201
|
Clinical Characteristics, Treatments and Outcomes of 18 Lung Transplant Recipients with COVID-19. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report clinical features, treatments and outcomes in 18 lung transplant recipients with laboratory confirmed SARS-CoV-2 infection. We performed a single center, retrospective case series study of lung transplant recipients, who tested positive for SARS-CoV-2 between 1 February 2020 and 1 March 2021. Clinical, laboratory and radiology findingswere obtained. Treatment regimens and patient outcome data were obtained by reviewing the electronic medical record. Mean age was 49.9 (22–68) years, and twelve (67%) patients were male. The most common symptoms were fever (n = 9, 50%), nausea/vomiting (n = 7, 39%), cough (n = 6, 33%), dyspnea (n = 6, 33%) and fatigue (n = 6, 33%). Headache was reported by five patients (28%). The most notable laboratory findings were elevated levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH). Computed Tomography (CT) of the chest was performed in all hospitalized patients (n = 11, 7%), and showed ground-glass opacities (GGO) in 11 patients (100%), of whom nine (82%) had GGO combined with pulmonary consolidations. Six (33%) patients received remdesivir, five (28%) intravenous dexamethasone either alone or in combination with remdesivir, and 15 (83%) were treated with broad spectrum antibiotics including co-amoxicillin, tazobactam-piperacillin and meropenem. Four (22%) patients were transferred to the intensive care unit, two patients (11%) required invasive mechanical ventilation who could not be successfully extubated and died. Eighty-nine percent of our patients survived COVID-19 and were cured. Two patients with severe COVID-19 did not survive.
Collapse
|
202
|
Ulinici M, Covantev S, Wingfield-Digby J, Beloukas A, Mathioudakis AG, Corlateanu A. Screening, Diagnostic and Prognostic Tests for COVID-19: A Comprehensive Review. Life (Basel) 2021; 11:561. [PMID: 34198591 PMCID: PMC8231764 DOI: 10.3390/life11060561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
While molecular testing with real-time polymerase chain reaction (RT-PCR) remains the gold-standard test for COVID-19 diagnosis and screening, more rapid or affordable molecular and antigen testing options have been developed. More affordable, point-of-care antigen testing, despite being less sensitive compared to molecular assays, might be preferable for wider screening initiatives. Simple laboratory, imaging and clinical parameters could facilitate prognostication and triage. This comprehensive review summarises current evidence on the diagnostic, screening and prognostic tests for COVID-19.
Collapse
Affiliation(s)
- Mariana Ulinici
- Department of Preventive Medicine, Discipline Microbiology and Immunology, State University of Medicine and Pharmacy “Nicolae Testemitanu”, 2004 Chisinau, Moldova;
| | - Serghei Covantev
- Department of Respiratory Medicine, State University of Medicine and Pharmacy “Nicolae Testemitanu”, 2004 Chisinau, Moldova;
| | - James Wingfield-Digby
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (J.W.-D.); (A.G.M.)
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (J.W.-D.); (A.G.M.)
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Alexandru Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy “Nicolae Testemitanu”, 2004 Chisinau, Moldova;
| |
Collapse
|
203
|
Ulinici M, Covantev S, Wingfield-Digby J, Beloukas A, Mathioudakis AG, Corlateanu A. Screening, Diagnostic and Prognostic Tests for COVID-19: A Comprehensive Review. Life (Basel) 2021. [DOI: doi.org/10.3390/life11060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While molecular testing with real-time polymerase chain reaction (RT-PCR) remains the gold-standard test for COVID-19 diagnosis and screening, more rapid or affordable molecular and antigen testing options have been developed. More affordable, point-of-care antigen testing, despite being less sensitive compared to molecular assays, might be preferable for wider screening initiatives. Simple laboratory, imaging and clinical parameters could facilitate prognostication and triage. This comprehensive review summarises current evidence on the diagnostic, screening and prognostic tests for COVID-19.
Collapse
|
204
|
Baroiu L, Dumitru C, Iancu A, Leșe AC, Drăgănescu M, Baroiu N, Anghel L. COVID-19 impact on the liver. World J Clin Cases 2021; 9:3814-3825. [PMID: 34141738 PMCID: PMC8180204 DOI: 10.12998/wjcc.v9.i16.3814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic imposed arestructuring of global health systems by rethinking spaces used for the care of these patients and the additions of intensive care, infectious diseases and pneumology departments. This paper provides evidence on the presence of severe acute respiratory syndrome coronavirus 2 in hepatocytes and its direct cytopathic activity, as well as the degree of liver damage due to drug toxicity, inflammation and hypoxia in COVID-19. A review of clinical trials has quantified liver damage through both pathology and biochemistry studies. Additionally, we briefly present the results of a study conducted in our clinic on 849 patients admitted for COVID-19 treatment, of which 31 patients had pre-existing chronic liver disease and 388 patients had values above the normal limit for alanine aminotransferase, aspartate aminotransferase, and total bilirubin. It was observed that patients with abnormal liver tests were significantly statistically older, had more comorbidities and had a higher percentage of unfavourable evolution (death or transfer to intensive care). The conclusion of this paper is that the main causes of liver damage are direct viral aggression, coagulation dysfunction and endothelial damage, and patients with impaired liver function develop more severe forms of COVID-19 which requires special care by a multidisciplinary team that includes a hepatologist.
Collapse
Affiliation(s)
- Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| | - Alina Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| | - Ana-Cristina Leșe
- Design Department, Faculty of Visual Arts and Design, “George Enescu” National University of Arts, Iasi 700451, Romania
| | - Miruna Drăgănescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| | - Nicușor Baroiu
- Department of Manufacturing Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| | - Lucreția Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati 800008, Romania
| |
Collapse
|
205
|
Barbeta E, Benegas M, Sánchez M, Motos A, Ferrer M, Ceccato A, Lopez R, Bueno L, -Artigas RM, Ferrando C, Fernández-Barat L, Albacar N, Badia JR, López T, Sandoval E, Toapanta D, Castro P, Soriano A, Torres A. [Risk Factors and Clinical Impact of Fibrotic-Like Changes and the Organizing Pneumonia Pattern in Patients with COVID-19- and Non-COVID-19-induced Acute Respiratory Distress Syndrome.]. Arch Bronconeumol 2021; 58:183-187. [PMID: 34108796 PMCID: PMC8177312 DOI: 10.1016/j.arbres.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Enric Barbeta
- Pulmonology and Respiratory Intensive Care Unit. Respiratory Institute. Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,Intensive Care Unit. Sagrat Cor University Hospital, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Mariana Benegas
- Radiology Department. Centre de Diagnòstic per la Imatge Clínic. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marcelo Sánchez
- Radiology Department. Centre de Diagnòstic per la Imatge Clínic. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Anna Motos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Miquel Ferrer
- Pulmonology and Respiratory Intensive Care Unit. Respiratory Institute. Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Adrián Ceccato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,Intensive Care Unit. Sagrat Cor University Hospital, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Rubén Lopez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Leticia Bueno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Ricard Mellado -Artigas
- Anesthesiology and Surgical Intensive Care Unit. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carlos Ferrando
- Anesthesiology and Surgical Intensive Care Unit. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laia Fernández-Barat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Nuria Albacar
- Pulmonology and Respiratory Intensive Care Unit. Respiratory Institute. Hospital Clinic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Joan Ramon Badia
- Pulmonology and Respiratory Intensive Care Unit. Respiratory Institute. Hospital Clinic of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | - Teresa López
- Cardiac Intensive Care Unit, Cardiology. Cardiovascular Institute. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Elena Sandoval
- Cardiac Surgery Intensive Care Unit. Cardiovascular Institute. Hospital Clinic of Barcelona, Barcelona, Spain
| | - David Toapanta
- Liver Intensive Care Unit. Metabolic and Digestive Disease Institute. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Pedro Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Medical Intensive Care Unit. Internal Medicine and Dermatology Institute. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Infectious Diseases Department. Internal Medicine and Dermatology Institute. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Pulmonology and Respiratory Intensive Care Unit. Respiratory Institute. Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Spain.,University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
206
|
Kamel AM, Monem MSA, Sharaf NA, Magdy N, Farid SF. Efficacy and safety of azithromycin in Covid-19 patients: A systematic review and meta-analysis of randomized clinical trials. Rev Med Virol 2021; 32:e2258. [PMID: 34077600 PMCID: PMC8209938 DOI: 10.1002/rmv.2258] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Azithromycin (AZM) is commonly used in Covid‐19 patients based on low‐quality evidence, increasing the risk of developing adverse events and antimicrobial resistance. The current systematic review and meta‐analysis investigated the safety and efficacy of AZM in treating Covid‐19 patients using published randomized controlled trials. Google Scholar, PubMed, Scopus, Cochrane Library, Clinical Trials.gov, MEDLINE, bioRxiv and medRxiv were searched for relevant studies. The random‐effects model was used to pool estimates using the Paule–Mandel estimate for heterogeneity. The odds ratio and raw difference in medians were used for dichotomous and continuous outcomes, respectively. The analysis included seven studies with 8822 patients (median age, 55.8 years; 61% males). The risk of bias was assessed as ‘low’ for five of the seven mortality results and as ‘some concerns’ and ‘high’ in one trial each. There were 657/3100 (21.2%) and 1244/5654 (22%) deaths among patients randomized to AZM and standard of care, respectively. The use of AZM was not associated with mortality in Covid‐19 patients (OR = 0.96, 95% CI 0.88–1.05, p = 0.317 based on the random‐effect meta‐analysis). The use of AZM was not associated with need for invasive mechanical ventilation (OR = 0.96, 95% CI 0.49–1.87, p = 0.85) and length of stay (Δ = 1.11, 95% CI −2.08 to 4.31, p = 0.49). The results show that using AZM as routine therapy in Covid‐19 patients is not justified due to lack of efficacy and potential risk of bacterial resistance that is not met by an increased clinical benefit.
Collapse
Affiliation(s)
- Ahmed M Kamel
- Department of Clinical Pharmacy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona S A Monem
- Department of Clinical Pharmacy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Nour A Sharaf
- Department of Clinical Pharmacy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada Magdy
- Department of Clinical Pharmacy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar F Farid
- Department of Clinical Pharmacy, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
207
|
Asseri AA, Shati AA, Al-Qahtani SM, Alzaydani IA, Al-Jarie AA, Alaliani MJ, Ali AS. Distinctive clinical and laboratory features of COVID-19 and H1N1 influenza infections among hospitalized pediatric patients. World J Pediatr 2021; 17:272-279. [PMID: 33970449 PMCID: PMC8108014 DOI: 10.1007/s12519-021-00432-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND It had been documented in many studies that pediatric coronavirus disease 2019 (COVID-19) is characterized by low infectivity rates, low mortalities, and benign disease course. On the other hand, influenza type A viruses are recognized to cause severe and fatal infections in children populations worldwide. This study is aimed to compare the clinical and laboratory characteristics of COVID-19 and H1N1 influenza infections. METHODS A retrospective study comprising 107 children hospitalized at Abha Maternity and Children Hospital, Southern region of Saudi Arabia, with laboratory-confirmed COVID-19 and H1N1 influenza infections was carried out. A complete follow-up for all patients from the hospital admission until discharge or death was made. The clinical data and laboratory parameters for these patients were collected from the medical records of the hospital. RESULTS Out of the total enrolled patients, 73 (68.2%) were diagnosed with COVID-19, and 34 (31.8%) were diagnosed with H1N1 influenza. The median age is 12 months for COVID-19 patients and 36 months for influenza patients. A relatively higher number of patients with influenza had a fever and respiratory symptoms than COVID-19 patients. In contrast, gastrointestinal symptoms were observed in a higher number of COVID-19 patients than in influenza patients. A statistically significant increase in white cell counts is noted in COVID-19 but not in influenza patients (P < 0.05). There are no obvious variations in the mean period of duration of hospitalization between COVID-19 and influenza patients. However, the total intensive care unit length of stay was longer for influenza compared to COVID-19 patients. CONCLUSIONS A considerable number of children infected with COVID-19 and H1N1 influenza were noted and reported in this study. There were no significant variations in the severity of the symptomatology and laboratory findings between the two groups of patients. Significant differences between these patients in some hospitalization factors and diagnosis upon admission also were not observed. However, more severe clinical manifestations and serious consequences were observed among pediatric patients hospitalized with influenza infections than among those with COVID-19.
Collapse
Affiliation(s)
- Ali Alsuheel Asseri
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| | - Ayed A Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim A Alzaydani
- Department of Pediatrics, Abha Maternity and Children Hospital, Abha, Saudi Arabia
| | - Ahmed A Al-Jarie
- Department of Pediatrics, Abha Maternity and Children Hospital, Abha, Saudi Arabia
| | - Mohammed J Alaliani
- General Directorate of Health Affairs, Infection Prevention and Control Administration, Aseer Region, Ministry of Health, Abha, Saudi Arabia
| | - Abdelwahid Saeed Ali
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
208
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila MA, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep 2021; 35:109197. [PMID: 34043946 PMCID: PMC8118641 DOI: 10.1016/j.celrep.2021.109197] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over 950,000 whole-genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been determined for viruses isolated from around the world. These sequences are critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We isolate one of these mutant viruses from a patient sample and use viral challenge experiments to link this isolate (ORF7aΔ115) to a growth defect. ORF7a is implicated in immune modulation, and we show that the C-terminal truncation negates anti-immune activities of the protein, which results in elevated type I interferon response to the viral infection. Collectively, this work indicates that ORF7a mutations occur frequently, and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
209
|
Somagutta MKR, Lourdes Pormento MK, Hamid P, Hamdan A, Khan MA, Desir R, Vijayan R, Shirke S, Jeyakumar R, Dogar Z, Makkar SS, Guntipalli P, Ngardig NN, Nagineni MS, Paul T, Luvsannyam E, Riddick C, Sanchez-Gonzalez MA. The Safety and Efficacy of Anakinra, an Interleukin-1 Antagonist in Severe Cases of COVID-19: A Systematic Review and Meta-Analysis. Infect Chemother 2021; 53:221-237. [PMID: 34216117 PMCID: PMC8258297 DOI: 10.3947/ic.2021.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
This study aims to assess anakinra's safety and efficacy for treating severe coronavirus disease 2019 (COVID-19). Numerous electronic databases were searched and finally 15 studies with a total of 3,530 patients, 757 in the anakinra arm, 1,685 in the control arm were included. The pooled adjusted odds ratio (OR) for mortality in the treatment arm was 0.34 (95% confidence interval [CI], 0.21 - 0.54, I² = 48%), indicating a significant association between anakinra and mortality. A significant association was found regarding mechanical ventilation requirements in anakinra group compared to the control group OR, 0.68 (95% CI, 0.49 - 0.95, I² = 50%). For the safety of anakinra, we evaluated thromboembolism risk and liver transaminases elevation. Thromboembolism risk was OR, 1.59 (95% CI, 0.65 - 3.91, I² = 0%) and elevation in liver transaminases with OR was 1.35 (95% CI, 0.61 - 3.03, I² = 76%). Both were not statistically significant over the control group. Anakinra is beneficial in lowering mortality in COVID-19 patients. However, these non-significant differences in the safety profile between the anakinra and control groups may have been the result of baseline characteristics of the intervention group, and further studies are essential in evaluating anakinra's safety profile.
Collapse
Affiliation(s)
- Manoj Kumar Reddy Somagutta
- Larkin Community Hospital, Miami, FL, USA
- California Institute of Behavioral Neurosciences & Psychology, Fairfield, CA, USA.
| | | | - Pousette Hamid
- California Institute of Behavioral Neurosciences & Psychology, Fairfield, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Wang Y, Pang SC, Yang Y. A potential association between immunosenescence and high COVID-19 related mortality among elderly patients with cardiovascular diseases. Immun Ageing 2021; 18:25. [PMID: 34074305 PMCID: PMC8166579 DOI: 10.1186/s12979-021-00234-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Elderly patients with cardiovascular diseases account for a large proportion of Corona virus Disease 2019(COVID-19)related deaths. COVID-19, as a new coronavirus, mainly targets the patient's lung triggering a cascade of innate and adaptive immune responses in the host. The principal causes of death among COVID-19 patients, especially elderly subjects with cardiovascular diseases, are acute respiratory distress syndrome(ARDS), multiple organ dysfunction syndrome (MODS), and microvascular thrombosis. All prompted by an excessive uncontrolled systemic inflammatory response. Immunosenescence, characterized by systemic and chronic inflammation as well as innate/adaptive immune imbalance, presents both in the elderly and cardiovascular patients. COVID-19 infection further aggravates the existing inflammatory process and lymphocyte depletion leading to uncontrollable systemic inflammatory responses, which is the primary cause of death. Based on the higher mortality, this study attempts to elucidate the pathophysiological mechanisms of COVID-19 in elderly subjects with cardiovascular diseases as well as the cause of the high mortality result from COVID-19.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Cardiology, Hangzhou Xiacheng Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310004, Zhejiang, China
| | - Shu-Chao Pang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Yang
- Department of Cardiology, SirRunRunShaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
211
|
Zheng M. Cellular Tropism of SARS-CoV-2 across Human Tissues and Age-related Expression of ACE2 and TMPRSS2 in Immune-inflammatory Stromal Cells. Aging Dis 2021; 12:718-725. [PMID: 34094637 PMCID: PMC8139212 DOI: 10.14336/ad.2021.0429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Recently, emerging evidence has indicated that COVID-19 represents a major threat to older populations, but the underlying mechanisms remain unclear. The pathogen causing COVID-19 is acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection depends on the key entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Recognizing the importance of ACE2 and TMPRSS2 for the cellular tropism of SARS-CoV-2, we analyzed and presented the landscape of cell-type identities for ACE2+ TMPRSS2+ cells across different human tissues and the age-related alterations in ACE2 and TMPRSS2 expression across different cell types. Additionally, most of the post-acute COVID-19 sequelae could attribute to the ACE2-expressing organ systems. Therefore, these SARS-CoV-2 tropism data should be an essential resource for guiding clinical treatment and pathological studies, which should draw attention toward the prioritization of COVID-19 research in the future. Notably, we discovered the age-related expression of ACE2 and TMPRSS2 in the immune-inflammatory stromal cells, implying the potential interplay between COVID-19, stromal cells, and aging. In this study, we developed a novel and practical analysis framework for mapping the cellular tropism of SARS-CoV-2. This approach was built to aid the identification of viral-specific cell types and age-related alterations of viral tropism, highlighting the power of single-cell RNA sequencing (scRNA-seq) to address viral pathogenesis systematically. With the rapid accumulation of scRNA-seq data and the continuously increasing insight into viral entry factors, we anticipate that this scRNA-seq-based approach will attract broader interest in the virus research communities.
Collapse
Affiliation(s)
- Ming Zheng
- 1Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,2Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, China
| |
Collapse
|
212
|
Coccia M. The impact of first and second wave of the COVID-19 pandemic in society: comparative analysis to support control measures to cope with negative effects of future infectious diseases. ENVIRONMENTAL RESEARCH 2021; 197:111099. [PMID: 33819476 PMCID: PMC8017951 DOI: 10.1016/j.envres.2021.111099] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 05/07/2023]
Abstract
The goal of this study is a comparative analysis of the first and second wave of the Coronavirus disease 2019 (COVID-19) to assess the impact on health of people for designing effective policy responses to constrain negative effects of future pandemic waves of COVID-19 and similar infectious diseases in society. The research here focuses on a case study of Italy, one of the first countries to experience a rapid increase in numbers of COVID-19 related infected individuals and deaths. Statistical analyses, based on daily data from February 2020 to February 2021, suggest that the first wave of COVID-19 pandemic in Italy had a high negative impact on health of people over February-May 2020 period; after that, negative effects declined from June 2020 onwards. Second wave of COVID-19 pandemic from August 2020 to February 2021 had a growing incidence of confirmed cases also associated with variants of coronavirus, whereas admissions to Intensive Care Units and total deaths had lower levels compared to first wave of COVID-19. Lessons learned of this comparative analysis between first and second wave of the COVID-19 pandemic in Italy can be generalized in similar geo-economic areas to support effective policy responses of crisis management to constrain the negative impact on health of people of recurring waves of COVID-19 pandemic and similar infectious diseases in future.
Collapse
Affiliation(s)
- Mario Coccia
- CNR -- National Research Council of Italy, Via Real Collegio, N. 30 (Collegio Carlo Alberto), 10024, Moncalieri (TO), Italy.
| |
Collapse
|
213
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
214
|
Zheng H, Zhu J, Xie W, Zhong J. Reinforcement Learning Assisted Oxygen Therapy for COVID-19 Patients Under Intensive Care. ARXIV 2021:arXiv:2105.08923v2. [PMID: 34031644 PMCID: PMC8142656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/07/2021] [Indexed: 11/10/2022]
Abstract
Background Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an essential treatment. We developed a machine learning algorithm, based on deep Reinforcement Learning (RL), for continuous management of oxygen flow rate for critically ill patients under intensive care, which can identify the optimal personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical practice. Methods We modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov decision process. Based on individual patient characteristics and health status, an optimal oxygen control policy is learned by using deep deterministic policy gradient (DDPG) and real-time recommends the oxygen flow rate to reduce the mortality rate. We assessed the performance of proposed methods through cross validation by using a retrospective cohort of 1,372 critically ill patients with COVID-19 from New York University Langone Health ambulatory care with electronic health records from April 2020 to January 2021. Results The mean mortality rate under the RL algorithm is lower than the standard of care by 2.57% (95% CI: 2.08-3.06) reduction (P<0.001) from 7.94% under the standard of care to 5.37 % under our proposed algorithm. The averaged recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14-1.42) lower than the rate delivered to patients. Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce the mortality rate, while saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during the COVID-19 pandemic. Conclusions A personalized reinforcement learning oxygen flow control algorithm for COVID-19 patients under intensive care showed a substantial reduction in 7-day mortality rate as compared to the standard of care. In the overall cross validation cohort independent of the training data, mortality was lowest in patients for whom intensivists' actual flow rate matched the RL decisions.
Collapse
Affiliation(s)
- Hua Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Jiahao Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Wei Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Judy Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, 180 Madison Avenue, New York, NY 10016
| |
Collapse
|
215
|
Chinnici CM, Russelli G, Bulati M, Miceli V, Gallo A, Busà R, Tinnirello R, Conaldi PG, Iannolo G. Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-19 infection treatment. World J Gastroenterol 2021; 27:1905-1919. [PMID: 34007129 PMCID: PMC8108038 DOI: 10.3748/wjg.v27.i17.1905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Due to their immunomodulatory potential and release of trophic factors that promote healing, mesenchymal stromal cells (MSCs) are considered important players in tissue homeostasis and regeneration. MSCs have been widely used in clinical trials to treat multiple conditions associated with inflammation and tissue damage. Recent evidence suggests that most of the MSC therapeutic effects are derived from their secretome, including the extracellular vesicles, representing a promising approach in regenerative medicine application to treat organ failure as a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome coronavirus, caused by the newly identified agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all available instruments to fight the infection, including the inflammatory cascade caused by this pandemic disease. The use of MSCs is a valid approach to combat organ inflammation in different compartments. In addition to the lungs, which are considered the main inflammatory target for this virus, other organs are compromised by the infection. In particular, the liver is involved in the inflammatory response to SARS-CoV-2 infection, which causes organ failure, leading to death in coronavirus disease 2019 (COVID-19) patients. We herein summarize the current implications derived from the use of MSCs and their soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-based therapy in this clinical setting.
Collapse
Affiliation(s)
- Cinzia Maria Chinnici
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
- Department of Regenerative Medicine, Fondazione Ri.MED, Palermo 90127, Italy
| | - Giovanna Russelli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Vitale Miceli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Rosaria Tinnirello
- Neuroscience Unit, CNR Institute of Biomedicine and Molecular Immunology, Palermo 90146, Italy
| | - Pier Giulio Conaldi
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| |
Collapse
|
216
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
217
|
Dincer B, Yıldırım Ayaz E, Oğuz A. Changes in Sexual Functions and Alexithymia Levels of Patients with Type 2 Diabetes During the COVID-19 Pandemic. SEXUALITY AND DISABILITY 2021; 39:461-478. [PMID: 33967358 PMCID: PMC8093367 DOI: 10.1007/s11195-021-09693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
This study was conducted to determine the changes in sexual functioning and alexithymia levels in patients with type 2 diabetes during the COVID-19 pandemic. This descriptive, cross-sectional study was conducted with 162 patients with type 2 diabetes. Data were collected using the Information Form, Toronto Alexithymia Scale, Hospital Anxiety and Depression Scale. For 83.3% of the participants, there was a decrease in sexual functioning after diabetes, 69.8% after the COVID-19 pandemic, and 67.2% due to both conditions. The majority of the patients stated the reasons for experiencing sexual problems related to not seeing sexuality as a priority (77.1%), and stress/anxiety experienced during the COVID-19 pandemic (67.9%). Moreover, patients' alexithymia, anxiety, and depression levels were found to be high during the pandemic, when the study was conducted. A positive correlation was identified between alexithymia and anxiety and depression. Further, multiple regression results indicated that about 50% of alexithymia levels could be explained by anxiety and depression levels. The anxiety, depression, and alexithymia scores of those who had decreased sexual functioning before and during the pandemic period were statistically significantly higher than those who did not have any change (p < 0.01). During the COVID-19 pandemic when the study was conducted, high levels of alexithymia, anxiety, and depression were observed in participants, and it was found that their sexual functioning was negatively affected. Healthcare professionals should evaluate their patients in extraordinary situations such as epidemics and pandemics in terms of sexual functioning as well as other vital functions.
Collapse
Affiliation(s)
- Berna Dincer
- Department of Medical Nursing, Faculty of Health Sciences, Istanbul Medeniyet University, Şehit Hakan Kurban Street, No 44, 34862 Kartal, İstanbul, Turkey
| | - Elif Yıldırım Ayaz
- Sultan Abdülhamid Han Training and Research Hospital, Internal Medicine Clinic, Sağlık Bilimleri University, Istanbul, Turkey
| | - Aytekin Oğuz
- Istanbul Medeniyet University Training and Research Hospital, Internal Medicine Clinic, Istanbul, Turkey
| |
Collapse
|
218
|
Pan Y, Gao F, Zhao S, Han J, Chen F. Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin Exp Pharmacol Physiol 2021; 48:637-650. [PMID: 33565127 PMCID: PMC8014301 DOI: 10.1111/1440-1681.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Fei Gao
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Shuai Zhao
- Department of AnesthesiologyBonn UniversityBonnGermany
| | - Jinming Han
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Fan Chen
- Department of NeurosurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| |
Collapse
|
219
|
Sayah W, Berkane I, Guermache I, Sabri M, Lakhal FZ, Yasmine Rahali S, Djidjeli A, Lamara Mahammed L, Merah F, Belaid B, Berkani L, Lazli NZ, Kheddouci L, Kadi A, Ouali M, Khellafi R, Mekideche D, Kheliouen A, Hamidi RM, Ayoub S, Raaf NB, Derrar F, Gharnaout M, Allam I, Djidjik R. Interleukin-6, procalcitonin and neutrophil-to-lymphocyte ratio: Potential immune-inflammatory parameters to identify severe and fatal forms of COVID-19. Cytokine 2021; 141:155428. [PMID: 33550165 PMCID: PMC7834734 DOI: 10.1016/j.cyto.2021.155428] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/08/2023]
Abstract
Accumulating evidence supports that the viral-induced hyper-inflammatory immune response plays a central role in COVID-19 pathogenesis. It might be involved in the progression to acute respiratory distress syndrome (ARDS), multi-organ failure leading to death. In this study, we aimed to evaluate the prognostic value of the immune-inflammatory biomarkers in COVID-19, then determine optimal thresholds for assessing severe and fatal forms of this disease.153 patients with confirmed COVID-19 were included in this study, and classified into non-severe and severe groups. Plasmatic levels of interleukin 6 (IL6), C-reactive protein (CRP), soluble-IL2 receptor (IL2Rα), procalcitonin (PCT) and ferritin were measured using chemiluminescence assay. Complete blood count was performed by Convergys 3X® hematology analyzer. Our results demonstrated that the peripheral blood levels of IL6, PCT, CRP, ferritin, IL2Rα, white blood cell count (WBC), neutrophil count (NEU), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (d-NLR) were significantly higher in severe forms of COVID-19. The ROC curve analysis showed that IL6 was the most accurate inflammatory biomarker. The calculated cutoff of IL6 (42 pg/ml) could correctly classify > 90% of patients regarding their risk of severity (area under ROC curve (AUROC) = 0.972) and the threshold value of 83 pg/ml was highly predictive of the progression to death (AUROC = 0.94, OR = 184) after a median of 3 days. Besides, IL-6 was positively correlated with other inflammatory markers and the kinetic analysis highlighted its value for monitoring COVID-19 patients. PCT and NLR had also a high prognostic relevance to assess severe forms of COVID-19 with corresponding AUROC of 0.856, 0.831 respectively. Furthermore the cut-off values of PCT (0.16 ng/ml) and NLR (7.4) allowed to predict mortality with high accuracy (se = 96.3%, sp = 70.5%,OR = 61.2)' (se = 75%, sp = 84%, OR = 14.6).The levels of these parameters were not influenced by corticosteroid treatment, which make them potential prognostic markers when patients are already undergoing steroid therapy.
Collapse
Affiliation(s)
- Wafa Sayah
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Ismahane Berkane
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Imène Guermache
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Mohamed Sabri
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Fatma Zahra Lakhal
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Sarah Yasmine Rahali
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Asma Djidjeli
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Lydia Lamara Mahammed
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Fatma Merah
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Brahim Belaid
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Lilya Berkani
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Nouzha Zhor Lazli
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Lylia Kheddouci
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Ahmed Kadi
- Pneumology Department A, Béni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Mourad Ouali
- Intensive Care Department Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Rachida Khellafi
- Pneumology Department B, Béni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Dalila Mekideche
- Pneumology Department C, Béni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Assia Kheliouen
- Pneumology Department A, Béni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Réda Malek Hamidi
- Intensive Care Department Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Soraya Ayoub
- Internal Medicine Department Beni-Messous, Teaching Hospital, University of Algiers 1, Algeria
| | | | - Fawzi Derrar
- Virology Department, Institut Pasteur d'Algérie, Algiers, Algeria
| | - Merzak Gharnaout
- Pneumology Department, Rouiba Hospital, University of Algiers 1, Algeria
| | - Ines Allam
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria
| | - Réda Djidjik
- Immunology Department, Beni-Messous Teaching Hospital, University of Algiers 1, Algeria.
| |
Collapse
|
220
|
Wu H, Liu S, Luo H, Chen M. Progress in the Clinical Features and Pathogenesis of Abnormal Liver Enzymes in Coronavirus Disease 2019. J Clin Transl Hepatol 2021; 9:239-246. [PMID: 34007806 PMCID: PMC8111107 DOI: 10.14218/jcth.2020.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
With the rapid development of research on coronavirus disease 2019 (COVID-19), more and more attention has been drawn to its damage to extrapulmonary organs. There are increasing lines of evidence showing that liver injury is closely related to the severity of COVID-19, which may have an adverse impact on the progression and prognosis of the patients. What is more, severe acute respiratory syndrome coronavirus-2 infection, cytokine storm, ischemia/hypoxia reperfusion injury, aggravation of the primary liver disease and drug-induced liver injury may all contribute to the hepatic damage in COVID-19 patients; although, the drug-induced liver injury, especially idiosyncratic drug-induced liver injury, requires further causality confirmation by the updated Roussel Uclaf Causality Assessment Method published in 2016. Up to now, there is no specific regimen for COVID-19, and COVID-19-related liver injury is mainly controlled by symptomatic and supportive treatment. Here, we review the clinical features of abnormal liver enzymes in COVID-19 and pathogenesis of COVID-19-related liver injury based on the current evidence, which may provide help for clinicians and researchers in exploring the pathogenesis and developing treatment strategies.
Collapse
Affiliation(s)
| | | | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
221
|
Premkumar M, Kedarisetty CK. Cytokine Storm of COVID-19 and Its Impact on Patients with and without Chronic Liver Disease. J Clin Transl Hepatol 2021; 9:256-264. [PMID: 34007808 PMCID: PMC8111101 DOI: 10.14218/jcth.2021.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus pandemic has resulted in increased rates of hepatic decompensation, morbidity and mortality in patients suffering from existing liver disease, and deranged liver biochemistries in those without liver disease. In patients with cirrhosis with coronavirus disease 2019 (COVID-19), new onset organ failures manifesting as acute-on-chronic liver failure have also been reported. The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) also directly binds to enterocytes and cholangiocytes via the angiotensin converting enzyme receptor 2, although the lung remains the portal of entry. Superadded with the COVID-19 related bystander hepatitis, a systemic inflammatory response is noted due to unregulated macrophage activation syndrome and cytokine storm. However, the exact definition and diagnostic criteria of the 'cytokine storm' in COVID-19 are yet unclear. In addition, inflammatory markers like C-reactive protein, ferritin, D-dimer and procalcitonin are frequently elevated. This in turn leads to disease progression, activation of the coagulation cascade, vascular microthrombi and immune-mediated injury in different organ systems. Deranged liver chemistries are also noted due to the cytokine storm, and synergistic hypoxic or ischemic liver injury, drug-induced liver injury, and use of hepatotoxic antiviral agents all contribute to deranged liver chemistry. Control of an unregulated cytokine storm at an early stage may avert disease morbidity and mortality. Several immunomodulator drugs and repurposed immunosuppressive agents have been used in COVID-19 with varying degrees of success.
Collapse
Affiliation(s)
- Madhumita Premkumar
- Departments of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
222
|
Wu Y, Ma L, Cai S, Zhuang Z, Zhao Z, Jin S, Xie W, Zhou L, Zhang L, Zhao J, Cui J. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct Target Ther 2021; 6:167. [PMID: 33895773 PMCID: PMC8065320 DOI: 10.1038/s41392-021-00575-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.
Collapse
Affiliation(s)
- Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihui Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiyao Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingli Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
223
|
Rébillard RM, Charabati M, Grasmuck C, Filali-Mouhim A, Tastet O, Brassard N, Daigneault A, Bourbonnière L, Anand SP, Balthazard R, Beaudoin-Bussières G, Gasser R, Benlarbi M, Moratalla AC, Solorio YC, Boutin M, Farzam-Kia N, Descôteaux-Dinelle J, Fournier AP, Gowing E, Laumaea A, Jamann H, Lahav B, Goyette G, Lemaître F, Mamane VH, Prévost J, Richard J, Thai K, Cailhier JF, Chomont N, Finzi A, Chassé M, Durand M, Arbour N, Kaufmann DE, Prat A, Larochelle C. Identification of SARS-CoV-2-specific immune alterations in acutely ill patients. J Clin Invest 2021; 131:145853. [PMID: 33635833 DOI: 10.1172/jci145853] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.
Collapse
Affiliation(s)
- Rose-Marie Rébillard
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marc Charabati
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Camille Grasmuck
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Olivier Tastet
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nathalie Brassard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Audrey Daigneault
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Lyne Bourbonnière
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Sai Priya Anand
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Romain Gasser
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Mehdi Benlarbi
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Ana Carmena Moratalla
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marianne Boutin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Negar Farzam-Kia
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jade Descôteaux-Dinelle
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Antoine Philippe Fournier
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Elizabeth Gowing
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Annemarie Laumaea
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Hélène Jamann
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Boaz Lahav
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Florent Lemaître
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Victoria Hannah Mamane
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Jonathan Richard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Karine Thai
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jean-François Cailhier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, and
| | - Michaël Chassé
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Madeleine Durand
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Catherine Larochelle
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
224
|
Chowdhury MEH, Rahman T, Khandakar A, Al-Madeed S, Zughaier SM, Doi SAR, Hassen H, Islam MT. An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning. Cognit Comput 2021:1-16. [PMID: 33897907 PMCID: PMC8058759 DOI: 10.1007/s12559-020-09812-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable, and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on a dataset made public by Yan et al. in [1] of 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high-sensitivity C-reactive protein, and age (LNLCA)-acquired at hospital admission-were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate-, and high-risk groups using LNLCA cutoff values of 10.4 and 12.65 with the death probability less than 5%, 5-50%, and above 50%, respectively. The prognostic model, nomogram, and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.
Collapse
Affiliation(s)
| | - Tawsifur Rahman
- Department of Biomedical Physics & Technology, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | - Somaya Al-Madeed
- Department of Computer Science and Engineering, Qatar University, 2713 Doha, Qatar
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, Qatar University, 2713 Doha, Qatar
| | - Suhail A. R. Doi
- Department of Population Medicine, College of Medicine, Qatar University, 2713 Doha, Qatar
| | - Hanadi Hassen
- Department of Computer Science and Engineering, Qatar University, 2713 Doha, Qatar
| | - Mohammad T. Islam
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
225
|
Lin W, Fan J, Hu LF, Zhang Y, Ooi JD, Meng T, Jin P, Ding X, Peng LK, Song L, Tang R, Xiao Z, Ao X, Xiao XC, Zhou QL, Xiao P, Zhong Y. Single-cell analysis of angiotensin-converting enzyme II expression in human kidneys and bladders reveals a potential route of 2019 novel coronavirus infection. Chin Med J (Engl) 2021; 134:935-943. [PMID: 33879756 PMCID: PMC8078266 DOI: 10.1097/cm9.0000000000001439] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Since 2019, a novel coronavirus named 2019 novel coronavirus (2019-nCoV) has emerged worldwide. Apart from fever and respiratory complications, acute kidney injury has been observed in a few patients with coronavirus disease 2019. Furthermore, according to recent findings, the virus has been detected in urine. Angiotensin-converting enzyme II (ACE2) has been proposed to serve as the receptor for the entry of 2019-nCoV, which is the same as that for the severe acute respiratory syndrome. This study aimed to investigate the possible cause of kidney damage and the potential route of 2019-nCoV infection in the urinary system. METHODS We used both published kidney and bladder cell atlas data and new independent kidney single-cell RNA sequencing data generated in-house to evaluate ACE2 gene expression in all cell types in healthy kidneys and bladders. The Pearson correlation coefficients between ACE2 and all other genes were first generated. Then, genes with r values larger than 0.1 and P values smaller than 0.01 were deemed significant co-expression genes with ACE2. RESULTS Our results showed the enriched expression of ACE2 in all subtypes of proximal tubule (PT) cells of the kidney. ACE2 expression was found in 5.12%, 5.80%, and 14.38% of the proximal convoluted tubule cells, PT cells, and proximal straight tubule cells, respectively, in three published kidney cell atlas datasets. In addition, ACE2 expression was also confirmed in 12.05%, 6.80%, and 10.20% of cells of the proximal convoluted tubule, PT, and proximal straight tubule, respectively, in our own two healthy kidney samples. For the analysis of public data from three bladder samples, ACE2 expression was low but detectable in bladder epithelial cells. Only 0.25% and 1.28% of intermediate cells and umbrella cells, respectively, had ACE2 expression. CONCLUSION This study has provided bioinformatics evidence of the potential route of 2019-nCoV infection in the urinary system.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jue Fan
- Department of Bioinformatics and Data Science, Singleron Biotechnologies, Nanjing, Jiangsu 210032, China
| | - Long-Fei Hu
- Department of Bioinformatics and Data Science, Singleron Biotechnologies, Nanjing, Jiangsu 210032, China
| | - Yan Zhang
- Department of Bioinformatics and Data Science, Singleron Biotechnologies, Nanjing, Jiangsu 210032, China
| | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Long-Kai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Rong Tang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhou Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Cheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiao-Ling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
226
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
227
|
Saris A, Reijnders TDY, Nossent EJ, Schuurman AR, Verhoeff J, Asten SV, Bontkes H, Blok S, Duitman J, Bogaard HJ, Heunks L, Lutter R, van der Poll T, Garcia Vallejo JJ. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax 2021; 76:1010-1019. [PMID: 33846275 PMCID: PMC8050882 DOI: 10.1136/thoraxjnl-2020-216256] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Background Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. Methods This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. Findings Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. Interpretation The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.
Collapse
Affiliation(s)
- Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands .,Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Saskia van Asten
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Hetty Bontkes
- Medical Immunology Laboratory, Department of Clinical Chemistry, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Siebe Blok
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Janwillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Rene Lutter
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands.,Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | | |
Collapse
|
228
|
Küçükceran K, Ayrancı MK, Girişgin AS, Koçak S, Dündar ZD. The role of the BUN/albumin ratio in predicting mortality in COVID-19 patients in the emergency department. Am J Emerg Med 2021; 48:33-37. [PMID: 33838471 PMCID: PMC8019653 DOI: 10.1016/j.ajem.2021.03.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Due to the high mortality and spread rates of coronavirus disease 2019 (COVID-19), there are currently serious challenges in emergency department management. As such, we investigated whether the blood urea nitrogen (BUN)/albumin ratio (BAR) predicts mortality in the COVID-19 patients in the emergency department. Methods A total of 602 COVID-19 patients who were brought to the emergency department within the period from March to September 2020 were included in the study. The BUN level, albumin level, BAR, age, gender, and in-hospital mortality status of the patients were recorded. The patients were grouped by in-hospital mortality. Statistical comparison was conducted between the groups. Results Of the patients who were included in the study, 312(51.8%) were male, and their median age was 63 years (49–73). There was in-hospital mortality in 96(15.9%) patients. The median BUN and BAR values of the patients in the non-survivor group were significantly higher than those in the survivor group (BUN: 24.76 [17.38–38.31] and 14.43 [10.84–20.42], respectively [p < 0.001]; BAR: 6.7 [4.7–10.1] and 3.4 [2.5–5.2], respectively [p < 0.001]). The mean albumin value in the non-survivor group was significantly lower than that in the survivor group (3.60 ± 0.58 and 4.13 ± 0.51, respectively; p < 0.001). The area-under-the-curve (AUC) and odds ratio values obtained by BAR to predict in-hospital COVID-19 mortality were higher than the values obtained by BUN and albumin (AUC of BAR, BUN, and albumin: 0.809, 0.771, and 0.765, respectively; odds ratio of BAR>3.9, BUN>16.05, and albumin<4.01: 10.448, 7.048, and 6.482, respectively). Conclusion The BUN, albumin, and BAR levels were found to be reliable predictors of in-hospital mortality in COVID-19 patients, but BAR was found to be a more reliable predictor than the BUN and albumin levels.
Collapse
Affiliation(s)
- Kadir Küçükceran
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey.
| | - Mustafa Kürşat Ayrancı
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | | | - Sedat Koçak
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Zerrin Defne Dündar
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
229
|
Géhin C, Holman SW. Advances in high-resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. ANALYTICAL SCIENCE ADVANCES 2021; 2:142-156. [PMID: 38716455 PMCID: PMC10989654 DOI: 10.1002/ansa.202000149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
Continuous improvements in mass spectrometry (MS) have resulted in the widespread availability and adoption of high-resolution mass spectrometry (HRMS) across laboratories worldwide. The capabilities and the associated advantages of HRMS make it an invaluable analytical tool for analyte characterization, screening, and quantification methodologies for a wide scope of applications across pharmaceutical development. These applications include drug discovery, product characterizations of both small molecules and novel drug modalities, in vitro and in vivo metabolism studies, post-approval quality control, and pharmacovigilance. This review gives an overview of the current capabilities of HRMS and its pharmaceutical applications in 2020, and provides a perspective on the future of HRMS within the pharmaceutical industry.
Collapse
Affiliation(s)
- Caroline Géhin
- Chemical DevelopmentPharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldUK
| | - Stephen W. Holman
- Chemical DevelopmentPharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldUK
| |
Collapse
|
230
|
Nugroho J, Wardhana A, Mulia EP, Maghfirah I, Rachmi DA, A'yun MQ, Septianda I. Elevated fibrinogen and fibrin degradation product are associated with poor outcome in COVID-19 patients: A meta-analysis. Clin Hemorheol Microcirc 2021; 77:221-231. [PMID: 33074221 DOI: 10.3233/ch-200978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION COVID-19 is a systemic infection with a significant impact on coagulation which manifests in thromboembolism. There is an unknown relationship of which coagulation profile parameter at presentation has an association with poor outcome in COVID-19. OBJECTIVE This meta-analysis aimed to determine the relationship between fibrinogen and FDP with poor outcome in COVID-19 patients. METHODS A systematic search of all observational studies or trials involving adult patients with COVID-19 that had any data fibrinogen or FDP on admission was carried out using the PubMed, Science Direct, Scopus, ProQuest, and MedRxiv databases. We assessed the methodological quality assessment using the NIH Quality Assessment Tool. We performed random-effects inverse-variance weighting analysis using mean difference (MD). RESULTS A total of 17 studies (1,654 patients) were included in this meta-analysis. It revealed a higher mean of fibrinogen levels on admission in patients with severe case compared to those with non-severe case (MD = 0.69, [95% CI: 0.44 to 0.94], p < 0.05; I2 = 72%, p < 0.05). Non-survivor group had a pooled higher mean difference of fibrinogen values on admission (MD = 0.48 [95% CI: 0.13 to 0.83], p < 0.05; I2 = 38%, p = 0.18). Higher FDP on admission was found in poor outcome (composite of severity, critically ill, and mortality) compared to good outcome (4 studies, MD = 4.84 [95% CI: 0.75 to 8.93], p < 0.05; I2 = 86%, p < 0.05). CONCLUSION Elevated fibrinogen and FDP level on admission were associated with an increase risk of poor outcome in COVID-19 patients.
Collapse
Affiliation(s)
- Johanes Nugroho
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | | | | | | | | | | | |
Collapse
|
231
|
Analysis of the First 300 Cases of SARS CoV2 Infection from the Infection Disease Clinic of Craiova, Romania. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:28-32. [PMID: 34211744 PMCID: PMC8200614 DOI: 10.12865/chsj.47.01.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 is an ongoing pandemic and an intermediate analysis of the first 300 cases treated in the Infectious Diseases Clinic from Craiova has been performed. We have found that most of the cases were asymptomatic or mild, but the severity of the symptomatic cases increases with age. The main comorbidities associated mainly with the severe cases were high blood pressure, obesity, other cardiac conditions, diabetes mellitus and malignancies. Inflammation, coagulation and metabolic disorders are significantly more expressed in critically ill patients. Fatality rate is relatively low, death seems to be associated with old age.
Collapse
|
232
|
Elashiry M, Elsayed R, Elashiry MM, Rashid MH, Ara R, Arbab AS, Elawady AR, Hamrick M, Liu Y, Zhi W, Lucas R, Vazquez J, Cutler CW. Proteomic Characterization, Biodistribution, and Functional Studies of Immune-Therapeutic Exosomes: Implications for Inflammatory Lung Diseases. Front Immunol 2021; 12:636222. [PMID: 33841418 PMCID: PMC8027247 DOI: 10.3389/fimmu.2021.636222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-derived exosomes (DC EXO), natural nanoparticles of endosomal origin, are under intense scrutiny in clinical trials for various inflammatory diseases. DC EXO are eobiotic, meaning they are well-tolerated by the host; moreover, they can be custom-tailored for immune-regulatory or -stimulatory functions, thus presenting attractive opportunities for immune therapy. Previously we documented the efficacy of immunoregulatory DCs EXO (regDCs EXO) as immunotherapy for inflammatory bone disease, in an in-vivo model. We showed a key role for encapsulated TGFβ1 in promoting a bone sparing immune response. However, the on- and off-target effects of these therapeutic regDC EXO and how target signaling in acceptor cells is activated is unclear. In the present report, therapeutic regDC EXO were analyzed by high throughput proteomics, with non-therapeutic EXO from immature DCs and mature DCs as controls, to identify shared and distinct proteins and potential off-target proteins, as corroborated by immunoblot. The predominant expression in regDC EXO of immunoregulatory proteins as well as proteins involved in trafficking from the circulation to peripheral tissues, cell surface binding, and transmigration, prompted us to investigate how these DC EXO are biodistributed to major organs after intravenous injection. Live animal imaging showed preferential accumulation of regDCs EXO in the lungs, followed by spleen and liver tissue. In addition, TGFβ1 in regDCs EXO sustained downstream signaling in acceptor DCs. Blocking experiments suggested that sustaining TGFβ1 signaling require initial interaction of regDCs EXO with TGFβ1R followed by internalization of regDCs EXO with TGFβ1-TGFβ1R complex. Finally, these regDCs EXO that contain immunoregulatory cargo and showed biodistribution to lungs could downregulate the main severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target receptor, ACE2 on recipient lung parenchymal cells via TGFβ1 in-vitro. In conclusion, these results in mice may have important immunotherapeutic implications for lung inflammatory disorders.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States.,Department of Endodontics, College of Dentistry, Ainshams University, Cairo, Egypt
| | - Mohammad H Rashid
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ali S Arbab
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ahmed R Elawady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, at Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
233
|
Higuera-de-la-Tijera F, Servín-Caamaño A, Reyes-Herrera D, Flores-López A, Robiou-Vivero EJA, Martínez-Rivera F, Galindo-Hernández V, Rosales-Salyano VH, Casillas-Suárez C, Chapa-Azuela O, Chávez-Morales A, Jiménez-Bobadilla B, Hernández-Medel ML, Orozco-Zúñiga B, Zacarías-Ezzat JR, Camacho S, Pérez-Hernández JL. The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease. DISEASE MARKERS 2021; 2021:6658270. [PMID: 33791045 PMCID: PMC7996042 DOI: 10.1155/2021/6658270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
AIM Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predictive factors related to severe disease development with intensive care requirements in patients with COVID-19. METHODS Data from COVID-19 patients were collected at admission time to our hospital. Differential biochemical factors were identified between seriously ill patients requiring intensive care unit (ICU) admission (ICU patients) versus stable patients without the need for ICU admission (non-ICU patients). Multiple linear regression was applied, then a predictive model of severity called Age-AST-D dimer (AAD) was constructed (n = 166) and validated (n = 170). RESULTS Derivation cohort: from 166 patients included, there were 27 (16.3%) ICU patients that showed higher levels of liver injury markers (P < 0.01) compared with non-ICU patients: alanine aminotrasnferase (ALT) 225.4 ± 341.2 vs. 41.3 ± 41.1, aspartate aminotransferase (AST) 325.3 ± 382.4 vs. 52.8 ± 47.1, lactic dehydrogenase (LDH) 764.6 ± 401.9 vs. 461.0 ± 185.6, D-dimer (DD) 7765 ± 9109 vs. 1871 ± 4146, and age 58.6 ± 12.7 vs. 49.1 ± 12.8. With these finding, a model called Age-AST-DD (AAD), with a cut-point of <2.75 (sensitivity = 0.797 and specificity = 0.391, c - statistic = 0.74; 95%IC: 0.62-0.86, P < 0.001), to predict the risk of need admission to ICU (OR = 5.8; 95% CI: 2.2-15.4, P = 0.001), was constructed. Validation cohort: in 170 different patients, the AAD model < 2.75 (c - statistic = 0.80 (95% CI: 0.70-0.91, P < 0.001) adequately predicted the risk (OR = 8.8, 95% CI: 3.4-22.6, P < 0.001) to be admitted in the ICU (27 patients, 15.95%). CONCLUSIONS The elevation of AST (a possible marker of early liver injury) along with DD and age efficiently predict early (at admission time) probability of ICU admission during the clinical course of COVID-19. The AAD model can improve the comprehensive management of COVID-19 patients, and it could be useful as a triage tool to early classify patients with a high risk of developing a severe clinical course of the disease.
Collapse
Affiliation(s)
- Fátima Higuera-de-la-Tijera
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Gastroenterology and Hepatology Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Alfredo Servín-Caamaño
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Daniel Reyes-Herrera
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Argelia Flores-López
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Enrique J. A. Robiou-Vivero
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Felipe Martínez-Rivera
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Victor Galindo-Hernández
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Victor H. Rosales-Salyano
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Internal Medicine Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Catalina Casillas-Suárez
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Pneumology Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Oscar Chapa-Azuela
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- General Surgery Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Alfonso Chávez-Morales
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Intensive Care Unit, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Billy Jiménez-Bobadilla
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Colorectal Surgery Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - María L. Hernández-Medel
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Infectious Disease Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Benjamín Orozco-Zúñiga
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Ginecology Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Jed R. Zacarías-Ezzat
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- General Surgery Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - Santiago Camacho
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Gastroenterology and Hepatology Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| | - José L. Pérez-Hernández
- Multidisciplinary Team for the Attention and Care of Patients with COVID-19, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
- Gastroenterology and Hepatology Department, Hospital General de México ¨Dr. Eduardo Liceaga¨, Mexico City, Mexico
| |
Collapse
|
234
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
235
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
236
|
Guilger-Casagrande M, de Barros CT, Antunes VAN, de Araujo DR, Lima R. Perspectives and Challenges in the Fight Against COVID-19: The Role of Genetic Variability. Front Cell Infect Microbiol 2021; 11:598875. [PMID: 33791232 PMCID: PMC8005637 DOI: 10.3389/fcimb.2021.598875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last year, the advent of the COVID-19 pandemic brought a new consideration for the multidisciplinary sciences. The unknown mechanisms of infection used by SARS-CoV-2 and the absence of effective antiviral pharmacological therapy, diagnosis methods, and vaccines evoked scientific efforts on the COVID-19 outcome. In general, COVID-19 clinical features are a result of local and systemic inflammatory processes that are enhanced by some preexistent comorbidities, such as diabetes, obesity, cardiovascular, and pulmonary diseases, and biological factors, like gender and age. However, the discrepancies in COVID-19 clinical signs observed among those patients lead to investigations about the critical factors that deeply influence disease severity and death. Herein, we present the viral infection mechanisms and its consequences after blocking the angiotensin-converting enzyme 2 (ACE2) axis in different tissues and the progression of inflammatory and immunological reactions, especially the influence of genetic features on those differential clinical responses. Furthermore, we discuss the role of genotype as an essential indicator of COVID-19 susceptibility, considering the expression profiles, polymorphisms, gene identification, and epigenetic modifications of viral entry factors and their recognition, as well as the infection effects on cell signaling molecule expression, which amplifies disease severity.
Collapse
Affiliation(s)
- Mariana Guilger-Casagrande
- Institute of Science and Technology, São Paulo State University–UNESP, Sorocaba, Brazil
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba-UNISO, Sorocaba, Brazil
| | - Cecilia T. de Barros
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba-UNISO, Sorocaba, Brazil
| | - Vitória A. N. Antunes
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba-UNISO, Sorocaba, Brazil
| | - Daniele R. de Araujo
- Human and Natural Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Renata Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba-UNISO, Sorocaba, Brazil
| |
Collapse
|
237
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila M, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncations of ORF7a that limit immune suppression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.22.21252253. [PMID: 33655280 PMCID: PMC7924305 DOI: 10.1101/2021.02.22.21252253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over 200,000 whole genome sequences of SARS-CoV-2 have been determined for viruses isolated from around the world. These sequences have been critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We have isolated one of these mutant viruses from a patient sample and used viral challenge experiments to demonstrate that Δ115 mutation results in a growth defect. ORF7a has been implicated in immune modulation, and we show that the C-terminal truncation results in distinct changes in interferon stimulated gene expression. Collectively, this work indicates that ORF7a mutations occur frequently and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Twitter: @artemnemudryi
- Lead contact
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Twitter: @WiedenheftLab
| |
Collapse
|
238
|
Matsuishi Y, Mathis BJ, Shimojo N, Subrina J, Okubo N, Inoue Y. Severe COVID-19 Infection Associated with Endothelial Dysfunction Induces Multiple Organ Dysfunction: A Review of Therapeutic Interventions. Biomedicines 2021; 9:279. [PMID: 33801921 PMCID: PMC7999560 DOI: 10.3390/biomedicines9030279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, the SARS-CoV-2 (COVID-19) pandemic has transfixed the medical world. COVID-19 symptoms vary from mild to severe and underlying chronic conditions such as pulmonary/cardiovascular disease and diabetes induce excessive inflammatory responses to COVID-19 and these underlying chronic diseases are mediated by endothelial dysfunction. Acute respiratory distress syndrome (ARDS) is the most common cause of death in COVID-19 patients, but coagulation induced by excessive inflammation, thrombosis, and disseminated intravascular coagulation (DIC) also induce death by multiple-organ dysfunction syndrome. These associations imply that maintaining endothelial integrity is crucial for favorable prognoses with COVID-19 and therapeutic intervention to support this may be beneficial. Here, we summarize the extent of heart injuries, ischemic stroke and hemorrhage, acute kidney injury, and liver injury caused by immune-mediated endothelial dysfunction that result in the phenomenon of multi-organ dysfunction seen in COVID-19 patients. Moreover, the potential therapeutic effect of angiotensin receptor blockers and angiotensin-converting enzyme inhibitors that improve endothelial dysfunction as well as the bradykinin storm are discussed.
Collapse
Affiliation(s)
- Yujiro Matsuishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
- Pediatric Intensive Care Unit, University of Tsukuba Hospital, Tsukuba 305-8571, Japan
- Health & Diseases Research Center for Rural Peoples (HDRCRP), Dhaka 1205, Bangladesh;
| | - Bryan J. Mathis
- Medical English Communication Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8571, Japan;
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
| | - Jesmin Subrina
- Health & Diseases Research Center for Rural Peoples (HDRCRP), Dhaka 1205, Bangladesh;
| | - Nobuko Okubo
- Neuroscience Nursing, St. Luke’s International University, Tokyo 104-0044, Japan;
| | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
| |
Collapse
|
239
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
240
|
Sorouri F, Emamgholipour Z, Keykhaee M, Najafi A, Firoozpour L, Sabzevari O, Sharifzadeh M, Foroumadi A, Khoobi M. The situation of small molecules targeting key proteins to combat SARS-CoV-2: Synthesis, metabolic pathway, mechanism of action, and potential therapeutic applications. Mini Rev Med Chem 2021; 22:273-311. [PMID: 33687881 DOI: 10.2174/1389557521666210308144302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the global epidemic and high mortality of 2019 coronavirus disease (COVID-19), there is an immediate need to discover drugs that can help before a vaccine becomes available. Given that the process of producing new drugs is so long, the strategy of repurposing existing drugs is one of the promising options for the urgent treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 disease. Although FDA has approved Remdesivir for the use in hospitalized adults and pediatric patients suffering from COVID-19, no fully effective and reliable drug has been yet identified worldwide to treat COVID-19 specifically. Thus, scientists are still trying to find antivirals specific to COVID-19. This work reviews the chemical structure, metabolic pathway, mechanism of action of existing drugs with potential therapeutic applications for COVID-19. Further, we summarized the molecular docking stimulation of the medications related to key protein targets. These already drugs could be developed for further clinical trials to supply suitable therapeutic options for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| |
Collapse
|
241
|
Araya S, Wordofa M, Mamo MA, Tsegay YG, Hordofa A, Negesso AE, Fasil T, Berhanu B, Begashaw H, Atlaw A, Niguse T, Cheru M, Tamir Z. The Magnitude of Hematological Abnormalities Among COVID-19 Patients in Addis Ababa, Ethiopia. J Multidiscip Healthc 2021; 14:545-554. [PMID: 33688198 PMCID: PMC7936683 DOI: 10.2147/jmdh.s295432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a systemic infection with cardiovascular, pulmonary, gastrointestinal, neurological, and hematological manifestations. Abnormal hematological findings are thought to have a role in early risk stratification and prognostication of COVID-19 patients. However, the data on hematological abnormalities associated with the disease among Ethiopian COVID-19 patients are limited. Objective To determine the magnitude of hematological abnormalities among COVID-19 patients admitted at Millennium COVID-19 referral treatment center, Addis Ababa, Ethiopia. Methods A prospective cross-sectional study was conducted among COVID-19 patients admitted to Millennium COVID-19 referral treatment center from May to July, 2020. A total of 334 COVID-19 patients were included using convenience sampling. Socio-demographic data and disease severity status of admitted patients were recorded. Three milliliters of venous blood was collected and analyzed by Beckman Coulter DXH-600 automated analyzer to determine complete blood count (CBC). The data were entered and analyzed using SPSS version 23 software. Association of age, sex, and disease severity with hematological abnormalities was analyzed using binary logistic regression. An odds ratio and 95% confidence interval were used to measure the strength of association. P-value <0.05 was considered as statistically significant. Results Of 334 admitted COVID-19 patients, the majority were males (62.3%) and 69.8% had moderate disease conditions. The overall magnitude of any cytopenia and pancytopenia was 41% and 1.8%, respectively. The magnitude of anemia, thrombocytopenia, and leukopenia was 24.9%, 21.6%, and 5.4%, respectively. Lymphopenia (72.2%) was the most common hematological abnormality. COVID-19 patients with severe and critical disease were more likely to develop anemia, leukocytosis, neutrophilia, and combined neutrophilia-lymphopenia than those with moderate disease condition, with a significant association. Conclusion Lymphopenia was the most common hematological abnormality observed among COVID-19 patients. Hematological abnormalities such as anemia, leukocytosis, neutrophilia, and combined neutrophilia-lymphopenia were significantly associated with disease severity. Monitoring and evaluation of hematological parameters could provide prognostic insight into the management and risk stratification of COVID-19 patients. However, further studies are required to fully understand the utility of hematological parameters for the prognosis of COVID-19 disease.
Collapse
Affiliation(s)
- Shambel Araya
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| | - Moges Wordofa
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mintesnot Aragaw Mamo
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Yakob Gebregziabher Tsegay
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.,Research and Development Center, College of Health Sciences, Defense University, Addis Ababa, Ethiopia
| | - Abebe Hordofa
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Laboratory, Legehare General Hospital, Addis Ababa, Ethiopia
| | - Abebe Edao Negesso
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Fasil
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Betelhem Berhanu
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hermela Begashaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asegdew Atlaw
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| | - Tirhas Niguse
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Cheru
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zemenu Tamir
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
242
|
Generali D, Bosio G, Malberti F, Cuzzoli A, Testa S, Romanini L, Fioravanti A, Morandini A, Pianta L, Giannotti G, Viola EM, Giorgi-Pierfranceschi M, Foramitti M, Tira RA, Zangrandi I, Chiodelli G, Machiavelli A, Cappelletti MR, Giossi A, De Giuli V, Costanzi C, Campana C, Bernocchi O, Sirico M, Zoncada A, Molteni A, Venturini S, Giudici F, Scaltriti M, Pan A. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis 2021; 104:433-440. [PMID: 33385581 PMCID: PMC7771302 DOI: 10.1016/j.ijid.2020.12.073] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Canakinumab is an IL-1β antibody that neutralises the activity of IL-1β. This study examined the efficacy and safety of canakinumab in patients with moderate COVID-19-related pneumonia. DESIGN This study aimed to evaluate the reduction in duration of hospitalisation with adequate oxygen status. Forty-eight patients with moderate COVID-19-related pneumonia were asked to participate in the prospective case-control study: 33 patients (cases) signed informed consent and received canakinumab (Cohort 1) and 15 patients (Controls) refused to receive the experimental drug and received institutional standard of care (Cohort 2). RESULTS Hospital discharge within 21 days was seen in 63% of patients in Cohort 1 vs. 0% in Cohort 2 (median 14 vs. 26 days, respectively; p < 0.001). There was significant clinical improvement in ventilation regimes following administration of canakinumab compared with Cohort 2 (Stuart-Maxwell test for paired data, p < 0.001). Patients treated with canakinumab experienced a significant increase in PaO2:FiO2 (p < 0.001) and reduction in lung damage by CT (p = 0.01), along with significant decreases in immune/inflammation markers that were not observed in Cohort 2. Only mild side-effects were seen in patients treated with canakinumab; survival at 60 days was 90.0% (95% CI 71.9-96.7) in patients treated with canakinumab and 73.3% (95% CI 43.6-89.1) for Cohort 2. CONCLUSIONS Treatment with canakinumab in patients with COVID-19-related pneumonia rapidly restored normal oxygen status, decreased the need for invasive mechanical ventilation, and was associated with earlier hospital discharge and favourable prognosis versus standard of care.
Collapse
Affiliation(s)
- Daniele Generali
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy; Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| | - Giancarlo Bosio
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Fabio Malberti
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Antonio Cuzzoli
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Sophie Testa
- Haemostasis and Thrombosis Center, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Laura Romanini
- Radiology Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Antonio Fioravanti
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | | | - Luca Pianta
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | | | - Erika Maria Viola
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | | | - Marina Foramitti
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Rosa Angela Tira
- Radiology Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Ilaria Zangrandi
- Radiology Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Giulia Chiodelli
- Pharmacy Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Andrea Machiavelli
- Pharmacy Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Maria Rosa Cappelletti
- Haemostasis and Thrombosis Center, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Alessia Giossi
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Valeria De Giuli
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Chiara Costanzi
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Chiara Campana
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Sirico
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Alessia Zoncada
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Alfredo Molteni
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| | - Sergio Venturini
- Department of Management, University of Turin, Turin, Italy; Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Fabiola Giudici
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maurizio Scaltriti
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angelo Pan
- COVID Unit, Azienda Socio Sanitaria Territoriale di Cremona, Cremona, Italy
| |
Collapse
|
243
|
Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, Mishra GC, Srivastava RK. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int Rev Immunol 2021; 41:171-206. [PMID: 33641587 PMCID: PMC7919479 DOI: 10.1080/08830185.2021.1883600] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Chaman Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Zaffar Azam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-NIREH, Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan C. Mishra
- Lab # 1, National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
244
|
Shoaib MH, Ahmed FR, Sikandar M, Yousuf RI, Saleem MT. A Journey From SARS-CoV-2 to COVID-19 and Beyond: A Comprehensive Insight of Epidemiology, Diagnosis, Pathogenesis, and Overview of the Progress into Its Therapeutic Management. Front Pharmacol 2021; 12:576448. [PMID: 33732150 PMCID: PMC7957225 DOI: 10.3389/fphar.2021.576448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
The 2019 novel coronavirus (2019-nCoV), commonly known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19), was first revealed in late 2019 in Wuhan city, Hubei province, China. It was subsequently spread globally and thereby declared as a pandemic by WHO in March 2020. The disease causes severe acute respiratory illness and is highly contagious due to the fast-onward transmission. As of the mid of November 2020, the disease has affected 220 countries with more than 16 million active cases and 1.3 million deaths worldwide. Males, pregnant women, the elderly, immunosuppressed patients, and those with underlying medical conditions are more vulnerable to the disease than the general healthy population. Unfortunately, no definite treatment is available. Although remdesivir as an antiviral had been approved for use in those above 12 years of age and 40 kg weight group, it has been observed to be ineffective in large-scale SOLIDARITY trials by WHO. Moreover, dexamethasone has been found to increase the recovery rate of ventilated patients; oxygen and inhaled nitric oxide as a vasodilator have been given emergency expanded access. In addition, more than 57 clinical trials are being conducted for the development of the vaccines on various platforms. Two vaccines were found to be significantly promising in phase III results. It is concluded that till the approval of a specific treatment or development of a vaccine against this deadly disease, the preventive measures should be followed strictly to reduce the spread of the disease.
Collapse
Affiliation(s)
- Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
245
|
Zhan GF, Wang Y, Yang N, Luo AL, Li SY. Digestive system involvement of infections with SARS-CoV-2 and other coronaviruses: Clinical manifestations and potential mechanisms. World J Gastroenterol 2021; 27:561-575. [PMID: 33642829 PMCID: PMC7901047 DOI: 10.3748/wjg.v27.i7.561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Although coronavirus (CoV) infection is often characterized by respiratory symptoms, the virus can also result in extrapulmonary symptoms, especially the symptoms related to the digestive system. The outbreak of coronavirus disease 2019 (COVID-19) is currently the world's most pressing public health threat and has a significant impact on civil societies and the global economy. The occurrence of digestive symptoms in patients with COVID-19 is closely related to the development and prognosis of the disease. Moreover, thus far, there are no specific antiviral drug or vaccine approved for the treatment or prevention of COVID-19. Therefore, we elaborate on the effects of CoVs on the digestive system and the potential underlying mechanisms.
Collapse
Affiliation(s)
- Gao-Feng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ning Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shi-Yong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
246
|
Majumdar S, Verma R, Saha A, Bhattacharyya P, Maji P, Surjit M, Kundu M, Basu J, Saha S. Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Front Genet 2021; 12:637362. [PMID: 33664772 PMCID: PMC7921795 DOI: 10.3389/fgene.2021.637362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.
Collapse
Affiliation(s)
| | - Rohit Verma
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Avishek Saha
- Ubiquitous Analytical Techniques, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | | | - Pradipta Maji
- Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
247
|
Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, Kuang M, Xia H, Zhang Z, Cao L, Luo Y, Bao L, Wang X, Wei X, Deng W, Wang N, Chen L, Chen J, Zhu H, Gao R, Qin C, Wang X, You F. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe 2021; 29:222-235.e4. [PMID: 33388094 PMCID: PMC7762710 DOI: 10.1016/j.chom.2020.12.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Qirui Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Junhong Li
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiangning Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiuhong Yang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Huawei Xia
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiao Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuemei Wei
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wei Deng
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Nan Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jingxuan Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Xiangxi Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
248
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
249
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
250
|
Ortega MA, Fraile-Martínez O, García-Montero C, García-Gallego S, Sánchez-Trujillo L, Torres-Carranza D, Álvarez-Mon MÁ, Pekarek L, García-Honduvilla N, Bujan J, Álvarez-Mon M, Asúnsolo Á, De La Torre B. An integrative look at SARS‑CoV‑2 (Review). Int J Mol Med 2021; 47:415-434. [PMID: 33416095 PMCID: PMC7797443 DOI: 10.3892/ijmm.2020.4828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
SARS‑CoV‑2 is a newly discovered member of the betacoronaviruses and the etiological agent of the disease COVID‑19. SARS‑CoV‑2 is responsible for the worldwide pandemic which has been taking place in 2020, and is causing a markedly higher number of infections and deaths compared to previous coronaviruses, such as SARS‑CoV or MERS‑CoV. Based on updated scientific literature, the present review compiles the most relevant knowledge of SARS‑CoV‑2, COVID‑19 and the clinical and typical responses that patients have exhibited against this virus, discussing current and future therapies, and proposing strategies with which to combat the disease and prevent a further global threat. The aggressiveness of SARS‑CoV‑2 arises from its capacity to infect, and spread easily and rapidly through its tight interaction with the human angiotensin‑converting enzyme 2 (ACE‑2) receptor. While not all patients respond in a similar manner and may even be asymptomatic, a wide range of manifestations associated with COVID‑19 have been described, particularly in vulnerable population groups, such as the elderly or individuals with other underlying conditions. The proper function of the immune system plays a key role in an individual's favorable response to SARS‑CoV‑2 infection. A hyperactivated response, on the contrary, could account for the more severe cases of COVID‑19, and this may finally lead to respiratory insufficiency and other complications, such as thrombotic or thromboembolic events. The development of novel therapies and vaccines designed to control and regulate a proper immune system response will be key to clinical management, prevention measures and effective population screening to attenuate the transmission of this novel RNA virus.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Sandra García-Gallego
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Organic and Inorganic Chemistry, 'Andrés M. del Río' Institute of Chemistry (IQAR), University of Alcalá, CIBER-BBN, 28805 Madrid
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | | | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Psychiatry and Medical Psychology, Infanta Leonor University Hospital, 28031 Madrid
| | - Leonel Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Internal Medicine Service, Prince of Asturias University Hospital, CIBEREHD, Alcalá de Henares, 28805 Madrid
| | - Ángel Asúnsolo
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, New York University, New York, NY 10027, USA
| | - Basilio De La Torre
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Traumatology Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| |
Collapse
|