2601
|
Marwa KJ, Schmidt T, Sjögren M, Minzi OMS, Kamugisha E, Swedberg G. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malar J 2014; 13:420. [PMID: 25363545 PMCID: PMC4228099 DOI: 10.1186/1475-2875-13-420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/25/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain the pharmacogenetics of the population in the region with respect to these combinations and thereby enable practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population. METHODS Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume Health Centre in Mwanza Tanzania, was carried out using the Gene JET™ Genomic DNA purification kit (Thermo Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers. Amplification was done by PCR while differentiation between alleles was done by restriction fragment length polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B). RESULTS CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be 19,10,16,78 and 36% respectively. CONCLUSION Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
Collapse
Affiliation(s)
- Karol J Marwa
- Department of Pharmacology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | |
Collapse
|
2602
|
Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J Pharm Biomed Anal 2014; 100:393-401. [DOI: 10.1016/j.jpba.2014.08.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/30/2014] [Accepted: 08/10/2014] [Indexed: 11/20/2022]
|
2603
|
Shaya L, Dejong C, Wilson JY. Expression patterns of cytochrome P450 3B and 3C genes in model fish species. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:115-25. [PMID: 25073111 DOI: 10.1016/j.cbpc.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP) 3 enzymes are highly expressed in detoxification organs and play an important role in xenobiotic metabolism. In fish, the CYP3 family is diversified and includes several subfamilies (CYP3B, CYP3C, and CYP3D) not found in mammals. The functional role and expression patterns of these novel genes are unknown. In this study, the expression patterns of novel teleost CYP3 genes were determined in medaka(Oryzias latipes; CYP3B4, CYP3B5, CYP3B6) and zebrafish (Danio rerio; CYP3C1, CYP3C2, CYP3C3, CYP3C4), two important model fish species. Expression was quantified with real time PCR in multiple internal organs from adult male and female fish. CYP3C gene expression was determined in zebrafish embryos. Expression in all organs was detected for all genes, except for CYP3B4 in male organs. CYP3C1, CYP3C3, CYP3B4, CYP3B5, and CYP3B6 were more highly expressed in liver and/or intestine from at least one gender, suggesting a role in xenobiotic metabolism. Expression of CYP3C1 and CYP3B5 in olfactory rosette was comparable to liver. CYP3C1, CYP3C4, CYP3B5 and CYP3B6 expression was higher in the female organs; CYP3C2 and CYP3B5 were higher in testis. Estrogen and androgen response elements were found upstream of the start site of many of these genes raising the hypothesis that they are under steroid regulation. CYP3C1-3 were expressed in all developmental stages examined and appear to be maternally deposited. The expression patterns suggest that some of these CYP genes are involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Lana Shaya
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Chris Dejong
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2604
|
CYP1A2 phenotyping in dried blood spots and microvolumes of whole blood and plasma. Bioanalysis 2014; 6:3011-24. [DOI: 10.4155/bio.14.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Phenotyping, using caffeine as probe substrate, is a proper method to assess CYP1A2 activity. We evaluated the utility of dried blood spots (DBS) for CYP1A2 phenotyping. Results: LC–MS/MS methods were developed and validated for quantitation of caffeine and its metabolite paraxanthine in DBS, whole blood and plasma. All parameters met the pre-established criteria. While recovery, matrix effects and precision were unaffected by hematocrit (Hct), there was a Hct effect on accuracy, although for the evaluated Hct interval (0.36–0.50) it remained within acceptable limits. The phenotyping methods were successfully applied in healthy volunteers. Conclusion: Excellent method performance and highly comparable phenotyping indices in DBS, whole blood and plasma, combined with the benefits of DBS sampling, illustrate the suitability of DBS-based CYP1A2 phenotyping.
Collapse
|
2605
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
2606
|
Park YC, Lee S, Cho MH. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms? Toxicol Res 2014; 30:179-84. [PMID: 25343011 PMCID: PMC4206744 DOI: 10.5487/tr.2014.30.3.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/29/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.
Collapse
Affiliation(s)
- Yeong-Chul Park
- GLP Center, Center, Catholic University of Daegu, Keongsan, Gyeongsangbuk-do, Korea
| | - Sundong Lee
- Dept. of Preventive Korean Medicine, School of Korean Medicine, Sangji University, Wonju, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
2607
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
2608
|
Krein SR, Lindsey JC, Blaze CA, Wetmore LA. Evaluation of risk factors, including fluconazole administration, for prolonged anesthetic recovery times in horses undergoing general anesthesia for ocular surgery: 81 cases (2006-2013). J Am Vet Med Assoc 2014; 244:577-81. [PMID: 24548232 DOI: 10.2460/javma.244.5.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE--To determine risk factors for prolonged anesthetic recovery time in horses that underwent general anesthesia for ocular surgery. DESIGN--Retrospective cohort study. ANIMALS--81 horses that underwent general anesthesia for ocular surgery between 2006 and 2013. PROCEDURES--Descriptive information recorded included the ocular procedure performed, concurrent fluconazole treatments, analgesic and anesthetic agents administered, procedure duration, use of sedation for recovery, and recovery time. Data were analyzed for associations between recovery time and other variables. RESULTS--81 horses met inclusion criteria. In 72 horses, anesthesia was induced with ketamine and midazolam; 16 horses treated concurrently with fluconazole had significantly longer mean recovery time (109 minutes [95% confidence interval {CI}, 94 to 124 minutes]) than did 56 horses that were not treated with fluconazole (50 minutes [95% CI, 44 to 55 minutes]). In 9 horses anesthetized with a protocol that included ketamine but did not include midazolam, there was no difference between mean recovery time in horses that either received (59 minutes [95% CI, 36 to 81 minutes]; n = 5) or did not receive (42 minutes [95% CI, 16 to 68 minutes]; 4) fluconazole. Other variables identified as risk factors for prolonged recovery included duration of anesthesia and use of acepromazine for premedication. CONCLUSIONS AND CLINICAL RELEVANCE--Fluconazole administration was associated with prolonged anesthetic recovery time in horses when ketamine and midazolam were used to induce anesthesia for ocular surgery. Duration of anesthesia and premedication with acepromazine were also identified as risk factors for prolonged recovery time.
Collapse
Affiliation(s)
- Stephanie R Krein
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536
| | | | | | | |
Collapse
|
2609
|
Wilk-Zasadna I, Bernasconi C, Pelkonen O, Coecke S. Biotransformation in vitro: An essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology 2014; 332:8-19. [PMID: 25456264 DOI: 10.1016/j.tox.2014.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
Early consideration of the multiplicity of factors that govern the biological fate of foreign compounds in living systems is a necessary prerequisite for the quantitative in vitro-in vivo extrapolation (QIVIVE) of toxicity data. Substantial technological advances in in vitro methodologies have facilitated the study of in vitro metabolism and the further use of such data for in vivo prediction. However, extrapolation to in vivo with a comfortable degree of confidence, requires continuous progress in the field to address challenges such as e.g., in vitro evaluation of chemical-chemical interactions, accounting for individual variability but also analytical challenges for ensuring sensitive measurement technologies. This paper discusses the current status of in vitro metabolism studies for QIVIVE extrapolation, serving today's hazard and risk assessment needs. A short overview of the methodologies for in vitro metabolism studies is given. Furthermore, recommendations for priority research and other activities are provided to ensure further widespread uptake of in vitro metabolism methods in 21st century toxicology. The need for more streamlined and explicitly described integrated approaches to reflect the physiology and the related dynamic and kinetic processes of the human body is highlighted i.e., using in vitro data in combination with in silico approaches.
Collapse
Affiliation(s)
- Iwona Wilk-Zasadna
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy
| | - Camilla Bernasconi
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy
| | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Sandra Coecke
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy.
| |
Collapse
|
2610
|
Schuck RN, Zha W, Edin ML, Gruzdev A, Vendrov KC, Miller TM, Xu Z, Lih FB, DeGraff LM, Tomer KB, Jones HM, Makowski L, Huang L, Poloyac SM, Zeldin DC, Lee CR. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS One 2014; 9:e110162. [PMID: 25310404 PMCID: PMC4195706 DOI: 10.1371/journal.pone.0110162] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.
Collapse
Affiliation(s)
- Robert N. Schuck
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Weibin Zha
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Kimberly C. Vendrov
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tricia M. Miller
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhenghong Xu
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fred B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Kenneth B. Tomer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - H. Michael Jones
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Liza Makowski
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
2611
|
Kranendonk M, Alves M, Antunes P, Rueff J. Human sulfotransferase 1A1-dependent mutagenicity of 12-hydroxy-nevirapine: the missing link? Chem Res Toxicol 2014; 27:1967-71. [PMID: 25275777 DOI: 10.1021/tx5003113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nevirapine (NVP) is a frequently used anti-HIV drug. Despite its efficacy, NVP has been associated with serious skin and liver injuries in exposed patients and with increased incidences of hepatoneoplasias in rodents. Current evidence supports the involvement of reactive metabolites in the skin and liver toxicities of NVP, formed by cytochrome P450-mediated oxidations and/or subsequent phase II sulfonation. However, to date, standard in vitro genotoxicity tests have provided no evidence that NVP is either mutagenic or clastogenic. The human sulfotransferase 1A1-dependent mutagenicity of 12-hydroxy-NVP, one of the major metabolites of NVP, is demonstrated here.
Collapse
Affiliation(s)
- Michel Kranendonk
- Department of Genetics/CIGMH, NOVA Medical School/Faculdade Ciências Médicas, Universidade Nova de Lisboa , Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | | | | |
Collapse
|
2612
|
Tydén E, Tjälve H, Larsson P. Gene and protein expression and cellular localisation of cytochrome P450 enzymes of the 1A, 2A, 2C, 2D and 2E subfamilies in equine intestine and liver. Acta Vet Scand 2014; 56:69. [PMID: 25288196 PMCID: PMC4192735 DOI: 10.1186/s13028-014-0069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Among the cytochrome P450 enzymes (CYP), families 1-3 constitute almost half of total CYPs in mammals and play a central role in metabolism of a wide range of pharmaceuticals. This study investigated gene and protein expression and cellular localisation of CYP1A, CYP2A, CYP2C, CYP2D and CYP2E in equine intestine and liver. Real-time polymerase chain reaction (RT-PCR) was used to analyse gene expression, western blot to examine protein expression and immunohistochemical analyses to investigate cellular localisation. RESULTS CYP1A and CYP2C were the CYPs with the highest gene expression in the intestine and also showed considerable gene expression in the liver. CYP2E and CYP2A showed the highest gene expression in the liver. CYP2E showed moderate intestinal gene expression, whereas that of CYP2A was very low or undetectable. For CYP2D, rather low gene expression levels were found in both intestine and the liver. In the intestine, CYP gene expression levels, except for CYP2E, exhibited patterns resembling those of the proteins, indicating that intestinal protein expression of these CYPs is regulated at the transcriptional level. For CYP2E, the results showed that the intestinal gene expression did not correlate to any visible protein expression, indicating that intestinal protein expression of this CYP is regulated at the post-transcriptional level. Immunostaining of intestine tissue samples showed preferential CYP staining in enterocytes at the tips of intestinal villi in the small intestine. In the liver, all CYPs showed preferential localisation in the centrilobular hepatocytes. CONCLUSIONS Overall, different gene expression profiles were displayed by the CYPs examined in equine intestine and liver. The CYPs present in the intestine may act in concert with those in the liver to affect the oral bioavailability and therapeutic efficiency of substrate drugs. In addition, they may play a role in first-pass metabolism of feed constituents and of herbal supplements used in equine practice.
Collapse
Affiliation(s)
- Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Hans Tjälve
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Pia Larsson
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| |
Collapse
|
2613
|
Peng YS, Liu B, Wang RF, Zhao QT, Xu W, Yang XW. Hepatic metabolism: a key component of herbal drugs research. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 17:89-106. [PMID: 25296190 DOI: 10.1080/10286020.2014.960856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liver is the largest metabolic organ for a wide range of endogenous and exogenous compounds and plays a crucial part in the pharmacokinetics and pharmacodynamics through various metabolic reactions. This review provides a progressive description of hepatic metabolism of herbal drugs with respect to metabolic types and investigational methods. In addition, the problems encountered during the research process are discussed.
Collapse
Affiliation(s)
- Yu-Shuai Peng
- a School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100102 , China
| | | | | | | | | | | |
Collapse
|
2614
|
Zhao Y, Alshabi AM, Caritis S, Venkataramanan R. Impact of 17-alpha-hydroxyprogesterone caproate on cytochrome P450s in primary cultures of human hepatocytes. Am J Obstet Gynecol 2014; 211:412.e1-6. [PMID: 24681287 DOI: 10.1016/j.ajog.2014.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of 17-alpha-hydroxyprogesterone caproate (17OHP-C) on the activity and expression of several common hepatic cytochrome P450 (CYP) enzymes. STUDY DESIGN Primary human hepatocytes were pretreated with vehicle or 17OHP-C (0.1 and 1 μmol/L) for 72 hours, then incubated for 1 hour with a cocktail of CYP substrates. The activity of various CYP enzymes was determined by measuring the formation of the metabolites of specific CYP substrates, using liquid chromatography-tandem mass spectrometry. The messenger RNA expression of various CYP enzymes was determined by real-time polymerase chain reaction. RESULTS In primary cultures of human hepatocytes, 17OHP-C minimally altered the activity or messenger RNA levels of CYP1A2, CYP2C9, CYP2D6, and CYP3A. However, 17OHP-C at 1 μmol/L increased CYP2C19 activity by 2.8-fold (P < .01) and CYP2C19 expression by 2.4-fold (P < .001), compared with vehicle-treated cells. A strong positive correlation between activity and expression of CYP2C19 was also observed (r = 0.9, P < .001). CONCLUSION The activity and expression of hepatic CYP2C19 was significantly increased by 17OHP-C in primary cultures of human hepatocytes. This suggests that exposure to medications that are metabolized by CYP2C19 may be decreased in pregnant patients receiving 17OHP-C. Metabolism of substrates of CYP1A2, CYP2C9, CYP2D6, and CYP3A are not expected to be altered in patients receiving 17OHP-C.
Collapse
|
2615
|
Kawaguchi-Suzuki M, Frye RF, Zhu HJ, Brinda BJ, Chavin KD, Bernstein HJ, Markowitz JS. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab Dispos 2014; 42:1611-6. [PMID: 25028567 PMCID: PMC4164972 DOI: 10.1124/dmd.114.057232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Abstract
Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.
Collapse
Affiliation(s)
- Marina Kawaguchi-Suzuki
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Bryan J Brinda
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Chavin
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hilary J Bernstein
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2616
|
Sadee W, Hartmann K, Seweryn M, Pietrzak M, Handelman SK, Rempala GA. Missing heritability of common diseases and treatments outside the protein-coding exome. Hum Genet 2014; 133:1199-1215. [PMID: 25107510 PMCID: PMC4169001 DOI: 10.1007/s00439-014-1476-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Genetic factors strongly influence risk of common human diseases and treatment outcomes but the causative variants remain largely unknown; this gap has been called the 'missing heritability'. We propose several hypotheses that in combination have the potential to narrow the gap. First, given a multi-stage path from wellness to disease, we propose that common variants under positive evolutionary selection represent normal variation and gate the transition between wellness and an 'off-well' state, revealing adaptations to changing environmental conditions. In contrast, genome-wide association studies (GWAS) focus on deleterious variants conveying disease risk, accelerating the path from off-well to illness and finally specific diseases, while common 'normal' variants remain hidden in the noise. Second, epistasis (dynamic gene-gene interactions) likely assumes a central role in adaptations and evolution; yet, GWAS analyses currently are poorly designed to reveal epistasis. As gene regulation is germane to adaptation, we propose that epistasis among common normal regulatory variants, or between common variants and less frequent deleterious variants, can have strong protective or deleterious phenotypic effects. These gene-gene interactions can be highly sensitive to environmental stimuli and could account for large differences in drug response between individuals. Residing largely outside the protein-coding exome, common regulatory variants affect either transcription of coding and non-coding RNAs (regulatory SNPs, or rSNPs) or RNA functions and processing (structural RNA SNPs, or srSNPs). Third, with the vast majority of causative variants yet to be discovered, GWAS rely on surrogate markers, a confounding factor aggravated by the presence of more than one causative variant per gene and by epistasis. We propose that the confluence of these factors may be responsible to large extent for the observed heritability gap.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Pharmacology, Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, 5184A Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210, USA,
| | | | | | | | | | | |
Collapse
|
2617
|
Zancanella V, Giantin M, Dacasto M. Absolute quantification and modulation of cytochrome P450 3A isoforms in cattle liver. Vet J 2014; 202:106-11. [DOI: 10.1016/j.tvjl.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
|
2618
|
Brill MJE, van Rongen A, Houwink API, Burggraaf J, van Ramshorst B, Wiezer RJ, van Dongen EPA, Knibbe CAJ. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Clin Pharmacokinet 2014; 53:931-41. [PMID: 25141974 PMCID: PMC4171595 DOI: 10.1007/s40262-014-0166-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND While in vitro and animal studies have shown reduced cytochrome P450 (CYP) 3A activity due to obesity, clinical studies in (morbidly) obese patients are scarce. As CYP3A activity may influence both clearance and oral bioavailability in a distinct manner, in this study the pharmacokinetics of the CYP3A substrate midazolam were evaluated after semi-simultaneous oral and intravenous administration in morbidly obese patients, and compared with healthy volunteers. METHODS Twenty morbidly obese patients [mean body weight 144 kg (range 112-186 kg) and mean body mass index 47 kg/m(2) (range 40-68 kg/m(2))] participated in the study. All patients received a midazolam 7.5 mg oral and 5 mg intravenous dose (separated by 159 ± 67 min) and per patient 22 samples over 11 h were collected. Data from 12 healthy volunteers were available for a population pharmacokinetic analysis using NONMEM(®). RESULTS In the three-compartment model in which oral absorption was characterized by a transit absorption model, population mean clearance (relative standard error %) was similar [0.36 (4 %) L/min], while oral bioavailability was 60 % (13 %) in morbidly obese patients versus 28 % (7 %) in healthy volunteers (P < 0.001). Central and peripheral volumes of distribution increased substantially with body weight (both P < 0.001) and absorption rate (transit rate constant) was lower in morbidly obese patients [0.057 (5 %) vs. 0.130 (14 %) min(-1), P < 0.001]. CONCLUSIONS In morbidly obese patients, systemic clearance of midazolam is unchanged, while oral bioavailability is increased. Given the large increase in volumes of distribution, dose adaptations for intravenous midazolam should be considered. Further research should elucidate the exact physiological changes at intestinal and hepatic level contributing to these findings.
Collapse
Affiliation(s)
- Margreke J. E. Brill
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Anne van Rongen
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Aletta P. I. Houwink
- Department of Anaesthesiology, Intensive Care and Pain Management, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Jacobus Burggraaf
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - Bert van Ramshorst
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - René J. Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Eric P. A. van Dongen
- Department of Anaesthesiology, Intensive Care and Pain Management, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Catherijne A. J. Knibbe
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| |
Collapse
|
2619
|
Velenosi TJ, Feere DA, Sohi G, Hardy DB, Urquhart BL. Decreased nuclear receptor activity and epigenetic modulation associates with down-regulation of hepatic drug-metabolizing enzymes in chronic kidney disease. FASEB J 2014; 28:5388-97. [PMID: 25208844 DOI: 10.1096/fj.14-258780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with chronic kidney disease (CKD) require many medications. CYP2C and CYP3A drug-metabolizing enzymes play a critical role in determining the pharmacokinetics of the majority of prescribed medications. These enzymes are transcriptionally regulated by the nuclear receptors pregnane X receptor (PXR) and hepatic nuclear factor 4α (HNF-4α). Expression of CYP2C and CYP3A is decreased in CKD; however, the mechanisms by which this occurs is unknown. We induced CKD in rats by 5/6 nephrectomy and used chromatin immunoprecipitation (ChIP) to determine nuclear receptor- and epigenetic alteration-mediated differences in the promoter region of the CYP2C and CYP3A genes. RNA polymerase II and HNF-4α binding was decreased 76 and 57% in the CYP2C11 promotor and 71 and 77% in the CYP3A2 promoter, respectively (P<0.05). ChIP also revealed a 57% decrease in PXR binding to the CYP3A2 promoter in CKD rats (P<0.05). The decrease in PXR and HNF-4α binding was accompanied by diminished histone 4 acetylation in the CYP3A2 promoter (48%) and histone 3 acetylation in the CYP2C11 (77%) and CYP3A2 (77%) promoter loci for nuclear receptor activation (P<0.05). This study suggests that decreased nuclear receptor binding and histone acetylation may contribute to the mechanism of drug-metabolizing enzyme down-regulation and altered pharmacokinetics in CKD.
Collapse
Affiliation(s)
| | | | | | - Daniel B Hardy
- Department of Physiology and Pharmacology, Lawson Health Research Institute, London, Ontario, Canada Department of Obstetrics and Gynecology, and
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Lawson Health Research Institute, London, Ontario, Canada Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| |
Collapse
|
2620
|
Spina E, de Leon J. Clinical applications of CYP genotyping in psychiatry. J Neural Transm (Vienna) 2014; 122:5-28. [PMID: 25200585 DOI: 10.1007/s00702-014-1300-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
|
2621
|
High Content Imaging and Analysis Enable Quantitative In Situ Assessment of CYP3A4 Using Cryopreserved Differentiated HepaRG Cells. J Toxicol 2014; 2014:291054. [PMID: 25276124 PMCID: PMC4170746 DOI: 10.1155/2014/291054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/04/2022] Open
Abstract
High-throughput imaging-based hepatotoxicity studies capable of analyzing individual cells in situ hold enormous promise for drug safety testing but are frequently limited by a lack of sufficient metabolically competent human cells. This study examined cryopreserved HepaRG cells, a human liver cell line which differentiates into both hepatocytes and biliary epithelial cells, to determine if these cells may represent a suitable metabolically competent cellular model for novel High Content Analysis (HCA) applications. Characterization studies showed that these cells retain many features characteristic of primary human hepatocytes and display significant CYP3A4 and CYP1A2 induction, unlike the HepG2 cell line commonly utilized for HCA studies. Furthermore, this study demonstrates that CYP3A4 induction can be quantified via a simple image analysis-based method, using HepaRG cells as a model system. Additionally, data demonstrate that the hepatocyte and biliary epithelial subpopulations characteristic of HepaRG cultures can be separated during analysis simply on the basis of nuclear size measurements. Proof of concept studies with fluorescent cell function reagents indicated that further multiparametric image-based assessment is achievable with HepaRG. In summary, image-based screening of metabolically competent human hepatocyte models cells such as HepaRG offers novel approaches for hepatotoxicity assessment and improved drug screening tools.
Collapse
|
2622
|
Kasserra C, Assaf M, Hoffmann M, Li Y, Liu L, Wang X, Kumar G, Palmisano M. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol 2014; 55:168-78. [PMID: 25159194 DOI: 10.1002/jcph.384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/22/2014] [Indexed: 01/07/2023]
Abstract
Pomalidomide offers an alternative for patients with relapsed/refractory multiple myeloma who have exhausted treatment options with lenalidomide and bortezomib. Little is known about pomalidomide's potential for drug-drug interactions (DDIs); as pomalidomide clearance includes hydrolysis and cytochrome P450 (CYP450)-mediated hydroxylation, possible DDIs via CYP450 and drug-transporter proteins were investigated in vitro and in a clinical study. In vitro pomalidomide was neither an inducer nor inhibitor of CYP450, nor an inhibitor of transporter proteins P glycoprotein (P-gp), BCRP, OAT1, OAT3, OCT2, OATP1B1, and OATP1B3. Oxidative metabolism of pomalidomide was predominately mediated by CYP1A2 and CYP3A4, and pomalidomide was shown to be a P-gp substrate. In healthy males, co-administration of oral (4 mg) pomalidomide with ketoconazole (CYP3A/P-gp inhibitor) or carbamazepine (CYP3A/P-gp inducer) did not result in clinically relevant changes in pomalidomide exposure. Co-administration of pomalidomide with fluvoxamine (CYP1A2 inhibitor) in the presence of ketoconazole approximately doubled pomalidomide exposure. Pomalidomide appears to have low potential for clinically relevant DDI and is unlikely to affect the clinical exposure of other drugs. Avoid co-administration of strong CYP1A2 inhibitors unless medically necessary. Pomalidomide dose should be reduced by 50% if co-administered with strong CYP1A2 inhibitors and strong CYP3A/P-gp inhibitors.
Collapse
|
2623
|
Matthews JC, Zhang Z, Patterson JD, Bridges PJ, Stromberg AJ, Boling JA. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium. Biol Trace Elem Res 2014; 160:321-39. [PMID: 24996959 DOI: 10.1007/s12011-014-0050-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/16/2014] [Indexed: 12/27/2022]
Abstract
Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced "phenotypes" that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.
Collapse
Affiliation(s)
- James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | | | |
Collapse
|
2624
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
2625
|
Xu Y, Li P, Zhang X, Wang J, Gu D, Wang Y. In vitro evidence for bakuchiol's influence towards drug metabolism through inhibition of UDP-glucuronosyltransferase (UGT) 2B7. Afr Health Sci 2014; 14:564-9. [PMID: 25352873 DOI: 10.4314/ahs.v14i3.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inhibition of drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reason for clinical drug-drug interaction. AIM The aim of the present study is to evaluate the inhibition of bakuchiol towards UDP-glucuronosyltransferase (UGT) 2B isoforms. METHODS In vitro recombinant UGT2B-catalyzed 4-methylumbelliferone glucuronidation was used as the probe reaction. Dixon plot and Lineweaver-Burk plot were employed to determine the inhibition kinetic type, and nonlinear regression of data was utilized to calculate the inhibition kinetic parameter (Ki). In vitro-in vivo extrapolation (IVIVE) was carried out to predict in vivo inhibition magnitude. RESULTS Among the tested UGT2B isoforms, UGT2B7 was inhibited by the strongest intensity. The noncompetitive inhibition was demonstrated by the results obtained from Dixon plot and Lineweaver-Burk plot. The Ki value was calculated to be 10.7 µM. In combination with the reported concentration after an intravenous administration of bakuchiol (15 mg/kg) in rats, the high risk of in vivo inhibition of bakuchiol towards UGT2B7-catalyzed metabolism of drugs was indicated. CONCLUSION All these results provide an important information for the risk evaluation of the clinical utilization of bakuchiol.
Collapse
Affiliation(s)
- Yu Xu
- Department of Otorhinolaryngology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Peizhong Li
- Department of Otorhinolaryngology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Xin Zhang
- Department of Otorhinolaryngology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Junying Wang
- Department of Otorhinolaryngology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Dongsheng Gu
- Department of Otorhinolaryngology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Yao Wang
- Pharmaceutical Preparation Section, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| |
Collapse
|
2626
|
Carlberg C, Raunio H. From pharmacogenomics to integrated personal omics profiling: a gap in implementation into healthcare. Per Med 2014; 11:625-629. [PMID: 29764051 DOI: 10.2217/pme.14.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, Institute of Pharmacology & Toxicology, University of Eastern Finland, FIN-70211 Kuopio, Finland
| |
Collapse
|
2627
|
Oertel BG, Vermehren J, Huynh TT, Doehring A, Ferreiros N, Zimmermann M, Geisslinger G, Lötsch J. Cytochrome P450 Epoxygenase Dependence of Opioid Analgesia: Fluconazole Does Not Interfere With Remifentanil-Mediated Analgesia in Human Subjects. Clin Pharmacol Ther 2014; 96:684-93. [DOI: 10.1038/clpt.2014.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/09/2014] [Indexed: 11/09/2022]
|
2628
|
Wang X, Peng Y, Jing X, Qian D, Tang Y, Duan JA. In vitro and in vivo assessment of CYP2C9-mediated herb-herb interaction of Euphorbiae Pekinensis Radix and Glycyrrhizae Radix. Front Pharmacol 2014; 5:186. [PMID: 25202272 PMCID: PMC4141459 DOI: 10.3389/fphar.2014.00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/23/2014] [Indexed: 01/02/2023] Open
Abstract
According to traditional Chinese medicine theories, Euphorbiae Pekinensis Radix and Glycyrrhizae Radix should not be used together in one prescription, because their interaction leads to an unexpected consequence. However, the mechanism remains unclear. The purpose of this study was to find out whether CYP2C9 was involved in this herb–herb interaction by using tolbutamide as a probe substrate in vivo and in vitro. Both Euphorbiae Pekinensis Radix and Glycyrrhizae Radix showed induction activity toward CYP2C9, while the combination of them showed a more potent induction activity toward CYP2C9 in vivo. In vitro study revealed only the combination of the herbs could induce the activity of CYP2C9. Thus, both in vivo and in vitro study indicated combination of Glycyrrhizae Radix and Euphorbiae Pekinensis Radix could induce the activity of CYP2C9 to a high level, which may result in decreased plasma levels of major active ingredients of these two herbs, as well as other herbs in the prescriptions. Further research also appears to be necessary to identify the main enzymes involved in the metabolism of the active ingredients in Glycyrrhizae Radix and Euphorbiae Pekinensis Radix.
Collapse
Affiliation(s)
- Xinmin Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Yunru Peng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China ; Jiangsu Provincial Academy of Chinese Medicine Nanjing, China
| | - Xinyue Jing
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine Nanjing, China ; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine Nanjing, China
| |
Collapse
|
2629
|
Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct. In Vitro Cell Dev Biol Anim 2014; 51:9-14. [PMID: 25124873 DOI: 10.1007/s11626-014-9803-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.
Collapse
|
2630
|
Liu LY, Han YL, Zhu JH, Yu Q, Yang QJ, Lu J, Guo C. A sensitive and high-throughput LC-MS/MS method for inhibition assay of seven major cytochrome P450s in human liver microsomes using anin vitrococktail of probe substrates. Biomed Chromatogr 2014; 29:437-44. [PMID: 25098274 DOI: 10.1002/bmc.3294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/08/2014] [Accepted: 06/23/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Li-Ya Liu
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
- Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Yong-Long Han
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
| | - Jin-Hui Zhu
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
| | - Qi Yu
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
| | - Quan-Jun Yang
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
| | - Jin Lu
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
| | - Cheng Guo
- Department of Pharmacy; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yi Shan Road Shanghai 200233 People's Republic of China
- Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 People's Republic of China
| |
Collapse
|
2631
|
Makia NL, Surapureddi S, Monostory K, Prough RA, Goldstein JA. Regulation of human CYP2C9 expression by electrophilic stress involves activator protein 1 activation and DNA looping. Mol Pharmacol 2014; 86:125-37. [PMID: 24830941 PMCID: PMC4127925 DOI: 10.1124/mol.114.092585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/14/2014] [Indexed: 01/10/2023] Open
Abstract
Cytochrome P450 (CYP)2C9 and CYP2C19 are important human enzymes that metabolize therapeutic drugs, environmental chemicals, and physiologically important endogenous compounds. Initial studies using primary human hepatocytes showed induction of both the CYP2C9 and CYP2C19 genes by tert-butylhydroquinone (tBHQ). As a pro-oxidant, tBHQ regulates the expression of cytoprotective genes by activation of redox-sensing transcription factors, such as the nuclear factor E2-related factor 2 (Nrf2) and members of the activator protein 1 (AP-1) family of proteins. The promoter region of CYP2C9 contains two putative AP-1 sites (TGAGTCA) at positions -2201 and -1930, which are also highly conserved in CYP2C19. The CYP2C9 promoter is activated by ectopic expression of cFos and JunD, whereas Nrf2 had no effect. Using specific kinase inhibitors for mitogen-activated protein kinase, we showed that extracellular signal-regulated kinase and Jun N-terminal kinase are essential for tBHQ-induced expression of CYP2C9. Electrophoretic mobility shift assays demonstrate that cFos distinctly interacts with the distal AP-1 site and JunD with the proximal site. Because cFos regulates target genes as heterodimers with Jun proteins, we hypothesized that DNA looping might be required to bring the distal and proximal AP-1 sites together to activate the CYP2C9 promoter. Chromosome conformation capture analyses confirmed the formation of a DNA loop in the CYP2C9 promoter, possibly allowing interaction between cFos at the distal site and JunD at the proximal site to activate CYP2C9 transcription in response to electrophiles. These results indicate that oxidative stress generated by exposure to electrophilic xenobiotics and metabolites induces the expression of CYP2C9 and CYP2C19 in human hepatocytes.
Collapse
Affiliation(s)
- Ngome L Makia
- Human Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (N.L.M., S.S., J.A.G.); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky (R.A.P.); and Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary (K.M.)
| | - Sailesh Surapureddi
- Human Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (N.L.M., S.S., J.A.G.); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky (R.A.P.); and Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary (K.M.)
| | - Katalin Monostory
- Human Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (N.L.M., S.S., J.A.G.); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky (R.A.P.); and Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary (K.M.)
| | - Russell A Prough
- Human Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (N.L.M., S.S., J.A.G.); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky (R.A.P.); and Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary (K.M.)
| | - Joyce A Goldstein
- Human Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (N.L.M., S.S., J.A.G.); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky (R.A.P.); and Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary (K.M.)
| |
Collapse
|
2632
|
MicroRNAs as key regulators of xenobiotic biotransformation and drug response. Arch Toxicol 2014; 89:1523-41. [PMID: 25079447 DOI: 10.1007/s00204-014-1314-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
In the last decade, microRNAs have emerged as key factors that negatively regulate mRNA expression. It has been estimated that more than 50% of protein-coding genes are under microRNA control and each microRNA is predicted to repress several mRNA targets. In this respect, it is recognized that microRNAs play a vital role in various cellular and molecular processes and that, depending on the biological pathways in which they intervene, distorted expression of microRNAs can have serious consequences. It has recently been shown that specific microRNA species are also correlated with toxic responses induced by xenobiotics. Since the latter are primarily linked to the extent of detoxification in the liver by phase I and phase II biotransformation enzymes and influx and efflux drug transporters, the regulation of the mRNA levels of this particular set of genes through microRNAs is of great importance for the overall toxicological outcome. Consequently, in this paper, an overview of the current knowledge with respect to the complex interplay between microRNAs and the expression of biotransformation enzymes and drug transporters in the liver is provided. Nuclear receptors and transcription factors, known to be involved in the transcriptional regulation of these genes, are also discussed.
Collapse
|
2633
|
Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors. J Neural Transm (Vienna) 2014; 122:35-42. [DOI: 10.1007/s00702-014-1273-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
2634
|
Suzuki R, Hirakawa H, Nagamune T. Electron donation to an archaeal cytochrome P450 is enhanced by PCNA-mediated selective complex formation with foreign redox proteins. Biotechnol J 2014; 9:1573-81. [PMID: 24924478 DOI: 10.1002/biot.201400007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/15/2014] [Accepted: 06/11/2014] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are environmentally friendly biocatalysts that catalyze diverse chemical reactions using molecular oxygen under mild reaction conditions. P450s are activated upon receiving electrons from specific redox partner proteins, although the redox partners for most bacterial/archaeal P450s are not yet identified. Thus, it is important to establish a variety of efficient and versatile electron transfer systems from NAD(P)H to P450s for the design of biocatalysts. Sulfolobus solfataricus possesses a heterotrimeric proliferating cell nuclear antigen (PCNA). Fusion of the PCNA subunits to S. acidocaldarius P450 (CYP119) and the Pseudomonas putida redox proteins, putidaredoxin (PdX) and putidaredoxin reductase (PdR), yielded a selective protein complex containing one molecule each of the three proteins. The PCNA-mediated heterotrimerization of CYP119, PdX, and PdR enhanced the CYP119 activity, likely as a result of high local concentrations of the two redox proteins toward CYP119. Therefore, the PCNA-mediated formation of the complex containing PdX and PdR might be applicable for harnessing the utility of P450s whose redox partners are not yet identified.
Collapse
Affiliation(s)
- Risa Suzuki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
2635
|
PharmGKB summary: ifosfamide pathways, pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2014; 24:133-8. [PMID: 24401834 DOI: 10.1097/fpc.0000000000000019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2636
|
Nosti-Palacios R, Gómez-Garduño J, Molina-Ortiz D, Calzada-León R, Dorado-González VM, Vences-Mejía A. Aspartame Administration and Insulin Treatment Altered Brain Levels of CYP2E1 and CYP3A2 in Streptozotocin-Induced Diabetic Rats. Int J Toxicol 2014; 33:325-331. [DOI: 10.1177/1091581814540480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity.
Collapse
Affiliation(s)
- Rosario Nosti-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría (INP), CP 04530, DF, México
| | - Josefina Gómez-Garduño
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría (INP), CP 04530, DF, México
| | - Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría (INP), CP 04530, DF, México
| | | | | | - Araceli Vences-Mejía
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría (INP), CP 04530, DF, México
| |
Collapse
|
2637
|
Takahashi M, Saito T, Ito M, Tsukada C, Katono Y, Hosono H, Maekawa M, Shimada M, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 21 CYP2C19 allelic variants for clopidogrel 2-oxidation. THE PHARMACOGENOMICS JOURNAL 2014; 15:26-32. [PMID: 25001882 DOI: 10.1038/tpj.2014.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/30/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Abstract
Genetic variations in cytochrome P450 2C19 (CYP2C19) contribute to interindividual variability in the metabolism of therapeutic agents such as clopidogrel. Polymorphisms in CYP2C19 are associated with large interindividual variations in the therapeutic efficacy of clopidogrel. This study evaluated the in vitro oxidation of clopidogrel by 21 CYP2C19 variants harboring amino acid substitutions. These CYP2C19 variants were heterologously expressed in COS-7 cells, and the kinetic parameters of clopidogrel 2-oxidation were estimated. Among the 21 CYP2C19 variants, 12 (that is, CYP2C19.5A, CYP2C19.5B, CYP2C19.6, CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.14, CYP2C19.16, CYP2C19.19, CYP2C19.22, CYP2C19.24 and CYP2C19.25) showed no or markedly low activity compared with the wild-type protein CYP2C19.1B. This comprehensive in vitro assessment provided insights into the specific metabolic activities of CYP2C19 proteins encoded by variant alleles, and this may to be valuable when interpreting the results of in vivo studies.
Collapse
Affiliation(s)
- M Takahashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - T Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - M Ito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - C Tsukada
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Katono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - H Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - M Maekawa
- Department of Pharmacy, Tohoku University Hospital, Sendai, Japan
| | - M Shimada
- Department of Pharmacy, Tohoku University Hospital, Sendai, Japan
| | - N Mano
- Department of Pharmacy, Tohoku University Hospital, Sendai, Japan
| | - A Oda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - N Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - M Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
2638
|
Ivermectin exposure leads to up-regulation of detoxification genes in vitro and in vivo in mice. Eur J Pharmacol 2014; 740:428-35. [PMID: 24998875 DOI: 10.1016/j.ejphar.2014.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
The biodisposition of the antiparasitic drug ivermectin in host and parasite is decisive for its efficacy and strongly depends on the efflux by ATP-Binding Cassette (ABC) transporters and on its biotransformation by cytochromes P450. The purpose of this study was to evaluate, in vitro and in vivo, the ivermectin ability in modulating the expression of the most important genes involved in drug detoxification. Gene expression of ABC transporters and cytochromes was evaluated by RT-qPCR in murine hepatic and intestinal cell lines exposed to increasing ivermectin doses, and in liver and intestine of mice orally administered with single or repeated therapeutic doses of ivermectin (0.2 mg/kg). Plasma, brain, liver and intestinal concentrations of ivermectin and its main metabolite were measured by HPLC in ivermectin-treated mice. In hepatocyte cell line, ivermectin up-regulated expression of Abcb1a, Abcb1b, Abcc2, Cyp1a1, Cyp1a2, Cyp2b10; while Abcb1a, Abcb1b, Abcg2, Cyp1a1, Cyp1a2, Cyp2b10 and Cyp3a11 levels were induced in intestinal cell line. In mice, repeated administration of ivermectin induced the expression of Abcb1a, Abcc2, Cyp1a1 and Cyp2b10 in intestine while only Cyp3a11 was induced in liver. Compared with single administration, repeated ivermectin administration lowered plasma, liver and intestine drug concentration, while increasing main metabolite content in plasma and intestine. These findings can be regarded as a warning that repeated ivermectin exposure is able to induce detoxification systems in mammals that may lead to subtherapeutic drug concentration. This may also be an important consideration in the assessment of drug-drug interaction and toxicity for other ABC transporters and CYP450s substrates.
Collapse
|
2639
|
Canet MJ, Cherrington NJ. Drug disposition alterations in liver disease: extrahepatic effects in cholestasis and nonalcoholic steatohepatitis. Expert Opin Drug Metab Toxicol 2014; 10:1209-19. [PMID: 24989624 DOI: 10.1517/17425255.2014.936378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The pharmacokinetics (PK) of drugs and xenobiotics, namely pharmaceuticals, is influenced by a host of factors that include genetics, physiological factors and environmental stressors. The importance of disease on the disposition of xenobiotics has been increasingly recognized among medical professionals for alterations in key enzymes and membrane transporters that influence drug disposition and contribute to the development of adverse drug reactions. AREAS COVERED This review will survey pertinent literature of how liver disease alters the PKs of drugs and other xenobiotics. The focus will be on nonalcoholic steatohepatitis as well as cholestatic liver diseases. A review of basic pharmacokinetic principles, with a special emphasis on xenobiotic metabolizing enzymes and membrane transporters, will be provided. Specifically, examples of how genetic alterations affect metabolism and excretion, respectively, will be highlighted. Lastly, the idea of 'extrahepatic' regulation will be explored, citing examples of how disease manifestation in the liver may affect drug disposition in distal sites, such as the kidney. EXPERT OPINION An expert opinion will be provided highlighting the definite need for data in understanding extrahepatic regulation of membrane transporters in the presence of liver disease and its potential to dramatically alter the PK and toxicokinetic profile of numerous drugs and xenobiotics.
Collapse
Affiliation(s)
- Mark J Canet
- University of Arizona, Department of Pharmacology and Toxicology , 1703 E. Mabel St. Tucson, AZ 85721 , USA
| | | |
Collapse
|
2640
|
Larsen K, Najle R, Lifschitz A, Maté ML, Lanusse C, Virkel GL. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats. Int J Toxicol 2014; 33:307-318. [PMID: 24985121 DOI: 10.1177/1091581814540481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified.
Collapse
Affiliation(s)
- Karen Larsen
- Laboratorio de Biología y Ecotoxicología, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Roberto Najle
- Laboratorio de Biología y Ecotoxicología, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - María L Maté
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| |
Collapse
|
2641
|
Wonganan P, Jonsson-Schmunk K, Callahan SM, Choi JH, Croyle MA. Evaluation of the HC-04 cell line as an in vitro model for mechanistic assessment of changes in hepatic cytochrome P450 3A during adenovirus infection. Drug Metab Dispos 2014; 42:1191-201. [PMID: 24764148 PMCID: PMC4053995 DOI: 10.1124/dmd.113.056663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 01/22/2023] Open
Abstract
HC-04 cells were evaluated as an in vitro model for mechanistic study of changes in the function of hepatic CYP3A during virus infection. Similar to in vivo observations, infection with a first generation recombinant adenovirus significantly inhibited CYP3A4 catalytic activity in an isoform-specific manner. Virus (MOI 100) significantly reduced expression of the retinoid X receptor (RXR) by 30% 96 hours after infection. Cytoplasmic concentrations of the pregnane X receptor (PXR) were reduced by 50%, whereas the amount of the constitutive androstane receptor (CAR) in the nuclear fraction doubled with respect to uninfected controls. Hepatocyte nuclear factor 4α (HNF-4α) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were also reduced by ∼70% during infection. Virus suppressed CYP3A4 activity in the presence of the PXR agonist rifampicin and did not affect CYP3A4 activity in the presence of the CAR agonist CITCO [6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime], suggesting that virus-induced modification of PXR may be responsible for observed changes in hepatic CYP3A4. The HC-04 cell line is easy to maintain, and CYP3A4 in these cells was responsive to known inducers and suppressors. Dexamethasone (200 μM) and phenobarbital (500 μM) increased activity by 230 and 124%, whereas ketoconazole (10 μM) and lipopolysaccharide (LPS) (10 μg/ml) reduced activity by 90 and 92%, respectively. This suggests that HC-04 cells can be a valuable tool for mechanistic study of drug metabolism during infection and for routine toxicological screening of novel compounds prior to use in the clinic.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
2642
|
De Kesel PMM, Lambert WE, Stove CP. Why Dried Blood Spots Are an Ideal Tool for CYP1A2 Phenotyping. Clin Pharmacokinet 2014; 53:763-71. [DOI: 10.1007/s40262-014-0150-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2643
|
BOLERO-3 results: pharmacological activity or pharmacokinetic effect? Lancet Oncol 2014; 15:e304. [DOI: 10.1016/s1470-2045(14)70242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2644
|
Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol 2014; 10:1131-43. [PMID: 24961255 DOI: 10.1517/17425255.2014.931371] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is the progressive decline in renal function over time. Patients with end-stage renal disease require renal replacement therapy such as hemodialysis to support life. Hemodialysis patients require several medications to treat a variety of comorbid conditions. Polypharmacy accompanied by alterations in the pharmacokinetics of medications places hemodialysis patients at increased risk of drug accumulation and adverse events. AREAS COVERED We review alterations in the pharmacokinetics of drugs in hemodialysis patients. The major areas of pharmacokinetics, absorption, distribution, metabolism and excretion, are covered and, where appropriate, differences between dialysis patients and non-dialysis CKD patients are compared. In addition, we review the importance of drug dialyzability and its potential impact on drug efficacy. Finally, we describe important clinical examples demonstrating nonrenal drug clearance is significantly altered in CKD. EXPERT OPINION Decreases in renal drug excretion experienced by hemodialysis patients have been known for years. Recent animal and human clinical pharmacokinetic studies have highlighted that nonrenal clearance of drugs is also substantially decreased in CKD. Clinical pharmacokinetic studies are required to determine the optimal dosage of drugs in CKD and hemodialysis patients in order to decrease the incidence of adverse medication events in these patient populations.
Collapse
Affiliation(s)
- Thomas J Velenosi
- Western University, Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology , London, Ontario , Canada
| | | |
Collapse
|
2645
|
Optimization and validation of a label-free MRM method for the quantification of cytochrome P450 isoforms in biological samples. Anal Bioanal Chem 2014; 406:4861-74. [DOI: 10.1007/s00216-014-7928-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
2646
|
Rasmussen MK, Zamaratskaia G, Ekstrand B. Comparable constitutive expression and activity of cytochrome P450 between the lobes of the porcine liver. Toxicol In Vitro 2014; 28:1190-5. [PMID: 24952075 DOI: 10.1016/j.tiv.2014.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 11/27/2022]
Abstract
Due to limited availability of human liver tissue for the study of cytochrome P450 (CYP450), porcine liver tissue has been suggested as an alternative source to prepare microsomes and hepatocytes. The porcine liver is made by four different lobes. The present study investigated the expression and activity of specific CYP450 isoforms in the four lobes, with the purpose to examine if one lobe of the porcine liver resembles the human more than others. Samples from the four major lobes were taken from female pigs and mRNA expression and activity of CYP1A, 2A, 2C, 2D, 2E and 3A determined. The results showed no differences in specific mRNA expression and activity of any of the investigated CYP450 isoforms. In conclusion, the study shows that all parts of the porcine liver are equally useful as model tissue.
Collapse
Affiliation(s)
| | - Galia Zamaratskaia
- Department of Food Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Bo Ekstrand
- Department of Food Science, Aarhus University, Denmark
| |
Collapse
|
2647
|
Single nucleotide polymorphism and its dynamics for pharmacogenomics. Interdiscip Sci 2014; 6:85-92. [PMID: 25172446 DOI: 10.1007/s12539-013-0007-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/04/2013] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
Pharmacogenomics is the study of how the genetic makeup determines the response to a therapeutic intervention. It has the capability to revolutionize the practice of medicine by personalized approach for treatment through the use of novel diagnostic tools. Pharmacogenomic based approaches reduce the trial-and-error approach and restrict the exposure of patients to those drugs which are not effective or are toxic for them. Single Nucleotide Polymorphisms (SNPs) hold the key in defining the risk of an individual's susceptibility to various illnesses and response to drugs. There is an ongoing process of identifying the common, biologically relevant SNPs, in particular those that are associated with the risk of disease and adverse drug reaction. The identification and characterization of these SNPs are necessary before their use as genetic tools. Most of the ongoing SNP related studies are biased deliberately towards coding regions and the data generated from them are therefore unlikely to reflect genome wide distribution of SNPs. To avoid this biasing towards the coding regions SNP, SNP consortium protocol was designed. Though, projects like the HapMap increase credibility and use of SNPs, still there are some concern like the required sample (patient) sizes, the number of SNPs required for mapping, number of association studies, the cost of SNP genotyping, and the interpretation and explanation of results are some of the challenges that surround this field.
Collapse
|
2648
|
Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther 2014; 96:340-8. [PMID: 24926778 DOI: 10.1038/clpt.2014.129] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other foreign compound-metabolizing enzyme in humans. Recently, increasing evidence has been found showing that variants in the CYP3A4 gene have functional significance and--in rare cases--lead to loss of activity, implying tremendous consequences for patients. This review article highlights the functional consequences of all CYP3A4 variants recognized by the Human Cytochrome P450 (CYP) Allele Nomenclature Database.
Collapse
Affiliation(s)
- A N Werk
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - I Cascorbi
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
2649
|
Reyes-Hernández OD, Vega L, Jiménez-Ríos MA, Martínez-Cervera PF, Lugo-García JA, Hernández-Cadena L, Ostrosky-Wegman P, Orozco L, Elizondo G. The PXR rs7643645 polymorphism is associated with the risk of higher prostate-specific antigen levels in prostate cancer patients. PLoS One 2014; 9:e99974. [PMID: 24924803 PMCID: PMC4055777 DOI: 10.1371/journal.pone.0099974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023] Open
Abstract
Levels of enzymes that determine testosterone catabolism such as CYP3A4 have been associated with prostate cancer (PCa) risk. Although some studies have related CYP3A4*1B allele, a gene polymorphism that modifies CYP3A4 expression level, with PCa risk, others have failed, suggesting that additional genetic variants may be involved. Expression of CYP3A4 is largely due to the activation of Pregnane X Receptor (PXR). Particularly, rs2472677 and rs7643645 PXR polymorphisms modify CYP3A4 expression levels. To evaluate whether PXR-HNF3β/T (rs2472677), PXR-HNF4/G (rs7643645), and CYP3A4*1B (rs2740574) polymorphisms are associated with PCa a case control-study was performed. The multiple testing analysis showed that the PXR-HNF4/G polymorphism was associated with higher levels of prostate-specific antigen (PSA) in patients with PCa (OR = 3.99, p = 0.03). This association was stronger in patients diagnosed at the age of 65 years or older (OR = 10.8, p = 0.006). Although the CYP3A4*1B/*1B genotype was overrepresented in PCa patients, no differences were observed in the frequency of this and PXR-HNF3β/T alleles between controls and cases. Moreover, no significant association was found between these polymorphisms and PSA, Gleason grade, or tumor lymph node metastasis.
Collapse
Affiliation(s)
| | - Libia Vega
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México
| | | | | | - Juan A. Lugo-García
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, México, D.F., México
| | | | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, México, D.F., México
| | - Guillermo Elizondo
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México
- * E-mail:
| |
Collapse
|
2650
|
Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 2014; 96:324-39. [PMID: 24922307 DOI: 10.1038/clpt.2014.126] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022]
Abstract
Glucuronidation by uridine diphospho-glucuronosyltransferase enzymes (UGTs) is a major phase II biotransformation pathway and, complementary to phase I metabolism and membrane transport, one of the most important cellular defense mechanisms responsible for the inactivation of therapeutic drugs, other xenobiotics, and endogenous molecules. Interindividual variability in UGT pathways is significant and may have profound pharmacological and toxicological implications. Several genetic and genomic processes underlie this variability and are discussed in relation to drug metabolism and diseases such as cancer.
Collapse
|