251
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
252
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 739] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
253
|
Increase of mtDNA number and its mutant copies in rat brain after exposure to 150 MeV protons. Mol Biol Rep 2020; 47:4815-4820. [PMID: 32388700 DOI: 10.1007/s11033-020-05491-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Proton beam therapy is widely used for treating brain tumor. Despite the efficacy of treatment, the use of this therapy has met some limitations associated with possible damage to normal brain tissues located beyond the tumor site. In this context, the exploration of the harmful effects of protons on the normal brain tissues is of particular interest. We have investigated changes in the total mitochondrial DNA (mtDNA) copy number and identified mtDNA mutant copies in three brain regions (the hippocampus, cortex and cerebellum) of rats after irradiation their whole-head with 150 MeV protons at doses of 3 and 5 Gy. The study was performed in 2-months old male Spraque Dawley rats (n = 5 each group). The mtDNA copy numbers were determined by real-time PCR. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. Our results show that after head exposure to protons, levels of mtDNA copy number in three rat brain regions increase significantly as the levels of mtDNA mutant copies increase. The most significant elevation is observed in the hippocampus. In conclusion, an increase in mtDNA mutant copies may contribute to mitochondrial dysfunction accompanied by increased oxidative stress in different brain regions and promote the development of neurodegenerative diseases and the induction of carcinogenesis.
Collapse
|
254
|
Zhang H, Ma Y, Wang M, Elsabagh M, Loor JJ, Wang H. Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction. Food Funct 2020; 11:4456-4470. [PMID: 32374309 DOI: 10.1039/d0fo00019a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current work aimed at investigating the effects of the dietary supplementation of N-carbamylglutamate (NCG) or l-arginine (Arg) on the duodenal mitophagy, mitochondrial function, inflammation, and barrier function in suckling lambs suffering from intrauterine-growth-retardation (IUGR). Forty-eight neonate Hu lambs were used in this study: 12 lambs with normal birth weight (NBW: 4.25 ± 0.14 kg) and 36 lambs with IUGR (3.01 ± 0.13 kg). Seven day old lambs were assigned to 4 treatment groups (12 lambs in each group) as follows: control group (CON), IUGR group, IUGR + Arg, and IUGR + NCG. Lambs were fed the experimental diets for 21 days from 7 days to 28 days of age. Compared with IUGR lambs, the Arg or NCG-treated IUGR lambs had a markedly higher duodenal transepithelial electrical resistance (TER) and lower fluorescein isothiocyanate dextran (FD4) (P < 0.05), respectively. The duodenal mitochondrial membrane potential change (ΔΨm), relative mitochondrial DNA (mtDNA) content, adenosine triphosphate (ATP) level, together with the activities of the respiratory complexes I, III, and IV were markedly higher in Arg or NCG-treated IUGR lambs than those in non-supplemented IUGR lambs (P < 0.05). The expressions of the integrity-related proteins (occludin and zonula occludens-1 (ZO-1)), antioxidant- and apoptosis-related proteins (B-cell lymphoma/leukaemia 2 (Bcl2), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPx1)), and the nitric oxide-dependent pathway-related proteins (epithelial NO synthase (eNOS) and inducible NO synthase (iNOS)) were higher in NCG or Arg-supplemented IUGR lambs than those in nontreated IUGR lambs (P < 0.05). The duodenal expressions of the mitophagy-related proteins (microtubule-associated protein light chain 3 (LC3) I, LC3 II, Belin1, PTEN induced putative kinase 1 (PINK1), and Parkin) and the immune function-related proteins (myeloid differentiation factor 88 (MyD88), IL-6, nuclear factor kappa B (p65), toll-like receptor (TLR4) and TNF-α) were reduced (P < 0.05) in NCG or Arg-supplemented IUGR lambs compared with non-supplemented IUGR lambs. These results demonstrated that the dietary supplementation of Arg or NCG enhanced the duodenal barrier function and mitochondrial function, mitigated duodenal inflammation, and suppressed mitophagy in suckling lambs suffering from IUGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | | | | | | | | | | |
Collapse
|
255
|
Lee JH, Paull TT. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol 2020; 32:101511. [PMID: 32244177 PMCID: PMC7115119 DOI: 10.1016/j.redox.2020.101511] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase responds to DNA double-strand breaks and other forms of cellular stress, including reactive oxygen species (ROS). Recent work in the field has uncovered links between mitochondrial ROS and ATM activation, suggesting that ATM acts as a sensor for mitochondrial derived ROS and regulates ROS accumulation in cells through this pathway. In addition, characterization of cells from Ataxia-telangiectasia patients as well as ATM-deficient mice and cell models suggest a role for ATM in modulating mitochondrial gene expression and function. Here we review ROS responses related to ATM function, recent evidence for ATM roles in mitochondrial maintenance and turnover, and the relationship between ATM and regulation of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
256
|
Pei H, Ma L, Cao Y, Wang F, Li Z, Liu N, Liu M, Wei Y, Li H. Traditional Chinese Medicine for Alzheimer's Disease and Other Cognitive Impairment: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:487-511. [PMID: 32329645 DOI: 10.1142/s0192415x20500251] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cognitive impairment (CI) refers to the dysfunction of memory, language, visual space, execution, calculation, understanding, and judgment in one or more aspects. With global aging, CI will become prevalent worldwide. At present, there is no effective cure for CI. However, Nobel laureate Tu Youyou's research on artemisinin has inspired Chinese researchers to focus on traditional Chinese herbs (TCHs) for the treatment of CI. Traditional Chinese Medicine (TCM) has led to a theory for an independent CI system. The pathogenesis of such impairment involves deficiency, phlegm, and stagnation and involves a range of organs, including the brain, kidneys, heart, liver, and spleen. Our current understanding of the etiology and pathogenesis of this condition has led to the realization that TCHs can improve cognitive dysfunction. Clinical research has shown that TCHs can improve the neuropsychological scale score of patients, the TCM symptom score, and the patient's quality of life. Research has also suggested that TCHs can retard Aβ deposits and tauopathy, regulate the metabolism of cholinergic neurotransmitters, and so on. However, due to their complexity, little is known of the safety and efficacy of TCHs in patients with CI. It is likely that we will be able to identify the precise mechanisms associated with the action of TCHs in such patients due to the integration of multiple technologies. This paper summarizes the pharmacokinetics, curative effect, and mechanisms of action of traditional Chinese herbs in order to provide a scientific basis for the improvement of cognitive dysfunction by TCHs.
Collapse
Affiliation(s)
- Hui Pei
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Lina Ma
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Yu Cao
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Feixue Wang
- Traditional Chinese Medicine Department, Xuanwu Hospital Capital Medical University, Beijing 100053, P. R. China
| | - Zehui Li
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Nanyang Liu
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Meixia Liu
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Yun Wei
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Hao Li
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| |
Collapse
|
257
|
Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL, Cui XJ, Wang YJ. Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 2020; 155:154-176. [PMID: 32215908 DOI: 10.1111/jnc.15011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and βIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
258
|
Yu X, Lai S, Chen H, Chen M. Protein–protein interaction network with machine learning models and multiomics data reveal potential neurodegenerative disease-related proteins. Hum Mol Genet 2020; 29:1378-1387. [DOI: 10.1093/hmg/ddaa065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/22/2019] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
AbstractResearch of protein–protein interaction in several model organisms is accumulating since the development of high-throughput experimental technologies and computational methods. The protein–protein interaction network (PPIN) is able to examine biological processes in a systematic manner and has already been used to predict potential disease-related proteins or drug targets. Based on the topological characteristics of the PPIN, we investigated the application of the random forest classification algorithm to predict proteins that may cause neurodegenerative disease, a set of pathological changes featured by protein malfunction. By integrating multiomics data, we further showed the validity of our machine learning model and narrowed down the prediction results to several hub proteins that play essential roles in the PPIN. The novel insights into neurodegeneration pathogenesis brought by this computational study can indicate promising directions for future experimental research.
Collapse
Affiliation(s)
- Xinjian Yu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siqi Lai
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjun Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
259
|
Jezierska-Wozniak K, Sinderewicz E, Czelejewska W, Wojtacha P, Barczewska M, Maksymowicz W. Influence of Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Oxidative Stress Intensity in Minimally Conscious State Patients. J Clin Med 2020; 9:E683. [PMID: 32138308 PMCID: PMC7141306 DOI: 10.3390/jcm9030683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Neurological disorders, including minimally conscious state (MCS), may be associated with the presence of high concentrations of reactive oxygen species within the central nervous system. Regarding the documented role of mesenchymal stem cells (MSCs) in oxidative stress neutralization, the aim of this study is to evaluate the effect of bone marrow-derived MSC (BM-MSC) transplantation on selected markers of oxidative stress in MCS patients. Antioxidant capacity was measured in cerebrospinal fluid (CSF) and plasma collected from nine patients aged between 19 and 45 years, remaining in MCS for 3 to 14 months. Total antioxidant capacity, ascorbic acid and ascorbate concentrations, superoxide dismutase, catalase, and peroxidase activity were analyzed and the presence of tested antioxidants in the CSF and plasma was confirmed. Higher ascorbic acid (AA) content and catalase (CAT) activity were noted in CSF relative to plasma, whereas superoxide dismutase (SOD) activity and total antioxidant capacity were higher in plasma relative to CSF. Total antioxidant capacity measured in CSF was greater after BM-MSC transplantations. The content of ascorbates was lower and CAT activity was higher both in CSF and plasma after the administration of BM-MSC. The above results suggest that MSCs modulate oxidative stress intensity in MCS patients, mainly via ascorbates and CAT activity.
Collapse
Affiliation(s)
- Katarzyna Jezierska-Wozniak
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Emilia Sinderewicz
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Wioleta Czelejewska
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Pawel Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1 Str., 10-726 Olsztyn, Poland;
| | - Monika Barczewska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Wojciech Maksymowicz
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| |
Collapse
|
260
|
Bagwe-Parab S, Kaur G. Molecular targets and therapeutic interventions for iron induced neurodegeneration. Brain Res Bull 2020; 156:1-9. [DOI: 10.1016/j.brainresbull.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 01/17/2023]
|
261
|
Mustafa MF, Fakurazi S, Abdullah MA, Maniam S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes (Basel) 2020; 11:genes11020192. [PMID: 32059522 PMCID: PMC7074468 DOI: 10.3390/genes11020192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10–17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.
Collapse
MESH Headings
- Acidosis, Lactic/congenital
- Acidosis, Lactic/genetics
- Acidosis, Lactic/metabolism
- DNA Mutational Analysis
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Epilepsies, Myoclonic/congenital
- Epilepsies, Myoclonic/genetics
- Epilepsies, Myoclonic/therapy
- Gene Editing/methods
- Genetic Therapy/methods
- Humans
- Leigh Disease/genetics
- Leigh Disease/metabolism
- Leigh Disease/therapy
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/therapy
- Mitochondrial Encephalomyopathies/congenital
- Mitochondrial Encephalomyopathies/genetics
- Mitochondrial Encephalomyopathies/metabolism
- Mutation
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
Collapse
Affiliation(s)
- Mohd Fazirul Mustafa
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang Selangor Darul Ehsan, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
262
|
Szabo C. The re-emerging pathophysiological role of the cystathionine-β-synthase - hydrogen sulfide system in Down syndrome. FEBS J 2020; 287:3150-3160. [PMID: 31955501 DOI: 10.1111/febs.15214] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Down syndrome (DS) is associated with significant perturbances in many morphological and biochemical features. Cystathionine-β-synthase (CBS) is one of the key mammalian enzymes that is responsible for the biological production of the gaseous transmitter hydrogen sulfide (H2 S). When H2 S is overproduced, it can exert detrimental cellular effects, in part due to inhibition of mitochondrial Complex IV activity. An increased expression of CBS and the consequent overproduction of H2 S are well documented in individuals with DS. Two decades ago, it has been proposed that a toxic overproduction of H2 S importantly contributes to the metabolic and neurological deficits associated with DS. However, until recently, this hypothesis has not yet been tested experimentally. Recent data generated in human dermal fibroblasts show that DS cells overproduce H2 S, which, in turn, suppresses mitochondrial Complex IV activity and impairs mitochondrial oxygen consumption and ATP generation. Therapeutic CBS inhibition lifts the tonic (and reversible) suppression of Complex IV: This results in the normalization of mitochondrial function in DS cells. H2 S may also contribute to the cellular dysfunction via several other molecular mechanisms through interactions with various mitochondrial and extramitochondrial molecular targets. The current article provides a historical background of the field, summarizes the recently published data and their potential implications, and outlines potential translational approaches (such as CBS inhibition and H2 S neutralization) and future experimental studies in this re-emerging field of pathobiochemistry.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| |
Collapse
|
263
|
Blue light-triggered photochemistry and cytotoxicity of retinal. Cell Signal 2020; 69:109547. [PMID: 31982549 DOI: 10.1016/j.cellsig.2020.109547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/08/2023]
Abstract
The chemical- and photo- toxicity of chromophore retinal on cells have long been debated. Although we recently showed that retinal and blue light exposure interrupt cellular signaling, a comprehensive study examining molecular underpinnings of this perturbation and its consequences to cellular fate is lacking. Here, we report molecular evidence for blue light excited-retinal induced oxidative damage of polyunsaturated lipid anchors in membrane-interacting signaling molecules and DNA damage in cells using live-cell imaging and in vitro experimentation. The incurred molecular damage irreversibly disrupted subcellular localization of these molecules, a crucial criterion for their signaling. We further show retinal accumulation in lipid-bilayers of cell membranes could enhance the lifetime of retinal in cells. Comparative response-signatures suggest that retinal triggers reactions upon photoexcitation similar to photodynamic therapy agents and generate reactive oxygen species in cells. Additionally, data also shows that exposing retinal-containing cells to sunlight induces substantial cytotoxicity. Collectively, our results explain a likely in vivo mechanism and reaction conditions under which bio-available retinal in physiological light conditions damages cells.
Collapse
|
264
|
Kim WS, Kim YE, Cho EJ, Byun EB, Park WY, Song HY, Kim K, Park SH, Byun EH. Neuroprotective effect of Annona muricata-derived polysaccharides in neuronal HT22 cell damage induced by hydrogen peroxide. Biosci Biotechnol Biochem 2020; 84:1001-1012. [PMID: 31960754 DOI: 10.1080/09168451.2020.1715201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Crude extracts and phytochemical compounds derived from Annona muricata leaves have been demonstrated to exert neuroprotective effects. However, the neuroprotective effects of Annona muricata leaves-derived polysaccharide extracts (ALPs) have not been investigated. ALP treatment was shown to induce concentration-dependent antioxidant activity in HT22 cells, and to increase cell viability in H2O2-treated HT22 cells. These effects were correlated with a decrease in major components of oxidation, including: Ca2+, ROS, and malondialdehyde (MDA). Mediators of the intracellular response to oxidation, including Bax, cytochrome c, and cleaved caspases-3, -8, -9, MAPKs, and NF-κB, were positively influenced by ALP treatment under conditions of H2O2-mediated oxidative stress. In addition, ALP restored the expression of superoxide dismutase (SOD) and associated signaling pathways (PARP, PI3K/AKT and Nrf2-mediated HO-1/NQO-1) following H2O2 treatment. These results provide new pharmacological evidence that ALP facilitates neuroprotection via prevention of neuronal oxidative stress and promotion of cell survival signaling pathways.Abbreviations: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonicacid); AD: Alzheimer's disease; ALP: polysaccharide extracts isolated from Annona muricata leaves; ARE: antioxidant response element; DPPH: 1,1-diphenyl-picrylhydrazyl; DCFH-DA: 2',7'-dichlorofluorescin diacetate; ECL: electrochemiluminescence; ERK: extracellular regulated kinase; FBS: Fetal bovine serum; FITC: fluorescein isothiocyanate; FRAP: ferric reducing antioxidant power; HO-1: Heme oxygenase-1; JNK: c-jun N-terminal kinase; MAPKs: mitogen-activated protein kinases; MDA: malondialdehyde; MMP: mitochondrial membrane potential; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide; NQO1: NAD(P)H:quinine oxidoreductase 1, Nrf2: nuclear factor-E2-related factor 2; PD: parkinson's disease; PI3K: phosphatidylinositol-3kinase; PVDF: polyvinylidene difluoride; ROS: reactive oxygen species; SOD: Superoxidedismutase; TPTZ: tripydyltriazine.
Collapse
Affiliation(s)
- Woo Sik Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Yi-Eun Kim
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| | - Eun-Ji Cho
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwangwook Kim
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
265
|
Alehaideb Z, AlGhamdi S, Yahya WB, Al-Eidi H, Alharbi M, Alaujan M, Albaz A, Tukruni M, Nehdi A, Abdulla MH, Matou-Nasri S. Anti-Proliferative and Pro-Apoptotic Effects of Calligonum comosum (L'Her.) Methanolic Extract in Human Triple-Negative MDA-MB-231 Breast Cancer Cells. J Evid Based Integr Med 2020; 25:2515690X20978391. [PMID: 33302699 PMCID: PMC7734547 DOI: 10.1177/2515690x20978391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype, does not respond to targeted therapy due to the lack of hormone receptors. There is an urgent need for alternative therapies, including natural product-based anti-cancer drugs, at lower cost. We investigated the impact of a Calligonum comosum L'Hér. methanolic extract (CcME) on the TNBC MDA-MB-231 cell line proliferation and related cell death mechanisms performing cell viability and cytotoxicity assays, flow cytometry to detect apoptosis and cell cycle analysis. The apoptosis-related protein array and cellular reactive oxygen species (ROS) assay were also carried out. We showed that the CcME inhibited the TNBC cell viability, in a dose-dependent manner, with low cytotoxic effects. The CcME-treated TNBC cells underwent apoptosis, associated with a concomitant increase of apoptosis-related protein expression, including cytochrome c, cleaved caspase-3, cyclin-dependent kinase inhibitor p21, and the anti-oxidant enzyme catalase, compared with the untreated cells. The CcME also enhanced the mitochondrial transition pore opening activity and induced G0/G1 cell growth arrest, which confirmed the cytochrome c release and the increase of the p21 expression detected in the CcME-treated TNBC cells. The CcME-treated TNBC cells resulted in intracellular ROS production, which, when blocked with a ROS scavenger, did not reduce the CcME-induced apoptosis. In conclusion, CcME exerts anti-proliferative effects against TNBC cells through the induction of apoptosis and cell growth arrest. In vivo studies are justified to verify the CcME anti-proliferative activities and to investigate any potential anti-metastatic activities of CcME against TNBC development and progression.
Collapse
Affiliation(s)
- Zeyad Alehaideb
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Saleh AlGhamdi
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mashael Alharbi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Monira Alaujan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abeer Albaz
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muruj Tukruni
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Atef Nehdi
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
266
|
mTOR-Mediated Antioxidant Activation in Solid Tumor Radioresistance. JOURNAL OF ONCOLOGY 2019; 2019:5956867. [PMID: 31929797 PMCID: PMC6942807 DOI: 10.1155/2019/5956867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022]
Abstract
Radiotherapy is widely used for the treatment of cancer patients, but tumor radioresistance presents serious therapy challenges. Tumor radioresistance is closely related to high levels of mTOR signaling in tumor tissues. Therefore, targeting the mTOR pathway might be a strategy to promote solid tumor sensitivity to ionizing radiation. Radioresistance is associated with enhanced antioxidant mechanisms in cancer cells. Therefore, examination of the relationship between mTOR signaling and antioxidant mechanism-linked radioresistance is required for effective radiotherapy. In particular, the effect of mTOR signaling on antioxidant glutathione induction by the Keap1-NRF2-xCT pathway is described in this review. This review is expected to assist in the identification of therapeutic adjuvants to increase the efficacy of radiotherapy.
Collapse
|
267
|
Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function. Int J Mol Sci 2019; 20:ijms20236086. [PMID: 31816825 PMCID: PMC6929005 DOI: 10.3390/ijms20236086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I–V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes.
Collapse
|
268
|
Ijomone OM, Aluko OM, Okoh COA, Martins AC, Aschner M. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 2019; 56:146-155. [PMID: 31470248 DOI: 10.1016/j.jtemb.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium is an essential macronutrient that is involved in many cellular processes. Homeostatic control of intracellular levels of calcium ions [Ca2+] is vital to maintaining cellular structure and function. Several signaling molecules are involved in regulating Ca2+ levels in cells and perturbation of calcium signaling processes is implicated in several neurodegenerative and neurologic conditions. Manganese [Mn] is a metal which is essential for basic physiological functions. However, overexposure to Mn from environmental contamination and workplace hazards is a global concern. Mn overexposure leads to its accumulation in several human organs particularly the brain. Mn accumulation in the brain results in a manganism, a Parkinsonian-like syndrome. Additionally, Mn is a risk factor for several neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. Mn neurotoxicity also affects several neurotransmitter systems including dopaminergic, cholinergic and GABAergic. The mechanisms of Mn neurotoxicity are still being elucidated. AIM The review will highlight a potential role for calcium signaling molecules in the mechanisms of Mn neurotoxicity. CONCLUSION Ca2+ regulation influences the neurodegenerative process and there is possible role for perturbed calcium signaling in Mn neurotoxicity. Mechanisms implicated in Mn-induced neurodegeneration include oxidative stress, generation of free radicals, and apoptosis. These are influenced by mitochondrial integrity which can be dependent on intracellular Ca2+ homeostasis. Nevertheless, further elucidation of the direct effects of calcium signaling dysfunction and calcium-binding proteins activities in Mn neurotoxicity is required.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria.
| | - Oritoke M Aluko
- Department of Physiology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
269
|
Song Q, Feng YB, Wang L, Shen J, Li Y, Fan C, Wang P, Yu SY. COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology 2019; 160:107779. [DOI: 10.1016/j.neuropharm.2019.107779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022]
|
270
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
271
|
Bahhir D, Yalgin C, Ots L, Järvinen S, George J, Naudí A, Krama T, Krams I, Tamm M, Andjelković A, Dufour E, González de Cózar JM, Gerards M, Parhiala M, Pamplona R, Jacobs HT, Jõers P. Manipulating mtDNA in vivo reprograms metabolism via novel response mechanisms. PLoS Genet 2019; 15:e1008410. [PMID: 31584940 PMCID: PMC6795474 DOI: 10.1371/journal.pgen.1008410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/16/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Mitochondria have been increasingly recognized as a central regulatory nexus for multiple metabolic pathways, in addition to ATP production via oxidative phosphorylation (OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Carbohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accompanied by elevated serine synthesis. Cleavage and translocation, the two modes of mtEcoBI action, repressed carbohydrate rmetabolism via two different mechanisms. DNA cleavage activity induced a type II diabetes-like phenotype involving deactivation of Akt kinase and inhibition of pyruvate dehydrogenase, whilst translocation decreased post-translational protein acetylation by cytonuclear depletion of acetyl-CoA (AcCoA). The associated decrease in the concentrations of ketogenic amino acids also produced downstream effects on physiology and behavior, attributable to decreased neurotransmitter levels. We thus provide evidence for novel signaling pathways connecting mtDNA to metabolism, distinct from its role in supporting OXPHOS. Mitochondria, subcellular compartments (organelles) found in virtually all eukaryotes, contain DNA which is believed to be a remnant of an ancestral bacterial genome. They are best known for the synthesis of the universal energy carrier ATP, but also serve as the hub of various metabolic and signalling pathways. We report here that mtDNA integrity is linked to a signaling system that influences metabolic fuel selection between fats and sugars. By disrupting mtDNA in the fruit fly we induced a strong shift towards lipid catabolism. This was caused both by a widespread decrease in post-translational acetylation of proteins, as well as specific inhibition of the machinery that transports glucose into cells across the plasma membrane. This phenomenon is very similar to the pathophysiology of diabetes, where the inability to transport glucose to cells is considered the main hallmark of the disease. Moreover, decreased protein acetylation was associated with lower levels of certain neurotransmitters, causing various effects on feeding and fertility. Our discovery reveals an unexpected role for mtDNA stability in regulating global metabolic balance and suggests that it could be instrumental in pandemic metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Diana Bahhir
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Cagri Yalgin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Liina Ots
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sampsa Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jack George
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alba Naudí
- Experimental Medicine Department, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLLEIDA), Lleida, Spain
| | - Tatjana Krama
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Tartu, Estonia
| | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Rīga, Latvia
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Mairi Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ana Andjelković
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eric Dufour
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Mike Gerards
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Mikael Parhiala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Reinald Pamplona
- Experimental Medicine Department, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLLEIDA), Lleida, Spain
| | - Howard T. Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- * E-mail:
| |
Collapse
|
272
|
Mitochondrial Genome (mtDNA) Mutations that Generate Reactive Oxygen Species. Antioxidants (Basel) 2019; 8:antiox8090392. [PMID: 31514455 PMCID: PMC6769445 DOI: 10.3390/antiox8090392] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.
Collapse
|
273
|
Sprenger HG, Wani G, Hesseling A, König T, Patron M, MacVicar T, Ahola S, Wai T, Barth E, Rugarli EI, Bergami M, Langer T. Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy. EMBO Mol Med 2019; 11:emmm.201809288. [PMID: 30389680 PMCID: PMC6328943 DOI: 10.15252/emmm.201809288] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i‐AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin‐like GTPase OPA1. Mutations in YME1L cause a multi‐systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell‐type‐specific defects in mice lacking YME1L in the nervous system. YME1L‐deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.
Collapse
Affiliation(s)
- Hans-Georg Sprenger
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gulzar Wani
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Annika Hesseling
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim König
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maria Patron
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas MacVicar
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sofia Ahola
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Timothy Wai
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Esther Barth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Matteo Bergami
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany .,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
274
|
Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front Cardiovasc Med 2019; 6:89. [PMID: 31428618 PMCID: PMC6688526 DOI: 10.3389/fcvm.2019.00089] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Ian L Megson
- Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Paul A Cahill
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
275
|
Hosseini M, Rezvani HR, Aroua N, Bosc C, Farge T, Saland E, Guyonnet-Dupérat V, Zaghdoudi S, Jarrou L, Larrue C, Sabatier M, Mouchel PL, Gotanègre M, Piechaczyk M, Bossis G, Récher C, Sarry JE. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Res 2019; 79:5191-5203. [PMID: 31358527 DOI: 10.1158/0008-5472.can-19-0515] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022]
Abstract
Chemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells. High MPO-expressing AML cells were less sensitive to AraC in vitro and in vivo. They also produced higher levels of HOCl and exhibited an increased rate of mitochondrial oxygen consumption when compared with low MPO-expressing AML cells. Targeting MPO expression or enzyme activity sensitized AML cells to AraC treatment by triggering oxidative damage and sustaining oxidative stress, particularly in high MPO-expressing AML cells. This sensitization stemmed from mitochondrial superoxide accumulation, which impaired oxidative phosphorylation and cellular energetic balance, driving apoptotic death and selective eradication of chemoresistant AML cells in vitro and in vivo. Altogether, this study uncovers a noncanonical function of MPO enzyme in maintaining redox balance and mitochondrial energetic metabolism, therefore affecting downstream pathways involved in AML chemoresistance. SIGNIFICANCE: These findings demonstrate the role of myeloperoxidase in the regulation of ROS levels and sensitivity of AML cells to cytarabine, an essential chemotherapeutic backbone in the therapy of AML.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Hamid Reza Rezvani
- INSERM U1035, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Nesrine Aroua
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | | | - Sonia Zaghdoudi
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Latifa Jarrou
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Pierre Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France. .,University of Toulouse, Toulouse, France
| |
Collapse
|
276
|
Salimi A, Nikoosiar Jahromi M, Pourahmad J. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: An explanation for perfluorooctanoic acid induced abortion and developmental toxicity. ENVIRONMENTAL TOXICOLOGY 2019; 34:878-885. [PMID: 31037826 DOI: 10.1002/tox.22760] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an octanoic acid and is found in wildlife and humans. We have investigated mitochondrial toxicity in isolated mitochondria from, placenta, brain, liver, and heart after oral exposure with PFOA in mice during gestational days (7-15). Histopathological examination and mitochondrial toxicity parameters were assayed. Results indicated that PFOA decreased the weight of the fetus and placenta, the length of the fetus and the diameter of the placenta, dead fetuses and dead macerated fetuses in treated mice with 25 mg/kg. Histopathological examination showed that PFOA induced pathological abnormalities in liver, brain, heart, and placenta. Also, PFOA induced mitochondria toxicity in brain, liver, heart of mouse fetus. Our results indicate that PFOA up to 20 mg/kg exposure adversely affect embryofetal/developmental because for mitochondria dysfunction. These results suggested that mitochondrial dysfunction induced by PFOA in liver, heart, and brain lead to developmental toxicity and abnormality in tissues.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahnia Nikoosiar Jahromi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
277
|
Tang BL. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J Cell Biochem 2019; 120:14285-14295. [PMID: 31127649 DOI: 10.1002/jcb.29004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the rate limiting enzyme that channels glucose catabolism from glycolysis into the pentose phosphate pathway (PPP), is vital for the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in cells. NADPH is in turn a substrate for glutathione reductase, which reduces oxidized glutathione disulfide to sulfhydryl glutathione. Best known for inherited deficiencies underlying acute hemolytic anemia due to elevated oxidative stress by food or medication, G6PD, and PPP activation have been associated with neuroprotection. Recent works have now provided more definitive evidence for G6PD's protective role in ischemic brain injury and strengthened its links to neurodegeneration. In Drosophila models, improved proteostasis and lifespan extension result from an increased PPP flux due to G6PD induction, which is phenocopied by transgenic overexpression of G6PD in neurons. Moderate transgenic expression of G6PD was also shown to improve healthspan in mouse. Here, the deciphered and implicated roles of G6PD and PPP in protection against brain injury, neurodegenerative diseases, and in healthspan/lifespan extensions are discussed together with an important caveat, namely NADPH oxidase (NOX) activity and the oxidative stress generated by the latter. Activation of G6PD with selective inhibition of NOX activity could be a viable neuroprotective strategy for brain injury, disease, and aging.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
278
|
Mitochondria-Targeted Antioxidants as Potential Therapy for the Treatment of Traumatic Brain Injury. Antioxidants (Basel) 2019; 8:antiox8050124. [PMID: 31071926 PMCID: PMC6562849 DOI: 10.3390/antiox8050124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this article is to review the publications describing the use of mitochondria-targeted antioxidant therapy after traumatic brain injury (TBI). Recent works demonstrated that mitochondria-targeted antioxidants are very effective in reducing the negative effects associated with the development of secondary damage caused by TBI. Using various animal models of TBI, mitochondria-targeted antioxidants were shown to prevent cardiolipin oxidation in the brain and neuronal death, as well as to markedly reduce behavioral deficits and cortical lesion volume, brain water content, and DNA damage. In the future, not only a more detailed study of the mechanisms of action of various types of such antioxidants needs to be conducted, but also their therapeutic values and toxicological properties are to be determined. Moreover, the optimal therapeutic effect needs to be achieved in the shortest time possible from the onset of damage to the nervous tissue, since secondary brain damage in humans can develop for a long time, days and even months, depending on the severity of the damage.
Collapse
|
279
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
280
|
Taniguchi M, Kuda T, Shibayama J, Sasaki T, Michihata T, Takahashi H, Kimura B. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep 2019; 46:1775-1786. [PMID: 30694455 DOI: 10.1007/s11033-019-04628-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
To clarify the antioxidant, anti-glycation and immunomodulatory capacities of fermented blue-green algae Aphanizomenon flos-aquae (AFA), hot aqueous extract suspensions made from 10% AFA were fermented by Lactobacillus plantarum AN7 and Lactococcus lactis subsp. lactis Kushiro-L2 strains isolated from a coastal region of Japan. The DPPH and O2- radical scavenging capacities and Fe-reducing power were increased in the fermented AFA. The increased DPPH radical scavenging capacity of the fermented AFA was fractionated to mainly < 3 kDa and 30-100 kDa. The increased O2- radical scavenging capacities were fractionated to mainly < 3 kDa. Anti-glycation activity in BSA-fructose model rather than BSA-methylglyoxal model was increased by the fermentation. The increased anti-glycation activity was fractionated to mainly 30-100 kDa. The NO concentration in the murine macrophage RAW264.7 culture media was high with the fermented AFA. The increased immunomodulation capacity was also fractionated to mainly 30-100 kDa. These results suggest that the fermented AFA is a more useful material for health foods and supplements.
Collapse
Affiliation(s)
- Miyu Taniguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan.
| | - Junna Shibayama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Tetsuya Sasaki
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Toshihide Michihata
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| |
Collapse
|
281
|
Affiliation(s)
- Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, UK
| |
Collapse
|
282
|
Cao S, Shen Z, Wang C, Zhang Q, Hong Q, He Y, Hu C. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets1. Food Funct 2019; 10:344-354. [DOI: 10.1039/c8fo02091d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated whether resveratrol can alleviate intestinal injury and enhance the mitochondrial function and the mitophagy level in diquat induced oxidative stress of piglets.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Zhuojun Shen
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Chunchun Wang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qianhui Zhang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qihua Hong
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Yonghui He
- Henan Province Engineering Technology Centre of Intelligent Cleaner Production of Livestock and Poultry
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Caihong Hu
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| |
Collapse
|
283
|
Matschke V, Theiss C, Matschke J. Oxidative stress: the lowest common denominator of multiple diseases. Neural Regen Res 2019; 14:238-241. [PMID: 30531003 PMCID: PMC6301174 DOI: 10.4103/1673-5374.244780] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxygen is essential to the human life and life of all aerobic organisms. The complete oxidation of nutrients for the biological energy supply is one of the most important prerequisites for the formation of higher life forms. However, cells that benefit from oxidative respiration also suffer from reactive oxygen species because they adapted to oxygen as an energy source. Healthy cells balance the formation and elimination of reactive oxygen species thereby creating and keeping reactive oxygen species-homeostasis. When the concentration of free radicals exceeds a critical level and homeostasis is disturbed, oxidative stress occurs leading to damage of multiple cellular molecules and compartments. Therefore, oxidative stress plays an important role in the physiology and pathology of various diseases. Often, the antioxidant protection system becomes pathologically unbalanced in the genesis of several diseases, leading to functional losses of the organism, as in the case of amyotrophic lateral sclerosis, or cells develop metabolic mechanisms to use this system as protection against external influences, such as in the case of glioblastoma cells. Either way, understanding the underlying deregulated mechanisms of the oxidative protection system would allow the development of novel treatment strategies for various diseases. Thus, regardless of the direction in which the reactive oxygen species-homeostasis disequilibrate, the focus should be on the oxidative protection system.
Collapse
Affiliation(s)
- Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Bochum, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
284
|
Martínez Leo EE, Segura Campos MR. Systemic Oxidative Stress: A key Point in Neurodegeneration - A Review. J Nutr Health Aging 2019; 23:694-699. [PMID: 31560025 DOI: 10.1007/s12603-019-1240-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic oxidative stress (SOS) has an important role in the mechanisms activation of neuronal death, involved in the neurodegenerative disease (ND) etiology. Brain is susceptible to oxidative stress injuries due to its high energy and metabolic request, therefore minimal imbalances of the redox state, as occurs in mitochondrial dysfunction, favour tissue injury and neuroinflammatory mechanisms activation. ND affect around the world about a billion people, without distinction of sex, educational level and economic status. Public measures generation that prevent ND from the SOS are possible promising therapeutic targets that could reduce the ND incidence. We discuss here the effects and mechanisms of SOS derived neurodegeneration, as well as the neuroinflammation repercussions for some cerebral structures.
Collapse
Affiliation(s)
- E E Martínez Leo
- M.R. Segura Campos Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203 Mérida, Yucatán, México, +52 999 930 0550, E-mail:
| | | |
Collapse
|
285
|
Mirra S, Marfany G. Mitochondrial Gymnastics in Retinal Cells: A Resilience Mechanism Against Oxidative Stress and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:513-517. [PMID: 31884663 DOI: 10.1007/978-3-030-27378-1_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Inherited retinal dystrophies (IRDs) are a broad group of neurodegenerative disorders associated with reduced or deteriorating visual system. In the retina, cells are under constant oxidative stress, leading to elevated reactive oxygen species (ROS) generation that induces mitochondrial dysfunction and alteration of the mitochondrial network. This mitochondrial dysfunction combined with mutations in mitochondrial DNA and nuclear genes makes photoreceptors and retinal ganglion cells more susceptible to cell death. In this minireview, we focus on mitochondrial dynamics and their contribution to neuronal degeneration underlying IRDs, with particular attention to Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA), and propose targeting cell resilience and mitochondrial dynamics modulators as potential therapeutic approaches for retinal disorders.
Collapse
Affiliation(s)
- Serena Mirra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain. .,Institut de Biomedicina de la Universitat de Barcelona, IBUB-IRSJD, Barcelona, Spain.
| |
Collapse
|
286
|
Oyinbo C, Robert F, Avwioro O, Igbigbi P. Jobelyn suppresses hippocampal neuronal apoptosis and necrosis in experimental alcohol-induced brain stress. PATHOPHYSIOLOGY 2018; 25:317-325. [DOI: 10.1016/j.pathophys.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/16/2023] Open
|
287
|
Zhang J, Wang B, Wang H, He H, Wu Q, Qin X, Yang X, Chen L, Xu G, Yuan Z, Yi Q, Zou Z, Yu C. Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death. Free Radic Biol Med 2018; 129:268-278. [PMID: 30248444 DOI: 10.1016/j.freeradbiomed.2018.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Copper oxide nanoparticles (CuONPs) have been widely used in the industrial and pharmaceutical fields; however, their toxicity profile is deeply concerning. Currently, nanomaterials-induced toxicity in the cardiovascular system is receiving increased attention. Our previous toxicological study found that lysosomal deposition of CuONPs triggered vascular endothelial cell death, indicating that the involvement of autophagic dysfunction was crucial for CuONPs-induced toxicity in human umbilical vein endothelial cells (HUVECs). In the current study, we investigated the detailed mechanism underlying the autophagic dysfunction induced by CuONPs. We demonstrated that CuONPs exposure caused accumulation of superoxide anions, which likely resulted from mitochondrial dysfunctions. MnTBAP, a superoxide anions scavenger, alleviated CuONPs-induced HUVECs death, indicating that excessive superoxide anions were directly related to the CuONPs cytotoxicity in HUVECs. Interestingly, we found that mitophagy (a protective mechanism for clearance of damaged mitochondria and excessive superoxide anions) was initiated but failed to be cleared in CuONPs-treated cells, resulting in the accumulation of damaged mitochondria. Inhibition of mitophagy through Atg5 knockout or blocking of mitochondria fission with Mdivi-1 significantly aggravated CuONPs-induced superoxide anions accumulation and cell death, suggesting that mitophagy is a protective mechanism against CuONPs cytotoxicity in HUVECs. In summary, we demonstrate that superoxide anions (originating from damaged mitochondria) are involved in CuONPs-associated toxicity and that impaired mitophagic flux aggravates the accumulation of excessive superoxide anions, which leads to HUVECs death. Our findings indicate that there are crucial roles for superoxide anions and mitophagy in CuONPs-induced toxicity in vascular endothelial cells.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Hong Wang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Hui He
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Qiong Wu
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Xia Qin
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Xi Yang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Linmu Chen
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China.
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
288
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
289
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
290
|
Hahn A, Zuryn S. The Cellular Mitochondrial Genome Landscape in Disease. Trends Cell Biol 2018; 29:227-240. [PMID: 30509558 DOI: 10.1016/j.tcb.2018.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.
Collapse
Affiliation(s)
- Anne Hahn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia
| | - Steven Zuryn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia.
| |
Collapse
|
291
|
Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R, Oppici E, Cavallini C, Gasperini S, Tamassia N, Nadal-Serrano M, Coan M, Rossi D, Gaidano G, Caraglia M, Mariotto S, Spizzo R, Roca P, Oliver J, Scupoli MT, Donadelli M. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O 2-· production in cancer cells. Br J Cancer 2018; 119:994-1008. [PMID: 30318520 PMCID: PMC6203762 DOI: 10.1038/s41416-018-0288-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Michela Coan
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sofia Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, CRO National Cancer Institute Aviano, Aviano, Italy
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120, Palma de Mallorca, Illes Balears, Spain
| | - Maria Teresa Scupoli
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| |
Collapse
|
292
|
Multiple recycling routes: Canonical vs. non-canonical mitophagy in the heart. Biochim Biophys Acta Mol Basis Dis 2018; 1865:797-809. [PMID: 30290272 DOI: 10.1016/j.bbadis.2018.09.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
The heart is composed of cardiomyocytes that require large amounts of energy to sustain contraction. Mitochondria are distinctive organelles of bacterial origin that generate most of the energy for the heart via oxidative phosphorylation. To ensure a healthy population of mitochondria that efficiently produce ATP, myocytes quickly eliminate any unhealthy or unwanted mitochondria via a process known as mitochondrial autophagy, or mitophagy. It is especially important to selectively remove damaged or aged mitochondria since they can become excessive producers of reactive oxygen species and release pro-death proteins. Because this is such a crucial cellular process, cells have several mechanisms in place to deal with potentially harmful mitochondria. Here, we review the various pathways identified to date and how they are regulated. We also discuss the importance of these canonical and non-canonical pathways in the heart and their link to cardiovascular health, disease and aging.
Collapse
|
293
|
Mitochondrial Targeting in Neurodegeneration: A Heme Perspective. Pharmaceuticals (Basel) 2018; 11:ph11030087. [PMID: 30231533 PMCID: PMC6161291 DOI: 10.3390/ph11030087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has achieved an increasing interest in the field of neurodegeneration as a pathological hallmark for different disorders. The impact of mitochondria is related to a variety of mechanisms and several of them can co-exist in the same disease. The central role of mitochondria in neurodegenerative disorders has stimulated studies intended to implement therapeutic protocols based on the targeting of the distinct mitochondrial processes. The review summarizes the most relevant mechanisms by which mitochondria contribute to neurodegeneration, encompassing therapeutic approaches. Moreover, a new perspective is proposed based on the heme impact on neurodegeneration. The heme metabolism plays a central role in mitochondrial functions, and several evidences indicate that alterations of the heme metabolism are associated with neurodegenerative disorders. By reporting the body of knowledge on this topic, the review intends to stimulate future studies on the role of heme metabolism in neurodegeneration, envisioning innovative strategies in the struggle against neurodegenerative diseases.
Collapse
|
294
|
Sgarbi G, Liuzzi F, Baracca A, Solaini G. Resveratrol preserves mitochondrial function in a human post-mitotic cell model. J Nutr Biochem 2018; 62:9-17. [PMID: 30216747 DOI: 10.1016/j.jnutbio.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Francesca Liuzzi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
295
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
296
|
Lechowicz U, Pollak A, Raj-Koziak D, Dziendziel B, Skarżyński PH, Skarżyński H, Ołdak M. Tinnitus in patients with hearing loss due to mitochondrial DNA pathogenic variants. Eur Arch Otorhinolaryngol 2018; 275:1979-1985. [PMID: 29936625 PMCID: PMC6060765 DOI: 10.1007/s00405-018-5028-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
Purpose Tinnitus described as individual perception of phantom sound constitutes a significant medical problem and has become an essential subject of many studies conducted worldwide. In the study, we aimed to examine the prevalence of tinnitus among Polish hearing loss (HL) patients with identified mitochondrial DNA (mtDNA) variants. Methods Among the selected group of unrelated HL patients with known mtDNA pathogenic variants, two questionnaires were conducted, i.e. Tinnitus Handicap Inventory translated into Polish (THI-POL) and Visual Analogue Scale (VAS) for measuring subjectively perceived tinnitus loudness, distress, annoyance and possibility of coping with this condition (VASs). Pathogenic mtDNA variants were detected with real-time PCR and sequencing of the whole mtDNA. Results This is the first extensive tinnitus characterization using THI-POL and VASs questionnaires in HL patients due to mtDNA variants. We have established the prevalence of tinnitus among the studied group at 23.5%. We found that there are no statistically significant differences in the prevalence of tinnitus and its characteristic features between HL patients with known HL mtDNA variants and the general Polish population. In Polish HL patients with tinnitus, m.7511T>C was significantly more frequent than in patients without tinnitus. We observed that the prevalence of tinnitus is lower in Polish patients with m.1555A>G as compared to other available data. Conclusions Our data suggest that the mtDNA variants causative of HL may affect tinnitus development but this effect seems to be ethnic-specific.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland
| | - Danuta Raj-Koziak
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Beata Dziendziel
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Second Faculty, Medical University of Warsaw, Warsaw, Poland.,Institute of Sensory Organs, Nadarzyn, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, 02-042, Warsaw, Poland. .,Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
297
|
Zsurka G, Peeva V, Kotlyar A, Kunz WS. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging? Genes (Basel) 2018; 9:genes9040175. [PMID: 29561808 PMCID: PMC5924517 DOI: 10.3390/genes9040175] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Collapse
Affiliation(s)
- Gábor Zsurka
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
- Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany.
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
| | - Alexander Kotlyar
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
- Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany.
| |
Collapse
|
298
|
Emanuele S, D'Anneo A, Calvaruso G, Cernigliaro C, Giuliano M, Lauricella M. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer. Chem Res Toxicol 2018. [PMID: 29513521 DOI: 10.1021/acs.chemrestox.7b00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular redox state in the cell depends on the balance between the level of reactive oxygen species (ROS) and the activity of defensive systems including antioxidant enzymes. This balance is a dynamic process that can change in relation to many factors and/or stimuli induced within the cell. ROS production is derived from physiological metabolic events. For instance, mitochondria represent the major ROS sources during oxidative phosphorylation, but other systems, such as NADPH oxidase or specific enzymes in certain metabolisms, may account for ROS production as well. Whereas high levels of ROS perturb the cell environment, causing oxidative damage to biological macromolecules, low levels of ROS can exert a functional role in the cell, influencing the activity of specific enzymes or modulating some intracellular signaling cascades. Of particular interest appears to be the role of ROS in tumor systems not only because ROS are known to be tumorigenic but also because tumor cells are able to modify their redox state, regulating ROS production to sustain tumor growth and proliferation. Overall, the scope of this review was to critically discuss the most recent findings pertaining to ROS physiological roles as well as to highlight the controversial involvement of ROS in tumor systems.
Collapse
|