. The data underline a pleiotropic and nonredundant role of Shc, mediated by both YY239/240 and Y317, in T-cell activation and survival.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Picazarri K, Luna-Arias JP, Carrillo E, Orozco E, Rodriguez MA. Entamoeba histolytica: identification of EhGPCR-1, a novel putative G protein-coupled receptor that binds to EhRabB. Exp Parasitol 2005; 110:253-8. [PMID: 15955320 DOI: 10.1016/j.exppara.2005.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/25/2005] [Accepted: 02/26/2005] [Indexed: 11/21/2022]
Abstract
EhRabB is an Entamoeba histolytica protein involved in phagocytosis. However, proteins that regulate the EhRabB activity are unknown. Here, we report the identification of a putative G protein-coupled receptor of E. histolytica (EhGPCR-1) that binds to EhRabB. By two-hybrid screening, we found a 372-bp cDNA fragment that encodes the C-terminus of EhGPCR-1. The cloning and sequence of the full-length cDNA revealed that it predicts a polypeptide with two tyrosine-based sorting signals for endocytosis and seven transmembranal domains. These results suggest that EhGPCR-1 could be a GPCR involved in phagocytosis. EhGPCR-1 could be a member of the Rhodopsin family, characterized by a short N-terminus without cysteine residues.
Collapse
Affiliation(s)
- Karina Picazarri
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, Mexico, D.F. 07000, Mexico
| | | | | | | | | |
Collapse
|
208
|
Harada M, Kawaguchi T, Kumemura H, Terada K, Ninomiya H, Taniguchi E, Hanada S, Baba S, Maeyama M, Koga H, Ueno T, Furuta K, Suganuma T, Sugiyama T, Sata M. The Wilson disease protein ATP7B resides in the late endosomes with Rab7 and the Niemann-Pick C1 protein. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:499-510. [PMID: 15681833 PMCID: PMC1602322 DOI: 10.1016/s0002-9440(10)62272-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wilson disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. Although the Wilson disease gene has been cloned, the cellular localization of the gene product (ATP7B) has not been fully clarified. Therefore, the precise physiological action of ATP7B is still unknown. We examined the distribution of ATP7B using an anti-ATP7B antibody, green fluorescent protein (GFP)-ATP7B (GFP-ATP7B) and ATP7B-DsRed in various cultured cells. Intracellular organelles were visualized by fluorescence microscopy. The distribution of ATP7B was compared with that of Rab7 and Niemann-Pick C1 (NPC1), proteins that localize in the late endosomes. U18666A, which induces the NPC phenotype, was used to modulate the intracellular vesicle traffic. GFP-ATP7B colocalized with various late endosome markers including Rab7 and NPC1 but not with Golgi or lysosome markers. U18666A induced the formation of late endosome-lysosome hybrid organelles, with GFP-ATP7B localized with NPC1 in these structures. We have confirmed that ATP7B is a late endosome-associated membrane protein. ATP7B appears to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes. Thus, defective copper ATPase activity of ATP7B in the late endosomes appears to be the main defect of Wilson disease.
Collapse
Affiliation(s)
- Masaru Harada
- Second Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Ward ES, Martinez C, Vaccaro C, Zhou J, Tang Q, Ober RJ. From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 2005; 16:2028-38. [PMID: 15689494 PMCID: PMC1073680 DOI: 10.1091/mbc.e04-08-0735] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A longstanding question in cell biology is how is the routing of intracellular organelles within cells regulated? Although data support the involvement of Rab4 and Rab11 GTPases in the recycling pathway, the function of Rab11 in particular is uncertain. Here we have analyzed the association of these two Rab GTPases with the Fc receptor, FcRn, during intracellular trafficking. This Fc receptor is both functionally and structurally distinct from the classical Fcgamma receptors and transports immunoglobulin G (IgG) within cells. FcRn is therefore a recycling receptor that sorts bound IgG from unbound IgG in sorting endosomes. In the current study we have used dual color total internal reflection fluorescence microscopy (TIRFM) and wide-field imaging of live cells to analyze the events in human endothelial cells that are involved in the trafficking of FcRn positive (FcRn(+)) recycling compartments from sorting endosomes to exocytic sites at the plasma membrane. Our data are consistent with the following model for this pathway: FcRn leaves sorting endosomes in Rab4(+)Rab11(+) or Rab11(+) compartments. For Rab4(+)Rab11(+) compartments, Rab4 depletion occurs by segregation of the two Rab proteins into discrete domains that can separate. The Rab11(+)FcRn(+) vesicle or tubule subsequently fuses with the plasma membrane in an exocytic event. In contrast to Rab11, Rab4 is not involved in exocytosis.
Collapse
Affiliation(s)
- E Sally Ward
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, 75390-8576, USA.
| | | | | | | | | | | |
Collapse
|
210
|
Ren JC, Zhu Q, Lapaglia N, Emanuele NV, Emanuele MA. Ethanol-induced alterations in Rab proteins: possible implications for pituitary dysfunction. Alcohol 2005; 35:103-12. [PMID: 15963423 DOI: 10.1016/j.alcohol.2005.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/22/2004] [Accepted: 02/06/2005] [Indexed: 11/16/2022]
Abstract
Chronic exposure of pubertal male rats to ethanol results in a decline in serum testosterone, increased gonadotropins, pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH) content, and decreased or inappropriately normal serum LH and FSH levels, suggesting impaired secretory release of gonadotropins. The molecular mechanisms behind this disorder are undefined, but a disruption of vesicle-mediated secretory processes is possible because intracellular protein trafficking pathways are involved in secretion of glycoproteins such as FSH and LH. Because small GTP-binding proteins of Rab family have been implicated as key regulators of membrane and protein trafficking in mammalian cells, this study was designed to test if ethanol-impaired pituitary FSH and LH secretion is associated with changes in Rab proteins, particularly Rab1B, Rab3B, Rab6, and Rab11. Male Sprague-Dawley rats 35 days old were pair-fed a Lieber-DeCarli diet with ethanol or without ethanol for 5 to 60 days. After ethanol exposure, serum testosterone levels decreased while LH and FSH were inappropriately unchanged. Immunohistochemical staining showed decreased Rab1B, Rab3B, and Rab11 protein levels in ethanol-treated pituitaries. Immunoblotting showed that ethanol induced a transient reduction in Rab6 after 5 days of ethanol exposure, whereas Rab3B decreased after 20 days, Rab11 after 30 days, and Rab1B after 60 days. Despite these changes in Rab proteins, mRNA levels were unaffected by ethanol exposure. We concluded that reductions in key Rab proteins may lead to altered vesicle trafficking and may play a role in disruption of pituitary FSH and LH secretion caused by ethanol.
Collapse
Affiliation(s)
- Jian-Ching Ren
- The Neuroscience Program, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
211
|
Van Hoof D, Rodenburg KW, Van der Horst DJ. Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:117-128. [PMID: 15681222 DOI: 10.1016/j.ibmb.2004.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 09/28/2004] [Indexed: 05/24/2023]
Abstract
While the intracellular pathways of ligands after receptor-mediated endocytosis have been studied extensively in mammalian cells, in insect cells these pathways are largely unknown. We transfected Drosophila Schneider line 2 (S2) cells with the human low-density lipoprotein (LDL) receptor (LDLR) and transferrin (Tf) receptor (TfR), and used endocytosis of LDL and Tf as markers. After endocytosis in mammalian cells, LDL is degraded in lysosomes, whereas Tf is recycled. Fluorescence microscopy analysis revealed that LDL and Tf are internalized by S2 cells transfected with LDLR or TfR, respectively. In transfectants simultaneously expressing LDLR and TfR, both ligands colocalize in endosomes immediately after endocytic uptake, and their location remained unchanged after a chase. Similar results were obtained with Spodoptera frugiperda Sf9 cells that were transfected with TfR, suggesting that Tf is retained intracellularly by both cell lines. The insect lipoprotein, lipophorin, is recycled upon lipophorin receptor (LpR)-mediated endocytosis by mammalian cells, however, not after endocytosis by LpR-expressing S2 transfectants, suggesting that this recycling mechanism is cell-type specific. LpR is endogenously expressed by fat body tissue of Locusta migratoria for a limited period after an ecdysis. A chase following endocytosis of labeled lipophorin by isolated fat body tissue at this developmental stage resulted in a significant decrease of lipophorin-containing vesicles, indicative of recycling of the ligand.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Department of Biochemical Physiology and Institute of Biomembranes, Utrecht University, Padualaan 8, Room W-209, Utrecht 3584 CH, The Netherlands
| | | | | |
Collapse
|
212
|
Adams JE, Colombo SL, Mason CB, Ynalvez RA, Tural B, Moroney JV. A mutant of Chlamydomonas reinhardtii that cannot acclimate to low CO 2 conditions has an insertion in the Hdh1 gene. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:55-66. [PMID: 32689111 DOI: 10.1071/fp04119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/05/2004] [Indexed: 06/11/2023]
Abstract
Photosynthetic microorganisms must acclimate to environmental conditions, such as low CO2 environments or high light intensities, which may lead to photo-oxidative stress. In an effort to understand how photosynthetic microorganisms acclimate to these conditions, Chlamydomonas reinhardtii was transformed using the BleR cassette, selected for Zeocin resistance and screened for colonies that showed poor growth at low CO2 levels. One of the insertional mutants obtained, named slc-230, was shown to have a BleR insert in the first exon of Hdh1, a novel, single copy gene. The predicted Hdh1 gene product has similarity to bacterial haloacid dehalogenase-like proteins, a protein family that includes phosphatases and epoxide hydrolases. In addition, Hdh1 is predicted to be localised to the chloroplast or mitochondria in C. reinhardtii. It was found that a genomic copy of wild type Hdh1 can complement slc-230.
Collapse
Affiliation(s)
- James E Adams
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sergio L Colombo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Catherine B Mason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ruby A Ynalvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Baran Tural
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
213
|
Ghittoni R, Patrussi L, Pirozzi K, Pellegrini M, Lazzerini PE, Capecchi PL, Pasini FL, Baldari CT. Simvastatin inhibits T‐cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB J 2005; 19:605-7. [PMID: 15677697 DOI: 10.1096/fj.04-2702fje] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic end product is cholesterol. In addition to lowering circulating cholesterol, statins perturb the composition of cell membranes, resulting in disruption of lipid rafts, which function as signaling platforms in immunoreceptor signaling. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and hence activity of small GTPases, which control multiple pathways triggered by these receptors. T-cell activation is crucially dependent on Ras, Rho and Rab GTPases. Furthermore TCR signaling is orchestrated at lipid rafts, identifying T-cells as potential cellular targets of statins. Here we report that simvastatin suppresses T-cell activation and proliferation as the result of its capacity to inhibit HMG-CoA reductase. T-cell treatment with simvastatin does not affect intracellular cholesterol levels or raft integrity nor, accordingly, the initial tyrosine phosphorylation-dependent cascade. Conversely, inhibition of protein prenylation by simvastatin results in a dramatic impairment in the pathways regulated by small GTPases, including the Ras/MAP kinase pathway, the Rac/stress kinase pathway, and the Rab-dependent pathway of receptor endocytosis. The results identify Ras superfamily GTPases as strategic molecular targets in T-cell immunosuppression by statins.
Collapse
|
214
|
Abstract
Virus entry is initiated by recognition by receptors present on the surface of host cells. Receptors can be major mediators of virus tropism, and in many cases receptor interactions occur in an apparently programmed series of events utilizing multiple receptors. After receptor interaction, both enveloped and nonenveloped viruses must deliver their genome across either the endosomal or plasma membrane for infection to proceed. Genome delivery occurs either by membrane fusion (in the case of enveloped viruses) or by pore formation or other means of permeabilizing the lipid bilayer (in the case of nonenveloped viruses). For those viruses that enter cells via endosomes, specific receptor interactions (and the signaling events that ensue) may control the particular route of endocytosis and/or the ultimate destination of the incoming virus particles. Our conception of virus entry is increasingly becoming more complex; however, the specificity involved in entry processes, once ascertained, may ultimately lead to the production of effective antiviral agents.
Collapse
Affiliation(s)
- S B Sieczkarski
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
215
|
Hoekstra D, Tyteca D, van IJzendoorn SCD. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 2005; 117:2183-92. [PMID: 15126620 DOI: 10.1242/jcs.01217] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions.
Collapse
Affiliation(s)
- Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
216
|
Stein MP, Cao C, Tessema M, Feng Y, Romero E, Welford A, Wandinger-Ness A. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol 2005; 403:628-49. [PMID: 16473626 DOI: 10.1016/s0076-6879(05)03055-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rab7 GTPase is a key regulator of late endocytic membrane transport and autophagy. Rab7 exerts temporal and spatial control over late endocytic membrane transport through interactions with various effector proteins. Among Rab7 effectors, the hVPS34/p150 phosphatidylinositol (PtdIns) 3-kinase complex serves to regulate late endosomal phosphatidylinositol signaling that is important for protein sorting and intraluminal vesicle sequestration. In this chapter, reagents and methods for the characterization of the interactions and regulation of the Rab7/hVPS34/p150 complex are described. Using these methods we demonstrate the requirement for activated Rab7 in the regulation of hVPS34/p150 PtdIns 3-kinase activity on late endosomes in vivo.
Collapse
|
217
|
Wang T, Hong W. Assay and functional properties of Rab34 interaction with RILP in lysosome morphogenesis. Methods Enzymol 2005; 403:675-87. [PMID: 16473629 DOI: 10.1016/s0076-6879(05)03058-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have recently characterized Rab34 as a new member of the Rab GTPase family based on its ability to regulate lysosomal morphology. Rabbit polyclonal antibody raised against recombinant Rab34 reveals that Rab34 is a 29-kDa protein present both in the cytosol and in the Golgi apparatus. A GTP overlay assay shows that a wild-type and GTP-restricted mutant form of recombinant Rab34 bind GTP in vitro. Yeast two-hybrid interaction screens identify Rab7-interacting lysosomal protein (RILP) as a partner of Rab34. Both GST pull-down experiments and direct binding assays in vitro demonstrate that RILP interacts selectively with the wild-type and GTP-restricted but not GDP-restricted form of Rab34. A key residue (K82) of Rab34 is necessary for interaction with RILP. Expression of EGFP-tagged Rab34 wild-type or GTP-restricted forms in mammalian cells results in redistribution of clustered lysosomes to the peri-Golgi region and this property depends on K82, suggesting that Rab34 regulates lysosome distribution via interaction with RILP. These results suggest that RILP is a common effector shared by Rab7 and Rab34. We describe the methods used in our study.
Collapse
|
218
|
Vestergaard J, Bak M, Larsen LA. The hedgehog signaling pathway in cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:1-28. [PMID: 17153478 DOI: 10.1007/3-540-27671-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Janni Vestergaard
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | |
Collapse
|
219
|
Rose JJ, Janvier K, Chandrasekhar S, Sekaly RP, Bonifacino JS, Venkatesan S. CD4 down-regulation by HIV-1 and simian immunodeficiency virus (SIV) Nef proteins involves both internalization and intracellular retention mechanisms. J Biol Chem 2004; 280:7413-26. [PMID: 15611114 DOI: 10.1074/jbc.m409420200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the pleiotropic effects of Nef proteins of HIV and simian immunodeficiency virus (SIV), down-modulation of cell surface expression of CD4 is a prominent phenotype. It has been presumed that Nef proteins accelerate endocytosis of CD4 by linking the receptor to the AP-2 clathrin adaptor. However, the related AP-1 and AP-3 adaptors have also been shown to interact with Nef, hinting at role(s) for these complexes in the intracellular retention of CD4. By using genetic inhibitors of endocytosis and small interfering RNA-induced knockdown of AP-2, we show that accelerated CD4 endocytosis is not a dominant mechanism of HIV-1 (NL4-3 strain) Nef in epithelial cells, T lymphocyte cell lines, or peripheral blood lymphocytes. Furthermore, we show that both the CD4 recycling from the plasma membrane and the nascent CD4 in transit to the plasma membrane are susceptible to intracellular retention in HIV-1 Nef-expressing cells. In contrast, AP-2-mediated enhanced endocytosis constitutes the predominant mechanism for SIV (MAC-239 strain) Nef-induced down-regulation of human CD4 in human cells.
Collapse
Affiliation(s)
- Jeremy J Rose
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
220
|
Mesa R, Magadán J, Barbieri A, López C, Stahl PD, Mayorga LS. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus. Exp Cell Res 2004; 304:339-53. [PMID: 15748882 DOI: 10.1016/j.yexcr.2004.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/09/2004] [Accepted: 11/13/2004] [Indexed: 12/27/2022]
Abstract
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Rosana Mesa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
221
|
Cristea IM, Degli Esposti M. Membrane lipids and cell death: an overview. Chem Phys Lipids 2004; 129:133-60. [PMID: 15081856 DOI: 10.1016/j.chemphyslip.2004.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 02/05/2004] [Accepted: 02/05/2004] [Indexed: 01/17/2023]
Abstract
In this article we overview major aspects of membrane lipids in the complex area of cell death, comprising apoptosis and various forms of programmed cell death. We have focused here on glycerophospholipids, the major components of cellular membranes. In particular, we present a detailed appraisal of mitochondrial lipids that attract increasing interest in the field of cell death, while the knowledge of their re-modelling and traffic remains limited. It is hoped that this review will stimulate further studies by lipid experts to fully elucidate various aspects of membrane lipid homeostasis that are discussed here. These studies will undoubtedly reveal new and important connections with the established players of cell death and their action in promoting or blocking membrane alteration of mitochondria and other organelles. We conclude that the new dynamic era of cell death research will pave the way for a better understanding of the 'chemistry of apoptosis'.
Collapse
Affiliation(s)
- Ileana M Cristea
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
222
|
Meza I, Clarke M. Dynamics of endocytic traffic ofEntamoeba histolyticarevealed by confocal microscopy and flow cytometry. ACTA ACUST UNITED AC 2004; 59:215-26. [PMID: 15476263 DOI: 10.1002/cm.20038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica, the protozoan parasite of humans, manifests constitutive endocytosis to obtain nutrients and, when induced to express invasive behavior, as a means of ingesting and processing host cells and tissue debris. E. histolytica trophozoites were grown in liquid axenic medium that contained fluorescently labeled fluid-phase markers, so that the kinetics of uptake, the transit of loaded endosomes through the cytoplasm, and the time of release of the markers could be monitored by flow cytometry. Confocal microscopy of live trophozoites revealed uptake of fluid by avid macropinocytosis and the occurrence of fusion between young and older endosomes, as well as between pinosomes and phagosomes containing bacteria. Endosomes were rapidly acidified, then gradually neutralized; finally, indigestible material was released. Transit of endosomes containing fluid-phase markers required about 2 h. Uptake and release of fluid-phase markers were impaired by drugs that inhibited actin dynamics and actin-myosin interaction; uptake was also impaired by inhibition of PI 3-kinase. A striking feature of the trophozoites was the great heterogeneity of their endocytic behavior.
Collapse
Affiliation(s)
- Isaura Meza
- Departamento de Biomedicina Molecular, CINVESTAV del IPN, Mexico DF, Mexico.
| | | |
Collapse
|
223
|
Ueda T, Uemura T, Sato MH, Nakano A. Functional differentiation of endosomes in Arabidopsis cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:783-9. [PMID: 15546360 DOI: 10.1111/j.1365-313x.2004.02249.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Endocytosis plays an important role in plant physiology, but how endocytic organelles are organized remains unknown. We present the evidence that endosomes are functionally differentiated in Arabidopsis cells. Two types of Rab5-related GTPases are localized on distinct population of endosomes in a partially overlapping manner. Ara7 and Rha1 are on an early type of endosomes with AtVamp727, where recycling of plasma membrane proteins occurs. In contrast, the plant-unique Rab5, Ara6, resides on distinct endosomes with the prevacuolar SNAREs. Partially overlapping localization of Ara6 and Ara7/Rha1 with reciprocal gradients suggests maturation of endosomes from one to the other.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
224
|
Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JAM, Bennett H, Jones AT. A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 2004; 117:6297-311. [PMID: 15561770 DOI: 10.1242/jcs.01560] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rab proteins comprise a family of monomeric GTPases that control cellular membrane traffic. Rab21 is a poorly characterised member with no known function. Human Rab21 cDNA from K562 cells was subcloned into GFP expression vectors to generate Rab21 and Rab21 mutants defective in either GTP hydrolysis (Rab21 Q78L) or binding (Rab21 T33N) for transfection studies in HeLa cells. Confocal fluorescence microscopy and ultrastructural studies revealed Rab21 to be predominantly localised to the early endocytic pathway, on vesicles containing earlyendosomal antigen 1 EEA1, transferrin receptor and internalised ligands. EEA1 was localised to enlarged endosomes in Rab21 wild-type expressing cells but the GTP hydrolysis and GDP binding mutants had unique phenotypes labelling tubular reticular structures and the trans-Golgi network, respectively. Early endosome localisation for Rab21 was confirmed in a hepatoma cell line that allowed analysis of the subcellular distribution of the endogenous protein. Comparison of the localisation of Rab21 with other Rabs revealed extensive colocalisation with early endocytic variants Rab4, Rab5, Rab17 and Rab22 but much less overlap with those associated with late endosomes, recycling endosomes and the early secretory pathway. Cells expressing Rab21 T33N had defects in endocytosis of transferrin and epidermal growth factor and failed to effectively deliver the latter ligand to late endosomes and lysosomes for degradation. Collectively, our data provide the first characterisation of Rab21 function in early endosome dynamics.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
225
|
Crespo PM, Iglesias-Bartolomé R, Daniotti JL. Ganglioside GD3 Traffics from the trans-Golgi Network to Plasma Membrane by a Rab11-independent and Brefeldin A-insensitive Exocytic Pathway. J Biol Chem 2004; 279:47610-8. [PMID: 15339909 DOI: 10.1074/jbc.m407181200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gangliosides, complex glycosphingolipids containing sialic acids, have been found to reside in glycosphingolipid-enriched microdomains (GEM) at the plasma membrane. They are synthesized in the lumen of the Golgi complex and appear unable to translocate from the lumenal toward the cytosolic surface of Golgi membrane to access the monomeric lipid transport. As a consequence, they can only leave the Golgi complex via the lumenal surface of transport vesicles. In this work we analyzed the exocytic transport of the disialo ganglioside GD3 from trans-Golgi network (TGN) to plasma membrane in CHO-K1 cells by immunodetection of endogenously synthesized GD3. We found that ganglioside GD3, unlike another luminal membrane-bounded lipid (glycosylphosphatidylinositol-anchored protein), did not partition into GEM domains in the Golgi complex and trafficked from TGN to plasma membrane by a brefeldin A-insensitive exocytic pathway. Moreover, a dominant negative form of Rab11, which prevents exit of vesicular stomatitis virus glycoprotein from the Golgi complex, did not influence the capacity of GD3 to reach the cell surface. Our results strongly support the notion that most ganglioside GD3 traffics from the TGN to the plasma membrane by a non-conventional vesicular pathway where lateral membrane segregation of vesicular stomatitis virus glycoprotein (non-GEM resident) and glycosylphosphatidylinositol-anchored proteins (GEM resident) from GD3 is required before exiting TGN.
Collapse
Affiliation(s)
- Pilar Maria Crespo
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
226
|
Kelley VA, Schorey JS. Modulation of cellular Phosphatidylinositol 3-phosphate levels in primary macrophages affects heat-killed but not viable Mycobacterium avium's transport through the phagosome maturation process. Cell Microbiol 2004; 6:973-85. [PMID: 15339272 DOI: 10.1111/j.1462-5822.2004.00415.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most disease causing mycobacteria are intramacrophage pathogens which replicate within nonacidified phagosomes that can interact with the early endosomal network but fail to mature to a phagolysosome. The mycobacterial phagosome retain some proteins required for fusion with endocytic vesicles including Rab5 but lack others such as early endosomal autoantigen 1 (EEA1). As the membrane lipid phosphatidylinositol 3-phosphate (PtdIns-3-P) is required for EEA1 membrane association and phagosome maturation, it may be a potential target of pathogenic mycobacteria. To test this hypothesis, macrophage cellular levels of PtdIns-3-P were altered by retroviral introduction of the type III Phosphoinositide 3-Kinase (VPS34) and the PtdIns-3-P phosphatase myotubularin 1 (MTM1). By utilizing the PtdIns-3-P-specific probes FYVE and PX coupled to EGFP (EGFP-2-FYVE and EGFP-PX, respectively), the expression of PtdIns-3-P on the mycobacterial phagosome was addressed. All phagosomes containing viable Mycobacterium avium stained positive for EGFP-2-FYVE and EGFP-PX despite obvious differences in PtdIns-3-P concentrations in cells expressing MTM1 or VPS34. Altering PtdIns-3-P cellular concentrations did not affect trafficking of live bacilli. However, a significant increase in the transport of killed bacilli to a late endosomal/lysosomal compartment was observed in VPS34-compared to MTM1-transduced macrophages. Therefore, although overexpression of PdtIns-3-P in macrophages can facilitate phagosome maturation, its effect on phagosomes containing viable M. avium was negligible.
Collapse
Affiliation(s)
- Victoria A Kelley
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
227
|
Jäger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 2004; 117:4837-48. [PMID: 15340014 DOI: 10.1242/jcs.01370] [Citation(s) in RCA: 696] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The small GTP binding protein Rab7 has a role in the late endocytic pathway and lysosome biogenesis. The role of mammalian Rab7 in autophagy is, however, unknown. We have addressed this by inhibiting Rab7 function with RNA interference and overexpression of dominant negative Rab7. We show here that Rab7 was needed for the formation of preferably perinuclear, large aggregates, where the autophagosome marker LC3 colocalised with Rab7 and late endosomal and lysosomal markers. By electron microscopy we showed that these large aggregates corresponded to autophagic vacuoles surrounding late endosomal or lysosomal vesicles. Our experiments with quantitative electron microscopy showed that Rab7 was not needed for the initial maturation of early autophagosomes to late autophagic vacuoles, but that it participated in the final maturation of late autophagic vacuoles. Finally, we showed that the recruitment of Rab7 to autophagic vacuoles was retarded in cells deficient in the lysosomal membrane proteins Lamp1 and Lamp2, which we have recently shown to accumulate late autophagic vacuoles during starvation. In conclusion, our results showed a role for Rab7 in the final maturation of late autophagic vacuoles.
Collapse
Affiliation(s)
- Stefanie Jäger
- Institute of Biochemistry, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
228
|
Damiani MT, Pavarotti M, Leiva N, Lindsay AJ, McCaffrey MW, Colombo MI. Rab Coupling Protein Associates with Phagosomes and Regulates Recycling from the Phagosomal Compartment. Traffic 2004; 5:785-97. [PMID: 15355514 DOI: 10.1111/j.1600-0854.2004.00220.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Rab coupling protein (RCP) is a recently identified novel protein that belongs to the Rab11-FIP family. RCP interacts specifically with Rab4 and Rab11, small guanosine-5'-triphosphatases that function as regulators along the endosomal recycling pathway. We used fluorescence confocal microscopy and biochemical approaches to evaluate the participation of RCP during particle uptake and phagosome maturation. In macrophages, RCP is predominantly membrane-bound and displays a punctuate vesicular pattern throughout the cytoplasm. RCP is mainly associated with transferrin-containing structures and Rab11-labeled endosomes. Overexpression of H13, the carboxyl-terminal region of RCP that contains the Rab binding domain, results in an abnormal endosomal compartment. Interestingly, we found that RCP is associated as discrete patches or protein domains to early phagosomal membranes. In macrophages, overexpression of full-length RCP stimulates recycling from the phagosomal compartment, whereas overexpression of H13 diminishes this vesicular transport step. It is likely that acting as an intermediate between Rab4 and Rab11, RCP regulates membrane flux along the phagocytic pathway via recycling events.
Collapse
Affiliation(s)
- María T Damiani
- Laboratorio de Biología Celular, Instituto de Histología y Embriología, Facultad de Ciencias Mèdicas, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
HIV-1 buds from the surface of activated T lymphocytes. In macrophages, however, newly formed HIV-1 particles amass in the lumen of an intracellular compartment. Here, we demonstrate by live-cell imaging techniques, by immunocytochemistry and by immuno-electron microscopy that HIV-1 structural proteins, particularly the internal structural protein Gag, accumulate at membranes of the late endocytic compartment in a variety of cell types and not just in monocyte/macrophage-derived cells. Recent biochemical and genetic studies have implicated components of the mammalian vacuolar protein sorting pathway in retroviral budding. Together with those observations, our study suggests that HIV-1 morphogenesis is thoroughly rooted in the endosomal system.
Collapse
Affiliation(s)
- Sascha Nydegger
- Department of Microbiology and Molecular Genetics, College of Medicine and CALS, 318 Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
230
|
Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004; 22:891-928. [PMID: 15032599 DOI: 10.1146/annurev.immunol.22.012703.104543] [Citation(s) in RCA: 941] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemokines compose a sophisticated communication system used by all our cell types, including immune cells. Chemokine messages are decoded by specific receptors that initiate signal transduction events leading to a multitude of cellular responses, leukocyte chemotaxis and adhesion in particular. Critical determinants of the in vivo activities of chemokines in the immune system include their presentation by endothelial cells and extracellular matrix molecules, as well as their cellular uptake via "silent" chemokine receptors (interceptors) leading either to their transcytosis or to degradation. These regulatory mechanisms of chemokine histotopography, as well as the promiscuous and overlapping receptor specificities of inflammation-induced chemokines, shape innate responses to infections and tissue damage. Conversely, the specific patterns of homeostatic chemokines, where each chemokine is perceived by a single receptor, are charting lymphocyte navigation routes for immune surveillance. This review presents our current understanding of the mechanisms that regulate the cellular perception and pathophysiologic meaning of chemokines.
Collapse
Affiliation(s)
- Antal Rot
- Novartis Institute for Biomedical Research, Vienna, A-1235 Austria.
| | | |
Collapse
|
231
|
Dinneen JL, Ceresa BP. Continual Expression of Rab5(Q79L) Causes a Ligand-Independent EGFR Internalization and Diminishes EGFR Activity. Traffic 2004; 5:606-15. [PMID: 15260830 DOI: 10.1111/j.1398-9219.2004.00204.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amount of cell-surface Epidermal Growth Factor Receptor (EGFR) available to secreted ligand (EGF) dictates a cell's ability to mediate cell proliferation, differentiation or migration. Multiple factors regulate EGFR cell-surface expression including the rates of protein synthesis and protein degradation, and the endocytic trafficking of both stimulated and unstimulated EGFR. Rab5 is a 25 kDa protein that is localized to the plasma membrane and the early endosome. Its exact molecular function, however, remains controversial. We have used stable and transient expression systems in HeLa cells to examine the consequence of continual, overexpression of wild-type and activated mutants of rab5 on EGFR localization and signaling. Continual expression of constitutively activated mutants of rab5 causes a ligand-independent redistribution of EGFRs into intracellular vesicles that can not be blocked with an antagonistic antibody. The net result is a decrease in the level of cell-surface EGFRs available for ligand stimulation. Thus, rab5 activation regulates EGFR signaling by facilitating the internalization of the unliganded EGFR.
Collapse
Affiliation(s)
- Jennifer L Dinneen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
232
|
Gaden F, Franqueville L, Magnusson MK, Hong SS, Merten MD, Lindholm L, Boulanger P. Gene transduction and cell entry pathway of fiber-modified adenovirus type 5 vectors carrying novel endocytic peptide ligands selected on human tracheal glandular cells. J Virol 2004; 78:7227-47. [PMID: 15194799 PMCID: PMC421659 DOI: 10.1128/jvi.78.13.7227-7247.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from the early endosomes targeted by members of species C Ad. AdGFP-QM10 was found to accumulate in late endosomal and low-pH compartments, suggesting that QM10 acted as an endocytic ligand of the lysosomal pathway. These results validated the concept of detargeting and retargeting Ad vectors via our deknobbing system and redirecting Ad vectors to an alternative endocytic pathway via a peptide ligand inserted in the fiber shaft domain.
Collapse
Affiliation(s)
- Florence Gaden
- Laboratoire de Virologie et Pathogénèse Virale, Faculté de Médecine de Lyon, and Insititut Fédératif de Recherche RTH Laennec, 6372 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
Regulation of membrane trafficking requires the concerted actions of rab proteins, their effectors and several phosphatidylinositol 3'-kinases. Rab7 is required for late endosomal transport and here we establish that the phosphatidylinositol 3'-kinase hVPS34 and its adaptor protein p150 are rab7 interacting partners. The hVPS34/p150 complex colocalized with rab7 on late endosomes and hVPS34 activity was dependent on nucleotide cycling of rab7. In addition, total cellular phosphatidylinositol 3'-phosphate levels were modulated by rab7 expression, suggesting that rab7 activation impacted kinase cycling to early endosomes. The data identify rab7 as an important regulator of late endosomal hVPS34 function and link rab7 to the regulation of phosphatidylinositol 3'-kinase cycling between early and late endosomes.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
234
|
Bananis E, Nath S, Gordon K, Satir P, Stockert RJ, Murray JW, Wolkoff AW. Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for Dynein and Kinesin. Mol Biol Cell 2004; 15:3688-97. [PMID: 15181154 PMCID: PMC491828 DOI: 10.1091/mbc.e04-04-0278] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our previous studies demonstrated that fluorescent early endocytic vesicles prepared from rat liver after injection of Texas red asialoorosomucoid contain asialoglycoprotein and its receptor and move and undergo fission along microtubules using kinesin I and KIFC2, with Rab4 regulating KIFC2 activity (J. Cell Sci. 116, 2749, 2003). In the current study, procedures to prepare fluorescent late endocytic vesicles were devised. In addition, flow cytometry was utilized to prepare highly purified fluorescent endocytic vesicles, permitting validation of microscopy-based experiments as well as direct biochemical analysis. These studies revealed that late vesicles bound to and moved along microtubules, but in contrast to early vesicles, did not undergo fission. As compared with early vesicles, late vesicles had reduced association with receptor, Rab4, and kinesin I but were highly associated with dynein, Rab7, dynactin, and KIF3A. Dynein and KIF3A antibodies inhibited late vesicle motility, whereas kinesin I and KIFC2 antibodies had no effect. Dynamitin antibodies prevented the association of late vesicles with microtubules. These results indicate that acquisition and exchange of specific motor and regulatory proteins characterizes and may regulate the transition of early to late endocytic vesicles. Flow cytometric purification should ultimately facilitate detailed proteomic analysis and mapping of endocytic vesicle-associated proteins.
Collapse
Affiliation(s)
- Eustratios Bananis
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
235
|
Weigert R, Yeung AC, Li J, Donaldson JG. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol Biol Cell 2004; 15:3758-70. [PMID: 15181155 PMCID: PMC491835 DOI: 10.1091/mbc.e04-04-0342] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.
Collapse
Affiliation(s)
- Roberto Weigert
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8017, USA
| | | | | | | |
Collapse
|
236
|
Yang M, Chen T, Han C, Li N, Wan T, Cao X. Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2004; 318:792-9. [PMID: 15144907 DOI: 10.1016/j.bbrc.2004.04.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Indexed: 11/20/2022]
Abstract
Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. Here we report the cloning and characterization of a novel Rab7-like GTPase, which shares highest homology with Rab7 and thus is designated as Rab7b. Northern blot analysis shows that Rab7b mRNA is expressed in human heart, placenta, lung, skeletal muscle, and peripheral blood leukocyte. RT-PCR or Western blot analysis of Rab7b expression shows that Rab7b is selectively expressed in monocytes, monocyte-derived immature dendritic cells (DCs), and promyeloid or monocytic leukemia cell lines. In the peripheral blood, Rab7b is specifically detected in CD14(+) cells, but not in CD4(+), CD8(+), CD19(+) or CD56(+) cells. When immature DCs are matured with lipopolysaccharide (LPS), Rab7b expression is gradually downregulated, while Rab7b is upregulated when monocytes are activated by LPS treatments. In acute promyelocytic leukemia (APL) HL-60 and NB4 cell lines, Rab7b expression is upregulated after phorbol myristate acetate (PMA)-induced monocytic differentiation. By immunofluorescence confocal microscopy, we demonstrate that Rab7b is associated with lysosomal organelles. Our data suggest that Rab7b is a lysosome-localized monocytic cell-specific small GTPase, and is involved in PMA-induced APL cell differentiation and possibly in regulation of monocyte functions.
Collapse
Affiliation(s)
- Mingjin Yang
- Institute of Immunology, Zhejiang University, 353 Yanan Road, Hangzhou 310031, PR China
| | | | | | | | | | | |
Collapse
|
237
|
Dinneen JL, Ceresa BP. Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res 2004; 294:509-22. [PMID: 15023538 DOI: 10.1016/j.yexcr.2003.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Indexed: 12/27/2022]
Abstract
Ligand-mediated endocytosis is an important regulatory mechanism of epidermal growth factor (EGF) receptor (EGFR) signal transduction. Coordinated EGFR internalization and degradation function to regulate the spatial and temporal components of EGFR-effector interactions. In an effort to better understand the molecular mechanisms that control these events, we examined the role of rab5 in the endocytic trafficking of the EGFR. Rab5 is a 25-kDa guanine nucleotide binding protein that has previously been shown to be involved in the early stages of endocytic trafficking. Using adenovirally expressed dominant negative and constitutively active rab5 [rab5(S34N) and rab5(Q79L)] in cells with endogenous EGFRs, we have found that the guanine nucleotide binding state of rab5 has no bearing on the rate of EGFR endocytosis. However, expression of dominant negative rab5 affects downstream endocytic trafficking by slowing the ligand-induced disappearance of total cellular EGFR. Using confocal microscopy to examine EGF/EGFR and rab5 localization indicates that the activity of rab5 governs whether internalized EGF/EGFR and rab5 co-localize. Transferrin, which internalizes via a constitutively internalized cell surface receptor, co-sediments with rab5(WT), but not rab5(S34N) on sucrose gradients. Taken together, these data are consistent with rab5 functioning to regulate intracellular endocytic trafficking distal from the plasma membrane.
Collapse
Affiliation(s)
- Jennifer L Dinneen
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
238
|
Odley A, Hahn HS, Lynch RA, Marreez Y, Osinska H, Robbins J, Dorn GW. Regulation of cardiac contractility by Rab4-modulated beta2-adrenergic receptor recycling. Proc Natl Acad Sci U S A 2004; 101:7082-7. [PMID: 15105445 PMCID: PMC406469 DOI: 10.1073/pnas.0308335101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Catecholaminergic activation of myocardial beta-adrenergic receptors (betaAR) is the principle mechanism regulating cardiac function. Agonists desensitize betaAR through G protein-coupled receptor kinase-mediated uncoupling and beta-arrestin-mediated internalization. Although inhibition of myocardial G protein-coupled receptor kinase-2 enhances cardiac function and reverses heart failure, pathophysiological effects of modulated betaAR internalization/recycling are unknown. We used mutation and transgenic expression of Rab4, which regulates vesicular transport of heptahelical receptors to plasma membranes, to interrogate in vivo betaAR trafficking and cardiac function. Expression of constitutively active Rab4 Q72L had no effects on cardiac structure or function, but dominant inhibitor Rab4 S27N impaired responsiveness to endogenous and exogenous catecholamines. To relate betaAR trafficking to diminished cardiac function, Rab4 mutant mice were crossbred with mice overexpressing human beta2AR. In unstimulated beta2AR overexpressors, beta2AR localized to heavier endosomes and translocated to lighter, caveolin-rich fractions after isoproterenol stimulation. Coexpression of beta2AR with activated Rab4 Q72L caused loss of receptors from heavier endosomes while retaining normal inotropy. In contrast, coexpression of beta2AR with inhibitory Rab4 S27N mimicked isoproterenol-induced receptor redistribution to caveolae, with diminished cardiac inotropy. Rab4 inhibition alone prevented resensitization after isoproterenol-induced in vivo adrenergic desensitization. Confocal and ultrastructural analyses revealed bizarre vesicular structures and abnormal accumulation of beta2AR in the sarcoplasm and subsarcollema of Rab4 S27N, but not Q72L, mice. These data provide evidence for constant bidirectional sarcollemal-vesicular betaAR trafficking in the in vivo heart and show that Rab4-mediated recycling of internalized betaAR is necessary for normal cardiac catecholamine responsiveness and resensitization after agonist exposure.
Collapse
Affiliation(s)
- Amy Odley
- Heart and Vascular Center, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Marsman M, Jordens I, Kuijl C, Janssen L, Neefjes J. Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol Biol Cell 2004; 15:2954-64. [PMID: 15064357 PMCID: PMC420117 DOI: 10.1091/mbc.e03-08-0614] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salmonella typhimurium survives and replicates intracellular in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). In HeLa cells, the SCV matures through interactions with the endocytic pathway, but Salmonella avoids fusion with mature lysosomes. The exact mechanism of the inhibition of phagolysosomal fusion is not understood. Rab GTPases control several proteins involved in membrane fusion and vesicular transport. The small GTPase Rab7 regulates the transport of and fusion between late endosomes and lysosomes and associates with the SCV. We show that the Rab7 GTPase cycle is not affected on the SCV. We then manipulated a pathway downstream of the small GTPase Rab7 in HeLa cells infected with Salmonella. Expression of the Rab7 effector RILP induces recruitment of the dynein/dynactin motor complex to the SCV. Subsequently, SCV fuse with lysosomes. As a result, the intracellular replication of Salmonella is inhibited. Activation of dynein-mediated vesicle transport can thus control intracellular survival of Salmonella.
Collapse
Affiliation(s)
- Marije Marsman
- Division of Tumour Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | | | | | | | | |
Collapse
|
240
|
Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 2004; 18:541-58. [PMID: 15014045 PMCID: PMC374236 DOI: 10.1101/gad.1151204] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies showed that the serine/threonine kinase Unc51.1 is one of the earliest genes in neuronal differentiation and is required for granule cell axon formation. To examine the mechanism of Unc51.1 regulation of axon extension, we have identified two direct binding partners. The first, SynGAP, a negative regulator of Ras, is expressed within axons and growth cones of developing granule cells. Overexpression of SynGAP blocks neurite outgrowth by a mechanism that involves Ras-like GTPase cascade. The second binding partner is a PDZ domain-containing scaffolding protein, Syntenin, that binds Rab5 GTPase, the activity of which is attenuated by SynGAP. Thus, our results demonstrate that the Unc51.1-containing protein complex governs axon formation via Ras-like GTPase signaling and through regulation of the Rab5-mediated endocytic pathways within developing axons.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | |
Collapse
|
241
|
Dong J, Chen W, Welford A, Wandinger-Ness A. The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J Biol Chem 2004; 279:21334-42. [PMID: 14998988 DOI: 10.1074/jbc.m401022200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab7 is a key regulatory protein governing early to late endocytic membrane transport. In this study the proteasome alpha-subunit XAPC7 (also known as PSMA7, RC6-1, and HSPC in mammals) was identified to interact specifically with Rab7 and was recruited to multivesicular late endosomes through this interaction. The protein interaction domains were localized to the C terminus of XAPC7 and the N terminus of Rab7. XAPC7 was not found on early or recycling endosomes, but could be recruited to recycling endosomes by expression of a Rab7-(1-174)Rab11-(160-202) chimera, establishing a central role for Rab7 in the membrane recruitment of XAPC7. Although XAPC7 could be shown to associate with membranes bearing ubiquitinated cargo, overexpression had no impact on steady-state ubiquitinated protein levels. Most notably, overexpression of XAPC7 was found to impair late endocytic transport of two different membrane proteins, including EGFR known to be highly dependent on ubiquitination and proteasome activity for proper endocytic sorting and lysosomal transport. Decreased late endocytic transport caused by XAPC7 overexpression was partially rescued by coexpression of wild-type Rab7, suggesting a negative regulatory role for XAPC7. Nevertheless, Rab7 itself was not subject to XAPC7-dependent proteasomal degradation. Together the data establish the first direct molecular link between the endocytic trafficking and cytosolic degradative machineries.
Collapse
Affiliation(s)
- Jianbo Dong
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, 2325 Camino del Salud NE, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
242
|
Dale LB, Seachrist JL, Babwah AV, Ferguson SSG. Regulation of Angiotensin II Type 1A Receptor Intracellular Retention, Degradation, and Recycling by Rab5, Rab7, and Rab11 GTPases. J Biol Chem 2004; 279:13110-8. [PMID: 14711821 DOI: 10.1074/jbc.m313333200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the interaction of the angiotensin II type 1A receptor (AT(1A)R) carboxyl-terminal tail with Rab5a may modulate Rab5a activity, leading to the homotypic fusion of endocytic vesicles. Therefore, we have investigated whether AT(1A)R/Rab5a interactions mediate the retention of AT(1A)R.beta-arrestin complexes in early endosomes and whether the overexpression of Rab7 and Rab11 GTPases influences AT(1A)R lysosomal degradation and plasma membrane recycling. We found that internalized AT(1A)R was retained in Rab5a-positive early endosomes and was neither targeted to lysosomes nor recycled back to the cell surface, whereas a mutant defective in Rab5a binding, AT(1A)R-(1-349), was targeted to lysosomes for degradation. However, the loss of Rab5a binding to the AT(1A)R carboxyl-terminal tail did not promote AT(1A)R recycling. Rather, it was the stable binding of beta-arrestin to the AT(1A)R that prevented, at least in part, AT(1A)R recycling. The overexpression of wild-type Rab7 and Rab7-Q67L resulted in both increased AT(1A)R degradation and AT(1A)R targeting to lysosomes. The Rab7 expression-dependent transition of "putative" AT(1A)R.beta-arrestin complexes to late endosomes was blocked by the expression of dominant-negative Rab5a-S34N. Rab11 overexpression established AT(1A)R recycling and promoted the redistribution of AT(1A)R.beta-arrestin complexes from early to recycling endosomes. Taken together, our data suggest that Rab5, Rab7, and Rab11 work in concert with one another to regulate the intracellular trafficking patterns of the AT(1A)R.
Collapse
Affiliation(s)
- Lianne B Dale
- Cell Biology Research Group, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | | | |
Collapse
|
243
|
Bolte S, Brown S, Satiat-Jeunemaitre B. The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 2004; 117:943-54. [PMID: 14762108 DOI: 10.1242/jcs.00920] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the sub-cellular localisation and function of m-Rabmc, a N-myristoylated plant-specific Rab-GTPase previously characterised at the molecular level and also by structural analysis in Mesembryanthemum crystallinum. By confocal laser scanning microscopy, we identified m-Rabmc predominantly on the prevacuolar compartment of the lytic vacuole but also on the Golgi apparatus in various plant cell types. Two complementary approaches were used immunocytochemistry and cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP)-fusion proteins. Co-localisation studies of m-Rabmc with a salinity stress modulated integral calcium-ATPase suggest involvement of m-Rabmc in a plant-specific transport pathway to the prevacuolar compartment of the lytic vacuole. This hypothesis was strengthened by the inhibition of the transport of aleurain fused to green fluorescent protein (GFP), a marker of the lytic vacuole, in the presence of the dominant negative mutant m-Rabmc(N147I) in Arabidopsis thaliana protoplasts. The inhibitory effect of m-Rabmc(N147I) was specific for the transport pathway to the lytic vacuole, since the transport of chitinase-YFP, a marker for the neutral vacuole, was not hindered by the mutant.
Collapse
Affiliation(s)
- Susanne Bolte
- Laboratoire de Dynamique de la Compartimentation Cellulaire, Institut des Sciences du Végétal, CNRS, UPR2355, Avenue de la Terrasse, Bâtiment 23-24, 91198 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
244
|
Catron DM, Lange Y, Borensztajn J, Sylvester MD, Jones BD, Haldar K. Salmonella enterica serovar Typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect Immun 2004; 72:1036-42. [PMID: 14742551 PMCID: PMC321618 DOI: 10.1128/iai.72.2.1036-1042.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that Salmonella enterica serovar Typhimurium infection perturbs the host cholesterol biosynthetic pathway. Here we show that inhibiting the first step of this pathway (3-hydroxy-3-methylglutaryl coenzyme A reductase) reduces the growth of intracellular S. enterica serovar Typhimurium and has no effect on extracellular bacterial growth. Selectively inhibiting synthesis of downstream sterol components has no effect on infection, suggesting that the effect of statins on host nonsterol intermediates is detrimental to bacterial growth. Furthermore, statins also reduce bacterial proliferation in the S. enterica serovar Typhimurium mouse model. This suggests that blocking the production of nonsterol precursors in the host cell can be used to reduce infection.
Collapse
Affiliation(s)
- Drew M Catron
- Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
245
|
Rosen H, Glukhman V, Feldmann T, Fridman E, Lichtstein D. Cardiac steroids induce changes in recycling of the plasma membrane in human NT2 cells. Mol Biol Cell 2004; 15:1044-54. [PMID: 14718569 PMCID: PMC363072 DOI: 10.1091/mbc.e03-06-0391] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiac steroids (CSs) are specific inhibitors of Na+, K(+)-ATPase activity. Although the presence of CS-like compounds in animal tissues has been established, their physiological role is not evident. In the present study, treatment of human NT2 cells with physiological concentrations (nanomolar) of CSs caused the accumulation of large vesicles adjacent to the nucleus. Experiments using N-(3-triethylammonium propyl)-4-(dibutilamino)styryl-pyrodinum dibromide, transferrin, low-density lipoprotein, and selected anti-transferrin receptor and Rab protein antibodies revealed that CSs induced changes in endocytosis-dependent membrane traffic. Our data indicate that the CS-induced accumulation of cytoplasmic membrane components is a result of inhibited recycling within the late endocytic pathway. Furthermore, our results support the notion that the CS-induced changes in membrane traffic is mediated by the Na+, K(+)-ATPase. These phenomena were apparent in NT2 cells at nanomolar concentrations of CSs and were observed also in other human cell lines, pointing to the generality of this phenomenon. Based on these observations, we propose that the endogenous CS-like compounds are physiological regulators of recycling of endocytosed membrane proteins and cargo.
Collapse
Affiliation(s)
- Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute of Microbiology, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
246
|
G Proteins and Cyclic Nucleotides. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
247
|
Xie J, Qian L, Wang Y, Rose CM, Yang T, Nakamura T, Hamm-Alvarez SF, Mircheff AK. Novel biphasic traffic of endocytosed EGF to recycling and degradative compartments in lacrimal gland acinar cells. J Cell Physiol 2004; 199:108-25. [PMID: 14978740 DOI: 10.1002/jcp.10458] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to delineate the traffic patterns of EGF and EGF receptors (EGFR) in primary cultured acinar epithelial cells from rabbit lacrimal glands. Uptake of [(125)I]-EGF exhibited saturable and non-saturable, temperature-dependent components, suggesting both receptor-mediated and fluid phase endocytosis. Accumulation of [(125)I] was time-dependent over a 120-min period, but the content of intact [(125)I]-EGF decreased after reaching a maximum at 20 min. Analytical fractionation by sorbitol density gradient centrifugation and phase partitioning indicated that within 20 min at 37 degrees C [(125)I] reached an early endosome, basal-lateral recycling endosome, pre-lysosome, and lysosome. Small components of the label also appeared to reach the Golgi complex and trans-Golgi network. Intact [(125)I]-EGF initially accumulated in the recycling endosome; the content in the recycling endosome subsequently decreased, and by 120 min increased amounts of [(125)I]-labeled degradation products appeared in the pre-lysosomes and lysosomes. Confocal microscopy imaging of FITC-EGF and LysoTrackerRed revealed FITC enriched in a dispersed system of non-acidic compartments at 20 min and in acidic compartments at 120 min. Both confocal immunofluorescence microscopy and analytical fractionation indicated that the intracellular EGFR pool was much larger than the plasma membrane-expressed pool at all times. Cells loaded with [(125)I]-EGF released a mixture of intact EGF and [(125)I]-labeled degradation products. The observations indicate that in lacrimal acinar cells, EGFR and EGF-EGFR complexes continually traffic between the plasma membranes and a system of endomembrane compartments; EGF-stimulation generates time-dependent signals that initially decrease, then increase, EGF-EGFR traffic to degradative compartments.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Physiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev 2003; 55:1421-37. [PMID: 14597139 DOI: 10.1016/j.addr.2003.07.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rab GTPases serve as master regulators of vesicular membrane transport on both the exo- and endocytic pathways. In their active forms, rab proteins serve in cargo selection and as scaffolds for the sequential assembly of effectors requisite for vesicle budding, cytoskeletal transport, and target membrane fusion. Rab protein function is in turn tightly regulated at the level of protein expression, localization, membrane association, and activation. Alterations in the rab GTPases and associated regulatory proteins or effectors have increasingly been implicated in causing human disease. Some diseases such as those resulting in bleeding and pigmentation disorders (Griscelli syndrome), mental retardation, neuropathy (Charcot-Marie-Tooth), kidney disease (tuberous sclerosis), and blindness (choroideremia) arise from direct loss of function mutations of rab GTPases or associated regulatory molecules. In contrast, in a number of cancers (prostate, liver, breast) as well as vascular, lung, and thyroid diseases, the overexpression of select rab GTPases have been tightly correlated with disease pathogenesis. Unique therapeutic opportunities lie ahead in developing strategies that target rab proteins and modulate the endocytic pathway.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
249
|
Khor R, McElroy LJ, Whittaker GR. The Ubiquitin-Vacuolar Protein Sorting System is Selectively Required During Entry of Influenza Virus into Host Cells. Traffic 2003; 4:857-68. [PMID: 14617349 DOI: 10.1046/j.1398-9219.2003.0140.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influenza virus enters cells by endocytosis, and requires the low pH of the late endosome for successful infection. Here, we investigated the requirements for sorting into the multivesicular body pathway of endocytosis. We show that treatment of host cells with the proteasome inhibitors MG132 and lactacystin directly affects the early stages of virus replication. Unlike other viruses, such as retroviruses, influenza virus budding was not affected. The requirement for proteasome function was not shared by two other pH-dependent viruses: Semliki Forest virus and vesicular stomatitis virus. With MG132 treatment, incoming influenza viruses were retained in endosomes that partially colocalized with mannose 6-phosphate receptor, but not with classical markers of early or late endosomes. Colocalization was also observed with Rme-1, which is part of the recycling pathway of endocytosis. In addition, influenza virus entry was dependent on the vacuolar protein sorting pathway, as over-expression of dominant-negative hVPS4 caused arrest of viruses in endosome-like populations that partially colocalized with the hVPS4 protein. Overall, we conclude that influenza virus selectively requires the ubiquitin/vacuolar protein sorting pathway for entry into host cells, and that it must communicate with a specific cellular machinery for intracellular sorting during the initial phase of virus infection.
Collapse
Affiliation(s)
- Rebecca Khor
- Department of Microbiology & Immunology, Cornell University, Ithaca NY 14853, USA
| | | | | |
Collapse
|
250
|
Mizutani T, Kobayashi M, Eshita Y, Shirato K, Kimura T, Ako Y, Miyoshi H, Takasaki T, Kurane I, Kariwa H, Umemura T, Takashima I. Involvement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection of West Nile virus. INSECT MOLECULAR BIOLOGY 2003; 12:491-499. [PMID: 12974954 DOI: 10.1046/j.1365-2583.2003.00435.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We recently cloned a c-Jun amino-terminal kinase (JNK) sequence from the C6/36 cell line, derived from the mosquito Aedes albopictus. We showed that SP600125, an inhibitor of JNK proteins, inhibits phagocytosis by C6/36 cells, suggesting that the JNK-like protein regulates phagocytosis. Here, we show that C6/36 cells constitutively express low levels of mRNA encoding the antibacterial peptides, cecropin and defensin, but that these mRNAs were up-regulated upon stimulation by lipopolysaccharide (LPS). Thus, the C6/36 cells have properties similar to those of mammalian macrophages. To characterize further the functional properties of C6/36 cells, we have assayed the role of the JNK-like protein in phagocytosis, endocytosis, and viral infection. C6/36 cells phagocytosed bacteria and artificial beads, and this was only slightly up-regulated following LPS stimulation, suggesting that newly stimulated JNK-like protein was not necessary for phagocytosis. SP600125 inhibited the acidification of intracellular compartments, including those involved in the endocytic pathway. Pretreatment of C6/36 cells with SP600125 or bafilomycin A1, but not cytochalasin D, inhibited the entry of West Nile virus (WNV), suggesting that WNV is internalized mainly by endocytosis, and that the JNK signalling pathway is important for endocytic entry. These findings indicate that the JNK-like protein regulates basic physiological functions, including phagocytosis and endocytosis and infection of WNV.
Collapse
Affiliation(s)
- T Mizutani
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|