201
|
Gallerano D, Ciminati S, Grimaldi A, Piconese S, Cammarata I, Focaccetti C, Pacella I, Accapezzato D, Lancellotti F, Sacco L, Caronna R, Melaiu O, Fruci D, D'Oria V, Manzi E, Sagnotta A, Parrino C, Coletta D, Peruzzi G, Terenzi V, Battisti A, Cassoni A, Fadda MT, Brozzetti S, Fazzi K, Grazi GL, Valentini V, Chirletti P, Polimeni A, Barnaba V, Timperi E. Genetically driven CD39 expression shapes human tumor-infiltrating CD8 + T-cell functions. Int J Cancer 2020; 147:2597-2610. [PMID: 32483858 DOI: 10.1002/ijc.33131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
In our study, we investigated the role of CD39 on tumor-infiltrating CD8+ T lymphocytes (CD8+ TILs) in colorectal, head and neck and pancreatic cancers. Partially confirming recent observations correlating the CD39 expression with T-cell exhaustion, we demonstrated a divergent functional activity in CD39+ CD8+ TILs. On the one hand, CD39+ CD8+ TILs (as compared to their CD39- counterparts) produced significantly lower IFN-γ and IL-2 amounts, expressed higher PD-1, and inversely correlated with perforin and granzyme B expression. On the other, they displayed a significantly higher proliferative capacity ex vivo that was inversely correlated with the PD-1 expression. Therefore, CD39+ CD8+ TILs, including those co-expressing the CD103 (a marker of T resident memory [TRM] cells), were defined as partially dysfunctional T cells that correlate with tumor patients with initial progression stages. Interestingly, our results identified for the first time a single nucleotide polymorphism (SNP rs10748643 A>G), as a genetic factor associated with CD39 expression in CD8+ TILs. Finally, we demonstrated that compounds inhibiting CD39-related ATPases improved CD39+ CD8+ T-cell effector function ex vivo, and that CD39+ CD8+ TILs displayed effective suppression function in vitro. Overall these data suggest that the SNP analysis may represent a suitable predictor of CD39+ CD8+ T-cell expression in cancer patients, and propose the modulation of CD39 as a new strategy to restore partially exhausted CD8+ TILs.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apyrase/antagonists & inhibitors
- Apyrase/genetics
- Apyrase/metabolism
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Nivolumab/pharmacology
- Nivolumab/therapeutic use
- Polymorphism, Single Nucleotide
- Primary Cell Culture
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Daniela Gallerano
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Selina Ciminati
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessio Grimaldi
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Rome, Italy
| | - Ilenia Cammarata
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Accapezzato
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Lancellotti
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Luca Sacco
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Roberto Caronna
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy, Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Emy Manzi
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sagnotta
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Parrino
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Diego Coletta
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Valentina Terenzi
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Andrea Battisti
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Andrea Cassoni
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Maria Teresa Fadda
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Stefania Brozzetti
- Dipartimento di Chirurgia "Pietro Valdoni", "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Katia Fazzi
- Dipartimento di Chirurgia "Pietro Valdoni", "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentino Valentini
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Piero Chirletti
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Antonella Polimeni
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Barnaba
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Rome, Italy
| | - Eleonora Timperi
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
202
|
Wu J, Wang YC, Xu WH, Luo WJ, Wan FN, Zhang HL, Ye DW, Qu YY, Zhu YP. High Expression of CD39 is Associated with Poor Prognosis and Immune Infiltrates in Clear Cell Renal Cell Carcinoma. Onco Targets Ther 2020; 13:10453-10464. [PMID: 33116625 PMCID: PMC7569176 DOI: 10.2147/ott.s272553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The cell-surface ectonucleotidase CD39 is a key molecule of the immunosuppressive adenosine pathway within the tumor microenvironment. However, the relationship between CD39 and clear cell renal cell carcinoma (ccRCC) is rarely reported and still remains unclear. Methods CD39 expression was first analyzed using the Oncomine and the Tumor IMmune Estimation Resource (TIMER) databases, and then examined in ccRCC patients (n=367) who had undergone radical nephrectomy using immunohistochemistry (IHC) and real-time quantitative PCR analysis (qPCR). The prognosis value of CD39 in ccRCC was evaluated by Cox proportional hazards analysis. Functional and gene set enrichment analysis (GSEA) was performed using transcriptomic data of ccRCC from TCGA. Correlation analysis between CD39 and tumor-infiltrating lymphocytes (TILs) was performed using the TISIDB database. The impact of CD39 on immune checkpoint therapy (ICT) was evaluated by two public cohorts. Results CD39 mRNA and protein expression was upregulated in tumor tissues from ccRCC patients and aberrant expression of CD39 was associated with advanced tumor stage and poor prognosis in ccRCC patients. EMT, IL-2/STAT5, inflammatory response, interferon gamma and KRAS hallmark gene sets were identified as CD39-related signaling pathway. The expression level of CD39 was significantly and positively correlated with high abundance of the regulatory TILs including NK cells, macrophages, Th cells and Treg cells. CD39 was correlated with expression of several immune checkpoints and higher CD39 expression was associated with better OS of ccRCC patients who received ICT. Conclusion CD39 is a powerful prognostic marker of ccRCC patients. Increased tumor expression of CD39 mRNA is significantly correlated with infiltrating levels of TILs, and better efficacy of ICT to ccRCC. CD39 could be a novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu-Chen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Luo
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
203
|
Vella L, Giles JR, Baxter AE, Oldridge DA, Diorio C, Kuri-Cervantes L, Alanio C, Pampena MB, Wu JE, Chen Z, Huang YJ, Anderson EM, Gouma S, McNerney KO, Chase J, Burudpakdee C, Lee JH, Apostolidis SA, Huang AC, Mathew D, Kuthuru O, Goodwin EC, Weirick ME, Bolton MJ, Arevalo CP, Ramos A, Jasen C, Giannini HM, DAndrea K, Meyer NJ, Behrens EM, Bassiri H, Hensley SE, Henrickson SE, Teachey DT, Betts MR, Wherry EJ. Deep Immune Profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32995826 DOI: 10.1101/2020.09.25.20201863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.
Collapse
|
204
|
Eomes cannot replace its paralog T-bet during expansion and differentiation of CD8 effector T cells. PLoS Pathog 2020; 16:e1008870. [PMID: 32991634 PMCID: PMC7546498 DOI: 10.1371/journal.ppat.1008870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections. According to the World Health Organization infectious diseases kill over 17 million people per year. At the same time highly infectious viral diseases, such as Ebola and COVID-19 that are lacking specific treatments, are emerging to pose additional threats. It is therefore pivotal to precisely understand how our immune system responds towards pathogens to develop new treatment options. Here we have investigated the role of two related molecules, named T-bet and Eomes, that guide the development and function of lymphocytes in their fight against intracellular pathogens. We specifically focused on cytotoxic lymphocytes as these cells dominate the early phase of viral containment. We show that T-bet is essential for the expansion of cytotoxic lymphocytes and equip lymphocytes with the ability to efficiently eliminate virus-infected cells. Hence, our study provides new insights into the importance and specific actions of T-bet during acute viral infections and how this might be harnessed for future therapeutic interventions.
Collapse
|
205
|
Exhausted CD8 + T cells exhibit low and strongly inhibited TCR signaling during chronic LCMV infection. Nat Commun 2020; 11:4454. [PMID: 32901001 PMCID: PMC7479152 DOI: 10.1038/s41467-020-18256-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic viral infections are often associated with impaired CD8+ T cell function, referred to as exhaustion. Although the molecular and cellular circuits involved in CD8+ T cell exhaustion are well defined, with sustained presence of antigen being one important parameter, how much T cell receptor (TCR) signaling is actually ongoing in vivo during established chronic infection is unclear. Here, we characterize the in vivo TCR signaling of virus-specific exhausted CD8+ T cells in a mouse model, leveraging TCR signaling reporter mice in combination with transcriptomics. In vivo signaling in exhausted cells is low, in contrast to their in vitro signaling potential, and despite antigen being abundantly present. Both checkpoint blockade and adoptive transfer of naïve target cells increase TCR signaling, demonstrating that engagement of co-inhibitory receptors curtails CD8+ T cell signaling and function in vivo. Excess antigenic exposure, such as in cancers or chronic viral infection, can lead to T cell exhaustion. Here the authors show that despite high exposure to antigen in the context of chronic LCMV infection in mice, exhausted CD8+ T cells have low levels of TCR signalling that can be reactivated by PD-L1 blockade.
Collapse
|
206
|
Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, Kuri-Cervantes L, Pampena MB, D'Andrea K, Manne S, Chen Z, Huang YJ, Reilly JP, Weisman AR, Ittner CAG, Kuthuru O, Dougherty J, Nzingha K, Han N, Kim J, Pattekar A, Goodwin EC, Anderson EM, Weirick ME, Gouma S, Arevalo CP, Bolton MJ, Chen F, Lacey SF, Ramage H, Cherry S, Hensley SE, Apostolidis SA, Huang AC, Vella LA, Betts MR, Meyer NJ, Wherry EJ. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020; 369:eabc8511. [PMID: 32669297 PMCID: PMC7402624 DOI: 10.1126/science.abc8511] [Citation(s) in RCA: 1150] [Impact Index Per Article: 230.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.
Collapse
Affiliation(s)
- Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jennifer E Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Betina Pampena
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariel R Weisman
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline A G Ittner
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kito Nzingha
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas Han
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Justin Kim
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eileen C Goodwin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth M Anderson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E Weirick
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia P Arevalo
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcus J Bolton
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Simon F Lacey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Holly Ramage
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Cherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Disease, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
207
|
Sek K, Kats LM, Darcy PK, Beavis PA. Pharmacological and genetic strategies for targeting adenosine to enhance adoptive T cell therapy of cancer. Curr Opin Pharmacol 2020; 53:91-97. [PMID: 32854024 DOI: 10.1016/j.coph.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Adoptive cellular therapy involves the ex vivo expansion of immune cells, conventionally T cells, before reinfusion back to the patient. Variations in adoptive cellular therapy include transduction of a patient's T cells with either a transgenic T cell receptor or chimeric antigen receptor (CAR) to recognize a defined tumor antigen. Given that adenosine is a major axis of immunosuppression of T cells, particularly in hypoxic tumor microenvironments, therapeutics targeting this pathway are currently being assessed for their potential to enhance adoptive T cell therapies. The use of gene-editing technology, commonly used in tandem with CAR and transgenic T cell receptor (TCR) based adoptive cellular therapy, offers further opportunities to specifically modulate responses to adenosine. This review will discuss recent advances in targeting the adenosine pathway for enhancing the effectiveness of adoptive cellular therapy in the treatment of solid cancers.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Lev M Kats
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Australia; Department of Immunology, Monash University, Clayton, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
208
|
Zhang T, Harrison MR, O'Donnell PH, Alva AS, Hahn NM, Appleman LJ, Cetnar J, Burke JM, Fleming MT, Milowsky MI, Mortazavi A, Shore N, Sonpavde GP, Schmidt EV, Bitman B, Munugalavadla V, Izumi R, Patel P, Staats J, Chan C, Weinhold KJ, George DJ. A randomized phase 2 trial of pembrolizumab versus pembrolizumab and acalabrutinib in patients with platinum-resistant metastatic urothelial cancer. Cancer 2020; 126:4485-4497. [PMID: 32757302 PMCID: PMC7590121 DOI: 10.1002/cncr.33067] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Background Inhibition of the programmed cell death protein 1 (PD‐1) pathway has demonstrated clinical benefit in metastatic urothelial cancer (mUC); however, response rates of 15% to 26% highlight the need for more effective therapies. Bruton tyrosine kinase (BTK) inhibition may suppress myeloid‐derived suppressor cells (MDSCs) and improve T‐cell activation. Methods The Randomized Phase 2 Trial of Acalabrutinib and Pembrolizumab Immunotherapy Dual Checkpoint Inhibition in Platinum‐Resistant Metastatic Urothelial Carcinoma (RAPID CHECK; also known as ACE‐ST‐005) was a randomized phase 2 trial evaluating the PD‐1 inhibitor pembrolizumab with or without the BTK inhibitor acalabrutinib for patients with platinum‐refractory mUC. The primary objectives were safety and objective response rates (ORRs) according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints included progression‐free survival (PFS) and overall survival (OS). Immune profiling was performed to analyze circulating monocytic MDSCs and T cells. Results Seventy‐five patients were treated with pembrolizumab (n = 35) or pembrolizumab plus acalabrutinib (n = 40). The ORR was 26% with pembrolizumab (9% with a complete response [CR]) and 20% with pembrolizumab plus acalabrutinib (10% with a CR). The grade 3/4 adverse events (AEs) that occurred in ≥15% of the patients were anemia (20%) with pembrolizumab and fatigue (23%), increased alanine aminotransferase (23%), urinary tract infections (18%), and anemia (18%) with pembrolizumab plus acalabrutinib. One patient treated with pembrolizumab plus acalabrutinib had high MDSCs at the baseline, which significantly decreased at week 7. Overall, MDSCs were not correlated with a clinical response, but some subsets of CD8+ T cells did increase during the combination treatment. Conclusions Both treatments were generally well tolerated, although serious AE rates were higher with the combination. Acalabrutinib plus pembrolizumab did not improve the ORR, PFS, or OS in comparison with pembrolizumab alone in mUC. Baseline and on‐treatment peripheral monocytic MDSCs were not different in the treatment cohorts. Proliferating CD8+ T‐cell subsets increased during treatment, particularly in the combination cohort. Ongoing studies are correlating these peripheral immunome findings with tissue‐based immune cell infiltration. In this randomized phase 2 study of metastatic urothelial cancer, a combination of pembrolizumab and a Bruton tyrosine kinase inhibitor (acalabrutinib) does not improve clinical outcomes in comparison with pembrolizumab alone. Comprehensive flow cytometry is used to evaluate circulating immune cells during treatment.
Collapse
Affiliation(s)
- Tian Zhang
- Duke Cancer Institute, Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael R Harrison
- Duke Cancer Institute, Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Ajjai S Alva
- University of Michigan Medical Center, Ann Arbor, Michigan
| | - Noah M Hahn
- Johns Hopkins University, Baltimore, Maryland
| | | | - Jeremy Cetnar
- Oregon Health and Science University Center for Health, Portland, Oregon
| | | | | | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Amir Mortazavi
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, South Carolina
| | | | | | - Bojena Bitman
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California
| | | | - Raquel Izumi
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California
| | - Priti Patel
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California
| | - Janet Staats
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Kent J Weinhold
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Daniel J George
- Duke Cancer Institute, Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
209
|
SARS-CoV-2 will constantly sweep its tracks: a vaccine containing CpG motifs in 'lasso' for the multi-faced virus. Inflamm Res 2020; 69:801-812. [PMID: 32656668 PMCID: PMC7354743 DOI: 10.1007/s00011-020-01377-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During the current COVID-19 pandemic, the global ratio between the dead and the survivors is approximately 1 to 10, which has put humanity on high alert and provided strong motivation for the intensive search for vaccines and drugs. It is already clear that if we follow the most likely scenario, which is similar to that used to create seasonal influenza vaccines, then we will need to develop improved vaccine formulas every year to control the spread of the new, highly mutable coronavirus SARS-CoV-2. In this article, using well-known RNA viruses (HIV, influenza viruses, HCV) as examples, we consider the main successes and failures in creating primarily highly effective vaccines. The experience accumulated dealing with the biology of zoonotic RNA viruses suggests that the fight against COVID-19 will be difficult and lengthy. The most effective vaccines against SARS-CoV-2 will be those able to form highly effective memory cells for both humoral (memory B cells) and cellular (cross-reactive antiviral memory T cells) immunity. Unfortunately, RNA viruses constantly sweep their tracks and perhaps one of the most promising solutions in the fight against the COVID-19 pandemic is the creation of 'universal' vaccines based on conservative SARS-CoV-2 genome sequences (antigen-presenting) and unmethylated CpG dinucleotides (adjuvant) in the composition of the phosphorothioate backbone of single-stranded DNA oligonucleotides (ODN), which can be effective for long periods of use. Here, we propose a SARS-CoV-2 vaccine based on a lasso-like phosphorothioate oligonucleotide construction containing CpG motifs and the antigen-presenting unique ACG-containing genome sequence of SARS-CoV-2. We found that CpG dinucleotides are the most rare dinucleotides in the genomes of SARS-CoV-2 and other known human coronaviruses, and hypothesized that their higher frequency could be responsible for the unwanted increased lethality to the host, causing a ‘cytokine storm’ in people who overexpress cytokines through the activation of specific Toll-like receptors in a manner similar to TLR9-CpG ODN interactions. Interestingly, the virus strains sequenced in China (Wuhan) in February 2020 contained on average one CpG dinucleotide more in their genome than the later strains from the USA (New York) sequenced in May 2020. Obviously, during the first steps of the microevolution of SARS-CoV-2 in the human population, natural selection tends to select viral genomes containing fewer CpG motifs that do not trigger a strong innate immune response, so the infected person has moderate symptoms and spreads SARS-CoV-2 more readily. However, in our opinion, unmethylated CpG dinucleotides are also capable of preparing the host immune system for the coronavirus infection and should be present in SARS-CoV-2 vaccines as strong adjuvants.
Collapse
|
210
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
211
|
Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, Courtois R, Déjou C, Jecko D, Becquart O, Rispaud-Blanc H, Gauthier L, Rossi B, Chanteux S, Gourdin N, Amigues B, Roussel A, Bensussan A, Eliaou JF, Bastid J, Romagné F, Morel Y, Narni-Mancinelli E, Vivier E, Paturel C, Bonnefoy N. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep 2020; 27:2411-2425.e9. [PMID: 31116985 DOI: 10.1016/j.celrep.2019.04.091] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/26/2018] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment. However, many cancers are resistant to ICIs, and the targeting of additional inhibitory signals is crucial for limiting tumor evasion. The production of adenosine via the sequential activity of CD39 and CD73 ectoenzymes participates to the generation of an immunosuppressive tumor microenvironment. In order to disrupt the adenosine pathway, we generated two antibodies, IPH5201 and IPH5301, targeting human membrane-associated and soluble forms of CD39 and CD73, respectively, and efficiently blocking the hydrolysis of immunogenic ATP into immunosuppressive adenosine. These antibodies promoted antitumor immunity by stimulating dendritic cells and macrophages and by restoring the activation of T cells isolated from cancer patients. In a human CD39 knockin mouse preclinical model, IPH5201 increased the anti-tumor activity of the ATP-inducing chemotherapeutic drug oxaliplatin. These results support the use of anti-CD39 and anti-CD73 monoclonal antibodies and their combination with immune checkpoint inhibitors and chemotherapies in cancer.
Collapse
Affiliation(s)
- Ivan Perrot
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Henri-Alexandre Michaud
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, 34298 Montpellier, France
| | | | - Séverine Augier
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | | | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, 34298 Montpellier, France
| | - Rachel Courtois
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | | | - Diana Jecko
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Ondine Becquart
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, 34298 Montpellier, France; Département de Dermatologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, 34295 Montpellier, France
| | | | | | - Benjamin Rossi
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | | | - Nicolas Gourdin
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Beatrice Amigues
- CNRS, Aix Marseille Université, AFMB, Architecture et Fonction des Macromolécules Biologiques, 13009 Marseille, France
| | - Alain Roussel
- CNRS, Aix Marseille Université, AFMB, Architecture et Fonction des Macromolécules Biologiques, 13009 Marseille, France
| | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Human Immunology, Pathophysiology and Immunotherapy, 75475 Paris, France
| | - Jean-François Eliaou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, 34298 Montpellier, France; Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, 34295 Montpellier, France
| | | | - François Romagné
- MI-mAbs, Aix Marseille Université, 117 Avenue de Luminy, 13009 Marseille, France
| | - Yannis Morel
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Eric Vivier
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France; Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France; Service d'Immunologie, Marseille Immunopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France.
| | - Carine Paturel
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France.
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, 34298 Montpellier, France.
| |
Collapse
|
212
|
Sekine T, Perez-Potti A, Nguyen S, Gorin JB, Wu VH, Gostick E, Llewellyn-Lacey S, Hammer Q, Falck-Jones S, Vangeti S, Yu M, Smed-Sörensen A, Gaballa A, Uhlin M, Sandberg JK, Brander C, Nowak P, Goepfert PA, Price DA, Betts MR, Buggert M. TOX is expressed by exhausted and polyfunctional human effector memory CD8 + T cells. Sci Immunol 2020; 5:5/49/eaba7918. [PMID: 32620560 DOI: 10.1126/sciimmunol.aba7918] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022]
Abstract
CD8+ T cell exhaustion is a hallmark of many cancers and chronic infections. In mice, T cell factor 1 (TCF-1) maintains exhausted CD8+ T cell responses, whereas thymocyte selection-associated HMG box (TOX) is required for the epigenetic remodeling and survival of exhausted CD8+ T cells. However, it has remained unclear to what extent these transcription factors play analogous roles in humans. In this study, we mapped the expression of TOX and TCF-1 as a function of differentiation and specificity in the human CD8+ T cell landscape. Here, we demonstrate that circulating TOX+ CD8+ T cells exist in most humans, but that TOX is not exclusively associated with exhaustion. Effector memory CD8+ T cells generally expressed TOX, whereas naive and early-differentiated memory CD8+ T cells generally expressed TCF-1. Cytolytic gene and protein expression signatures were also defined by the expression of TOX. In the context of a relentless immune challenge, exhausted HIV-specific CD8+ T cells commonly expressed TOX, often in clusters with various activation markers and inhibitory receptors, and expressed less TCF-1. However, polyfunctional memory CD8+ T cells specific for cytomegalovirus (CMV) or Epstein-Barr virus (EBV) also expressed TOX, either with or without TCF-1. A similar phenotype was observed among HIV-specific CD8+ T cells from individuals who maintained exceptional immune control of viral replication. Collectively, these data demonstrate that TOX is expressed by most circulating effector memory CD8+ T cell subsets and not exclusively linked to exhaustion.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - André Perez-Potti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Piotr Nowak
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.,Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
213
|
Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, Lambert S, Weyand CM, Goronzy JJ. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest 2020; 130:3422-3436. [PMID: 32452837 PMCID: PMC7324201 DOI: 10.1172/jci132417] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccination is a mainstay in preventive medicine, reducing morbidity and mortality from infection, largely by generating pathogen-specific neutralizing antibodies. However, standard immunization strategies are insufficient with increasing age due to immunological impediments, including defects in T follicular helper (Tfh) cells. Here, we found that Tfh generation is inversely linked to the expression of the ecto-NTPDase CD39 that modifies purinergic signaling. The lineage-determining transcription factor BCL6 inhibited CD39 expression, while increased Tfh frequencies were found in individuals with a germline polymorphism preventing transcription of ENTPD1, encoding CD39. In in vitro human and in vivo mouse studies, Tfh generation and germinal center responses were enhanced by reducing CD39 expression through the inhibition of the cAMP/PKA/p-CREB pathway, or by blocking adenosine signaling downstream of CD39 using the selective adenosine A2a receptor antagonist istradefylline. Thus, purinergic signaling in differentiating T cells can be targeted to improve vaccine responses, in particular in older individuals who have increased CD39 expression.
Collapse
|
214
|
Human Tumor-Infiltrating MAIT Cells Display Hallmarks of Bacterial Antigen Recognition in Colorectal Cancer. CELL REPORTS MEDICINE 2020; 1:100039. [PMID: 33205061 PMCID: PMC7659584 DOI: 10.1016/j.xcrm.2020.100039] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates a role for the gut microbiota in modulating anti-tumor treatment efficacy in human cancer. Here we study mucosa-associated invariant T (MAIT) cells to look for evidence of bacterial antigen recognition in human colon, lung, and kidney carcinomas. Using mass cytometry and single-cell mRNA sequencing, we identify a tumor-infiltrating MAIT cell subset expressing CD4 and Foxp3 and observe high expression of CD39 on MAIT cells from colorectal cancer (CRC) only, which we show in vitro to be expressed specifically after TCR stimulation. We further reveal that these cells are phenotypically and functionally exhausted. Sequencing data show high bacterial infiltration in CRC tumors and highlight an enriched species, Fusobacteria nucleatum, with capability to activate MAIT cells in a TCR-dependent way. Our results provide evidence of a MAIT cell response to microbial antigens in CRC and could pave the way for manipulating MAIT cells or the microbiome for cancer therapy.
Collapse
|
215
|
Tu WJ, McCuaig RD, Tan AHY, Hardy K, Seddiki N, Ali S, Dahlstrom JE, Bean EG, Dunn J, Forwood J, Tsimbalyuk S, Smith K, Yip D, Malik L, Prasanna T, Milburn P, Rao S. Targeting Nuclear LSD1 to Reprogram Cancer Cells and Reinvigorate Exhausted T Cells via a Novel LSD1-EOMES Switch. Front Immunol 2020; 11:1228. [PMID: 32612611 PMCID: PMC7309504 DOI: 10.3389/fimmu.2020.01228] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Lysine specific demethylase 1 (LSD1) is a key epigenetic eraser enzyme implicated in cancer metastases and recurrence. Nuclear LSD1 phosphorylated at serine 111 (nLSD1p) has been shown to be critical for the development of breast cancer stem cells. Here we show that circulating tumor cells isolated from immunotherapy-resistant metastatic melanoma patients express higher levels of nLSD1p compared to responders, which is associated with co-expression of stem-like, mesenchymal genes. Targeting nLSD1p with selective nLSD1 inhibitors better inhibits the stem-like mesenchymal signature than traditional FAD-specific LSD1 catalytic inhibitors such as GSK2879552. We also demonstrate that nLSD1p is enriched in PD-1+CD8+ T cells from resistant melanoma patients and 4T1 immunotherapy-resistant mice. Targeting the LSD1p nuclear axis induces IFN-γ/TNF-α-expressing CD8+ T cell infiltration into the tumors of 4T1 immunotherapy-resistant mice, which is further augmented by combined immunotherapy. Underpinning these observations, nLSD1p is regulated by the key T cell exhaustion transcription factor EOMES in dysfunctional CD8+ T cells. EOMES co-exists with nLSD1p in PD-1+CD8+ T cells in resistant patients, and nLSD1p regulates EOMES nuclear dynamics via demethylation/acetylation switching of critical EOMES residues. Using novel antibodies to target these post-translational modifications, we show that EOMES demethylation/acetylation is reciprocally expressed in resistant and responder patients. Overall, we show for the first time that dual inhibition of metastatic cancer cells and re-invigoration of the immune system requires LSD1 inhibitors that target the nLSD1p axis.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Robert D. McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Abel H. Y. Tan
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Kristine Hardy
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Sayed Ali
- Medical Oncology, St John of God Midland Public and Private Hospitals, Midland, WA, Australia
| | - Jane E. Dahlstrom
- Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elaine G. Bean
- Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jade Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sofia Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Kate Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Australian Synchtrotron - ANSTO, Clayton, VIC, Australia
| | - Desmond Yip
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Laeeq Malik
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Thiru Prasanna
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Peter Milburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
216
|
Yu X, Zhang L, Chaudhry A, Rapaport AS, Ouyang W. Unravelling the heterogeneity and dynamic relationships of tumor-infiltrating T cells by single-cell RNA sequencing analysis. J Leukoc Biol 2020; 107:917-932. [PMID: 32272497 PMCID: PMC7317876 DOI: 10.1002/jlb.6mr0320-234r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are crucial for the success of immune-based cancer therapy. Reinvigorating antitumor T cell activity by blocking checkpoint inhibitory receptors has provided clinical benefits for many cancer patients. However, the efficacy of these treatments varies in cancer patients and the mechanisms underlying these diverse responses remain elusive. The density and status of tumor-infiltrating T cells have been shown to positively correlate with patient response to checkpoint blockades. Therefore, further understanding of the heterogeneity, clonal expansion, migration, and effector functions of tumor-infiltrating T cells will provide fundamental insights into antitumor immune responses. To this end, recent advances in single-cell RNA sequencing technology have enabled profound and extensive characterization of intratumoral immune cells and have improved our understanding of their dynamic relationships. Here, we summarize recent progress in single-cell RNA sequencing technology and current strategies to uncover heterogeneous tumor-infiltrating T cell subsets. In particular, we discuss how the coupling of deep transcriptome information with T cell receptor (TCR)-based lineage tracing has furthered our understanding of intratumoral T cell populations. We also discuss the functional implications of various T cell subsets in tumors and highlight the identification of novel T cell markers with therapeutic or prognostic potential.
Collapse
Affiliation(s)
- Xin Yu
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Lei Zhang
- Beijing Advanced Innovation Center for GenomicsPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Ashutosh Chaudhry
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Aaron S. Rapaport
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Wenjun Ouyang
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
217
|
Huang B, Chen Z, Geng L, Wang J, Liang H, Cao Y, Chen H, Huang W, Su M, Wang H, Xu Y, Liu Y, Lu B, Xian H, Li H, Li H, Ren L, Xie J, Ye L, Wang H, Zhao J, Chen P, Zhang L, Zhao S, Zhang T, Xu B, Che D, Si W, Gu X, Zeng L, Wang Y, Li D, Zhan Y, Delfouneso D, Lew AM, Cui J, Tang WH, Zhang Y, Gong S, Bai F, Yang M, Zhang Y. Mucosal Profiling of Pediatric-Onset Colitis and IBD Reveals Common Pathogenics and Therapeutic Pathways. Cell 2020; 179:1160-1176.e24. [PMID: 31730855 DOI: 10.1016/j.cell.2019.10.027] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.
Collapse
Affiliation(s)
- Bing Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiying Liang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yujie Cao
- Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanming Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meiling Su
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hanqing Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanhui Xu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yukun Liu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Bingtai Lu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huifang Xian
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huilin Li
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shanmeizi Zhao
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ting Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Di Che
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenyue Si
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liang Zeng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yong Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Dingyou Li
- Division of Gastroenterology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - David Delfouneso
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Wai Ho Tang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China; Center for Translational Cancer Research, First Hospital, Peking University, Beijing 100871, China.
| | - Min Yang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
218
|
Huang X, Liu L, Xu C, Peng X, Li D, Wang L, Du M. Tissue-resident CD8 + T memory cells with unique properties are present in human decidua during early pregnancy. Am J Reprod Immunol 2020; 84:e13254. [PMID: 32329123 DOI: 10.1111/aji.13254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Resident memory T (TRM ) cells reside in the uterus during pregnancy may play an important role in balancing maternal-fetal tolerance with anti-infectious immunity. Although CD8+ TRM and decidual CD8+ T cells have been extensively characterized, the properties of decidual CD8+ TRM (dTRM ) cells remain poorly defined. METHOD OF STUDY We investigated the heterogeneity, phenotypes, and functions of dTRM cells, and compared the proportion of dTRM cells between normal pregnancy and recurrent spontaneous abortion (RSA) using flow cytometry. Moreover, we cocultured peripheral CD8+ T (CD8+ pT) cells with trophoblast, or decidual stomal cells (DSCs) in the presence or absence of anti-TGF-β antibody or TGF-β type I receptor inhibitor to explore the effects of maternal-fetal environment on decidual CD8+ TRM cell formation. RESULTS We found that CD69+ CD103+ TRM cells were abundant in CD8+ dT cells but not in CD4+ dT cells with effector-memory (EM, CD45RA- CCR7- ) phenotypes. The percentage of dTRM cells from RSA patients was significantly higher than that from normal pregnancy. Furthermore, dTRM cells showed increased expressions of chemokine receptors, T-cell exhaustion-related molecules, and produced more anti-inflammatory cytokines and effector cytokines upon stimulation. Moreover, DSCs produced a considerable level of TGF-β and upregulated CD103 expression on CD69+ CD8+ pT cells, which can be significantly reversed by blocking TGF-β receptor. CONCLUSION Our findings demonstrate that TRM cells with unique properties are present in the decidua during human early pregnancy. They possess an enhanced capacity to produce effector cytokines and regulatory molecules, which might be important in the balance between maternal-fetal immune tolerance and the capacity to aggressively respond to infections.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiandong Peng
- Shanghai Jiai Genetics & IVF Institute, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
219
|
Cai MC, Zhao X, Cao M, Ma P, Chen M, Wu J, Jia C, He C, Fu Y, Tan L, Xue X, Yu Z, Zhuang G. T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. J Pathol 2020; 251:147-159. [PMID: 32222046 DOI: 10.1002/path.5435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
Direct quantification of exhausted T cells in human cancer is lacking, and its predictive value for checkpoint-based treatment remains poorly investigated. We sought to systematically characterize the pan-cancer landscape and molecular hallmarks of T-cell dysfunction for the purpose of precision immunotherapy. Here, we defined a transcriptional signature for T-cell exhaustion through analyzing differential gene expression between PD-1-high and PD-1-negative CD8+ T lymphocytes from primary non-small cell lung cancer (NSCLC), followed by positive correlation tests with PDCD1 in TCGA lung carcinomas. A 78-gene signature for exhausted CD8+ T cells (GET) was identified and validated to reflect dysfunctional immune state spanning different species and disease models. We discovered that GET estimation significantly correlated with intratumoral immune cytolytic activity (CYT) and T-cell-inflamed gene expression profile (GEP) across 30 solid tumor types. Miscellaneous tumor-intrinsic and -extrinsic properties, in particular leukocyte proportions, genomic abnormalities, specific mutational signatures, and signaling pathways, were notably associated with GET levels. Furthermore, higher GET expression predicted an increased likelihood of clinical response to immune checkpoint inhibitors. These findings highlight the interrelation between T-cell exhaustion and immune cytolytic activity at the pan-cancer scale. The resulting inflamed tumor microenvironment may further crosstalk with other molecular and clinicopathological factors, which should be properly considered during immunotherapy biomarker development. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Min Cao
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Pengfei Ma
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Minjiang Chen
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Chenqiang Jia
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chunming He
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Xinying Xue
- Department of Respiratory and Critical Care Medicine, The Affiliated Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.,Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
220
|
Kim KH, Kim HK, Kim HD, Kim CG, Lee H, Han JW, Choi SJ, Jeong S, Jeon M, Kim H, Koh J, Ku BM, Park SH, Ahn MJ, Shin EC. PD-1 blockade-unresponsive human tumor-infiltrating CD8 + T cells are marked by loss of CD28 expression and rescued by IL-15. Cell Mol Immunol 2020; 18:385-397. [PMID: 32332901 DOI: 10.1038/s41423-020-0427-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/22/2020] [Indexed: 12/15/2022] Open
Abstract
Blockade of programmed death-1 (PD-1) reinvigorates exhausted CD8+ T cells, resulting in tumor regression in cancer patients. Recently, reinvigoration of exhausted CD8+ T cells following PD-1 blockade was shown to be CD28-dependent in mouse models. Herein, we examined the role of CD28 in anti-PD-1 antibody-induced human T cell reinvigoration using tumor-infiltrating CD8+ T cells (CD8+ TILs) obtained from non-small-cell lung cancer patients. Single-cell analysis demonstrated a distinct expression pattern of CD28 between mouse and human CD8+ TILs. Furthermore, we found that human CD28+CD8+ but not CD28-CD8+ TILs responded to PD-1 blockade irrespective of B7/CD28 blockade, indicating that CD28 costimulation in human CD8+ TILs is dispensable for PD-1 blockade-induced reinvigoration and that loss of CD28 expression serves as a marker of anti-PD-1 antibody-unresponsive CD8+ TILs. Transcriptionally and phenotypically, PD-1 blockade-unresponsive human CD28-PD-1+CD8+ TILs exhibited characteristics of terminally exhausted CD8+ T cells with low TCF1 expression. Notably, CD28-PD-1+CD8+ TILs had preserved machinery to respond to IL-15, and IL-15 treatment enhanced the proliferation of CD28-PD-1+CD8+ TILs as well as CD28+PD-1+CD8+ TILs. Taken together, these results show that loss of CD28 expression is a marker of PD-1 blockade-unresponsive human CD8+ TILs with a TCF1- signature and provide mechanistic insights into combining IL-15 with anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Don Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chang Gon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyunglae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jiae Koh
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Myung-Ju Ahn
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
221
|
Adhikary SR, Cuthbertson P, Turner RJ, Sluyter R, Watson D. A single-nucleotide polymorphism in the human ENTPD1 gene encoding CD39 is associated with worsened graft-versus-host disease in a humanized mouse model. Immunol Cell Biol 2020; 98:397-410. [PMID: 32181525 DOI: 10.1111/imcb.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) protect against graft-versus-host disease (GVHD), a life-threatening complication of allogeneic hematopoietic stem cell transplantation. The ectoenzyme CD39 is important for increasing the immunosuppressive function of Tregs. The rs10748643 (A → G) single-nucleotide polymorphism (SNP) in intron 1 of the human ENTPD1 gene is associated with increased proportions of CD39+ Tregs. This study aimed to determine whether the rs10748643 SNP corresponded to increased proportions of CD39+ Tregs in an Australian donor population, and whether this SNP influences clinical GVHD in a humanized mouse model. Donors were genotyped for the rs10748643 SNP by Sanger sequencing, and the proportion of CD39+ T cells in donor peripheral blood was determined by flow cytometry. Donors encoding the G allele (donorsAG/GG ) demonstrated higher proportions of CD39+ CD3+ CD4+ CD25+ CD127lo Tregs, but not CD39+ CD3+ CD8+ T cells or CD39+ CD3+ CD4+ conventional T cells, compared with donors homozygous for the A allele (donorsAA ). NOD-SCID-IL2Rγnull mice were injected with human peripheral blood mononuclear cells from either donorsAA (hCD39AA mice) or donorsAG/GG (hCD39AG/GG mice). hCD39AG/GG mice demonstrated significantly greater weight loss and GVHD clinical scores, and significantly reduced survival, compared with hCD39AA mice. hCD39AG/GG mice showed significantly higher hCD4+ :hCD8+ T-cell ratios than hCD39AA mice, but displayed similar proportions of CD3+ hCD4+ hCD25+ hCD127lo Tregs and hCD39+ Tregs. However, the proportion of human Tregs corresponded to survival in hCD39AA mice, but not in hCD39AG/GG mice. This study demonstrates that donors encoding the G allele show higher percentages of CD39+ Tregs, but cause worsened GVHD in humanized mice compared with donors homozygous for the A allele.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ross J Turner
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
222
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
223
|
Lavoie S, Chun E, Bae S, Brennan CA, Gallini Comeau CA, Lang JK, Michaud M, Hoveyda HR, Fraser GL, Fuller MH, Layden BT, Glickman JN, Garrett WS. Expression of Free Fatty Acid Receptor 2 by Dendritic Cells Prevents Their Expression of Interleukin 27 and Is Required for Maintenance of Mucosal Barrier and Immune Response Against Colorectal Tumors in Mice. Gastroenterology 2020; 158:1359-1372.e9. [PMID: 31917258 PMCID: PMC7291292 DOI: 10.1053/j.gastro.2019.12.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intestinal microbes and their metabolites affect the development of colorectal cancer (CRC). Short-chain fatty acids are metabolites generated by intestinal microbes from dietary fiber. We investigated the mechanisms by which free fatty acid receptor 2 (FFAR2), a receptor for short-chain fatty acids that can affect the composition of the intestinal microbiome, contributes to the pathogenesis of CRC. METHODS We performed studies with ApcMin/+ mice, ApcMin/+Ffar2-/- mice, mice with conditional disruption of Ffar2 in dendritic cells (DCs) (Ffar2fl/flCD11c-Cre mice), ApcMin/+Ffar2fl/flCD11c-Cre mice, and Ffar2fl/fl mice (controls); some mice were given dextran sodium sulfate to induce colitis, with or without a FFAR2 agonist or an antibody against interleukin 27 (IL27). Colon and tumor tissues were analyzed by histology, quantitative polymerase chain reaction, and 16S ribosomal RNA gene sequencing; lamina propria and mesenteric lymph node tissues were analyzed by RNA sequencing and flow cytometry. Intestinal permeability was measured after gavage with fluorescently labeled dextran. We collected data on colorectal tumors from The Cancer Genome Atlas. RESULTS ApcMin/+Ffar2-/- mice developed significantly more spontaneous colon tumors than ApcMin/+ mice and had increased gut permeability before tumor development, associated with reduced expression of E-cadherin. Colon tumors from ApcMin/+Ffar2-/- mice had a higher number of bacteria than tumors from ApcMin/+ mice, as well as higher frequencies of CD39+CD8+ T cells and exhausted or dying T cells. DCs from ApcMin/+Ffar2-/- mice had an altered state of activation, increased death, and higher production of IL27. Administration of an antibody against IL27 reduced the numbers of colon tumors in ApcMin/+ mice with colitis. Frequencies of CD39+CD8+ T cells and IL27+ DCs were increased in colon lamina propria from Ffar2fl/flCD11c-Cre mice with colitis compared with control mice or mice without colitis. ApcMin/+Ffar2fl/flCD11c-Cre mice developed even more tumors than ApcMin/+Ffar2fl/fl mice, and their tumors had even higher numbers of IL27+ DCs. ApcMin/+ mice with colitis given the FFAR2 agonist developed fewer colon tumors, with fewer IL27+ DCs, than mice not given the agonist. DCs incubated with the FFAR2 agonist no longer had gene expression patterns associated with activation or IL27 production. CONCLUSIONS Loss of FFAR2 promotes colon tumorigenesis in mice by reducing gut barrier integrity, increasing tumor bacterial load, promoting exhaustion of CD8+ T cells, and overactivating DCs, leading to their death. Antibodies against IL27 and an FFAR2 agonist reduce tumorigenesis in mice and might be developed for the treatment of CRC.
Collapse
Affiliation(s)
- Sydney Lavoie
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Eunyoung Chun
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sena Bae
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Caitlin A Brennan
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carey Ann Gallini Comeau
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jessica K Lang
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Monia Michaud
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Miles H Fuller
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Jonathan N Glickman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts; Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
224
|
Martinez-Usatorre A, Carmona SJ, Godfroid C, Yacoub Maroun C, Labiano S, Romero P. Enhanced Phenotype Definition for Precision Isolation of Precursor Exhausted Tumor-Infiltrating CD8 T Cells. Front Immunol 2020; 11:340. [PMID: 32174925 PMCID: PMC7056729 DOI: 10.3389/fimmu.2020.00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.
Collapse
Affiliation(s)
| | - Santiago J. Carmona
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Céline Godfroid
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Céline Yacoub Maroun
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Sara Labiano
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
225
|
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol 2019; 17:27-35. [PMID: 31853000 DOI: 10.1038/s41423-019-0344-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The failure of a massive influx of tumor-infiltrating T lymphocytes to eradicate tumor cells in the tumor microenvironment is mainly due to the dysfunction of T cells hyporesponsive to tumors. T-cell exhaustion and senescence induced by malignant tumors are two important dysfunctional states that coexist in cancer patients, hindering effective antitumor immunity and immunotherapy and sustaining the suppressive tumor microenvironment. Although exhausted and senescent T cells share a similar dysfunctional role in antitumor immunity, they are distinctly different in terms of generation, development, and metabolic and molecular regulation during tumor progression. Here, we discuss the unique phenotypic and functional characteristics of these two types of dysfunctional T cells and their roles in tumor development and progression. In addition, we further discuss the potential molecular and metabolic signaling pathways responsible for the control of T-cell exhaustion and senescence in the suppressive tumor microenvironment. Understanding these critical and fundamental features should facilitate rethinking the unresponsiveness to current immunotherapies in clinical patients and lead to further development of novel and effective strategies that target different types of dysfunctional T cells to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
226
|
Chng MHY, Lim MQ, Rouers A, Becht E, Lee B, MacAry PA, Lye DC, Leo YS, Chen J, Fink K, Rivino L, Newell EW. Large-Scale HLA Tetramer Tracking of T Cells during Dengue Infection Reveals Broad Acute Activation and Differentiation into Two Memory Cell Fates. Immunity 2019; 51:1119-1135.e5. [PMID: 31757672 DOI: 10.1016/j.immuni.2019.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
T cells play important multifaceted roles during dengue infection, and understanding their responses is important for defining correlates of protective immunity and identifying effective vaccine antigens. Using mass cytometry and a highly multiplexed peptide-HLA (human leukocyte antigen) tetramer staining strategy, we probed T cells from dengue patients-a total of 430 dengue and control candidate epitopes-together with key markers of activation, trafficking, and differentiation. During acute disease, dengue-specific CD8+ T cells expressed a distinct profile of activation and trafficking receptors that distinguished them from non-dengue-specific T cells. During convalescence, dengue-specific T cells differentiated into two major cell fates, CD57+ CD127--resembling terminally differentiated senescent memory cells and CD127+ CD57--resembling proliferation-capable memory cells. Validation in an independent cohort showed that these subsets remained at elevated frequencies up to one year after infection. These analyses aid our understanding of the generation of T cell memory in dengue infection or vaccination.
Collapse
Affiliation(s)
- Melissa Hui Yen Chng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Mei Qiu Lim
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Paul A MacAry
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore 308442, Singapore; Tan Tock Seng Hospital, Singapore 308433, Singapore; Lee Kong Chian School of Medicine, Singapore 308232, Singapore; Yong Loo Lin School of Medicine, Singapore 119228, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore; Tan Tock Seng Hospital, Singapore 308433, Singapore; Lee Kong Chian School of Medicine, Singapore 308232, Singapore; Yong Loo Lin School of Medicine, Singapore 119228, Singapore; Saw Swee Hock School of Public Health, Singapore 117549, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laura Rivino
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| | - Evan W Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
227
|
Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, Huang AC, Johnson J, Staupe RP, Bengsch B, Xu C, Yu S, Kurachi M, Herati RS, Vella LA, Baxter AE, Wu JE, Khan O, Beltra JC, Giles JR, Stelekati E, McLane LM, Lau CW, Yang X, Berger SL, Vahedi G, Ji H, Wherry EJ. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity 2019; 51:840-855.e5. [PMID: 31606264 PMCID: PMC6943829 DOI: 10.1016/j.immuni.2019.09.013] [Citation(s) in RCA: 462] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander C Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Johnson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixiang Yu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Vella
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erietta Stelekati
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi Wai Lau
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolu Yang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
228
|
Elimination of hepatitis C virus has limited impact on the functional and mitochondrial impairment of HCV-specific CD8+ T cell responses. J Hepatol 2019; 71:889-899. [PMID: 31295532 DOI: 10.1016/j.jhep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV)-specific CD8+ T cells are functionally impaired in chronic hepatitis C. Even though HCV can now be rapidly and sustainably cleared from chronically infected patients, the repercussions of HCV clearance on virus-specific CD8+ T cells remain elusive. Here, we aimed to investigate if HCV clearance by direct-acting antivirals (DAAs) could restore the functionality of exhausted HCV-specific CD8+ T cell responses. METHODS HCV-specific CD8+ T cells in peripheral blood were obtained from 40 patients with chronic HCV infection, during and 6 months following IFN-free DAA therapy. These cells were analyzed for comprehensive phenotypes, proliferation, cytokine production, mitochondrial fitness and response to immune-checkpoint blockade. RESULTS We show that, unlike activation markers that decreased, surface expression of multiple co-regulatory receptors on exhausted HCV-specific CD8+ T cells remained unaltered after clearance of HCV. Likewise, cytokine production by HCV-specific CD8+ T cells remained impaired following HCV clearance. The proliferative capacity of HCV multimer-specific CD8+ T cells was not restored in the majority of patients. Enhanced in vitro proliferative expansion of HCV-specific CD8+ T cells during HCV clearance was more likely in women, patients with low liver stiffness and low alanine aminotransferase levels in our cohort. Interestingly, HCV-specific CD8+ T cells that did not proliferate following HCV clearance could preferentially re-invigorate their proliferative capacity upon in vitro immune-checkpoint inhibition. Moreover, altered mitochondrial dysfunction exhibited by exhausted HCV-specific CD8+ T cells could not be normalized after HCV clearance. CONCLUSION Taken together, our data implies that exhausted HCV-specific CD8+ T cells remain functionally and metabolically impaired at multiple levels following HCV clearance in most patients with chronic hepatitis C. Our results might have implications in cases of re-infection with HCV and for HCV vaccine development. LAY SUMMARY Direct-acting antiviral therapy results in cure of hepatitis C virus (HCV) in almost all treated patients. However, the impacts of HCV cure on immune responses remain controversial. Whether immune responses to HCV recover is important in cases of re-exposure, or for the resolution of extrahepatic manifestations. The main finding of our study was that HCV-specific T cells remain functionally impaired despite HCV clearance. This finding could explain the fact that HCV cure does not lead to protective immunity and that re-infections have frequently been observed.
Collapse
|
229
|
Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci U S A 2019; 116:22699-22709. [PMID: 31636208 PMCID: PMC6842624 DOI: 10.1073/pnas.1821218116] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint blockade therapy has become a critical pillar of cancer therapy. Here, we characterize the cellular mechanisms of monotherapy and combination anti–cytotoxic T lymphocyte antigen-4 plus anti–programmed cell death-1 therapy. Using high-dimensional single-cell profiling, we determine that combination therapy elicits cellular responses that are partially distinct from those induced by either monotherapy. In particular, combination therapy mediates a switch from expansion of phenotypically exhausted cluster of differentiation 8 (CD8) T cells to expansion of activated effector CD8 T cells. In addition, we systematically compare T cell subsets present in matched peripheral blood and tumor tissues to define what aspects of antitumor responses can be observed peripherally. These findings have significant implications for both the cellular mechanisms of action and biomarkers of response to monotherapies and combination therapy. Immune checkpoint blockade therapy targets T cell-negative costimulatory molecules such as cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1). Combination anti–CTLA-4 and anti–PD-1 blockade therapy has enhanced efficacy, but it remains unclear through what mechanisms such effects are mediated. A critical question is whether combination therapy targets and modulates the same T cell populations as monotherapies. Using a mass cytometry-based systems approach, we comprehensively profiled the response of T cell populations to monotherapy and combination anti–CTLA-4 plus anti–PD-1 therapy in syngeneic murine tumors and clinical samples. Most effects of monotherapies were additive in the context of combination therapy; however, multiple combination therapy-specific effects were observed. Highly phenotypically exhausted cluster of differentiation 8 (CD8) T cells expand in frequency following anti–PD-1 monotherapy but not combination therapy, while activated terminally differentiated effector CD8 T cells expand only following combination therapy. Combination therapy also led to further increased frequency of T helper type 1 (Th1)-like CD4 effector T cells even though anti–PD-1 monotherapy is not sufficient to do so. Mass cytometry analyses of peripheral blood from melanoma patients treated with immune checkpoint blockade therapies similarly revealed mostly additive effects on the frequencies of T cell subsets along with unique modulation of terminally differentiated effector CD8 T cells by combination ipilimumab plus nivolumab therapy. Together, these findings indicate that dual blockade of CTLA-4 and PD-1 therapy is sufficient to induce unique cellular responses compared with either monotherapy.
Collapse
|
230
|
Zacharova MK, Tulloch LB, Gould ER, Fraser AL, King EF, Menzies SK, Smith TK, Florence GJ. Structure-Based Design, Synthesis and Biological Evaluation of Bis-Tetrahydropyran Furan Acetogenin Mimics Targeting the Trypanosomatid F1 Component of ATP Synthase. European J Org Chem 2019; 2019:5434-5440. [PMID: 31598093 PMCID: PMC6774295 DOI: 10.1002/ejoc.201900541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/05/2023]
Abstract
The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for the severely debilitating neglected Tropical diseases of African sleeping sickness, Chagas disease and leishmaniasis, respectively. As part of our ongoing programme exploring the potential of simplified analogues of the acetogenin chamuvarinin we identified the T. brucei FoF1-ATP synthase as a target of our earlier triazole analogue series. Using computational docking studies, we hypothesised that the central triazole heterocyclic spacer could be substituted for a central 2,5-substituted furan moiety, thus diversifying the chemical framework for the generation of compounds with greater potency and/or selectivity. Here we report the design, docking, synthesis and biological evaluation of new series of trypanocidal compounds and demonstrate their on-target inhibitory effects. Furthermore, the synthesis of furans by the modular coupling of alkyne- and aldehyde-THPs to bis-THP 1,4-alkyne diols followed by ruthenium/xantphos-catalysed heterocyclisation described here represents the most complex use of this method of heterocyclisation to date.
Collapse
Affiliation(s)
- Marija K. Zacharova
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Lindsay B. Tulloch
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Eoin R. Gould
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Andrew L. Fraser
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Elizabeth F. King
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Stefanie K. Menzies
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Terry K. Smith
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Gordon J. Florence
- EaStCHEM School of Chemistry and School of BiologyBiomedical Science Research ComplexUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
231
|
Abstract
T cell ageing has a pivotal role in rendering older individuals vulnerable to infections and cancer and in impairing the response to vaccination. Easy accessibility to peripheral human T cells as well as an expanding array of tools to examine T cell biology have provided opportunities to examine major ageing pathways and their consequences for T cell function. Here, we review emerging concepts of how the body attempts to maintain a functional T cell compartment with advancing age, focusing on three fundamental domains of the ageing process, namely self-renewal, control of cellular quiescence and cellular senescence. Understanding these critical elements in successful T cell ageing will allow the design of interventions to prevent or reverse ageing-related T cell failure.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA.
| | - Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA
| |
Collapse
|
232
|
Sherman KE, Peters MG, Thomas DL. HIV and the liver. TOPICS IN ANTIVIRAL MEDICINE 2019; 27:101-110. [PMID: 31634861 PMCID: PMC6892621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Among individuals with HIV infection, liver disease remains an important cause of morbidity and mortality, even with the availability of agents that cure hepatitis C infection and suppress hepatitis B replication. The causes of liver disease are multifaceted and continue to evolve as the population ages and new etiologies arise. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis and hepatitis viruses such as A, D, and E have emerged even as hepatitis C has receded. Newer antiretroviral agents may increase risk of weight gain and subsequent fatty infiltration, and prior use of nucleotide-based therapies may continue to impact liver health. Several barriers including economics, social stigma, and psychiatric disease impact identification of liver disease, as well as management and treatment interventions. Hepatocellular carcinoma is emerging as a more common and late-diagnosed complication in those with HIV infection and liver disease.
Collapse
Affiliation(s)
- Kenneth E. Sherman
- Send correspondence to Kenneth E. Sherman, MD, PhD, University of Cincinnati College of Medicine, Division of Digestive Diseases, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, or to
| | - Marion G. Peters
- Professor of Medicine at University of California San Francisco in San Francisco, California
| | - David L. Thomas
- Professor of Medicine at Johns Hopkins University in Baltimore, Maryland
| |
Collapse
|
233
|
Synergism of PDL/PD1 and IL33/ST2 Axis in Tumor Immunology. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
When it comes to tumor immunology, understanding of molecular pathways is rather important. During oncogenesis, many molecules should be taken in consideration altogether in context of a single malignancy. It is of a great significance to determine whether these molecules act synergistically or contrary, whether to understand a malignant disease more thoroughly, or even more important, to reveal new approaches of therapy. In this review, we discuss whether and how IL-33/ST2 and PD-1/PDL axis involve in antitumor immunity.
Collapse
|
234
|
Inefficient induction of circulating TAA-specific CD8+ T-cell responses in hepatocellular carcinoma. Oncotarget 2019; 10:5194-5206. [PMID: 31497249 PMCID: PMC6718268 DOI: 10.18632/oncotarget.27146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background & Aims: In hepatocellular carcinoma (HCC), CD8+ T-cell responses targeting tumor-associated antigens (TAA) are considered to be beneficial. However, the molecular profile of TAA-specific CD8+ T cells in HCC is not well defined due to their low frequency.
Results: In this study, we demonstrate that TAA-specific CD8+ T-cell responses are not efficiently induced in the peripheral blood of HCC patients as supported by the following observations: First, in HCC patients, frequencies of TAA-specific CD8+ T cells were not increased compared to healthy donors (HD) or patients with liver cirrhosis. Second, a remarkable proportion of TAA-specific CD8+ T cells were naïve despite the presence of antigen within the tumor tissue. Third, antigen-experienced TAA-specific CD8+ T cells lack the characteristic transcriptional regulation of exhausted CD8+ T cells, namely EomeshiTbetdim, and express inhibitory receptors only on a minor proportion of cells. This suggests restricted antigen recognition and further supports the hypothesis of inefficient induction and activation.
Methods: By applying peptide/MHCI tetramer-based enrichment, a method of high sensitivity, we now could define the heterogeneity of circulating TAA-specific CD8+ T cells targeting glypican-3, NY-ESO-1, MAGE-A1 and MAGE-A3. We focused on therapy-naïve HCC patients of which the majority underwent transarterial chemoembolization (TACE).
Conclusion: Our analysis reveals that circulating TAA-specific CD8+ T cells targeting 4 different immunodominant epitopes are not properly induced in therapy-naïve HCC patients thereby unravelling new and unexpected insights into TAA-specific CD8+ T-cell biology in HCC. This clearly highlights severe limitations of these potentially anti-tumoral T cells that may hamper their biological and clinical relevance in HCC.
Collapse
|
235
|
Wittner M, Schlicker V, Libera J, Bockmann JH, Horvatits T, Seiz O, Kummer S, Manthey CF, Hüfner A, Kantowski M, Rösch T, Degen O, Huber S, Eberhard JM, Schulze zur Wiesch J. Comparison of the integrin α4β7 expression pattern of memory T cell subsets in HIV infection and ulcerative colitis. PLoS One 2019; 14:e0220008. [PMID: 31356607 PMCID: PMC6663001 DOI: 10.1371/journal.pone.0220008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Anti-α4β7 therapy with vedolizumab (VDZ) has been suggested as possible immune intervention in HIV. Relatively little is known about the α4β7-integrin (α4β7) expression of different T-cell subsets in different anatomical compartments of healthy individuals, patients with HIV or inflammatory bowel disease (IBD). Surface expression of α4β7 as well as the frequency of activation, homing and exhaustion markers of T cells were assessed by multicolour flow cytometry in healthy volunteers (n = 15) compared to HIV infected patients (n = 52) or patients diagnosed with ulcerative colitis (UC) (n = 14), 6 of whom treated with vedolizumab. In addition, lymph nodal cells (n = 6), gut-derived cells of healthy volunteers (n = 5) and patients with UC (n = 6) were analysed. Additionally, we studied longitudinal PBMC samples of an HIV patient who was treated with vedolizumab for concomitant UC. Overall, only minor variations of the frequency of α4β7 on total CD4+ T cells were detectable regardless of the disease status or (VDZ) treatment status in peripheral blood and the studied tissues. Peripheral α4β7+ CD4+ T cells of healthy individuals and patients with UC showed a higher activation status and were more frequently CCR5+ than their α4β7- counterparts. Also, the frequency of α4β7+ cells was significantly lower in peripheral blood CD4+ effector memory T cells of HIV-infected compared to healthy individuals and this reduced frequency did not recover in HIV patients on ART. Conversely, the frequency of peripheral blood naïve α4β7+ CD4+ T cells was significantly reduced under VDZ treatment. The results of the current study will contribute to the understanding of the dynamics of α4β7 expression pattern on T cells in HIV and UC and will be useful for future studies investigating VDZ as possible HIV cure strategy.
Collapse
Affiliation(s)
- Melanie Wittner
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Veronika Schlicker
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Jana Libera
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Bockmann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Thomas Horvatits
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Seiz
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Kummer
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Carolin F. Manthey
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Hüfner
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Kantowski
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Rösch
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M. Eberhard
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
- * E-mail:
| |
Collapse
|
236
|
Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection. Cell Rep 2019; 22:411-426. [PMID: 29320737 DOI: 10.1016/j.celrep.2017.12.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/03/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways.
Collapse
|
237
|
Klampatsa A, O'Brien SM, Thompson JC, Rao AS, Stadanlick JE, Martinez MC, Liousia M, Cantu E, Cengel K, Moon EK, Singhal S, Eruslanov EB, Albelda SM. Phenotypic and functional analysis of malignant mesothelioma tumor-infiltrating lymphocytes. Oncoimmunology 2019; 8:e1638211. [PMID: 31428531 DOI: 10.1080/2162402x.2019.1638211] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Given the growing interest and promising preliminary results of immunotherapy in malignant pleural mesothelioma (MPM), it has become important to more fully understand the immune landscape in this tumor. This may be especially relevant in deciding who might benefit most from checkpoint blockade or agonist antibody therapy. Since the phenotype of tumor infiltrating lymphocytes (TILs) in MPM has not been fully described and their function has not been carefully assessed, we collected fresh tumor and blood from 22 patients undergoing surgical resection and analysed single cell suspensions by flow cytometry. The functionality of TILs was assessed by measurement of cytokine expression (IFN-γ) following overnight stimulation ex vivo. Results showed low numbers of CD8+ TILs whose function was either moderately or severely suppressed. The degree of TIL hypofunction did not correlate with the presence of co-existing macrophages or neutrophils, nor with expression of the inhibitory receptors PD-1, CD39 and CTLA-4. Hypofunction was associated with higher numbers of CD4 regulatory T cells (Tregs) and with expression of the inhibitory receptor TIGIT. On the other hand, presence of tissue-resident memory (Trm) cells and expression of TIM-3 on CD8+ cells were positively associated with cytokine production. However, Trm function was partially suppressed when the transcription factor Eomesodermin (Eomes) was co-expressed. Understanding the function of TILs in malignant mesothelioma may have clinical implications for immunotherapy, especially in choosing the best immunotherapy targets. Our data suggests that Treg cell blocking agents or TIGIT inhibitor antibodies might be especially valuable in these patients.
Collapse
Affiliation(s)
- Astero Klampatsa
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shaun M O'Brien
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek S Rao
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Stadanlick
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marina C Martinez
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
238
|
Lim CJ, Lee YH, Pan L, Lai L, Chua C, Wasser M, Lim TKH, Yeong J, Toh HC, Lee SY, Chan CY, Goh BK, Chung A, Heikenwälder M, Ng IO, Chow P, Albani S, Chew V. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019; 68:916-927. [PMID: 29970455 DOI: 10.1136/gutjnl-2018-316510] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Chronic inflammation induced by chronic hepatitis B virus (HBV) infection increases the risk of hepatocellular carcinoma (HCC). However, little is known about the immune landscape of HBV-related HCC and its influence on the design of effective cancer immunotherapeutics. METHODS We interrogated the immune microenvironments of HBV-related HCC and non-viral-related HCC using immunohistochemistry and cytometry by time-of-flight (CyTOF). On identifying unique immune subsets enriched in HBV-related HCC, we further interrogated their phenotypes and functions using next-generation sequencing (NGS) and in vitro T-cell proliferation assays. RESULTS In-depth interrogation of the immune landscapes showed that regulatory T cells (TREG) and CD8+ resident memory T cells (TRM) were enriched in HBV-related HCC, whereas Tim-3+CD8+ T cells and CD244+ natural killer cells were enriched in non-viral-related HCC. NGS of isolated TREG and TRM from HBV-related HCC and non-viral-related HCC identified distinct functional signatures associated with T-cell receptor signalling, T-cell costimulation, antigen presentation and programmed cell death protein 1 (PD-1) signalling. TREG and TRM from HBV-related HCC expressed more PD-1 and were functionally more suppressive and exhausted than those from non-virus-related HCC. Furthermore, immunosuppression by PD-1+ TREG could be reversed with anti-PD-1 blockade. Using multiplexed tissue immunofluorescence, we further demonstrated that TREG and TRM contributed to overall patient survival: TREG were associated with a poor prognosis and TRM were associated with a good prognosis in HCC. CONCLUSION We have shown that the HBV-related HCC microenvironment is more immunosuppressive and exhausted than the non-viral-related HCC microenvironment. Such in-depth understanding has important implications in disease management and appropriate application of immunotherapeutics.
Collapse
Affiliation(s)
- Chun Jye Lim
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Yun Hua Lee
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Lu Pan
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Liyun Lai
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Chua
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Martin Wasser
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Tony Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Joe Yeong
- Department of Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Chong Toh
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | - Ser Yee Lee
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chung Yip Chan
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Brian Kp Goh
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Alexander Chung
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Irene Ol Ng
- Department of Pathology and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pierce Chow
- Duke-NUS Medical School, Singapore, Singapore.,National Cancer Centre, Singapore, Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
239
|
Geraghty NJ, Adhikary SR, Watson D, Sluyter R. The A 2A receptor agonist CGS 21680 has beneficial and adverse effects on disease development in a humanised mouse model of graft-versus-host disease. Int Immunopharmacol 2019; 72:479-486. [PMID: 31051404 DOI: 10.1016/j.intimp.2019.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative method for blood cancers and other blood disorders, but is limited by the development of graft-versus-host disease (GVHD). GVHD results in inflammatory damage to the host liver, gastrointestinal tract and skin, resulting in high rates of morbidity and mortality in HSCT recipients. Activation of the A2A receptor has been previously demonstrated to reduce disease in allogeneic mouse models of GVHD. This study aimed to investigate the effect of A2A activation on disease development in a humanised mouse model of GVHD. Immunodeficient non-obese diabetic-severe combined immunodeficiency-interleukin (IL)-2 receptor γnull (NSG) mice injected with human (h) peripheral blood mononuclear cells (hPBMCs), were treated with either the A2A agonist CGS 21680 or control vehicle. Contrary to the beneficial effect of A2A activation in allogeneic mouse models, CGS 21680 increased weight loss, and failed to reduce the clinical score or increase survival in this humanised mouse model of GVHD. Moreover, CGS 21680 reduced T regulatory cells and increased serum human IL-6 concentrations. Conversely, CGS 21680 reduced serum human tumour necrosis factor (TNF)-α concentrations and leukocyte infiltration into the liver, indicating that A2A activation can, in part, reduce molecular and histological GVHD in this model. Notably, CGS 21680 also prevented healthy weight gain in NSG mice not engrafted with hPBMCs suggesting that this compound may be suppressing appetite or metabolism. Therefore, the potential benefits of A2A activation in reducing GVHD in HSCT recipients may be limited and confounded by adverse impacts on weight, decreased T regulatory cell frequency and increased IL-6 production.
Collapse
Affiliation(s)
- N J Geraghty
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - S R Adhikary
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - D Watson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
240
|
van Duijn J, van Elsas M, Benne N, Depuydt M, Wezel A, Smeets H, Bot I, Jiskoot W, Kuiper J, Slütter B. CD39 identifies a microenvironment-specific anti-inflammatory CD8 + T-cell population in atherosclerotic lesions. Atherosclerosis 2019; 285:71-78. [PMID: 31048101 DOI: 10.1016/j.atherosclerosis.2019.04.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marit van Elsas
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marie Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
241
|
Frumento G, Zuo J, Verma K, Croft W, Ramagiri P, Chen FE, Moss P. CD117 (c-Kit) Is Expressed During CD8 + T Cell Priming and Stratifies Sensitivity to Apoptosis According to Strength of TCR Engagement. Front Immunol 2019; 10:468. [PMID: 30930902 PMCID: PMC6428734 DOI: 10.3389/fimmu.2019.00468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/21/2019] [Indexed: 01/04/2023] Open
Abstract
CD117 (cKit) is the receptor for stem cell factor (SCF) and plays an important role in early haemopoiesis. We show that CD117 is also expressed following priming of mature human CD8+ T cells in vitro and is detectable following primary infection in vivo. CD117 expression is mediated through an intrinsic pathway and is suppressed by IL-12. Importantly, the extent of CD117 expression is inversely related to the strength of the activating stimulus and subsequent engagement with cell-bound SCF markedly increases susceptibility to apoptosis. CD117 is therefore likely to shape the pattern of CD8+ T cell immunodominance during a primary immune response by rendering cells with low avidity for antigen more prone to apoptosis. Furthermore, CD117+ T cells are highly sensitive to apoptosis mediated by galectin-1, a molecule commonly expressed within the tumor microenvironment, and CD117 expression may therefore represent a novel and potentially targetable mechanism of tumor immune evasion.
Collapse
Affiliation(s)
- Guido Frumento
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,NHS Blood and Transplant, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,Centre for Computational Biology, University of Birmingham Birmingham, United Kingdom
| | - Pradeep Ramagiri
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Frederick E Chen
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,NHS Blood and Transplant, Birmingham, United Kingdom.,Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust Birmingham, United Kingdom.,Royal London Hospital, Barts Health NHS Trust London, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust Birmingham, United Kingdom
| |
Collapse
|
242
|
Barnstorf I, Borsa M, Baumann N, Pallmer K, Yermanos A, Joller N, Spörri R, Welten SPM, Kräutler NJ, Oxenius A. Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner. J Exp Med 2019; 216:571-586. [PMID: 30745322 PMCID: PMC6400541 DOI: 10.1084/jem.20181589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic viral infections are widespread among humans, with ∼8-12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.
Collapse
Affiliation(s)
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
243
|
Yeong J, Lim JCT, Lee B, Li H, Ong CCH, Thike AA, Yeap WH, Yang Y, Lim AYH, Tay TKY, Liu J, Wong SC, Chen J, Lim EH, Iqbal J, Dent R, Newell EW, Tan PH. Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J Immunother Cancer 2019; 7:34. [PMID: 30728081 PMCID: PMC6366051 DOI: 10.1186/s40425-019-0499-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The role of programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) in triple negative breast cancer (TNBC) remains to be fully understood. In this study, we investigated the role of PD-1 as a prognostic marker for TNBC in an Asian cohort (n = 269). Samples from patients with TNBC were labeled with antibodies against PD-L1 and PD-1, and subjected to NanoString assays to measure the expression of immune-related genes. Associations between disease-free survival (DFS), overall survival (OS) and biomarker expression were investigated. Multivariate analysis showed that tumors with high PD-1+ immune infiltrates harbored significantly increased DFS, and this increase was significant even after controlling for clinicopathological parameters (HR 0.95; P = 0.030). In addition, the density of cells expressing both CD8 and PD-1, but not the density of CD8−PD-1+ immune infiltrates, was associated with improved DFS. Notably, this prognostic significance was independent of clinicopathological parameters and the densities of total CD8+ cell (HR 0.43, P = 0.011). At the transcriptional level, high expression of PDCD1 within the tumor was significantly associated with improved DFS (HR 0.38; P = 0.027). In line with these findings, high expression of IFNG (HR 0.38; P = 0.001) and IFN signaling genes (HR 0.46; p = 0.027) was also associated with favorable DFS. Inclusion of PD-1 immune infiltrates and PDCD1 gene expression added significant prognostic value for DFS (ΔLRχ2 = 6.35; P = 0.041) and OS (ΔLRχ2 = 9.53; P = 0.008), beyond that provided by classical clinicopathological variables. Thus, PD-1 mRNA and protein expression status represent a promising, independent indicator of prognosis in TNBC.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Jeffrey Chun Tatt Lim
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Huihua Li
- Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Clara Chong Hui Ong
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Wei Hseun Yeap
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Yi Yang
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.,Shanghai University of Finance and Economics, Shanghai, China
| | - Ansel Yi Herh Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Kwang Yong Tay
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Elaine Hsuen Lim
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Rebecca Dent
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), 8A, Biomedical Grove, Immunos, Singapore, 138648, Singapore.
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
244
|
Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients. Blood Adv 2019; 2:656-668. [PMID: 29563122 DOI: 10.1182/bloodadvances.2018015909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/24/2018] [Indexed: 12/31/2022] Open
Abstract
Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8+ T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG, STAT5B, NFAT, RBPJ, and lower HDAC6, increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients.
Collapse
|
245
|
Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O'Brien S, Gherardini PF, Herati RS, Huang AC, Chang KM, Newell EW, Bovenschen N, Pe'er D, Albelda SM, Wherry EJ. Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells. Immunity 2019; 48:1029-1045.e5. [PMID: 29768164 DOI: 10.1016/j.immuni.2018.04.026] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/14/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
Exhausted CD8 T (Tex) cells are immunotherapy targets in chronic infection and cancer, but a comprehensive assessment of Tex cell diversity in human disease is lacking. Here, we developed a transcriptomic- and epigenetic-guided mass cytometry approach to define core exhaustion-specific genes and disease-induced changes in Tex cells in HIV and human cancer. Single-cell proteomic profiling identified 9 distinct Tex cell clusters using phenotypic, functional, transcription factor, and inhibitory receptor co-expression patterns. An exhaustion severity metric was developed and integrated with high-dimensional phenotypes to define Tex cell clusters that were present in healthy subjects, common across chronic infection and cancer or enriched in either disease, linked to disease severity, and changed with HIV therapy. Combinatorial patterns of immunotherapy targets on different Tex cell clusters were also defined. This approach and associated datasets present a resource for investigating human Tex cell biology, with implications for immune monitoring and immunomodulation in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Bertram Bengsch
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Freiburg, Germany.
| | - Takuya Ohtani
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Manu Setty
- Program for Computational and Systems Biology, Sloan Kettering Institute, New York, NY, USA
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Shaun O'Brien
- Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | | | - Ramin Sedaghat Herati
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Kyong-Mi Chang
- Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Evan W Newell
- Agency for Science, Technology and Research, Singapore Immunology Network, Singapore
| | - Niels Bovenschen
- Department of Pathology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, New York, NY, USA
| | - Steven M Albelda
- Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA.
| |
Collapse
|
246
|
Vuerich M, Harshe RP, Robson SC, Longhi MS. Dysregulation of Adenosinergic Signaling in Systemic and Organ-Specific Autoimmunity. Int J Mol Sci 2019; 20:ijms20030528. [PMID: 30691212 PMCID: PMC6386992 DOI: 10.3390/ijms20030528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Rasika P Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
247
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
248
|
The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. Int J Mol Sci 2019; 20:ijms20030501. [PMID: 30682772 PMCID: PMC6387318 DOI: 10.3390/ijms20030501] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.
Collapse
|
249
|
Ruiz A, Blanch-Lombarte O, Jimenez-Moyano E, Ouchi D, Mothe B, Peña R, Galvez C, Genescà M, Martinez-Picado J, Goulder P, Barnard R, Howell B, Clotet B, Prado JG. Antigen Production After Latency Reversal and Expression of Inhibitory Receptors in CD8+ T Cells Limit the Killing of HIV-1 Reactivated Cells. Front Immunol 2019; 9:3162. [PMID: 30723480 PMCID: PMC6349966 DOI: 10.3389/fimmu.2018.03162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The so-called shock and kill therapies aim to combine HIV-1 reactivation by latency-reversing agents (LRA) with immune clearance to purge the HIV-1 reservoir. The clinical use of LRA has demonstrated detectable perturbations in the HIV-1 reservoir without measurable reductions to date. Consequently, fundamental questions concerning the limitations of the recognition and killing of LRA-reactivated cells by effector cells such as CD8+ T cells remain to be answered. Here, we developed a novel experimental framework where we combine the use of cytotoxic CD8+ T-cell lines and ex vivo CD8+ T cells from HIV-1-infected individuals with functional assays of LRA-inducible reactivation to delineate immune barriers to clear the reservoir. Our results demonstrate the potential for early recognition and killing of reactivated cells by CD8+ T cells. However, the potency of LRAs when crossing the barrier for antigen presentation in target cells, together with the lack of expression of inhibitory receptors in CD8+ T cells, are critical events to maximize the speed of recognition and the magnitude of the killing of LRA-inducible provirus. Taken together, our findings highlight direct limitations in LRA potency and CD8+ T cell functional status to succeed in the cure of HIV-1 infection.
Collapse
Affiliation(s)
- Alba Ruiz
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | | | - Dan Ouchi
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Cristina Galvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Meritxell Genescà
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Richard Barnard
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonnie Howell
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
250
|
Gardner JK, Jackaman C, Mamotte CDS, Nelson DJ. The Regulatory Status Adopted by Lymph Node Dendritic Cells and T Cells During Healthy Aging Is Maintained During Cancer and May Contribute to Reduced Responses to Immunotherapy. Front Med (Lausanne) 2018; 5:337. [PMID: 30560130 PMCID: PMC6287204 DOI: 10.3389/fmed.2018.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with an increased incidence of cancer. One contributing factor could be modulation of immune cells responsible for anti-tumor responses, such as dendritic cells (DCs) and T cells. These immunological changes may also impact the efficacy of cancer immunotherapies in the elderly. The effects of healthy aging on DCs and T cells, and their impact on anti-mesothelioma immune responses, had not been reported. This study examined DCs and T cells in young (2–5 months; equivalent to 16–26 human years) and elderly (20–24 months; equivalent to 60–70 human years) healthy and mesothelioma-bearing C57BL/6J mice. During healthy aging, elderly lymph nodes adopted a regulatory profile, characterized by: (i) increased plasmacytoid DCs, (ii) increased expression of the adenosine-producing enzyme CD73 on CD11c+ cells, and (iii) increased expression of multiple regulatory markers (including CD73, the adenosine A2B receptor, CTLA-4, PD-1, ICOS, LAG-3, and IL-10) on CD8+ and CD4+ T cells, compared to lymph nodes from young mice. Although mesotheliomas grew faster in elderly mice, the increased regulatory status observed in healthy elderly lymph node DCs and T cells was not further exacerbated. However, elderly tumor-bearing mice demonstrated reduced MHC-I, MHC-II and CD80 on CD11c+ cells, and decreased IFN-γ by CD8+ and CD4+ T cells within tumors, compared to young counterparts, implying loss of function. An agonist CD40 antibody based immunotherapy was less efficient at promoting tumor regression in elderly mice, which may be due to: (i) failure of elderly CD8+ T cells to up-regulate perforin, and (ii) increased expression of multiple regulatory markers on CD11c+ cells and T cells in elderly tumor-draining lymph nodes (including CD73, PD-1, ICOS, LAG-3, and TGF-β). Our findings suggest that checkpoint blockade may improve responses to immunotherapy in elderly hosts with mesothelioma, and warrants further investigation.
Collapse
Affiliation(s)
- Joanne K Gardner
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Cyril D S Mamotte
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|