201
|
Chiritoiu M, Brouwers N, Turacchio G, Pirozzi M, Malhotra V. GRASP55 and UPR Control Interleukin-1β Aggregation and Secretion. Dev Cell 2019; 49:145-155.e4. [DOI: 10.1016/j.devcel.2019.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
202
|
Brier LW, Ge L, Stjepanovic G, Thelen AM, Hurley JH, Schekman R. Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complex. Mol Biol Cell 2019; 30:1098-1107. [PMID: 30811270 PMCID: PMC6724508 DOI: 10.1091/mbc.e18-11-0743] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a conserved eukaryotic pathway critical for cellular adaptation to changes in nutrition levels and stress. The class III phosphatidylinositol (PI)3-kinase complexes I and II (PI3KC3-C1 and -C2) are essential for autophagosome initiation and maturation, respectively, from highly curved vesicles. We used a cell-free reaction that reproduces a key autophagy initiation step, LC3 lipidation, as a biochemical readout to probe the role of autophagy-related gene (ATG)14, a PI3KC3-C1-specific subunit implicated in targeting the complex to autophagy initiation sites. We reconstituted LC3 lipidation with recombinant PI3KC3-C1, -C2, or various mutant derivatives added to extracts derived from a CRISPR/Cas9-generated ATG14-knockout cell line. Both complexes C1 and C2 require the C-terminal helix of VPS34 for activity on highly curved membranes. However, only complex C1 supports LC3 lipidation through the curvature-targeting amphipathic lipid packing sensor (ALPS) motif of ATG14. Furthermore, the ALPS motif and VPS34 catalytic activity are required for downstream recruitment of WD-repeat domain phosphoinositide-interacting protein (WIPI)2, a protein that binds phosphatidylinositol 3-phosphate and its product phosphatidylinositol 3, 5-bisphosphate, and a WIPI-binding protein, ATG2A, but do not affect membrane association of ATG3 and ATG16L1, enzymes contributing directly to LC3 lipidation. These data reveal the nuanced role of the ATG14 ALPS in membrane curvature sensing, suggesting that the ALPS has additional roles in supporting LC3 lipidation.
Collapse
Affiliation(s)
- Livia W Brier
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94270
| | - Liang Ge
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94270
| | - Goran Stjepanovic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94270.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ashley M Thelen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94270.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94270.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94270
| |
Collapse
|
203
|
Abernathy E, Mateo R, Majzoub K, van Buuren N, Bird SW, Carette JE, Kirkegaard K. Differential and convergent utilization of autophagy components by positive-strand RNA viruses. PLoS Biol 2019; 17:e2006926. [PMID: 30608919 PMCID: PMC6334974 DOI: 10.1371/journal.pbio.2006926] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/16/2019] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Many viruses interface with the autophagy pathway, a highly conserved process for recycling cellular components. For three viral infections in which autophagy constituents are proviral (poliovirus, dengue, and Zika), we developed a panel of knockouts (KOs) of autophagy-related genes to test which components of the canonical pathway are utilized. We discovered that each virus uses a distinct set of initiation components; however, all three viruses utilize autophagy-related gene 9 (ATG9), a lipid scavenging protein, and LC3 (light-chain 3), which is involved in membrane curvature. These results show that viruses use noncanonical routes for membrane sculpting and LC3 recruitment. By measuring viral RNA abundance, we also found that poliovirus utilizes these autophagy components for intracellular growth, while dengue and Zika virus only use autophagy components for post-RNA replication processes. Comparing how RNA viruses manipulate the autophagy pathway reveals new noncanonical autophagy routes, explains the exacerbation of disease by starvation, and uncovers common targets for antiviral drugs. Viruses often co-opt host cellular processes to replicate their genomes and spread to other cells. Many of these cellular pathways provide good targets for antiviral drugs, as they are less likely to develop resistance since they are encoded in the host and not the fast-evolving viral genome. The autophagy pathway is an important stress response pathway that allows cells to recycle cellular components for energy conservation by sequestering cytoplasmic molecules and organelles in double-membraned vesicles (DMVs) and by degrading the contents into reusable elements. Many RNA viruses induce this pathway to provide membrane surfaces for replication and as a source of vesicles for maturation and exit from cells. We developed a panel of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) knockout (KO) human cells lacking individual components of the autophagy pathway to assess what aspects of the pathway diverse RNA viruses utilized. We discovered that poliovirus, dengue virus, and Zika virus all use different initiation components of the autophagy pathway but similar downstream components. Additionally, we found that poliovirus uses autophagy components for genome replication, while dengue and Zika viruses use autophagy components for postreplication processes. Ultimately, we uncovered potential drug targets for multiple RNA viruses.
Collapse
Affiliation(s)
- Emma Abernathy
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roberto Mateo
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- INSERM U1110, Institute of Viral and Liver Diseases, University of Strasbourg, Strasbourg, France
| | - Nick van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sara W. Bird
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
204
|
Iida T, Yokoyama Y, Wagatsuma K, Hirayama D, Nakase H. Impact of Autophagy of Innate Immune Cells on Inflammatory Bowel Disease. Cells 2018; 8:cells8010007. [PMID: 30583538 PMCID: PMC6356773 DOI: 10.3390/cells8010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy, an intracellular degradation mechanism, has many immunological functions and is a constitutive process necessary for maintaining cellular homeostasis and organ structure. One of the functions of autophagy is to control the innate immune response. Many studies conducted in recent years have revealed the contribution of autophagy to the innate immune response, and relationships between this process and various diseases have been reported. Inflammatory bowel disease is an intractable disorder with unknown etiology; however, immunological abnormalities in the intestines are known to be involved in the pathology of inflammatory bowel disease, as is dysfunction of autophagy. In Crohn's disease, many associations with autophagy-related genes, such as ATG16L1, IRGM, NOD2, and others, have been reported. Abnormalities in the ATG16L1 gene, in particular, have been reported to cause autophagic dysfunction, resulting in enhanced production of inflammatory cytokines by macrophages as well as abnormal function of Paneth cells, which are important in intestinal innate immunity. In this review, we provide an overview of the autophagy mechanism in innate immune cells in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomoya Iida
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| |
Collapse
|
205
|
Merkley SD, Chock CJ, Yang XO, Harris J, Castillo EF. Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Front Immunol 2018; 9:2914. [PMID: 30619278 PMCID: PMC6302218 DOI: 10.3389/fimmu.2018.02914] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a homeostatic and inducible process affecting multiple aspects of the immune system. This intrinsic cellular process is involved in MHC-antigen (Ag) presentation, inflammatory signaling, cytokine regulation, and cellular metabolism. In the context of T cell responses, autophagy has an influential hand in dictating responses to self and non-self by controlling extrinsic factors (e.g., MHC-Ag, cytokine production) in antigen-presenting cells (APC) and intrinsic factors (e.g., cell signaling, survival, cytokine production, and metabolism) in T cells. These attributes make autophagy an attractive therapeutic target to modulate T cell responses. In this review, we examine the impact autophagy has on T cell responses by modulating multiple aspects of APC function; the importance of autophagy in the activation, differentiation and homeostasis of T cells; and discuss how the modulation of autophagy could influence T cell responses.
Collapse
Affiliation(s)
- Seth D Merkley
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Cameron J Chock
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton, VIC, Australia
| | - Eliseo F Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM, United States
| |
Collapse
|
206
|
Lonati E, Sala G, Tresoldi V, Coco S, Salerno D, Milani C, Losurdo M, Farina F, Botto L, Ferrarese C, Palestini P, Bulbarelli A. Ischemic Conditions Affect Rerouting of Tau Protein Levels: Evidences for Alteration in Tau Processing and Secretion in Hippocampal Neurons. J Mol Neurosci 2018; 66:604-616. [DOI: 10.1007/s12031-018-1199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022]
|
207
|
Lee J, Ye Y. The Roles of Endo-Lysosomes in Unconventional Protein Secretion. Cells 2018; 7:cells7110198. [PMID: 30400277 PMCID: PMC6262434 DOI: 10.3390/cells7110198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Protein secretion in general depends on signal sequence (also named leader sequence), a hydrophobic segment located at or close to the NH2-terminus of a secretory or membrane protein. This sequence guides the entry of nascent polypeptides into the lumen or membranes of the endoplasmic reticulum (ER) for folding, assembly, and export. However, evidence accumulated in recent years has suggested the existence of a collection of unconventional protein secretion (UPS) mechanisms that are independent of the canonical vesicular trafficking route between the ER and the plasma membrane (PM). These UPS mechanisms export soluble proteins bearing no signal sequence. The list of UPS cargos is rapidly expanding, along with the implicated biological functions, but molecular mechanisms accountable for the secretion of leaderless proteins are still poorly defined. This review summarizes our current understanding of UPS mechanisms with an emphasis on the emerging role of endo-lysosomes in this process.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
208
|
Claude-Taupin A, Bissa B, Jia J, Gu Y, Deretic V. Role of autophagy in IL-1β export and release from cells. Semin Cell Dev Biol 2018; 83:36-41. [PMID: 29580970 PMCID: PMC6173661 DOI: 10.1016/j.semcdb.2018.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
The autophagy pathway known also as macroautophagy (herein referred to as autophagy) is characterized by the formation of double-membrane organelles that capture cytosolic material. Based on pathway termination alternatives, autophagy has been divided into degradative and secretory. During degradative autophagy, autophagosomes typically fuse with lysosomes upon which the sequestered material is degraded. During secretory autophagy, instead of degradation the sequestered cargo is subjected to active secretion or passive release. In this review, we focus on the mechanisms of secretion/passive release of the potent pro-inflammatory cytokine IL-1β, as a prototypical leaderless cytosolic protein cargo studied in the context of secretory autophagy.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA
| | - Bhawana Bissa
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA
| | - Yuexi Gu
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131 USA.
| |
Collapse
|
209
|
Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins. Semin Cell Dev Biol 2018; 83:42-50. [PMID: 29501720 PMCID: PMC6565930 DOI: 10.1016/j.semcdb.2018.02.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Eukaryotic cells have a highly evolved system of protein secretion, and dysfunction in this pathway is associated with many diseases including cancer, infection, metabolic disease and neurological disorders. Most proteins are secreted using the conventional endoplasmic reticulum (ER)/Golgi network and as such, this pathway is well-characterised. However, several cytosolic proteins have now been documented as secreted by unconventional transport pathways. This review focuses on two of these proteins families: annexins and galectins. The extracellular functions of these proteins are well documented, as are associations of their perturbed secretion with several diseases. However, the mechanisms and regulation of their secretion remain poorly characterised, and are discussed in this review. This review is part of a Special Issues of SCDB on 'unconventional protein secretion' edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- Stephanie J Popa
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Sarah E Stewart
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Kevin Moreau
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
210
|
Ye Y. Regulation of protein homeostasis by unconventional protein secretion in mammalian cells. Semin Cell Dev Biol 2018; 83:29-35. [PMID: 29549062 PMCID: PMC6151168 DOI: 10.1016/j.semcdb.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
Secretion of proteins lacking leader sequence was deemed rare and unconventional, only accountable for the export of a limited number of clients by mechanisms that are poorly defined. However, recent studies have shown that many leaderless proteins misfolded in the cytoplasm can be selectively exported to extracellular milieu via an unconventional secretory path termed Misfolding-Associated Protein Secretion (MAPS). This process uses the surface of the endoplasmic reticulum (ER) as a platform to enrich abnormally folded polypeptides, and then transport them into the lumen of ER-associated late endosomes for subsequent secretion. Elimination of misfolded proteins via MAPS appears to serve a role in protein homeostasis maintenance, particularly for stressed cells bearing an excess of protein quality control (PQC) burden.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA.
| |
Collapse
|
211
|
Semino C, Carta S, Gattorno M, Sitia R, Rubartelli A. Progressive waves of IL-1β release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death Dis 2018; 9:1088. [PMID: 30352992 PMCID: PMC6199333 DOI: 10.1038/s41419-018-1121-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022]
Abstract
IL-1β is an essential cytokine, but its release needs to be strictly controlled to avoid severe inflammatory manifestations. Lacking a signal sequence, IL-1β does not follow the endoplasmic reticulum-Golgi route. Several pathways have been proposed to mediate its release. One involves the translocation of pro-IL-1β into intracellular vesicles of lysosomal origin that eventually fuse with the plasma membrane. Another exploits pores formed on the plasma membrane upon proteolytic cleavage of gasdermin D (GSDMD). Here we investigated how primary monocytes-the main source of IL-1β in humans-control IL-1β release in response to pro-inflammatory stimuli of increasing intensity and found that two different routes are induced depending on the strength of activation. Triggering of Toll-like receptor 4 (TLR4) by LPS induces slow IL-1β release through LAMP2A+ vesicles. In contrast, the simultaneous stimulation of TLR2, TLR4 and TLR7/8 drives high levels of ROS, GSDMD cleavage and faster IL-1β secretion. Drugs blocking ROS production prevent GSDMD cleavage supporting a role of oxidative stress in GSDMD-mediated secretion. Singly stimulated monocytes undergo apoptosis, whereas triple stimulation triggers pyroptosis, which might amplify inflammation. In both cases, however, IL-1β secretion precedes cell death. Inhibition of caspases 4/5 prevents GSDMD cleavage and pore-mediated secretion, but not vesicular release. The two pathways also display other distinct pharmacologic sensitivities that reflect the underlying mechanisms. Remarkably, single TLR4 stimulation is sufficient to activate massive, GSDMD-mediated IL-1β secretion in monocytes from patients affected by Cryopyrin Associated Periodic Syndrome (CAPS), an autoinflammatory disease linked to NLRP3 mutations. The exaggerated sensitivity to activation correlates with high basal ROS levels in CAPS monocytes. In conclusion, the vesicular pathway limits IL-1β release upon low pathogen load while stronger stimulation or concomitant cell stress induce instead uncontrolled secretion via GSDMD leading to detrimental inflammatory manifestations.
Collapse
Affiliation(s)
- Claudia Semino
- Protein Transport and Secretion Unit, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Sonia Carta
- Cell Biology Unit, Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Marco Gattorno
- Clinica Pediatrica e Reumatologia, "G. Gaslini" Scientific Institute, 16147, Genoa, Italy
| | - Roberto Sitia
- Protein Transport and Secretion Unit, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Anna Rubartelli
- Cell Biology Unit, Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| |
Collapse
|
212
|
|
213
|
Hsp90/Sec22b promotes unconventional secretion of mature-IL-1β through an autophagosomal carrier in porcine alveolar macrophages during Mycoplasma hyopneumoniae infection. Mol Immunol 2018; 101:130-139. [DOI: 10.1016/j.molimm.2018.06.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023]
|
214
|
Urano Y, Mori C, Fuji A, Konno K, Yamamoto T, Yashirogi S, Ando M, Saito Y, Noguchi N. 6-Hydroxydopamine induces secretion of PARK7/DJ-1 via autophagy-based unconventional secretory pathway. Autophagy 2018; 14:1943-1958. [PMID: 30112966 PMCID: PMC6152502 DOI: 10.1080/15548627.2018.1493043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED PARK7/DJ-1 is a Parkinson disease- and cancer-associated protein that functions as a multifunctional protein involved in gene transcription regulation and anti-oxidative defense. Although PARK7 lacks the secretory signal sequence, it is secreted and plays important physiological and pathophysiological roles. Whereas secretory proteins that lack the endoplasmic reticulum-targeting signal sequence are secreted from cells by way of what is called the unconventional secretion mechanism, the specific processes responsible for causing PARK7 to be secreted across the plasma membrane have remained unclear. In the present study, we found that PARK7 secretion was increased by treatment with 6-OHDA via the unconventional secretory pathway in human neuroblastoma SH-SY5Y cells and MEF cells. We also found that 6-OHDA-induced PARK7 secretion was suppressed in Atg5-, Atg9-, or Atg16l1-deficient MEF cells or ATG16L1 knockdown SH-SY5Y cells, indicating that the autophagy-based unconventional secretory pathway is involved in PARK7 secretion. We moreover observed that 6-OHDA-derived electrophilic quinone induced oxidative stress as indicated by a decrease in glutathione levels, and that this was suppressed by pretreatment with antioxidant NAC. We further found that NAC treatment suppressed autophagy and PARK7 secretion. We also observed that 6-OHDA-induced autophagy was associated with activation of AMPK and ULK1 via a pathway which was independent of MTOR. Collectively these results suggest that electrophilic 6-OHDA quinone enhances oxidative stress, and that this is followed by AMPK-ULK1 pathway activation and induction of secretory autophagy to produce unconventional secretion of PARK7. ABBREVIATIONS 6-OHDA: 6-hydroxydopamine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CAV1: caveolin 1; ER: endoplasmic reticulum; FN1: fibronectin 1; GSH: glutathione; IDE: insulin degrading enzyme; IL: interleukin; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAC: N-acetyl-L-cysteine; PARK7/DJ-1: Parkinsonism associated deglycase; PD: Parkinson disease; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; RPN1: ribophorin I; ROS: reactive oxygen species; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Chinatsu Mori
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ayano Fuji
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Keito Konno
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takayuki Yamamoto
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Shohei Yashirogi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Mayu Ando
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
215
|
Xu J, Camfield R, Gorski SM. The interplay between exosomes and autophagy - partners in crime. J Cell Sci 2018; 131:131/15/jcs215210. [PMID: 30076239 DOI: 10.1242/jcs.215210] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system is a complex series of interconnected membranous organelles that play important roles in responding to stress and maintaining cell homeostasis during health and disease. Two components of this system, exosome biogenesis and autophagy, are linked by the endolysosomal pathway. Exosomes are cargo-laden extracellular vesicles that arise from endosome-derived multivesicular bodies, and autophagy is a lysosomal-dependent degradation and recycling pathway. Recent studies have revealed shared molecular machinery between exosome biogenesis and autophagy, as well as substantial crosstalk between these two processes. In this Review, we first describe the classic view of exosome biogenesis and autophagy, including their links to the endolysosomal pathway. We then present the evidence for autophagy-related proteins in exosome biogenesis, the emerging roles of amphisomes and the evolving models of exosome-autophagy pathway interactions. Finally, we discuss the implications of exosome and autophagy interplay in the context of neurodegeneration and cancer.
Collapse
Affiliation(s)
- Jing Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Robert Camfield
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3 .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
216
|
Interleukin-1β Maturation Triggers Its Relocation to the Plasma Membrane for Gasdermin-D-Dependent and -Independent Secretion. Cell Rep 2018; 24:1425-1433. [DOI: 10.1016/j.celrep.2018.07.027] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
|
217
|
Regulation and Roles of Autophagy at Synapses. Trends Cell Biol 2018; 28:646-661. [DOI: 10.1016/j.tcb.2018.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
|
218
|
Noh SH, Gee HY, Kim Y, Piao H, Kim J, Kang CM, Lee G, Mook-Jung I, Lee Y, Cho JW, Lee MG. Specific autophagy and ESCRT components participate in the unconventional secretion of CFTR. Autophagy 2018; 14:1761-1778. [PMID: 29969945 DOI: 10.1080/15548627.2018.1489479] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The most common mutation in cystic fibrosis patients is a phenylalanine deletion at position 508 (ΔF508) in the CFTR (cystic fibrosis transmembrane conductance regulator) gene. This mutation impairs cell-surface trafficking of CFTR. During cellular stress, core-glycosylated CFTRΔF508 is transported to the cell surface from the endoplasmic reticulum (ER) via an unconventional route that bypasses the Golgi. However, the mechanisms for this unconventional secretory pathway of CFTR are not well delineated. Here, we report that components of the macroautophagy/autophagy and ESCRT (endosomal sorting complex required for transport) pathways are involved in unconventional secretion of CFTR. In mammalian cells, we found that autophagic pathways were modulated by conditions that also stimulate unconventional secretion, namely ER stress and an ER-to-Golgi transport blockade. Additionally, we found that knockdown of early autophagy components, ATG5 and ATG7, and treatment with pharmacological autophagy inhibitors, wortmannin and 3-methyladenine, abolished the unconventional secretion of CFTR that had been stimulated by ER stress and an ER-to-Golgi blockade. Interestingly, immunoelectron microscopy revealed that GORASP2/GRASP55, which mediates unconventional CFTR trafficking, is present in multivesicular bodies (MVB) and autophagosomal structures under ER stress conditions. A custom small-interfering RNA screen of mammalian ESCRT proteins that mediate MVB biogenesis showed that silencing of some ESCRTs, including MVB12B, inhibited unconventional CFTRΔF508 secretion. Furthermore, MVB12B overexpression partially rescued cell-surface expression and Cl- channel function of CFTRΔF508. Taken together, these results suggest that components involved in early autophagosome formation and the ESCRT/MVB pathway play a key role in the stress-induced unconventional secretion of CFTR.
Collapse
Affiliation(s)
- Shin Hye Noh
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Heon Yung Gee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Yonjung Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - He Piao
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Jiyoon Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Chung Min Kang
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Gahyung Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Inhee Mook-Jung
- b Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Yangsin Lee
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea
| | - Jin Won Cho
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea.,d Department of Systems Biology, Interdisciplinary Program of Integrated OMICS for Biomedical Science , Yonsei University , Seoul , Korea
| | - Min Goo Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
219
|
Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 2018; 43:38-46. [PMID: 30031632 DOI: 10.1016/j.cytogfr.2018.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous cellular process that regulates cell growth, survival, development and death. Its process is closely associated with diverse conditions, such as liver diseases, neurodegenerative diseases, myopathy, heart diseases, cancer, immunization, and inflammatory diseases. Thus, understanding the modulation of autophagy may provide novel insight into potential therapeutic targets. Autophagy is closely intertwined with inflammatory and immune responses, and cytokines may help mediate this interaction. Autophagy has been shown to regulate, and be regulated by, a wide range of proinflammatory cytokines. This review aims to summarize recent progress in elucidating the interplay between autophagy and proinflammatory cytokines, including IFN-γ, TNF-α, IL-17, and cytokines of the IL-1 family (e.g., IL-1α, IL-1β, IL-33, and IL-36).
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fu-Cheng Road, Beijing 100048, China.
| |
Collapse
|
220
|
Abstract
Inflammasomes are the central signaling hubs of the inflammatory response. They process cytosolic evidence of infection, cell damage, or metabolic disturbances, and elicit a pro-inflammatory response mediated by members of the interleukin-1 family of cytokines and pyroptotoic cell death. On the molecular level, this is accomplished by the sensor-nucleated recruitment and oligomerization of the adapter protein ASC. Once a tunable threshold is reached, cooperative assembly of ASC into linear filaments and their condensation into macromolecular ASC specks promotes an all-or-none response. These structures are highly regulated and provide a unique signaling platform or compartment to control the activity of caspase-1 and likely other effectors. Emerging evidence indicates that ASC specks are also released from inflammasome-activated cells and accumulate in inflamed tissues, where they can continue to mature cytokines or be internalized by surrounding cells to further nucleate ASC specks in their cytosol. Little is known about the mechanisms governing ASC speck release, uptake, and endosomal escape, as well as its contribution to inflammation and disease. Here, we describe the different outcomes of inflammasome activation and discuss the potential function of extracellular ASC specks. We highlight gaps in our understanding of this central process of inflammation, which may have direct consequences on the modulation of host responses and chronic inflammation.
Collapse
Affiliation(s)
- Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Florian Ingo Schmidt
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| |
Collapse
|
221
|
Harris J, Deen N, Zamani S, Hasnat MA. Mitophagy and the release of inflammatory cytokines. Mitochondrion 2018; 41:2-8. [DOI: 10.1016/j.mito.2017.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
222
|
Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131:131/12/jcs213686. [DOI: 10.1242/jcs.213686] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Most secretory proteins travel through a well-documented conventional secretion pathway involving the endoplasmic reticulum (ER) and the Golgi complex. However, recently, it has been shown that a significant number of proteins reach the plasma membrane or extracellular space via unconventional routes. Unconventional protein secretion (UPS) can be divided into two types: (i) the extracellular secretion of cytosolic proteins that do not bear a signal peptide (i.e. leaderless proteins) and (ii) the cell-surface trafficking of signal-peptide-containing transmembrane proteins via a route that bypasses the Golgi. Understanding the UPS pathways is not only important for elucidating the mechanisms of intracellular trafficking pathways but also has important ramifications for human health, because many of the proteins that are unconventionally secreted by mammalian cells and microorganisms are associated with human diseases, ranging from common inflammatory diseases to the lethal genetic disease of cystic fibrosis. Therefore, it is timely and appropriate to summarize and analyze the mechanisms of UPS involvement in disease pathogenesis, as they may be of use for the development of new therapeutic approaches. In this Review, we discuss the intracellular trafficking pathways of UPS cargos, particularly those related to human diseases. We also outline the disease mechanisms and the therapeutic potentials of new strategies for treating UPS-associated diseases.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
223
|
The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 2018; 8:8446. [PMID: 29855523 PMCID: PMC5981608 DOI: 10.1038/s41598-018-26603-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Activation of the inflammasome pathway is crucial for effective intracellular host defense. The mitochondrial network plays an important role in inflammasome regulation but the mechanisms linking mitochondrial homeostasis to attenuation of inflammasome activation are not fully understood. Here, we report that the Parkinson’s disease-associated mitochondrial serine protease HtrA2 restricts the activation of ASC-dependent NLRP3 and AIM2 inflammasomes, in a protease activity-dependent manner. Consistently, disruption of the protease activity of HtrA2 results in exacerbated NLRP3 and AIM2 inflammasome responses in macrophages ex vivo and systemically in vivo. Mechanistically, we show that the HtrA2 protease activity regulates autophagy and controls the magnitude and duration of inflammasome signaling by preventing prolonged accumulation of the inflammasome adaptor ASC. Our findings identify HtrA2 as a non-redundant mitochondrial quality control effector that keeps NLRP3 and AIM2 inflammasomes in check.
Collapse
|
224
|
van der Grein SG, Defourny KAY, Slot EFJ, Nolte-'t Hoen ENM. Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host. Semin Immunopathol 2018; 40:491-504. [PMID: 29789863 PMCID: PMC6208671 DOI: 10.1007/s00281-018-0678-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
It is a long-standing paradigm in the field of virology that naked viruses cause lysis of infected cells to release progeny virus. However, recent data indicate that naked virus types of the Picornaviridae and Hepeviridae families can also leave cells via an alternative route involving enclosure in fully host-derived lipid bilayers. The resulting particles resemble extracellular vesicles (EV), which are 50 nm–1 μm vesicles released by all cells. These EV contain lipids, proteins, and RNA, and generally serve as vehicles for intercellular communication in various (patho)physiological processes. EV can act as carriers of naked viruses and as invisibility cloaks to evade immune attacks. However, the exact combination of virions and host-derived molecules determines how these virus-containing EV affect spread of infection and/or triggering of antiviral immune responses. An underexposed aspect in this research area is that infected cells likely release multiple types of virus-induced and constitutively released EV with unique molecular composition and function. In this review, we identify virus-, cell-, and environment-specific factors that shape the EV population released by naked virus-infected cells. In addition, current findings on the formation and molecular composition of EV induced by different virus types will be compared and placed in the context of the widely proven heterogeneity of EV populations and biases caused by different EV isolation methodologies. Close interactions between the fields of EV biology and virology will help to further delineate the intricate relationship between EV and naked viruses and its relevance for viral life cycles and outcomes of viral infections.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kyra A Y Defourny
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik F J Slot
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
225
|
Computational Approach to Investigating Key GO Terms and KEGG Pathways Associated with CNV. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8406857. [PMID: 29850576 PMCID: PMC5925134 DOI: 10.1155/2018/8406857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Choroidal neovascularization (CNV) is a severe eye disease that leads to blindness, especially in the elderly population. Various endogenous and exogenous regulatory factors promote its pathogenesis. However, the detailed molecular biological mechanisms of CNV have not been fully revealed. In this study, by using advanced computational tools, a number of key gene ontology (GO) terms and KEGG pathways were selected for CNV. A total of 29 validated genes associated with CNV and 17,639 nonvalidated genes were encoded based on the features derived from the GO terms and KEGG pathways by using the enrichment theory. The widely accepted feature selection method-maximum relevance and minimum redundancy (mRMR)-was applied to analyze and rank the features. An extensive literature review for the top 45 ranking features was conducted to confirm their close associations with CNV. Identifying the molecular biological mechanisms of CNV as described by the GO terms and KEGG pathways may contribute to improving the understanding of the pathogenesis of CNV.
Collapse
|
226
|
|
227
|
Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83:59-66. [PMID: 29580969 DOI: 10.1016/j.semcdb.2018.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Over the past 20 years it has become evident that eukaryotic cells utilize both conventional and unconventional pathways to deliver proteins to their target sites. Most proteins with a signal peptide and/or a transmembrane domain are conventionally transported through the endoplasmic reticulum to the Golgi apparatus and then to the plasma membrane. However, an increasing number of both soluble cargos (Type I, II, and III) and integral membrane proteins (Type IV) have been found to reach the plasma membrane via unconventional protein secretion (UPS) pathways that bypass the Golgi apparatus under certain conditions, such as cellular stress or development. Well-known examples of transmembrane proteins that undergo Type IV UPS pathways are position-specific antigen subunit alpha 1 integrin, cystic fibrosis transmembrane conductance regulator, myeloproliferative leukemia virus oncogene, and pendrin. Although we collectively refer to all Golgi-bypassing routes as UPS, individual trafficking pathways are diverse compared to the conventional pathways, and the molecular mechanisms of UPS pathways are not yet completely defined. This review summarizes the intracellular trafficking pathways of UPS cargo proteins, particularly those with transmembrane domains, and discusses the molecular machinery involved in the UPS of transmembrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
228
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
229
|
Enterovirus Transmission by Secretory Autophagy. Viruses 2018; 10:v10030139. [PMID: 29558400 PMCID: PMC5869532 DOI: 10.3390/v10030139] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Present in many cell types, non-degradative secretory autophagy is a newly discovered pathway in which autophagosomes fuse with the plasma membrane instead of lysosomes. Surprisingly, some viruses exploit secretory autophagy to exit cells non-lytically, shedding into the extracellular environment as particle populations contained within vesicles. As a result, this significantly enhances the infectivity of these viruses. In this paper, this novel cellular exit pathway is highlighted and its advantages for viral transmission discussed.
Collapse
|
230
|
|
231
|
Nüchel J, Ghatak S, Zuk AV, Illerhaus A, Mörgelin M, Schönborn K, Blumbach K, Wickström SA, Krieg T, Sengle G, Plomann M, Eckes B. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy 2018; 14:465-486. [PMID: 29297744 DOI: 10.1080/15548627.2017.1422850] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.
Collapse
Affiliation(s)
- Julian Nüchel
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Sushmita Ghatak
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Alexandra V Zuk
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Anja Illerhaus
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Matthias Mörgelin
- c Department of Infection Medicine , Biomedical Center, University of Lund , Lund , Sweden
| | - Katrin Schönborn
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Katrin Blumbach
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Sara A Wickström
- d Max Planck Institute for Biology of Ageing , Cologne , Germany.,e Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
| | - Thomas Krieg
- b Department of Dermatology, University of Cologne , Cologne , Germany.,e Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany.,f Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| | - Gerhard Sengle
- a Center for Biochemistry , University of Cologne , Cologne , Germany.,f Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| | - Markus Plomann
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Beate Eckes
- b Department of Dermatology, University of Cologne , Cologne , Germany
| |
Collapse
|
232
|
Abstract
Cell-to-cell transmission of misfolded proteins propagates proteotoxic stress in multicellular organisms when transmitted polypeptides serve as a seeding template to cause protein misfolding in recipient cells, but how misfolded proteins are released from cells to initiate this process is unclear. Misfolding-associated protein secretion (MAPS) is an unconventional protein-disposing mechanism that specifically exports misfolded cytosolic proteins including various neurodegenerative disease-causing proteins. Here we establish the HSC70 co-chaperone DNAJC5 as an essential mediator of MAPS. USP19, a previously uncovered MAPS regulator binds HSC70 and acts upstream of HSC70 and DNAJC5. We further show that as a membrane-associated protein localized preferentially to late endosomes and lysosomes, DNAJC5 can chaperone MAPS client proteins to the cell exterior. Intriguingly, upon secretion, misfolded proteins can be taken up through endocytosis and eventually degraded in the lysosome. Collectively, these findings suggest a transcellular protein quality control regulatory pathway in which a deubiquitinase-chaperone axis forms a “triaging hub”, transferring aberrant polypeptides from stressed cells to healthy ones for disposal.
Collapse
|
233
|
Gao R, Ma J, Wen Z, Yang P, Zhao J, Xue M, Chen Y, Aldarouish M, Hu HM, Zhu XJ, Pan N, Wang LX. Tumor cell-released autophagosomes (TRAP) enhance apoptosis and immunosuppressive functions of neutrophils. Oncoimmunology 2018; 7:e1438108. [PMID: 29872581 DOI: 10.1080/2162402x.2018.1438108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 01/22/2023] Open
Abstract
Our previous studies have confirmed that tumor cell-released autophagosomes (TRAP) could induce the differentiation of B cells into IL-10+ regulatory B cells (Bregs) with suppressive activities on T lymphocytes. However, the mechanism of TRAP-mediated immune suppression is still largely unclear. Herein, we sought to assess the immunomodulatory effect of TRAPs on human neutrophils, a major immune cell type that infiltrates human tumor tissues. We found that TRAPs enriched from malignant effusions or ascites of cancer patients and tumor cell lines were rapidly and effectively phagocytized by neutrophils through macropinocytosis and promoted neutrophil apoptosis via reactive oxygen species (ROS) generation and caspase-3 activation. Moreover, the apoptotic neutrophils that have phagocytized TRAPs inhibited the proliferation and activation of CD4+ T and CD8+ T cells in a cell contact- and ROS-dependent manner. These findings define a novel TRAP-mediated mechanism in neutrophils that potentially suppresses the anti-tumor T cell immunity and highlight TRAPs as an important target for future tumor immunotherapy.
Collapse
Affiliation(s)
- Rong Gao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Jie Ma
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Zhifa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Peiying Yang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Meng Xue
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Yongqiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China.,Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA
| | - Xue-Jun Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China.,Division of Hematology, Department of Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
234
|
Kumar S, Jain A, Farzam F, Jia J, Gu Y, Choi SW, Mudd MH, Claude-Taupin A, Wester MJ, Lidke KA, Rusten TE, Deretic V. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J Cell Biol 2018; 217:997-1013. [PMID: 29420192 PMCID: PMC5839791 DOI: 10.1083/jcb.201708039] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/12/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Ashish Jain
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Yuexi Gu
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Seong Won Choi
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michal H Mudd
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Aurore Claude-Taupin
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM
| | - Tor-Erik Rusten
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
235
|
Cadwell K, Debnath J. Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. J Cell Biol 2018; 217:813-822. [PMID: 29237720 PMCID: PMC5839790 DOI: 10.1083/jcb.201706157] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
The identification of conserved autophagy-related proteins (ATGs) that mediate bulk degradation of cytosolic material laid the foundation for breakthroughs linking autophagy to a litany of physiological processes and disease conditions. Recent discoveries are revealing that these same ATGs orchestrate processes that are related to, and yet clearly distinct from, classic autophagy. Autophagy-related functions include secretion, trafficking of phagocytosed material, replication and egress of viral particles, and regulation of inflammatory and immune signaling cascades. Here, we define common processes dependent on ATGs, and discuss the challenges in mechanistically separating autophagy from these related pathways. Elucidating the molecular events that distinguish how individual ATGs function promises to improve our understanding of the origin of diseases ranging from autoimmunity to cancer.
Collapse
Affiliation(s)
- Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
236
|
Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 2018; 9:329. [PMID: 29491386 PMCID: PMC5832426 DOI: 10.1038/s41419-017-0027-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tightly associated with very dynamic platforms termed mitochondria-associated membranes (MAMs). MAMs provide an excellent scaffold for crosstalk between the ER and mitochondria and play a pivotal role in different signaling pathways that allow rapid exchange of biological molecules to maintain cellular health. However, dysfunctions in the ER–mitochondria architecture are associated with pathological conditions and human diseases. Inflammation has emerged as one of the various pathways that MAMs control. Inflammasome components and other inflammatory factors promote the release of pro-inflammatory cytokines that sustain pathological conditions. In this review, we summarize the critical role of MAMs in initiating inflammation in the cellular defense against pathogenic infections and the association of MAMs with inflammation-mediated diseases.
Collapse
|
237
|
Cruz-Garcia D, Malhotra V, Curwin AJ. Unconventional protein secretion triggered by nutrient starvation. Semin Cell Dev Biol 2018; 83:22-28. [PMID: 29486236 DOI: 10.1016/j.semcdb.2018.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
It is usually assumed that eukaryotic cells secrete only proteins that contain a signal sequence for Sec61 mediated translocation into the lumen of endoplasmic reticulum (ER). Surprisingly however, many proteins, such as superoxide dismutase (SOD)1, acyl-CoA binding protein (Acb1), interleukin 1β, fibroblast growth factor 2 and the adipokine Unpaired2, to name a few, are secreted even though they lack a signal sequence. The discovery that these proteins are secreted has presented a new challenge and we describe here a common pathway by which SOD1 and Acb1 are specifically secreted upon nutrient starvation. Their secretion follows a type III unconventional pathway, requiring the exposure of a di-acidic motif, which we propose promotes their capture into a membrane compartment called CUPS (compartment for unconventional protein secretion). We suggest that CUPS, composed of membranes derived from the Golgi apparatus and endosomes, serves as a major sorting station prior to release of SOD1 and Acb1 into the extracellular space. The trafficking of these signal sequence lacking proteins therefore has functional similarities to conventional protein secretion in that they rely on membrane bounded compartments for their sorting and transport, but bypass the need of Sec61 for translocating into the ER and COPII and COPI for their intracellular transfers. This review is part of a Special Issue of SCDB on "unconventional protein secretion" edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- David Cruz-Garcia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| | - Amy J Curwin
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
| |
Collapse
|
238
|
Mishra SK, Gao YG, Deng Y, Chalfant CE, Hinchcliffe EH, Brown RE. CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Autophagy 2018; 14:862-879. [PMID: 29164996 PMCID: PMC6070007 DOI: 10.1080/15548627.2017.1393129] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 02/01/2023] Open
Abstract
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.
Collapse
Affiliation(s)
| | - Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Charles E. Chalfant
- Department of Biochemistry & Molecular Biology, VCU Massey Cancer Center, VCU Institute of Molecular Medicine, VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University, Richmond, VA USA
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA USA
| | | | | |
Collapse
|
239
|
Iula L, Keitelman IA, Sabbione F, Fuentes F, Guzman M, Galletti JG, Gerber PP, Ostrowski M, Geffner JR, Jancic CC, Trevani AS. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils. Front Immunol 2018; 9:269. [PMID: 29515581 PMCID: PMC5825906 DOI: 10.3389/fimmu.2018.00269] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1β (IL-1β), a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1β in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1β by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1β secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1β secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1β secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1β secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1β was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1β-LC3B in a vesicular compartment peaked before IL-1β increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1β and LC3B and then promoted neutrophil IL-1β secretion. In addition, specific ELISAs indicated that although both IL-1β and pro-IL-1β are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1β secretion. Furthermore, the serine proteases inhibitor AEBSF reduced IL-1β secretion. Moreover, IL-1β could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1β intersect azurophil granules content and that serine proteases also regulate IL-1β secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1β secretion in human neutrophils.
Collapse
Affiliation(s)
- Leonardo Iula
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene A. Keitelman
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Fuentes
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mauricio Guzman
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jeremías Gastón Galletti
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R. Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina C. Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía S. Trevani
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
240
|
Abstract
Macroautophagy/autophagy is a homeostatic process with multiple effects on immunity. One of the pivotal contributions of autophagy in immunity is the cell autonomous control of inflammation. This property leads to systemic consequences and thereby influences the development of innate and adaptive immunity, which promotes or suppresses pathology in various disease contexts. In this review we focus on the intersections between autophagy and inflammasome activation, autophagy and interferons, and autophagy and inflammation in association with infection.
Collapse
Affiliation(s)
- Vojo Deretic
- a Autophagy, Inflammation and Metabolism in Disease (AIM) Center of Biomedical Research Excellence , University of New Mexico Health Sciences Center , Albuquerque , NM , USA.,b Department of Molecular Genetics and Microbiology , University of New Mexico Health Sciences Center , Albuquerque , NM , USA
| | - Beth Levine
- c Center for Autophagy Research, Department of Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA.,d Department of Microbiology , University of Texas Southwestern Medical Center , Dallas , TX , USA.,e Howard Hughes Medical Institute , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
241
|
Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol 2018; 48:584-592. [PMID: 29274245 DOI: 10.1002/eji.201747404] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
The pro-inflammatory cytokine IL-1β is well known for its role in host defense and the initiation of potent inflammatory responses. It is processed from its inactive pro-form by the inflammatory caspase-1 into its mature bioactive form, which is then released from the cell via an unconventional secretion mechanism. Recently, gasdermin-D has been identified as a new target of caspase-1. After proteolytical cleavage of gasdermin-D, the N-terminal fragment induces pyroptosis, a lytic cell death, by forming large permeability pores in the plasma membrane. Here we show using the murine system that gasdermin-D is required for IL-1β secretion by macrophages, dendritic cells and partially in neutrophils, and that secretion is a cell-lysis-independent event. Liposome transport assays in vitro further demonstrate that gasdermin-D pores are large enough to allow the direct release of IL-1β. Moreover, IL-18 and other small soluble cytosolic proteins can also be released in a lysis-independent but gasdermin-D-dependent mode, suggesting that the gasdermin-D pores allow passive the release of cytosolic proteins in a size-dependent manner.
Collapse
Affiliation(s)
- Rosalie Heilig
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Mathias S Dick
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Lorenzo Sborgi
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, France
| | - Sebastian Hiller
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
242
|
Bellucci M, De Marchis F, Pompa A. The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:7-20. [PMID: 28992342 DOI: 10.1093/jxb/erx286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 05/25/2023]
Abstract
The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| |
Collapse
|
243
|
Autophagy’s secret life: secretion instead of degradation. Essays Biochem 2017; 61:637-647. [DOI: 10.1042/ebc20170024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023]
Abstract
Autophagy is conventionally described as a degradative, catabolic pathway and a tributary to the lysosomal system where the cytoplasmic material sequestered by autophagosomes gets degraded. However, autophagosomes or autophagosome-related organelles do not always follow this route. It has recently come to light that autophagy can terminate in cytosolic protein secretion or release of sequestered material from the cells, rather than in their degradation. In this review, we address this relatively new but growing aspect of autophagy as a complex pathway, which is far more versatile than originally anticipated.
Collapse
|
244
|
Villeneuve J, Bassaganyas L, Lepreux S, Chiritoiu M, Costet P, Ripoche J, Malhotra V, Schekman R. Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J Cell Biol 2017; 217:649-665. [PMID: 29212659 PMCID: PMC5800802 DOI: 10.1083/jcb.201705047] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
Adipocytes secrete fatty acid binding protein 4, which influences glucose production in hepatocytes and insulin secretion in pancreatic β-cells, but the mechanisms of its secretion are unclear. Villeneuve et al. show that FABP4 is secreted unconventionally through enclosure within endosomes and secretory lysosomes. An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum–Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion.
Collapse
Affiliation(s)
- Julien Villeneuve
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Laia Bassaganyas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Sebastien Lepreux
- Institut National de la Santé et de la Recherche Médicale U1026, Université de Bordeaux, Bordeaux, France
| | - Marioara Chiritoiu
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pierre Costet
- Service des Animaleries, Université de Bordeaux, Bordeaux, France
| | - Jean Ripoche
- Institut National de la Santé et de la Recherche Médicale U1026, Université de Bordeaux, Bordeaux, France
| | - Vivek Malhotra
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institutio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
245
|
Simultaneous Detection of Cellular Viability and Interleukin-1β Secretion from Single Cells by ELISpot. Methods Mol Biol 2017. [PMID: 29177866 DOI: 10.1007/978-1-4939-7519-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell death results in the breakdown of the plasma membrane, which can cause the release of cytosolic proteins. During caspase-1-mediated cell death, termed pyroptosis, pro-inflammatory mediators that lack canonical secretory signal sequences, such as interleukin-1β (IL-1β), are released into the extracellular environment. To define whether cell death is required for the release of IL-1β, or if IL-1β can be actively secreted from viable cells, we have developed a modified IL-1β Enzyme-Linked ImmunoSpot (ELISpot) assay. This assay simultaneously detects cellular viability and IL-1β release at the single-cell level, and is therefore useful to examine how cell death influences IL-1β secretion under different experimental conditions. Cells expressing a surrogate viability marker, such as GFP, are plated onto cellulose filter plates coated with an IL-1β capture antibody. This antibody immobilizes IL-1β as it is released from cells, allowing detection of distinct IL-1β "spots." Both GFP positive cells and IL-1β spots are detected and quantified using an AID ELISpot Reader, and the captured images are overlaid. Therefore, cell viability and IL-1β release from individual cells can be monitored visually. We have recently used this method to document how individual fibroblasts expressing activated caspase-1 can secrete IL-1β in the absence of cell death. Adaptation of this assay to other experimental conditions may help to define the circumstances where cell death influences IL-1β release and IL-1β-driven inflammatory responses.
Collapse
|
246
|
Abstract
The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| |
Collapse
|
247
|
Cell death and cell lysis are separable events during pyroptosis. Cell Death Discov 2017; 3:17070. [PMID: 29147575 PMCID: PMC5682879 DOI: 10.1038/cddiscovery.2017.70] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome.
Collapse
|
248
|
Hua Y, Shen M, McDonald C, Yao Q. Autophagy dysfunction in autoinflammatory diseases. J Autoimmun 2017; 88:11-20. [PMID: 29108670 DOI: 10.1016/j.jaut.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/27/2023]
Abstract
Autoinflammatory diseases (AUIDs) are a genetically heterogeneous group of rheumatic diseases characterized by episodic inflammation linked with dysregulated innate immune responses. In this review, we summarize the molecular mechanisms altered by disease-associated variants in several AUIDs, including NOD2-associated diseases, TNF receptor-associated periodic syndrome (TRAPS), familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), and highlight the roles dysregulated autophagy plays in disease pathogenesis. Autophagy is a conserved eukaryotic pathway for the elimination of cellular stressors, such as misfolded proteins, damaged organelles, or intracellular microorganisms. It is now recognized that autophagy also functions to control inflammation through regulatory interactions with innate immune signaling pathways. AUID-associated genetic variants are known to directly activate inflammatory signaling pathways. Recent evidence also indicates that these variants may also cause impairment of autophagy, thus augmenting inflammatory responses indirectly. Intriguingly, these variants can impair autophagy by different mechanisms, further implicating the autophagic response pathway in AUIDs. These discoveries provide evidence that autophagy could be investigated as a new therapeutic target for AUIDs.
Collapse
Affiliation(s)
- Yichao Hua
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
249
|
Kattah MG, Malynn BA, Ma A. Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome. J Mol Biol 2017; 429:3471-3485. [PMID: 29031697 DOI: 10.1016/j.jmb.2017.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Michael G Kattah
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA.
| |
Collapse
|
250
|
Autophagy Proteins in Viral Exocytosis and Anti-Viral Immune Responses. Viruses 2017; 9:v9100288. [PMID: 28976939 PMCID: PMC5691639 DOI: 10.3390/v9100288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
Autophagy-related (Atg) gene-encoded proteins were originally described for their crucial role in macroautophagy, a catabolic pathway for cytoplasmic constituent degradation in lysosomes. Recently it has become clear that modules of this machinery can also be used to influence endo- and exocytosis. This mini review discusses how these alternative Atg functions support virus replication and viral antigen presentation on major histocompatibility (MHC) class I and II molecules. A better understanding of the modular use of the macroautophagy machinery might enable us to manipulate these alternative functions of Atg proteins during anti-viral therapies and to attenuate virus-induced immune pathologies.
Collapse
|