251
|
Kozin SA, Zirah S, Rebuffat S, Hoa GH, Debey P. Zinc binding to Alzheimer's Abeta(1-16) peptide results in stable soluble complex. Biochem Biophys Res Commun 2001; 285:959-64. [PMID: 11467845 DOI: 10.1006/bbrc.2001.5284] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aggregation of the human amyloid beta-peptide (Abeta) into insoluble plaques is a key event in Alzheimer's disease. Zinc sharply accelerates the Abeta aggregation in vitro, and the Abeta region 6-28 was suggested to be the obligatory zinc binding site. However, time-dependent aggregation of the zinc-bound Abeta species investigated so far prevented their structural analysis. By using CD spectroscopy, we have shown here for the first time that (i) the protected synthetic peptide spanning the fragment 1-16 of Abeta binds specifically zinc with 1:1 and 1:2 stoichiometry under physiologically relevant conditions; (ii) the peptide-zinc complex is soluble and stable for several months; (iii) zinc binding causes a conformational change of the peptide towards a more structured state. These findings suggest the region 1-16 to be the minimal autonomous zinc binding domain of Abeta.
Collapse
Affiliation(s)
- S A Kozin
- INRA 806/EA2703 MNHN, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, Paris, 75005, France
| | | | | | | | | |
Collapse
|
252
|
Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R. Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126. Biochemistry 2001; 40:8073-84. [PMID: 11434776 DOI: 10.1021/bi0029088] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The abnormal form of the prion protein (PrP) is believed to be responsible for the transmissible spongiform encephalopathies. A peptide encompassing residues 106-126 of human PrP (PrP106-126) is neurotoxic in vitro due its adoption of an amyloidogenic fibril structure. The Alzheimer's disease amyloid beta peptide (Abeta) also undergoes fibrillogenesis to become neurotoxic. Abeta aggregation and toxicity is highly sensitive to copper, zinc, or iron ions. We show that PrP106-126 aggregation, as assessed by turbidometry, is abolished in Chelex-100-treated buffer. ICP-MS analysis showed that the Chelex-100 treatment had reduced Cu(2+) and Zn(2+) levels approximately 3-fold. Restoring Cu(2+) and Zn(2+) to their original levels restored aggregation. Circular dichroism showed that the Chelex-100 treatment reduced the aggregated beta-sheet content of the peptide. Electron paramagnetic resonance spectroscopy identified a 2N1S1O coordination to the Cu(2+) atom, suggesting histidine 111 and methionine 109 or 112 are involved. Nuclear magnetic resonance confirmed Cu(2+) and Zn(2+) binding to His-111 and weaker binding to Met-112. An N-terminally acetylated PrP106-126 peptide did not bind Cu(2+), implicating the free amino group in metal binding. Mutagenesis of either His-111, Met-109, or Met-112 abolished PrP106-126 neurotoxicity and its ability to form fibrils. Therefore, Cu(2+) and/or Zn(2+) binding is critical for PrP106-126 aggregation and neurotoxicity.
Collapse
Affiliation(s)
- M F Jobling
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Abstract
Several human disorders are caused by or associated with the deposition of protein aggregates known as amyloid fibrils. Despite the lack of sequence homology among amyloidogenic proteins, all amyloid fibrils share a common morphology, are insoluble under physiological conditions and are resistant to proteolytic degradation. Because amyloidogenic proteins are being produced continuously, eukaryotic organisms must have developed a form of proteolytic machinery capable of controlling these aggregation-prone species before their fibrillization. This article suggests that an intracellular metalloprotease called insulin-degrading enzyme (IDE) is responsible for the elimination of proteins with amyloidogenic potential and proposes a mechanism for the selectivity of the enzyme. In this respect, IDE can also be referred to as ADE: amyloid-degrading enzyme.
Collapse
Affiliation(s)
- I V Kurochkin
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari, 300-4101, Ibaraki, Japan.
| |
Collapse
|
254
|
Maioli E, Torricelli C, Santucci A, Martelli P, Pacini A. Plasma factors controlling atrial natriuretic peptide (ANP) aggregation: role of lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1536:123-32. [PMID: 11406347 DOI: 10.1016/s0925-4439(01)00040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously shown that human plasma atrial alpha-natriuretic peptide (alpha-hANP) sequestering is a protective phenomenon against amyloid aggregation. In the present work, the possible role of lipoproteins as alpha-hANP binding factors has been investigated in vitro using an experimental model, developed in our laboratory, that allows to work at physiological concentrations. This approach consists of gel filtration on Sephacryl S-300 HR of big alpha-[(125)I]hANP generated in phosphate buffered saline or in human normal plasma supplemented or not with lipoproteins. The results of these experiments indicate that high density lipoproteins (HDL) are responsible for the ANP binding phenomenon observed in vitro, while low density lipoproteins and very low density lipoproteins do not directly interact with ANP. Moreover, the HDL remodeling process occurring in vitro has been analyzed during plasma incubation by monitoring the redistribution of lipids and apolipoproteins among the HDL subclasses. The changes in HDL size and composition observed in incubated plasma were compared with the redistribution of endogenous and labeled big ANP. The obtained results revealed that both tend to follow the molecular rearrangement in plasma of apolipoprotein A-I containing particles and suggested that, among HDL species, the small particles are mainly involved in the ANP binding phenomenon. This hypothesis was further demonstrated by ligand blotting experiments that confirmed the existence of differences in the ability of HDL particles to bind alpha-[(125)I]hANP.
Collapse
Affiliation(s)
- E Maioli
- Institute of General Physiology, University of Siena, Italy
| | | | | | | | | |
Collapse
|
255
|
Soto C, Saborio GP, Permanne B. Inhibiting the conversion of soluble amyloid-beta peptide into abnormally folded amyloidogenic intermediates: relevance for Alzheimer's disease therapy. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 176:90-5. [PMID: 11261811 DOI: 10.1034/j.1600-0404.2000.00313.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is a degenerative disorder of the brain for which there is no cure or effective treatment. Recent studies suggest that cerebral amyloid plaques are central to the disease process. However, it is not clear which of the species going from the normal soluble amyloid-beta peptide to the mature amyloid plaque is the toxic agent in the brain. Therefore, an attractive therapeutic strategy for Alzheimer's disease is to block the early steps involving the pathological conversion of the soluble peptide into the abnormally folded oligomeric intermediate precursor of the amyloid fibrils. We have engineered synthetic beta-sheet breaker peptides to bind amyloid-beta peptide, stabilize the normal conformation and destabilize the beta-sheet rich structure of the potentially toxic intermediates and hence the formation of amyloid plaques. Results in vitro, in cell culture and in vivo suggest that beta-sheet breaker peptide may be useful for blocking the pathway that lead to the formation of cerebral amyloid deposits. It remains to be proved that inhibition of the defective folding of amyloid-beta peptide and/or amyloid plaque deposition could be beneficial for the therapeutic treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- C Soto
- Serono Pharmaceutical Research Institute, Geneva, Switzerland.
| | | | | |
Collapse
|
256
|
Janek K, Rothemund S, Gast K, Beyermann M, Zipper J, Fabian H, Bienert M, Krause E. Study of the conformational transition of A beta(1-42) using D-amino acid replacement analogues. Biochemistry 2001; 40:5457-63. [PMID: 11331010 DOI: 10.1021/bi002005e] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical event in Alzheimer's disease is the transition of Abeta peptides from their soluble forms into disease-associated beta-sheet-rich conformers. Structural analysis of a complete D-amino acid replacement set of Abeta(1-42) enabled us to localize in the full-length 42-mer peptide the region responsible for the conformational switch into a beta-sheet structure. Although NMR spectroscopy of trifluoroethanol-stabilized monomeric Abeta(1-42) delineated two separated helical domains, only the destabilization of helix I, comprising residues 11-24, caused a transition to a beta-sheet structure. This conformational alpha-to-beta switch was directly accompanied by an aggregation process leading to the formation of amyloid fibrils.
Collapse
Affiliation(s)
- K Janek
- Institute of Molecular Pharmacology and Max Delbrück Center of Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Jaikaran ET, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. J Mol Biol 2001; 308:515-25. [PMID: 11327784 DOI: 10.1006/jmbi.2001.4593] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state.
Collapse
Affiliation(s)
- E T Jaikaran
- Diabetes Research Laboratories, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK.
| | | | | | | | | | | | | |
Collapse
|
258
|
De Felice FG, Houzel JC, Garcia-Abreu J, Louzada PR, Afonso RC, Meirelles MN, Lent R, Neto VM, Ferreira ST. Inhibition of Alzheimer's disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer's therapy. FASEB J 2001; 15:1297-9. [PMID: 11344119 DOI: 10.1096/fj.00-0676fje] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- F G De Felice
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Dumery L, Bourdel F, Soussan Y, Fialkowsky A, Viale S, Nicolas P, Reboud-Ravaux M. beta-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease. PATHOLOGIE-BIOLOGIE 2001; 49:72-85. [PMID: 11265227 DOI: 10.1016/s0369-8114(00)00009-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Amyloid protein (A beta), a 39-42 residue peptide resulting from the proteolytic processing of a membrane-bound beta-amyloid precursor protein (APP), is one of the major components of the fibrillar deposits observed in Alzheimer patients. A beta fibril formation is a complex process which involves changes in A beta conformation and self-association to form cross-beta pleated sheets, protofibrils, and fibrils. Since the aggregation of soluble A beta peptide into fibrils is viewed as a critical event in the physiopathology of Alzheimer's disease (AD), preventing, altering, or reversing fibril formation may thus be of therapeutic value. This review will focus on the current state of knowledge of A beta fibril formation, with special emphasis on physiological and exogenous inhibitors which may have a therapeutic potential.
Collapse
Affiliation(s)
- L Dumery
- UFR 927 des Sciences de la Vie, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris
| | | | | | | | | | | | | |
Collapse
|
260
|
Alzheimer’s Disease: Physiological and Pathogenetic Role of the Amyloid Precursor Protein (APP), its Aβ-Amyloid Domain and Free Aβ-Amyloid Peptide. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-662-04399-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
261
|
Chen F, Yang DS, Petanceska S, Yang A, Tandon A, Yu G, Rozmahel R, Ghiso J, Nishimura M, Zhang DM, Kawarai T, Levesque G, Mills J, Levesque L, Song YQ, Rogaeva E, Westaway D, Mount H, Gandy S, St George-Hyslop P, Fraser PE. Carboxyl-terminal fragments of Alzheimer beta-amyloid precursor protein accumulate in restricted and unpredicted intracellular compartments in presenilin 1-deficient cells. J Biol Chem 2000; 275:36794-802. [PMID: 10962005 DOI: 10.1074/jbc.m006986200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Absence of functional presenilin 1 (PS1) protein leads to loss of gamma-secretase cleavage of the amyloid precursor protein (betaAPP), resulting in a dramatic reduction in amyloid beta peptide (Abeta) production and accumulation of alpha- or beta-secretase-cleaved COOH-terminal fragments of betaAPP (alpha- or beta-CTFs). The major COOH-terminal fragment (CTF) in brain was identified as betaAPP-CTF-(11-98), which is consistent with the observation that cultured neurons generate primarily Abeta-(11-40). In PS1(-/-) murine neurons and fibroblasts expressing the loss-of-function PS1(D385A) mutant, CTFs accumulated in the endoplasmic reticulum, Golgi, and lysosomes, but not late endosomes. There were some subtle differences in the subcellular distribution of CTFs in PS1(-/-) neurons as compared with PS1(D385A) mutant fibroblasts. However, there was no obvious redistribution of full-length betaAPP or of markers of other organelles in either mutant. Blockade of endoplasmic reticulum-to-Golgi trafficking indicated that in PS1(-/-) neurons (as in normal cells) trafficking of betaAPP to the Golgi compartment is necessary before alpha- and beta-secretase cleavages occur. Thus, although we cannot exclude a specific role for PS1 in trafficking of CTFs, these data argue against a major role in general protein trafficking. These results are more compatible with a role for PS1 either as the actual gamma-secretase catalytic activity or in other functions indirectly related to gamma-secretase catalysis (e.g. an activator of gamma-secretase, a substrate adaptor for gamma-secretase, or delivery of gamma-secretase to betaAPP-containing compartments).
Collapse
Affiliation(s)
- F Chen
- Centre for Research in Neurodegenerative Diseases, Departments of Laboratory Medicine and Pathobiology, Medical Biophysics and Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 2000; 39:13748-59. [PMID: 11076514 DOI: 10.1021/bi0011330] [Citation(s) in RCA: 566] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH(2), called A beta(16-22) and representing residues 16-22 of the full-length beta-amyloid peptide associated with Alzheimer's disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibrils. The peptide conformation and supramolecular organization in A beta(16-22) fibrils are investigated by solid state (13)C NMR measurements. Two-dimensional magic-angle spinning (2D MAS) exchange and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) measurements indicate a beta-strand conformation of the peptide backbone at the central phenylalanine. One-dimensional and two-dimensional spectra of selectively and uniformly labeled samples exhibit (13)C NMR line widths of <2 ppm, demonstrating that the peptide, including amino acid side chains, has a well-ordered conformation in the fibrils. Two-dimensional (13)C-(13)C chemical shift correlation spectroscopy permits a nearly complete assignment of backbone and side chain (13)C NMR signals and indicates that the beta-strand conformation extends across the entire hydrophobic segment from Leu17 through Ala21. (13)C multiple-quantum (MQ) NMR and (13)C/(15)N rotational echo double-resonance (REDOR) measurements indicate an antiparallel organization of beta-sheets in the A beta(16-22) fibrils. These results suggest that the degree of structural order at the molecular level in amyloid fibrils can approach that in peptide or protein crystals, suggest how the supramolecular organization of beta-sheets in amyloid fibrils can be dependent on the peptide sequence, and illustrate the utility of solid state NMR measurements as probes of the molecular structure of amyloid fibrils. A beta(16-22) is among the shortest fibril-forming fragments of full-length beta-amyloid reported to date, and hence serves as a useful model system for physical studies of amyloid fibril formation.
Collapse
Affiliation(s)
- J J Balbach
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Villegas V, Zurdo J, Filimonov VV, Avilés FX, Dobson CM, Serrano L. Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci 2000; 9:1700-8. [PMID: 11045616 PMCID: PMC2144697 DOI: 10.1110/ps.9.9.1700] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The activation domain of human procarboxypeptidase A2 (ADA2h) aggregates following thermal or chemical denaturation at acidic pH. The aggregated material contains well-defined ordered structures with all the characteristics of the fibrils associated with amyloidotic diseases. Variants of ADA2h containing a series of mutations designed to increase the local stability of each of the two helical regions of the protein have been found to have a substantially reduced propensity to form fibrils. This arises from a reduced tendency of the denatured species to aggregate rather than from a change in the overall stability of the native state. The reduction in aggregation propensity may result from an increase in the stability of local relative to longer range interactions within the polypeptide chain. These findings show that the intrinsic ability of a protein to form amyloid can be altered substantially by protein engineering methods without perturbing significantly its overall stability or activity. This suggests new strategies for combating diseases associated with the formation of aggregated proteins and for the design of novel protein or peptide therapeutics.
Collapse
Affiliation(s)
- V Villegas
- Departament de Bioquímica i Biologia Molecular, i Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
264
|
Takahashi Y, Yamashita T, Ueno A, Mihara H. Construction of Peptides That Undergo Structural Transition from α-Helix to β-Sheet and Amyloid Fibril Formation by the Introduction of N-Terminal Hydrophobic Amino Acids. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00524-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
265
|
Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR. Oligomerizaiton and fibril asssembly of the amyloid-beta protein. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:31-43. [PMID: 10899429 DOI: 10.1016/s0925-4439(00)00030-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this chapter, we attempt to analyze the evolution of the amyloid-beta (Abeta) molecular structure from its inception as part of the Abeta precursor protein to its release by the secretases and its extrusion from membrane into an aqueous environment. Biophysical studies suggest that the Abeta peptide sustains a series of transitions from a molecule rich in alpha-helix to a molecule in which beta-strands prevail. It is proposed that initially the extended C-termini of two opposing Abeta dimers form an antiparallel beta-sheet and that the subsequent addition of dimers generates a helical Abeta protofilament. Two or more protofilaments create a strand in which the hydrophobic core of the beta-sheets is shielded from the aqueous environment by the N-terminal polar domains of the Abeta dimers. Once the nucleation has occurred, the Abeta filament grows in length by the addition of dimers or tetramers.
Collapse
Affiliation(s)
- A E Roher
- Haldeman Laboratory for Alzheimer's Disease Research, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | |
Collapse
|
266
|
Findeis MA. Approaches to discovery and characterization of inhibitors of amyloid beta-peptide polymerization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:76-84. [PMID: 10899433 DOI: 10.1016/s0925-4439(00)00034-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymerization of the amyloid beta-peptide (Abeta) has been identified as a major feature of the pathogenesis of Alzheimer's disease (AD). Inhibition of the formation of these toxic polymers of Abeta has thus emerged as an approach to developing therapeutics for AD. Techniques for studying Abeta polymerization include the use of fibril nucleation and extension assays in a variety of formats. Detection of polymeric forms of Abeta has been achieved using turbidity, dye binding, light scattering and toxicity among other methods. Direct and indirect methods have been described for the measurement of binding affinities for Abeta fibrils. Imaging techniques include electron microscopy, X-ray diffraction and atomic force microscopy. These techniques have been used to characterize different classes of compounds that inhibit the formation of Abeta polymers. These compounds include dyes such as Congo Red, the antibiotic rifampicin, the anthracycline 4'-iodo-4'-deoxydoxorubicin, and a large variety of Abeta-derived peptides and modified peptides, among other reported inhibitors.
Collapse
Affiliation(s)
- M A Findeis
- Praecis Pharmaceuticals Incorporated, Cambridge, MA 02139-1572, USA.
| |
Collapse
|
267
|
Lynn DG, Meredith SC. Review: model peptides and the physicochemical approach to beta-amyloids. J Struct Biol 2000; 130:153-73. [PMID: 10940223 DOI: 10.1006/jsbi.2000.4287] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of beta-amyloid fibrils poses a challenge because of the limited solubility of beta-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of beta-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as beta-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10-35 of human beta-amyloid and indicates that in fibrils, this peptide assumes a parallel beta-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Abeta peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.
Collapse
Affiliation(s)
- D G Lynn
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois, 60637-1403, USA
| | | |
Collapse
|
268
|
Poulsen SA, Watson AA, Fairlie DP, Craik DJ. Solution structures in aqueous SDS micelles of two amyloid beta peptides of A beta(1-28) mutated at the alpha-secretase cleavage site (K16E, K16F). J Struct Biol 2000; 130:142-52. [PMID: 10940222 DOI: 10.1006/jsbi.2000.4267] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.
Collapse
Affiliation(s)
- S A Poulsen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
269
|
Cribbs DH, Azizeh BY, Cotman CW, LaFerla FM. Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer's A beta peptide. Biochemistry 2000; 39:5988-94. [PMID: 10821670 DOI: 10.1021/bi000029f] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite significant progress in the elucidation of the genetic basis of early-onset familial Alzheimer's disease (AD), the etiology of sporadic cases remains elusive. Although certain genetic loci play a role in conferring susceptibility in some sporadic AD cases, it is likely that the etiology is multifactorial; hence, the majority of cases cannot be attributed to genetic factors alone, indicating that environmental factors may modulate the onset and/or progression of the disease. Head injury and infectious agents are environmental factors that have been periodically implicated, but no plausible mechanisms have been clearly identified. With regard to infectious agents, speculation has often centered on the neurotropic herpes viruses, with herpes simplex virus 1 (HSV1) considered a likely candidate. We report that an internal sequence of HSV1 glycoprotein B (gB) is homologous to the carboxyl-terminal region of the A beta peptide that accumulates in diffuse and neuritic plaques in AD. Synthetic peptides were generated and the biophysical and biological properties of the viral peptide compared to those of A beta. Here we show that this gB fragment forms beta-pleated sheets, self-assembles into fibrils that are thioflavin-positive and ultrastructurally indistinguishable from A beta, accelerates the formation of A beta fibrils in vitro, and is toxic to primary cortical neurons at doses comparable to those of A beta. These findings suggest a possible role for this infectious agent in the pathophysiology of sporadic cases of AD.
Collapse
Affiliation(s)
- D H Cribbs
- Department of Neurology, Institute for Brain Aging and Dementia, and Center for the Neurobiology of Learning and Memory, University of California at Irvine, 1109 Gillespie Neuroscience Research Facility, Irvine 92697-4545, USA
| | | | | | | |
Collapse
|
270
|
Kurihara A, Pardridge WM. Abeta(1-40) peptide radiopharmaceuticals for brain amyloid imaging: (111)In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer's disease brain sections. Bioconjug Chem 2000; 11:380-6. [PMID: 10821654 DOI: 10.1021/bc9901393] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid plaques of Alzheimer's disease (AD) are formed by the neuropeptide Abeta(1)(-)(42/43), and carboxyl terminal truncated forms of this neuropeptide, designated Abeta(1)(-)(40), bind to amyloid plaques of AD autopsy tissue sections. Therefore, Abeta(1)(-)(40) is a potential peptide radiopharmaceutical that could be used for imaging brain amyloid in living subjects with AD, should this neuropeptide be made transportable through the blood-brain barrier (BBB). To accomplish this, the neuropeptide must be modified to enable (i) attachment to a BBB drug targeting system and (ii) labeling with a radionuclide, e.g., 111-indium, suitable for brain imaging by external detection modalities such as single photon emission computed tomography (SPECT). The present studies describe the synthesis of an Abeta(1)(-)(40) analogue that contains a biotin at the amino terminus and a diethylenetriaminepentaacetic acid (DTPA) moiety conjugated to one of the internal lysine residues. The DTPA-[N-biotin]-Abeta(1)(-)(40) was purified by gel filtration fast-protein liquid chromatography (FPLC) using two Superose 12HR columns in series, and the structure of the purified peptide was confirmed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The binding of the [(111)In]DTPA-[N-biotin]-Abeta(1)(-)(40) to amyloid plaques of AD autopsy tissue sections was demonstrated by film and emulsion autoradiography. A poly(ethylene glycol) (PEG) linker of 3400 Da molecular mass, designated PEG(3400), was inserted between the Abeta(1)(-)(40) and the biotin moiety, but this modification diminishes binding of Abeta(1)(-)(40) to the AD amyloid plaques. In summary, these studies describe a novel formulation of biotinylated Abeta(1)(-)(40) that allows radiolabeling with 111-indium. The peptide radiopharmaceutical may be conjugated to an avidin-based BBB drug targeting system to enable transport through the BBB and imaging of brain amyloid in vivo.
Collapse
Affiliation(s)
- A Kurihara
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1682, USA
| | | |
Collapse
|
271
|
Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC. Two-dimensional structure of beta-amyloid(10-35) fibrils. Biochemistry 2000; 39:3491-9. [PMID: 10727245 DOI: 10.1021/bi991527v] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-amyloid (Abeta) peptides are the main protein component of the pathognomonic plaques found in the brains of patients with Alzheimer's disease. These heterogeneous peptides adopt a highly organized fibril structure both in vivo and in vitro. Here we use solid-state NMR on stable, homogeneous fibrils of Abeta(10-35). Specific interpeptide distance constraints are determined with dipolar recoupling NMR on fibrils prepared from a series of singly labeled peptides containing (13)C-carbonyl-enriched amino acids, and skipping no more that three residues in the sequence. From these studies, we demonstrate that the peptide adopts the structure of an extended parallel beta-sheet in-register at pH 7.4. Analysis of DRAWS data indicates interstrand distances of 5.3 +/- 0.3 A (mean +/- standard deviation) throughout the entire length of the peptide, which is compatible only with a parallel beta-strand in-register. Intrastrand NMR constraints, obtained from peptides containing labels at two adjacent amino acids, confirm the secondary structural findings obtained using DRAWS. Using peptides with (13)C incorporated at the carbonyl position of adjacent amino acids, structural transitions from alpha-helix to beta-sheet were observed at residues 19 and 20, but using similar techniques, no evidence for a turn could be found in the putative turn region comprising residues 25-29. Implications of this extended parallel organization for Abeta(10-35) for overall fibril formation, stability, and morphology based upon specific amino acid contacts are discussed.
Collapse
Affiliation(s)
- T L Benzinger
- Department of Pathology and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
272
|
Huang TH, Yang DS, Plaskos NP, Go S, Yip CM, Fraser PE, Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol 2000; 297:73-87. [PMID: 10704308 DOI: 10.1006/jmbi.2000.3559] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that non-fibrillar soluble forms of Abeta peptides possess neurotoxic properties and may therefore play a role in the molecular pathogenesis of Alzheimer's disease. We have identified solution conditions under which two types of soluble oligomers of Abeta40 could be trapped and stabilized for an extended period of time. The first type of oligomers comprises a mixture of dimers/tetramers which are stable at neutral pH and low micromolar concentration, for a period of at least four weeks. The second type of oligomer comprises a narrow distribution of particles that are spherical when examined by electron microscopy and atomic force microscopy. The number average molecular mass of this distribution of particles is 0.94 MDa, and they are are stable at pH 3 for at least four weeks. Circular dichroism studies indicate that the dimers/tetramers possess irregular secondary structure that is not alpha-helix or beta-structure, while the 0.94 MDa particles contain beta-structure. Fluorescence resonance energy transfer experiments indicate that Abeta40 moieties in amyloid fibrils or protofibrils are more similar in structure to those in the 0.94 MDa particles than those in the dimers/tetramers. These findings indicate that soluble oligomeric forms of Abeta peptides can be trapped for extended periods of time, enabling their study by high resolution techniques that would not otherwise be possible.
Collapse
Affiliation(s)
- T H Huang
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
273
|
Kuner P, Bohrmann B, Tjernberg LO, Näslund J, Huber G, Celenk S, Grüninger-Leitch F, Richards JG, Jakob-Roetne R, Kemp JA, Nordstedt C. Controlling polymerization of beta-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem 2000; 275:1673-8. [PMID: 10636861 DOI: 10.1074/jbc.275.3.1673] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Alzheimer beta-amyloid peptide (Abeta) and a fragment of the prion protein have the capacity of forming amyloid-like fibrils when incubated under physiological conditions in vitro. Here we show that a small amyloid ligand, RO-47-1816/001, enhances this process severalfold by binding to amyloid molecules and apparently promote formation of the peptide-to-peptide bonds that join the monomers of the amyloid fibrils. This effect could be antagonized by other ligands, including analogues of RO-47-1816/001, as well as the structurally unrelated ligand Congo red. Analogues of RO-47-1816/001 with low affinity for amyloid did not display any antagonistic effect. In conclusion, these data suggest that synthetic molecules, and possibly also small natural substances present in the brain, may act in a chaperone-like fashion, promoting Abeta polymerization and growth of amyloid fibrils in vitro and possibly also in vivo. Furthermore, we demonstrate that small organic molecules can be used to inhibit the action of amyloid-enhancing compounds.
Collapse
Affiliation(s)
- P Kuner
- F. Hoffmann-La Roche AG, Pharma Division, Preclinical Research, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Gursky O, Aleshkov S. Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:93-102. [PMID: 10606771 DOI: 10.1016/s0167-4838(99)00228-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To probe the role of temperature in the conversion of soluble Alzheimer's beta-amyloid peptide (Abeta) to insoluble beta-sheet rich aggregates, we analyzed the solution conformation of Abeta(1-40) from 0 to 98 degrees C by far-UV circular dichroism (CD) and native gel electrophoresis. The CD spectra of 15-300 microg/ml Abeta(1-40) in aqueous solution (pH approximately 4.6) at 0 degrees C are concentration-independent and suggest a substantially unfolded and/or unusually folded conformation characteristic of Abeta monomer or dimer. Heating from 0 to 37 degrees C induces a rapid reversible coil to beta-strand transition that is independent of the peptide concentration and thus is not linked to oligomerization. Consequently, this transition may occur within the Abeta(1-40) monomer or dimer. Incubation at 37 degrees C leads to slow reversible concentration-dependent beta-sheet accumulation; heating to 85 degrees C induces further beta-sheet folding and oligomerization. Our results demonstrate the importance of temperature and thermal history for the conformation of Abeta.
Collapse
Affiliation(s)
- O Gursky
- Department of Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA.
| | | |
Collapse
|
275
|
Sigurdsson EM, Permanne B, Soto C, Wisniewski T, Frangione B. In vivo reversal of amyloid-beta lesions in rat brain. J Neuropathol Exp Neurol 2000; 59:11-7. [PMID: 10744031 DOI: 10.1093/jnen/59.1.11] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral amyloid-beta (Abeta) deposition is central to the neuropathological definition of Alzheimer disease (AD) with Abeta related toxicity being linked to its beta-sheet conformation and/or aggregation. We show that a beta-sheet breaker peptide (iAbeta5) dose-dependently and reproducibly induced in vivo disassembly of fibrillar amyloid deposits, with control peptides having no effect. The iAbeta5-induced disassembly prevented and/or reversed neuronal shrinkage caused by Abeta and reduced the extent of interleukin-1beta positive microglia-like cells that surround the Abeta deposits. These findings suggest that beta-sheet breakers, such as iAbeta5 or similar peptidomimetic compounds, may be useful for reducing the size and/or number of cerebral amyloid plaques in AD, and subsequently diminishing Abeta-related histopathology.
Collapse
Affiliation(s)
- E M Sigurdsson
- Department of Pathology, New York University Medical Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
276
|
Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H. Interaction between A beta(1-42) and A beta(1-40) in Alzheimer's beta-amyloid fibril formation in vitro. Biochemistry 1999; 38:15514-21. [PMID: 10569934 DOI: 10.1021/bi991161m] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analyzed the interaction of two kinds of amyloid beta-peptides (A beta), i.e., A beta(1-42) and A beta(1-40), in the kinetics of beta-amyloid fibril (fA beta) formation in vitro, based on a nucleation-dependent polymerization model using fluorescence spectroscopy with thioflavin T. When 25 microM A beta(1-42) was incubated with increasing concentrations of amyloidogenic A beta(1-40), the time to proceed to equilibrium was extended dose-dependently. A similar inhibitory effect was observed when 45 microM A beta(1-40) was incubated with increasing concentrations of A beta(1-42). On the other hand, when 50 microM of nonamyloidogenic A beta(1-40) was incubated with A beta(1-42) at a molar ratio of 10:1 or 5:1, A beta(1-42) initiated fA beta formation from A beta(1-40). The lag time of the reaction shortened in a concentration-dependent manner, with A beta(1-42). We next examined the seeding effect of fA beta formed from A beta(1-42) (fA beta(1-42)) on nonamyloidogenic A beta(1-40). When 50 microM of nonamyloidogenic A beta(1-40) was incubated with 10 or 20 microg/mL (2.2 or 4.4 microM) of fA beta(1-42), the fluorescence showed a sigmoidal increase. The lag time of the reaction was shortened by fA beta(1-42) in a concentration-dependent manner. However, the time to proceed to equilibrium was much longer than when an equal concentration of fA beta formed from A beta(1-40) (fA beta(1-40)) was added to A beta(1-40). The fluorescence increased hyperbolically without a lag phase when 25 microM A beta(1-42) was incubated with 10 or 20 microg/mL (2.3 or 4.6 microM) of fA beta(1-40), and proceeded to equilibrium more rapidly than without fA beta(1-40). An electron microscopic study indicated that the morphology of fA beta formed is governed by the major component of fresh A beta peptides in the reaction mixture, not by the morphology of preexisting fibrils. These results may indicate the central role of A beta(1-42) for fA beta deposition in vivo, among the different coexisting A beta species.
Collapse
Affiliation(s)
- K Hasegawa
- Department of Pathology, Fukui Medical University, Japan
| | | | | | | | | |
Collapse
|
277
|
Affiliation(s)
- M A Findeis
- PRAECIS Pharmaceuticals Inc., Cambridge, Massachusetts 02139-1572, USA
| | | |
Collapse
|
278
|
Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J Neurochem 1999; 73:1557-65. [PMID: 10501201 DOI: 10.1046/j.1471-4159.1999.0731557.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurodegeneration seen in spongiform encephalopathies is believed to be mediated by protease-resistant forms of the prion protein (PrP). A peptide encompassing residues 106-126 of human PrP has been shown to be neurotoxic in vitro. The neurotoxicity of PrP106-126 appears to be dependent upon its adoption of an aggregated fibril structure. To examine the role of the hydrophobic core, AGAAAAGA, on PrP106-126 toxicity, we performed structure-activity analyses by substituting two or more hydrophobic residues for the hydrophilic serine residue to decrease its hydrophobicity. A peptide with a deleted alanine was also synthesized. We found all the peptides except the deletion mutant were no longer toxic on mouse cerebellar neuronal cultures. Circular dichroism analysis showed that the nontoxic PrP peptides had a marked decrease in beta-sheet structure. In addition, the mutants had alterations in aggregability as measured by turbidity, Congo red binding, and fibril staining using electron microscopy. These data show that the hydrophobic core sequence is important for PrP106-126 toxicity probably by influencing its assembly into a neurotoxic structure. The hydrophobic sequence may similarly affect aggregation and toxicity observed in prion diseases.
Collapse
Affiliation(s)
- M F Jobling
- Department of Pathology and School of Chemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Ma K, Clancy EL, Zhang Y, Ray DG, Wollenberg K, Zagorski MG. Residue-Specific pKa Measurements of the β-Peptide and Mechanism of pH-Induced Amyloid Formation. J Am Chem Soc 1999. [DOI: 10.1021/ja990864o] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kan Ma
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Erin L. Clancy
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Yongbo Zhang
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Dale G. Ray
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Kurt Wollenberg
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Michael G. Zagorski
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| |
Collapse
|
280
|
Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999; 274:23223-8. [PMID: 10438495 DOI: 10.1074/jbc.274.33.23223] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zn(II) and Cu(II) precipitate Abeta in vitro into insoluble aggregates that are dissolved by metal chelators. We now report evidence that these biometals also mediate the deposition of Abeta amyloid in Alzheimer's disease, since the solubilization of Abeta from post-mortem brain tissue was significantly increased by the presence of chelators, EGTA, N,N,N',N'-tetrakis(2-pyridyl-methyl) ethylene diamine, and bathocuproine. Efficient extraction of Abeta also required Mg(II) and Ca(II). The chelators were more effective in extracting Abeta from Alzheimer's disease brain tissue than age-matched controls, suggesting that metal ions differentiate the chemical architecture of amyloid in Alzheimer's disease. Agents that specifically chelate copper and zinc ions but preserve Mg(II) and Ca(II) may be of therapeutic value in Alzheimer's disease.
Collapse
Affiliation(s)
- R A Cherny
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Tseng BP, Esler WP, Clish CB, Stimson ER, Ghilardi JR, Vinters HV, Mantyh PW, Lee JP, Maggio JE. Deposition of monomeric, not oligomeric, Abeta mediates growth of Alzheimer's disease amyloid plaques in human brain preparations. Biochemistry 1999; 38:10424-31. [PMID: 10441137 DOI: 10.1021/bi990718v] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Senile plaques composed of the peptide Abeta contribute to the pathogenesis of Alzheimer's disease (AD), and mechanisms underlying their formation and growth may be exploitable as therapeutic targets. To examine the process of amyloid plaque growth in human brain, we have utilized size exclusion chromatography (SEC), translational diffusion measured by NMR, and in vitro models of Abeta amyloid growth to identify the oligomerization state of Abeta that is competent to add onto an existing amyloid deposit. SEC of radiolabeled and unlabeled Abeta over a concentration range of 10(-)(10)-10(-)(4) M demonstrated that the freshly dissolved peptide eluted as a single low molecular weight species, consistent with monomer or dimer. This low molecular weight Abeta species isolated by SEC was competent to deposit onto preexisting amyloid in preparations of AD cortex, with first-order kinetic dependence on soluble Abeta concentration, establishing that solution-phase oligomerization is not rate limiting. Translational diffusion measurements of the low molecular weight Abeta fraction demonstrate that the form of the peptide active in plaque deposition is a monomer. In deliberately aged (>6 weeks) Abeta solutions, a high molecular weight (>100 000 M(r)) species was detectable in the SEC column void. In contrast to the active monomer, assembled Abeta isolated from the column showed little or no focal association with AD tissue. These studies establish that, at least in vitro, Abeta exists as a monomer at physiological concentrations and that deposition of monomers, rather than of oligomeric Abeta assemblies, mediates the growth of existing amyloid in human brain preparations.
Collapse
Affiliation(s)
- B P Tseng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Harkany T, Hortobágyi T, Sasvári M, Kónya C, Penke B, Luiten PG, Nyakas C. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:963-1008. [PMID: 10621945 DOI: 10.1016/s0278-5846(99)00058-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition and processing, and memory formation. A beta fragments are produced in a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor protein (APP). While conflicting data exist in the literature on the roles of A beta s in the brain, and particularly in AD, recent studies have provided firm experimental evidence for the direct neurotoxic properties of A beta. 2. Sequence analysis of A beta s revealed a high degree of evolutionary conservation and inter-species homology of the A beta amino acid sequence. In contrast, synthetic A beta fragments, even if modified fluorescent or isotope-labeled derivatives, are pharmacological candidates for in vitro and in vivo modeling of their cellular actions. During the past decade, acute injection, prolonged mini-osmotic brain perfusion approaches or A beta infusions into the blood circulation were developed in order to investigate the effects of synthetic A beta s, whereas transgenic models provided insight into the distinct molecular steps of pathological APP cleavage. 3. The hippocampus, caudate putamen, amygdala and neocortex all formed primary targets of acute neurotoxicity screening, but functional consequences of A beta infusions were primarily demonstrated following either intracerebroventricular or basal forebrain (medial septum or magnocellular basal nucleus (MBN)) infusions of A beta fragments. 4. In vivo investigations confirmed that, while the active core of A beta is located within the beta(25-35) sequence, the flanking peptide regions influence not only the folding properties of the A beta fragments, but also their in vivo neurotoxic potentials. 5. It has recently been established that A beta administration deranges neuron-glia signaling, affects the glial glutamate uptake and thereby induces noxious glutamatergic stimulation of nerve cells. In fact, a critical role for N-methyl-D-aspartate (NMDA) receptors was postulated in the neurotoxic processes. Additionally, A beta s might become internalized, either after their selective binding to cell-surface receptors or after membrane association in consequence of their highly lipophilic nature, and induce free radical generation and subsequent oxidative injury. Ca(2+)-mediated neurotoxic events and generation of oxygen free radicals may indeed potentiate each other, or even converge to the same neurotoxic events, leading to cell death. 6. Neuroprotection against A beta toxicity was achieved by both pre- and post-treatment with NMDA receptor channel antagonists. Moreover, direct radical-scavengers, such as vitamin E or vitamin C, attenuated A beta toxicity with high efficacy. Interestingly, combined drug treatments did not necessarily result in additive enhanced neuroprotection. 7. Similarly to the blockade of NMDA receptors, the neurotoxic action of A beta s could be markedly decreased by pharmacological manipulation of voltage-dependent Ca(2+)-channels, serotonergic IA or adenosine A1 receptors, and by drugs eliciting membrane hyperpolarization or indirect blockade of Ca(2+)-mediated intracellular consequences of intracerebral A beta infusions. 8. A beta neurotoxicity might be dose-dependently modulated by trace metals. In spite of the fact that zinc (Zn) may act as a potent inhibitor of the NMDA receptor channel, high Zn doses accelerate A beta fibril formation, stabilize the beta-sheet conformation and thereby potentiate A beta neurotoxicity. Combined trace element supplementation with Se, Mn, or Mg, which prevails over the expression of detoxifying enzymes or counteracts intracellular elevations of Ca2+, may reduce the neurotoxic impact of A beta s. 9. Alterations in the regulatory functions of the hypothalamo-pituitary-adrenal axis may contribute significantly to neurodegenerative changes in the brain. Furthermore, AD patients exhibit substantially increased circadia
Collapse
Affiliation(s)
- T Harkany
- Central Research Division of Clinical and Experimental Laboratory Medicine, Haynal Imre University of Health Sciences, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
283
|
Soto C. Plaque busters: strategies to inhibit amyloid formation in Alzheimer's disease. MOLECULAR MEDICINE TODAY 1999; 5:343-50. [PMID: 10431167 DOI: 10.1016/s1357-4310(99)01508-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease is a devastating degenerative disorder of the brain for which there is no cure or effective treatment. Although the etiology of Alzheimer's disease is not fully understood, recent research suggests that deposition of cerebral amyloid plaques is central to the disease process. Therefore, an attractive therapeutic strategy for Alzheimer's disease is to prevent, reduce or reverse amyloid deposition in the brain. Several small chemical compounds, synthetic peptides and natural proteins have been described that inhibit amyloid formation or amyloid neurotoxicity in vitro. The effect of these and other compounds now needs to be tested in vivo and the ability of amyloid inhibitors to halt the progression of Alzheimer's disease in humans needs to be evaluated.
Collapse
Affiliation(s)
- C Soto
- University of Chile Dept of Biology, Faculty of Sciences, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
284
|
Janek K, Behlke J, Zipper J, Fabian H, Georgalis Y, Beyermann M, Bienert M, Krause E. Water-soluble beta-sheet models which self-assemble into fibrillar structures. Biochemistry 1999; 38:8246-52. [PMID: 10387070 DOI: 10.1021/bi990510+] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly of beta-sheet domains resulting in the formation of pathogenic, fibrillar protein aggregates (amyloids) is a characteristic feature of various medical disorders. These include neurodegenerative diseases, such as Alzheimer's, Huntington's, and Creutzfeldt-Jacob's. A significant problem in studying such aggregation processes is the poor solubility of these beta-sheet complexes. The present work describes water-soluble de novo beta-sheet peptides which self-assemble into fibrillar structures. The model peptides enable studies of the relationship between beta-sheet stability and association behavior. The peptides [DPKGDPKG-(VT)n-GKGDPKPD-NH2, n = 3-8] are composed of a central beta-sheet-forming domain (VT-sequence), and N- and C-terminal nonstructured octapeptide sequences which promote water solubility. Conformational analyses by circular dichroism and Fourier transform infrared spectroscopy indicate the influence of peptide length, D-amino acid substitution, and concentration on the ability of the peptides to form stable beta-sheet structures. The association behavior investigated by analytical ultracentrifugation and dynamic light scattering was found to correlate strongly with the stability of a beta-sheet conformation. Model peptides with n >/= 6 form stable, water-soluble beta-sheet complexes with molecular masses of more than 2000 kDa, which are organized in fibrillar structures. The fibrils examined by Congo Red staining and electron microscopy show some similarities with naturally occurring amyloid fibrils.
Collapse
Affiliation(s)
- K Janek
- Institute of Molecular Pharmacology, Max Delbrück Center of Molecular Medicine, Institute of Crystallography, Free University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Jayawickrama DA, Larive CK. Analysis of the (Trimethylsilyl)propionic Acid−β(12−28) Peptide Binding Equilibrium with NMR Spectroscopy. Anal Chem 1999; 71:2117-22. [DOI: 10.1021/ac980989w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
286
|
Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 1999; 38:6791-800. [PMID: 10346900 DOI: 10.1021/bi982824n] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular toxicity resulting from nucleation-dependent polymerization of amyloid beta-peptide (Abeta) is considered to be a major and possibly the primary component of Alzheimer's disease (AD). Inhibition of Abeta polymerization has thus been identified as a target for the development of therapeutic agents for the treatment of AD. The intrinsic affinity of Abeta for itself suggested that Abeta-specific interactions could be adapted to the development of compounds that would bind to Abeta and prevent it from polymerizing. Abeta-derived peptides of fifteen residues were found to be inhibitory of Abeta polymerization. The activity of these peptides was subsequently enhanced through modification of their amino termini with specific organic reagents. Additional series of compounds prepared to probe structural requirements for activity allowed reduction of the size of the inhibitors and optimization of the Abeta-derived peptide portion to afford a lead compound, cholyl-Leu-Val-Phe-Phe-Ala-OH (PPI-368), with potent polymerization inhibitory activity but limited biochemical stability. The corresponding all-D-amino acyl analogue peptide acid (PPI-433) and amide (PPI-457) retained inhibitory activity and were both stable in monkey cerebrospinal fluid for 24 h.
Collapse
Affiliation(s)
- M A Findeis
- PRAECIS Pharmaceuticals Incorporated, Cambridge, Massachusetts, 02139-1572, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehöök C, Terenius L, Thyberg J, Nordstedt C. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 1999; 274:12619-25. [PMID: 10212241 DOI: 10.1074/jbc.274.18.12619] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.
Collapse
Affiliation(s)
- L O Tjernberg
- Laboratory of Biochemistry and Molecular Pharmacology, Section of Drug Dependence Research, Department of Clinical Neuroscience, CMM L8:01, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Pallitto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM. Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 1999; 38:3570-8. [PMID: 10090743 DOI: 10.1021/bi982119e] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-Amyloid (Abeta), the primary protein component of Alzheimer's plaques, is neurotoxic when aggregated into fibrils. We have devised a modular strategy for generating compounds that inhibit Abeta toxicity, based on linking a recognition element for Abeta to a disrupting element designed to interfere with Abeta aggregation. One such compound, with the 15-25 sequence of Abeta as the recognition element and a lysine hexamer as the disrupting element, altered Abeta aggregation kinetics and protected cells from Abeta toxicity [Ghanta et al. (1996) J. Biol. Chem. 271, 29525]. To optimize the recognition element, peptides of 4-8 residues composed of overlapping sequences within the 15-25 domain were synthesized, along with hybrid compounds containing those recognition sequences coupled to a lysine hexamer. None of the recognition peptides altered Abeta aggregation kinetics and only two, KLVFF and KLVF, had any protective effect against Abeta toxicity. The hybrid peptide KLVFF-KKKKKK dramatically altered Abeta aggregation kinetics and aggregate morphology and provided significantly improved protection against Abeta toxicity compared to the recognition peptide alone. In contrast, FAEDVG-KKKKKK possessed only modest inhibitory activity and had no marked effect on Abeta aggregation. The scrambled sequence VLFKF was nearly as effective a recognition domain as KLVFF, suggesting the hydrophobic characteristics of the recognition sequence are critical. None of the cytoprotective peptides prevented Abeta aggregation; rather, they increased aggregate size and altered aggregate morphology. These results suggest that coupling recognition with disrupting elements is an effective generalizable strategy for the creation of Abeta inhibitors. Significantly, prevention of Abeta aggregation may not be required for prevention of toxicity.
Collapse
Affiliation(s)
- M M Pallitto
- Departments of Chemical Engineering and Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
289
|
Moriarty DF, Raleigh DP. Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry 1999; 38:1811-8. [PMID: 10026261 DOI: 10.1021/bi981658g] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amylin, also known as islet amyloid polypeptide (IAPP), is the major protein component of the fibril deposits found in the pancreas of individuals with type II diabetes. The central region of amylin, residues 20-29, has been implicated as a key determinate of amyloid formation. To establish which positions are most important for amyloid formation, the wild-type sequence of the 20-29 fragment and a set of 10 variants have been synthesized in which a proline was placed at each position. Proline is energetically unfavorable in the extended cross-beta structure found in amyloid. If a particular position is critical for amyloid formation, then substitution with a proline should inhibit amyloid formation. A proline substitution at any position inhibited aggregation and amyloid formation. Substitution of Asn22, Gly24, and residues 26-28 had the largest effect. Fourier transform infrared (FTIR) spectroscopy showed little secondary structure in these peptides, and transmission electron microscopy (TEM) showed mostly amorphous material. The peptides were much more soluble than the wild-type sequence, and no birefringence was observed with Congo Red staining. Proline substitutions at the N (residues 20 and 21) and C termini showed the least effect. These peptides showed the classic fibril morphology, a significant amount of beta-sheet structure, and exhibited green birefringence when stained with Congo Red. The results indicate that residues 22, 24, and 26-28 play a key role in formation of amyloid by amylin. Positions 23 and 25 also appear to be important, but may be less critical than positions 22, 24, and 26-28.
Collapse
Affiliation(s)
- D F Moriarty
- Department of Chemistry, State University of New York at Stony Brook 11794-3400, USA
| | | |
Collapse
|
290
|
Shao H, Jao S, Ma K, Zagorski MG. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol 1999; 285:755-73. [PMID: 9878442 DOI: 10.1006/jmbi.1998.2348] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amyloid beta-peptide is the major protein constituent of neuritic plaques in Alzheimer's disease. The beta-peptide varies slightly in length and exists in two predominant forms: (1) the shorter, 40 residue beta-(1-40), found mainly in cerebrovascular amyloid; and (2) the longer, 42 residue beta-(1-42), which is the major component in amyloid plaque core deposits. We report here that the sodium dodecyl sulphate (SDS) micelle, a membrane-mimicking system for biophysical studies, prevents aggregation of the beta-(1-40) and the beta-(1-42) into the neurotoxic amyloid-like, beta-pleated sheet structure, and instead encourages folding into predominantly alpha-helical structures at pH 7.2. Analysis of the nuclear Overhauser enhancement (NOE) and the alphaH NMR chemical shift data revealed no significant structural differences between the beta-(1-40) and the beta-(1-42). The NMR-derived, three-dimensional structure of the beta-(1-42) consists of an extended chain (Asp1-Gly9), two alpha-helices (Tyr10-Val24 and Lys28-Ala42), and a looped region (Gly25-Ser26-Asn27). The most stable alpha-helical regions reside at Gln15-Val24 and Lys28-Val36. The majority of the amide (NH) temperature coefficients were less than 5, indicative of predominately strong NH backbone bonding. The lack of a persistent region with consistently low NH coefficients, together with the rapid NH exchange rates in deuterated water and spin-labeled studies, suggests that the beta-peptide is located at the lipid-water interface of the micelle and does not become inbedded within the hydrophobic interior. This result has implications for the circulation of membrane-bound beta-peptide in biological fluids, and may also facilitate the design of amyloid inhibitors to prevent an alpha-helix-->beta-sheet conversion in Alzheimer's disease.
Collapse
Affiliation(s)
- H Shao
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
291
|
Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci U S A 1998; 95:15712-7. [PMID: 9861035 PMCID: PMC28109 DOI: 10.1073/pnas.95.26.15712] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease is characterized by two types of fibrous aggregates in the affected brains, the amyloid fibers (consisting of the Abeta-peptide, generating the amyloid plaques), and paired helical filaments (PHFs; made up of tau protein, forming the neurofibrillary tangles). Hence, tau protein, a highly soluble protein that normally stabilizes microtubules, becomes aggregated into insoluble fibers that obstruct the cytoplasm of neurons and cause a loss of microtubule stability. We have developed recently a rapid assay for monitoring PHF assembly and show here that PHFs arise from a nucleated assembly mechanism. The PHF nucleus comprises about 8-14 tau monomers. A prerequisite for nucleation is the dimerization of tau because tau dimers act as effective building blocks. PHF assembly can be seeded by preformed filaments (made either in vitro or isolated from Alzheimer brain tissue). These results suggest that dimerization and nucleation are the rate-limiting steps for PHF formation in vivo.
Collapse
Affiliation(s)
- P Friedhoff
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | | | | | | |
Collapse
|
292
|
Gregory DM, Benzinger TL, Burkoth TS, Miller-Auer H, Lynn DG, Meredith SC, Botto RE. Dipolar recoupling NMR of biomolecular self-assemblies: determining inter- and intrastrand distances in fibrilized Alzheimer's beta-amyloid peptide. SOLID STATE NUCLEAR MAGNETIC RESONANCE 1998; 13:149-166. [PMID: 10023844 DOI: 10.1016/s0926-2040(98)00086-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate a new method for investigating the structure of self-associating biopolymers using dipolar recoupling NMR techniques. This approach was applied to the study of fibrillar beta-amyloid (Abeta) peptides (the primary component of the plaques of Alzheimer's disease) containing only a single isotopic spin label (13C), by employing the DRAWS (dipolar recoupling with a windowless sequence) technique to measure 13C-13C distances. The 'single-label' approach simplified analysis of DRAWS data, since only interstrand contacts are present, without the possibility of any intrastrand contacts. As previously reported [T.L.S. Benzinger, D.M. Gregory, T.S. Burkoth, H. Miller-Auer, D.G. Lynn, R.E. Botto, S.C. Meredith, Proc. Natl. Acad. Sci. 95 (1998) 13407.], contacts of approximately 5 A were observed at all residues studied, consistent with an extended parallel beta-sheet structure with each amino acid in exact register. Here, we propose that our strategy is completely generalizable, and provides a new approach for characterizing any iterative, self-associating biopolymer. Towards the end of generalizing and refining our approach, in this paper we evaluate several issues raised by our previous analyses. First, we consider the effects of double-quantum (DQ) transverse relaxation processes. Next, we discuss the effects of various multiple-spin geometries on modeling of DRAWS data. Several practical issues are also discussed: these include (1) the use of DQ filtering experiments, either to corroborate DRAWS data, or as a rapid screening assessment of the proper placement of isotopic spin labels; and (2) the comparison of solid samples prepared by either lyophilization or freezing. Finally, data obtained from the use of single labels is compared with that obtained in doubly 13C-labeled model compounds of known crystal structure. It is shown that such data are obtainable in far more complex peptide molecules. These data,taken together, refine the DRAWS method, and demonstrate its precision and utility in obtaining high resolution structural data in complex biomolecular aggregates such as Abeta.
Collapse
Affiliation(s)
- D M Gregory
- Chemistry Division, Argonne National Laboratory, IL 60439, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Zhang S, Casey N, Lee JP. Residual structure in the Alzheimer's disease peptide: probing the origin of a central hydrophobic cluster. FOLDING & DESIGN 1998; 3:413-22. [PMID: 9806943 DOI: 10.1016/s1359-0278(98)00054-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND . Structure-function studies on the Alzheimer's disease peptide sh w that a central hydrophobic cluster - Abeta(17-21), LVFFA - is a prominent structural feature linked to plaque competence. The origin and stability of this cluster was probed in a 17-residue fragment which includes flanking residues that potentially help stabilize the cluster. RESULTS After residue substitution, the measurement of pKas, amide exchange rates and other NMR data show that any coulombic interactions between His14 and Glu22 are not required for the stability of the central hydrophobic cluster. In contrast, a single substitution within the cluster disrupts its integrity and causes the largest pKa shift for flanking residues, while increasing the solvent accessibility of the backbone. CONCLUSIONS The integrity of the structurally dominant cluster relies primarily upon local hydrophobic interactions, rather than on interactions between the sidechains of charged flanking residues. Moreover, the conformational disposition of the cluster affects the pKas of flanking residues, underscoring its structural dominance.
Collapse
Affiliation(s)
- S Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
294
|
Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC. Propagating structure of Alzheimer's beta-amyloid(10-35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci U S A 1998; 95:13407-12. [PMID: 9811813 PMCID: PMC24832 DOI: 10.1073/pnas.95.23.13407] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/1998] [Accepted: 08/17/1998] [Indexed: 11/18/2022] Open
Abstract
The pathognomonic plaques of Alzheimer's disease are composed primarily of the 39- to 43-aa beta-amyloid (Abeta) peptide. Crosslinking of Abeta peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated Abeta. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the Abeta peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated Abeta. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 A. Analysis of these data establish that this central core of Abeta consists of a parallel beta-sheet structure in which identical residues on adjacent chains are aligned directly, i. e., in register. Our data, in conjunction with existing structural data, establish that the Abeta fibril is a hydrogen-bonded, parallel beta-sheet defining the long axis of the Abeta fibril propagation.
Collapse
Affiliation(s)
- T L Benzinger
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
295
|
Mizuno T, Haass C, Michikawa M, Yanagisawa K. Cholesterol-dependent generation of a unique amyloid beta-protein from apically missorted amyloid precursor protein in MDCK cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:119-30. [PMID: 9733943 DOI: 10.1016/s0005-2736(98)00097-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the implications of altered sorting of the beta-amyloid precursor protein (betaAPP) in the abnormal generation of amyloid beta-protein (Abeta), we characterized Abeta secreted from Madin-Darby canine kidney (MDCK) cells which had been stably transfected with a cDNA encoding the human beta-amyloid precursor protein (betaAPP695) with a 42 amino acid residue truncation at the carboxyl terminus (DeltaC). In DeltaC MDCK cells, the intracellular sorting of betaAPP is substantially altered to the apical surface. We detected an accumulation of a unique Abeta species in the apical compartment of DeltaC MDCK cell cultures. This unique Abeta was immunoprecipitated with 4G8 (a monoclonal antibody specific for Abeta17-24) and detected as a smear on Western blots, but was not immunoprecipitated with BAN50 (a monoclonal antibody raised against Abeta1-16). Interestingly, however, this Abeta species was readily immunoprecipitated with BAN50 upon treatment with formic acid. Furthermore, incubation of the DeltaC MDCK cells with compactin, an inhibitor of de novo cholesterol synthesis, or with filipin, a cholesterol-binding drug, resulted in marked changes in the characteristics of this Abeta species as follows: first, the Abeta was not observed as a smear on Western blots and second, the Abeta was immunoprecipitated with BAN50. The present results strongly suggest that an Abeta with unique molecular characteristics is generated from the missorted betaAPP in vivo in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- T Mizuno
- Department of Dementia Research, National Institute for Longevity Sciences, Gengo 36-3, Morioka, Obu 474, Japan
| | | | | | | |
Collapse
|
296
|
Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B. Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med 1998; 4:822-6. [PMID: 9662374 DOI: 10.1038/nm0798-822] [Citation(s) in RCA: 654] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibition of cerebral amyloid beta-protein deposition seems to be an important target for Alzheimer's disease therapy. Amyloidogenesis could be inhibited by short synthetic peptides designed as beta-sheet breakers. Here we demonstrate a 5-residue peptide that inhibits amyloid beta-protein fibrillogenesis, disassembles preformed fibrils in vitro and prevents neuronal death induced by fibrils in cell culture. In addition, the beta-sheet breaker peptide significantly reduces amyloid beta-protein deposition in vivo and completely blocks the formation of amyloid fibrils in a rat brain model of amyloidosis. These findings may provide the basis for a new therapeutic approach to prevent amyloidosis in Alzheimer's disease.
Collapse
Affiliation(s)
- C Soto
- Department of Pathology, New York University Medical Center, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
297
|
Abstract
Alzheimer's disease (AD) is an archetype of a class of diseases characterized by abnormal protein deposition. In each case, deposition manifests itself in the form of amyloid deposits composed of fibrils of otherwise normal, soluble proteins or peptides. An ever-increasing body of genetic, physiologic, and biochemical data supports the hypothesis that fibrillogenesis of the amyloid beta-protein is a seminal event in Alzheimer's disease. Inhibiting A beta fibrillogenesis is thus an important strategy for AD therapy. However, before this strategy can be implemented, a mechanistic understanding of the fibrillogenesis process must be achieved and appropriate steps selected as therapeutic targets. Following a brief introduction to AD, I review here the current state of knowledge of A beta fibrillogenesis. Special emphasis is placed on the morphologic, structural, and kinetic aspects of this complex process.
Collapse
Affiliation(s)
- D B Teplow
- Department of Neurology (Neuroscience), Harvard Medical School Boston, MA, USA.
| |
Collapse
|
298
|
Abstract
Insulin-degrading enzyme (IDE) is an evolutionarily conserved neutral thiol metalloprotease expressed in all mammalian tissues whose biological role is not well established. IDE has highly selective substrate specificity. It degrades insulin, glucagon, atrial natriuretic peptide, transforming growth factor alpha but does not act on related hormones and growth factors. The structural properties determining whether a peptide is an IDE substrate are essentially unknown. The reported cleavage sites are not consistent with simple peptide-bond recognition and it was proposed that IDE recognizes in its substrates some elements of tertiary structure. We noticed that although IDE substrates are functionally unrelated, the majority of them share a specific property, an ability to form under certain conditions amyloid fibrils. Utilizing the residue pattern recognition procedure, this study reveals a common motif in the sequences of IDE substrates, HNHHHPSH, where H is wholly or partly hydrophobic character, N is small and neutral, P is polar, and S is polar and/or small amino acid residue. It is proposed that this sequence motif predetermines a structure recognized by IDE. The identified motif appears to be essentially the same as the proposed earlier consensus sequence for amyloid-forming peptides [Turnell and Finch, J. Mol. Biol. 227 (1992) 1205-1223]. The study suggests that IDE may play a role in elimination of potentially toxic amyloidogenic peptides.
Collapse
Affiliation(s)
- I V Kurochkin
- Chugai Research Institute for Molecular Medicine, Inc., Niihari, Ibaraki, Japan.
| |
Collapse
|
299
|
Abstract
The SAMP8 (P8) mouse strain develops deficits in learning and memory relatively early in its lifespan. This review provides an overview of the age-related changes that occur in P8 mice. Behavioral studies with P8 mice show impaired acquisition and retention as early as 4 months of age. Deficits in acquisition and retention occur with both aversive and appetitive training tasks. Anatomical studies have detected a number of age-related changes that occur in the central nervous system of P8 mice. The age-related increase in amyloid beta protein is well correlated with the age-related decline in learning and memory. Antibody to amyloid beta protein injected prior to training alleviated impaired acquisition and retention, whereas post-training injections alleviated retention deficits in older P8 mice. Biochemical studies have detected numerous age-related changes with reduced NMDA receptor activity most closely related to impaired learning and memory in P8 mice. Pharmacological studies have found age-related functional changes in the ability of drugs to improve memory processing in P8 mice in the septum and the hippocampus. The specific pattern of pharmacological changes and the inferred change in neurotransmitter activity suggest that age-related impairment in memory processing may be due to impaired septohippocampal interactions. The proposal that P8 mice may be a useful model for studying the early phases of age-related dementia of the Alzheimer type, while still requiring considerable study, seems reasonable.
Collapse
Affiliation(s)
- J F Flood
- Geriatric Research, Education and Clinical Center, St. Louis VA Medical Center, MO 63106, USA.
| | | |
Collapse
|
300
|
Mansfield SL, Jayawickrama DA, Timmons JS, Larive CK. Measurement of peptide aggregation with pulsed-field gradient nuclear magnetic resonance spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:257-65. [PMID: 9540797 DOI: 10.1016/s0167-4838(97)00162-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interactions between hydrophobic patches in proteins are often a driving force for denaturation and aggregation. The aggregation of the beta-amyloid peptide fragment, VHHQKLVFFAEDVGSNK (beta(12-28)), has been investigated in aqueous solution at low pH. This peptide contains a central hydrophobic patch spanning residues 17-21. Diffusion coefficients measured with pulsed-field gradient NMR as a function of peptide solution concentration were used to assess the extent of aggregation. Following the hypothesis that hydrophobic interactions are an important driving force in the aggregation of this peptide at low pH, a non-aggregating analog of the beta(12-28) peptide, [Gly19,20]beta(12-28) was synthesized. In the [Gly19,20]beta(12-28) peptide, the replacement of the two phenylalanine residues disrupts the hydrophobic interactions which drive the aggregation of beta(12-28). The diffusion coefficient of the [Gly19,20]beta(12-28) peptide is invariant over the concentration range studied and provides a good estimate of the monomeric diffusion coefficient of beta(12-28). A second peptide analog was synthesized in which the phenylalanine at position 20 was replaced with a cysteine residue. The disulfide-linked dimer, ([Cys20]beta(12-28))2, was formed upon air oxidation of this peptide. The diffusion coefficient of the ([Cys20]beta(12-28))2 peptide was measured and used to estimate the diffusion coefficient of the beta(12-28) dimer. Using the monomeric and dimeric diffusion coefficients measured for the glycine and cysteine analogs, the concentration dependence of the beta(12-28) diffusion coefficient was found to be consistent with a monomer-dimer aggregation model.
Collapse
Affiliation(s)
- S L Mansfield
- Department of Chemistry, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|