251
|
Brecht M, Sakmann B. Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 2002; 538:495-515. [PMID: 11790815 PMCID: PMC2290066 DOI: 10.1113/jphysiol.2001.012334] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2001] [Accepted: 10/17/2001] [Indexed: 11/08/2022] Open
Abstract
Whole-cell voltage recordings were made in vivo in the ventral posterior medial nucleus (VPM) of the thalamus in urethane-anaesthetised young (postnatal day 16-24) rats. Receptive fields (RFs) on the whisker pad were mapped for 31 neurones, and 10 cells were recovered for morphological reconstruction of their dendritic arbors. Most VPM neurones had antagonistic subthreshold RFs that could be divided into excitatory and inhibitory whiskers. VPM cells comprised different classes, the most frequently occurring being single-whisker excitation (SWE) and multi-whisker excitation (MWE) cells. In SWE cells (36 % of VPM neurones), only principal whisker (PW) deflection evoked an EPSP and was followed by a single action potential (AP) or remained subthreshold. The depolarisation was terminated by a large, delayed IPSP. A stimulus evoked on average 0.74 +/- 0.46 APs (mean +/- S.D.) with short latency (8.1 +/- 1.0 ms) and small temporal scatter (0.31 +/- 0.23 ms dispersion of 50 % of the first APs). In MWE cells (29 % of VPM neurones), deflection of several whiskers evoked EPSPs. PW responses were either subthreshold EPSPs or consisted of an EPSP followed by one or several APs (0.96 +/- 0.99 APs per stimulus). AP responses were often associated with putative low-threshold calcium-dependent regenerative potentials and were followed by a small delayed IPSP. AP responses had a longer latency (12.3 +/- 2.6 ms) and larger temporal scatter (2.5 +/- 1.6 ms) than responses of SWE cells. MWE cells had a lower input resistance than SWE cells. The elongation of dendritic arbors along the representation fields of rows and arcs in VPM barreloids was weakly correlated with the subthreshold RF elongation along whisker rows and arcs, respectively. Evoked EPSP-AP responses exhibited a sharper directional tuning than subthreshold EPSPs, which in turn exhibited a sharper directional tuning than IPSPs. In conclusion, we document two main classes of VPM neurones. SWE cells responded with a precisely timed single AP to the deflection of the PW. In contrast, MWE cell RFs were more broadly tuned and the temporally dispersed multiple AP responses of these cells represented the degree of collective deflection of the PW and several adjacent whiskers.
Collapse
Affiliation(s)
- Michael Brecht
- Max-Planck Institut für medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
252
|
Henze DA, McMahon DBT, Harris KM, Barrionuevo G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol 2002; 87:15-29. [PMID: 11784726 DOI: 10.1152/jn.00394.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms generating giant miniature excitatory postsynaptic currents (mEPSCs) were investigated at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse in vitro. These giant mEPSCs have peak amplitudes as large as 1,700 pA (13.6 nS) with a mean maximal mEPSC amplitude of 366 +/- 20 pA (mean +/- SD; 5 nS; n = 25 cells). This is compared with maximal mEPSC amplitudes of <100 pA typically observed at other cortical synapses. We tested the hypothesis that giant mEPSCs are due to synchronized release of multiple vesicles across the release sites of single MF boutons by directly inducing vesicular release using secretagogues. If giant mEPSCs result from simultaneous multivesicular release, then secretagogues should increase the frequency of small mEPSCs selectively. We found that hypertonic sucrose and spermine increased the frequency of both small and giant mEPSCs. The peptide toxin secretagogues alpha-latrotoxin and pardaxin failed to increase the frequency of giant mEPSCs, but the possible lack of tissue penetration of the toxins make these results equivocal. Because a multiquantal release mechanism is likely to be mediated by a spontaneous increase in presynaptic calcium concentration, a monoquantal mechanism is further supported by results that giant mEPSCs were not affected by manipulations of extracellular or intracellular calcium concentrations. In addition, reducing the temperature of the bath to 15 degrees C failed to desynchronize the rising phases of giant mEPSCs. Together these data suggest that the giant mEPSCs are generated via a monovesicular mechanism. Three-dimensional analysis through serial electron microscopy of the MF boutons revealed large clear vesicles (50 to 160 nm diam) docked presynaptically at the MF synapse in sufficient numbers to account for the amplitude and frequency of giant mEPSCs recorded electrophysiologically. It is concluded that release of the contents of a single large clear vesicle generates giant mEPSCs at the MF to CA3 pyramidal cell synapse.
Collapse
Affiliation(s)
- Darrell A Henze
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
253
|
Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 2001. [PMID: 11606644 DOI: 10.1523/jneurosci.21-21-08564.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased levels of glutamate and the subsequent activation of NMDA receptors are responsible for neuronal damage that occurs after an ischemic or hypoxic episode. In the present work, we investigated the relative contribution of presynaptic and postsynaptic blockade of synaptic transmission, as well as of blockade of NMDA receptors, for the facilitation of recovery of synaptic transmission in the CA1 area of rat hippocampal slices exposed to prolonged (90 min) hypoxia. During hypoxia, there was a complete inhibition of field EPSPs, which was fully reversible if released adenosine was allowed to act. When adenosine A(1) receptors were blocked with the selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), recovery of synaptic transmission from hypoxia was significantly attenuated, and this impairment could be overcome by preventing synaptic transmission during hypoxia either with tetrodotoxin (TTX) or by switching off the afferent stimulation but not by postsynaptic blockade of transmission with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or selective blockade of adenosine A(2A) receptors. When synaptic transmission was allowed to occur during hypoxia, because of the presence of DPCPX, there was an NMDA receptor-mediated component of the EPSCs recorded in CA1 pyramidal neurons, and blockade of NMDA receptors with AP-5 restored recovery of synaptic transmission from hypoxia. It is concluded that impairment of recovery of synaptic transmission after an hypoxic insult results from activation of synaptic NMDA receptors by synaptically released glutamate and that adenosine by preventing this activation efficiently facilitates recovery.
Collapse
|
254
|
Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 2001. [PMID: 11698582 DOI: 10.1523/jneurosci.21-22-08707.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plateau potentials are prolonged membrane depolarizations that are observed in hippocampal pyramidal neurons when spiking and Ca(2+) entry occur in combination with muscarinic receptor activation. In this study, we used whole-cell voltage clamping to study the current underlying the plateau potential and to determine the cellular signaling pathways contributing to this current. When combined with muscarinic stimulation, depolarizing command potentials that evoked Ca(2+) influx elicited a prolonged tail current (I(tail)) that had an extrapolated reversal potential of -20 mV. I(tail) was not observed when intracellular Ca(2+) levels were chelated with 10 mm intracellular BAPTA, and I(tail) was reversibly depressed in low external sodium. When I(tail) was evoked at intervals >3 min, current amplitudes were stable for up to 1 hr. However, at shorter intervals, I(tail) was refractory, with a time constant of recovery of 43.5 sec. The inhibitors of soluble guanylate cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and 6-anilino-5,8-quinolinequinone depressed I(tail) and zaprinast, which blocks cGMP-specific phosphodiesterase, enhanced I(tail), suggesting that a component of I(tail) was activated by cGMP. The inhibitors of cyclic nucleotide-gated (CNG) channels l-cis-diltiazem and 2',4'-dichlorobenzamil reversibly depressed I(tail). However, protein kinase G inhibition had no effect. Therefore, these results indicate that a component of I(tail) is attributable to activation of CNG channels. We conclude that Ca(2+) influx when combined with muscarinic receptor activation activates soluble guanylate cyclase and increases cGMP levels. The increased cGMP activates CNG channels and leads to prolonged depolarization. The cation conductance of the CNG channel contributes to the prolonged depolarization of the plateau potential.
Collapse
|
255
|
Gebhardt C, Breustedt JM, Nöldner M, Chatterjee SS, Heinemann U. The antiepileptic drug losigamone decreases the persistent Na+ current in rat hippocampal neurons. Brain Res 2001; 920:27-31. [PMID: 11716808 DOI: 10.1016/s0006-8993(01)02863-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tetronic acid derivative losigamone is a new anticonvulsant drug with a mechanism of action that was previously unknown. The drug decreases the frequency of spontaneous action potentials and suppresses repetitive firing of neurons. Here we tested the hypothesis that losigamone suppresses the persistent Na+ current (I(NaP)) in hippocampal neurons of rat brain slices and in cultured hippocampal neurons. Whole-cell voltage clamp recordings from neurons of juvenile rats (P15-P25) were performed with pipettes filled with Cs-gluconate or CsF. After pharmacological block of K+ and Ca2+ currents I(NaP) was revealed by applying slow depolarizing voltage ramps from -70 to 0 mV. Losigamone (100-200 microM) was dissolved in DMSO (0.1%) and was applied by bath application or local pressure application. Losigamone induced a decrease in amplitude of I(NaP) at depolarized membrane potentials which was reversible in cultured neurons. When tetrodotoxin (TTX) was added to the bath, I(NaP) was blocked and only a residual non-specific outward cation current (I(cat)) remained. Losigamone had no obvious effect on responses to voltage ramps under these conditions. Thus, losigamone did not affect I(cat) or induce any additional currents. The data suggest that losigamone decreases neuronal excitability via a decrease in I(NaP).
Collapse
Affiliation(s)
- C Gebhardt
- Johannes-Mueller-Institute of Physiology, Charité, Humboldt-University, Tucholskystr. 2, 10117, Berlin, Germany.
| | | | | | | | | |
Collapse
|
256
|
Garraway SM, Hochman S. Modulatory actions of serotonin, norepinephrine, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons. J Neurophysiol 2001; 86:2183-94. [PMID: 11698510 DOI: 10.1152/jn.2001.86.5.2183] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The deep dorsal horn represents a major site for the integration of spinal sensory information. The bulbospinal monoamine transmitters, released from serotonergic, noradrenergic, and dopaminergic systems, exert modulatory control over spinal sensory systems as does acetylcholine, an intrinsic spinal cord biogenic amine transmitter. Whole cell recordings of deep dorsal horn neurons in the rat spinal cord slice preparation were used to compare the cellular actions of serotonin, norepinephrine, dopamine, and acetylcholine on dorsal root stimulation-evoked afferent input and membrane cellular properties. In the majority of neurons, evoked excitatory postsynaptic potentials were depressed by the bulbospinal transmitters serotonin, norepinephrine, and dopamine. Although, the three descending transmitters could evoke common actions, in some neurons, individual transmitters evoked opposing actions. In comparison, acetylcholine generally facilitated the evoked responses, particularly the late, presumably N-methyl-D-aspartate receptor-mediated component. None of the transmitters modified neuronal passive membrane properties. In contrast, in response to depolarizing current steps, the biogenic amines significantly increased the number of spikes in 14/19 neurons that originally fired phasically (P < 0.01). Together, these results demonstrate that even though the deep dorsal horn contains many functionally distinct subpopulations of neurons, the bulbospinal monoamine transmitters can act at both synaptic and cellular sites to alter neuronal sensory integrative properties in a rather predictable manner, and clearly distinct from the actions of acetylcholine.
Collapse
Affiliation(s)
- S M Garraway
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | |
Collapse
|
257
|
Zinebi F, Russell RT, McKernan M, Shinnick-Gallagher P. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala. Synapse 2001; 42:115-27. [PMID: 11574948 DOI: 10.1002/syn.1107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimulating thalamic fibers exiting from the internal capsule evokes a glutamatergic excitatory postsynaptic current (EPSC) recorded in vitro with patch electrodes in neurons of the rat lateral amygdala (LA). The purpose of this study is to compare paired-pulse facilitation (PPF), a form of short-term synaptic plasticity, of AMPA and NMDA receptor-mediated EPSCs. Analysis of PPF at this synapse is important since, in fear-conditioned animals, PPF reflects an enhanced transmitter release but the amplitude of only AMPA EPSCs is facilitated. PPF magnitude of the composite EPSC is a result of both AMPA and NMDA receptor activation; however, the characteristics of AMPA and NMDA PPF are dissimilar. Specifically, the NMDA EPSC shows greater PPF (NMDA PPF) than does the AMPA EPSC whether measuring the NMDA PPF magnitude in an AMPA antagonist/Mg(2+)-free solution or by subtracting the AMPA EPSC from the composite EPSC in normal Mg(2+). Presynaptic NMDA receptors neither influence AMPA PPF nor account for the difference between the NMDA and AMPA PPF. Another difference was that removal of inhibitory tone enhanced AMPA PPF, while it had mixed effects on NMDA PPF. Furthermore, AMPA PPF was independent of stimulus intensity and postsynaptic voltage, unlike the NMDA PPF. Another dissimilarity was that the amplitudes of pairs of AMPA EPSCs were not correlated, suggesting presynaptic mechanisms. In contrast, NMDA PPF was dependent on stimulus intensity and postsynaptic voltage and the amplitudes of paired NMDA EPSCs had a positive correlation, suggesting a postsynaptic influence. Both AMPA and NMDA PPF were influenced by GABA inhibition and this could be a factor in the magnitude disparity. These data show that AMPA and NMDA PPF have different characteristics and contribute to the composite PPF in the thalamic to lateral amygdala pathway.
Collapse
Affiliation(s)
- F Zinebi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
258
|
Abstract
The isolated neonatal rat medulla generates respiratory-related rhythms recorded from cervical spinal cord ventral roots. When lungs and their vagal innervation are retained, respiratory activity is modulated by lung mechanoreceptor feedback: transient lung inflation triggered off inspiratory onset (phasic inflation) shortens inspiration and increases respiratory frequency. In this study, the activity of six respiratory neuron classes before and during phasic inflation was studied. Type 1 and 2 inspiratory neurons, identified in the transverse slice, were distinguished by the presence of a transient outward current or a hyperpolarization-activated inward current, respectively. Cell types only identified in the en bloc medulla included type II and III inspiratory neurons, distinguished by delayed onset and peri-inspiratory inhibition, respectively, and preinspiratory neurons, active before and after but silent during inspiration. Biphasic neurons, identified in the preparation used here, fired briskly during lung inflation but are otherwise quiescent. During phasic inflation, biphasic neurons showed a decrementing expiratory pattern of activity, matched by augmented postinspiratory hyperpolarization in type 1 neurons only, suggesting that biphasic neurons inhibit type 1 neurons, removing drive to other inspiratory neurons and terminating the inspiratory burst. This mechanism could account for a phasic inflation-induced increase in respiratory frequency via resetting effects. Alternatively, the phasic inflation-induced respiratory frequency increase may be attributable to slow facilitation. Slow modulation consistent with facilitation was apparent in the earlier onset of pre-I firing before inspiration and loss of postinspiratory firing and in the earlier onset of depolarization in type 2 neurons. On the basis of relative onset times and responses to phasic inflation, connectivity between these cell types is proposed.
Collapse
|
259
|
Jin XT, Beaver CJ, Ji Q, Daw NW. Effect of the group I metabotropic glutamate agonist DHPG on the visual cortex. J Neurophysiol 2001; 86:1622-31. [PMID: 11600625 DOI: 10.1152/jn.2001.86.4.1622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptors have a variety of effects in visual cortex that depend on the age of the animal, the layer of the cortex, and the group of the receptor. Here we describe these effects for group I receptors, using both in vivo and in vitro preparations. The metabotropic group I glutamate receptor agonist 3,5 dihydroxyphenylglycine (DHPG) potentiates the responses to N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in slices of rat visual cortex. It also increases, initially, the visual response in the cat visual cortex. Both these effects are largest at 3-4 wk of age and decline to insignificance by 10 wk of age. Both are also largest in lower layers of cortex, which explains why the facilitatory effects found with the general metabotropic glutamate agonist 1S,3R aminocyclopentane-1,3-dicarboxylic acid (ACPD) are observed only in lower layers. Prolonged application of DHPG in the cat visual cortex, after the initial excitatory effect, produces depression. We also found that DHPG facilitates the NMDA response in fast-spiking cells, which are inhibitory, providing a partial explanation for this. Thus there are multiple effects of group I metabotropic glutamate receptors, which vary with layer and age in visual cortex.
Collapse
Affiliation(s)
- X T Jin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
260
|
Abstract
The opiate-like peptide nociceptin/orphanin FQ (Noc) and its receptor [opiate receptor-like receptor (ORL-1)] are highly expressed in the hippocampus. Noc has inhibitory postsynaptic actions in CA1, CA3, and the dentate and seems to lack the disinhibitory, excitatory actions demonstrated for some opiate peptides in the hippocampus. The CA3 hippocampal region is important in the generation of hippocampal seizures. Therefore, we tested the action of Noc on spontaneous epileptiform activity recorded extracellularly or intracellularly in CA3 and generated by removal of Mg(2+) from the bathing solution or by raising extracellular K(+) from 3.5 to 7.5 mm. Superfusion of Noc robustly depressed spontaneous bursting without desensitization. The ORL-1 antagonist [Phe(1)Psi(CH(2)-NH)Gly(2)]NC(1-13)NH(2) (1-2 microm) greatly attenuated the reduction of spontaneous bursting by Noc. To characterize the cellular mechanism of action of Noc, we recorded intracellularly from CA3 pyramidal neurons. Noc reduced EPSCs evoked by stimulating either mossy or associational/commissural fibers. Analysis of miniature EPSCs using whole-cell voltage-clamp recording suggests that Noc acts presynaptically to inhibit glutamate release. This is the first demonstration of a presynaptic effect for Noc in the hippocampus. Noc also increased K(+) currents in CA3 pyramidal neurons, including the voltage-sensitive M-current. Blocking the M-current with linopirdine increased the duration of individual CA3 bursts but did not attenuate Noc-mediated inhibition of bursting. Thus, Noc acts via multiple mechanisms to reduce excitation in CA3. However, Noc inhibition of epileptiform events is not dependent on augmentation of the M-current.
Collapse
|
261
|
Burgoon PW, Boulant JA. Temperature-sensitive properties of rat suprachiasmatic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 2001; 281:R706-15. [PMID: 11506983 DOI: 10.1152/ajpregu.2001.281.3.r706] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) contains a heterogeneous population of neurons, some of which are temperature sensitive in their firing rate activity. Neuronal thermosensitivity may provide cues that synchronize the circadian clock. In addition, through synaptic inhibition on nearby cells, thermosensitive neurons may provide temperature compensation to other SCN neurons, enabling postsynaptic neurons to maintain a constant firing rate despite changes in temperature. To identify mechanisms of neuronal thermosensitivity, whole cell patch recordings monitored resting and transient potentials of SCN neurons in rat hypothalamic tissue slices during changes in temperature. Firing rate temperature sensitivity is not due to thermally dependent changes in the resting membrane potential, action potential threshold, or amplitude of the fast afterhyperpolarizing potential (AHP). The primary mechanism of neuronal thermosensitivity resides in the depolarizing prepotential, which is the slow depolarization that occurs prior to the membrane potential reaching threshold. In thermosensitive neurons, warming increases the prepotential's rate of depolarization, such that threshold is reached sooner. This shortens the interspike interval and increases the firing rate. In some SCN neurons, the slow component of the AHP provides an additional mechanism for thermosensitivity. In these neurons, warming causes the slow AHP to begin at a more depolarized level, and this, in turn, shortens the interspike interval to increase firing rate.
Collapse
Affiliation(s)
- P W Burgoon
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA
| | | |
Collapse
|
262
|
MacLean JN, Schmidt BJ. Voltage-sensitivity of motoneuron NMDA receptor channels is modulated by serotonin in the neonatal rat spinal cord. J Neurophysiol 2001; 86:1131-8. [PMID: 11535663 DOI: 10.1152/jn.2001.86.3.1131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both N-methyl-D-aspartate (NMDA) and serotonin (5-HT) receptors contribute to the generation of rhythmic motor patterns in the rat spinal cord. Co-application of these chemicals is more effective at producing locomotor-like activity than either neurochemical alone. In addition, NMDA application to rat spinal motoneurons, synaptically isolated in tetrodotoxin, induces nonlinear membrane behavior that results in voltage oscillations which can be blocked by 5-HT antagonists. However, the mechanisms underlying NMDA and 5-HT receptor interactions pertinent to motor rhythm production remain to be determined. In the present study, an in vitro neonatal rat spinal cord preparation was used to examine whether NMDA receptor-mediated nonlinear membrane voltage is modulated by 5-HT. Whole-cell recordings of spinal motoneurons demonstrated that 5-HT shifts the region of NMDA receptor-dependent negative slope conductance (RNSC) of the current-voltage relationship to more hyperpolarized potentials and enhances whole-cell inward current. The influence of 5-HT on the RNSC was similar to the effect on the RNSC of decreasing the extracellular Mg(2+)concentration. The results suggest that 5-HT may modulate this form of membrane voltage nonlinearity by regulating Mg(2+) blockade of the NMDA ionophore.
Collapse
Affiliation(s)
- J N MacLean
- Department of Physiology, University of Manitoba, 730 William Ave., Winnipeg, Manitoba R3E 3J7, Canada
| | | |
Collapse
|
263
|
Pierson P, Tribollet E, Raggenbass M. Effect of vasopressin on the input-output properties of rat facial motoneurons. Eur J Neurosci 2001; 14:957-67. [PMID: 11595034 DOI: 10.1046/j.0953-816x.2001.01718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vasopressin can directly excite facial motoneurons in young rats and mice. It acts by generating a persistent inward current, which is Na(+)-dependent, tetrodotoxin-insensitive and voltage-gated. This peptide-evoked current is unaffected by Ca(++) or K(+) channel blockade and is modulated by extracellular divalent cations. In the present work, we determined how vasopressin alters the input-output properties of facial motoneurons. Whole-cell recordings were obtained from these neurons in the current clamp mode, in brainstem slices of young rats. Repetitive firing was evoked by injecting depolarizing current pulses. Steady-state frequency-current (f-I) relationships were constructed and the effect of vasopressin on these relationships was studied. We found that vasopressin caused a parallel shift to the left of the cell steady-state f-I relationship. This effect persisted in the presence of blockers of K(+) or Ca(++) channels. The peptide effect was distinct from that brought about by Ca(++) channel suppression or by apamin, a blocker of the mAHP. These latter manipulations resulted in an increase in the slope of the steady-state f-I relationship. We conclude that the vasopressin-induced modification of the input-output properties of facial motoneurons is probably exclusively caused by the sodium-dependent, voltage-modulated inward current elicited by the peptide, rather than being due to indirect effects of the peptide on Ca(++) channels, K(+) channels or Ca(++)-dependent K(+) channels. Computer simulation, based on a simple model of facial motoneurons, indicates that the introduction of a conductance having the properties of the vasopressin-dependent conductance can entirely account for the observed peptide-induced shift of the f-I relationship.
Collapse
Affiliation(s)
- P Pierson
- Department of Physiology, University Medical Center, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
264
|
Engel D, Pahner I, Schulze K, Frahm C, Jarry H, Ahnert-Hilger G, Draguhn A. Plasticity of rat central inhibitory synapses through GABA metabolism. J Physiol 2001; 535:473-82. [PMID: 11533137 PMCID: PMC2278801 DOI: 10.1111/j.1469-7793.2001.00473.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The production of the central inhibitory transmitter GABA (gamma-aminobutyric acid) varies in response to different patterns of activity. It therefore seems possible that GABA metabolism can determine inhibitory synaptic strength and that presynaptic GABA content is a regulated parameter for synaptic plasticity. 2. We altered presynaptic GABA metabolism in cultured rat hippocampal slices using pharmacological tools. Degradation of GABA by GABA-transaminase (GABA-T) was blocked by gamma-vinyl-GABA (GVG) and synthesis of GABA through glutamate decarboxylase (GAD) was suppressed with 3-mercaptopropionic acid (MPA). We measured miniature GABAergic postsynaptic currents (mIPSCs) in CA3 pyramidal cells using the whole-cell patch clamp technique. 3. Elevated intra-synaptic GABA levels after block of GABA-T resulted in increased mIPSC amplitude and frequency. In addition, tonic GABAergic background noise was enhanced by GVG. Electron micrographs from inhibitory synapses identified by immunogold staining for GABA confirmed the enhanced GABA content but revealed no further morphological alterations. 4. The suppression of GABA synthesis by MPA had opposite functional consequences: mIPSC amplitude and frequency decreased and current noise was reduced compared with control. However, we were unable to demonstrate the decreased GABA content in biochemical analyses of whole slices or in electron micrographs. 5. We conclude that the transmitter content of GABAergic vesicles is variable and that postsynaptic receptors are usually not saturated, leaving room for up-regulation of inhibitory synaptic strength. Our data reveal a new mechanism of plasticity at central inhibitory synapses and provide a rationale for the activity-dependent regulation of GABA synthesis in mammals.
Collapse
Affiliation(s)
- D Engel
- Institut für Physiologie der Charité, Humboldt-Universität, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
265
|
Xiao MY, Niu YP, Dozmorov M, Wigström H. Comparing fluctuations of synaptic responses mediated via AMPA and NMDA receptor channels--implications for synaptic plasticity. Biosystems 2001; 62:45-56. [PMID: 11595318 DOI: 10.1016/s0303-2647(01)00136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glutamate-releasing synapses are essential in fast neuronal signalling. Plasticity at these synapses is important for learning and memory as well as for the activity-dependent control of neuronal development. We have evaluated the trial-to-trial fluctuations of excitatory postsynaptic currents mediated by glutamate receptors of the AMPA and NMDA types in CA1 pyramidal cells. By using the whole cell patch clamp technique in brain slices from young rats, we have demonstrated that the relative variability of AMPA and NMDA receptor mediated responses, expressed as the coefficient of variation, is similar for these two types of responses [Brain Res. 800 (1998) 253-259]. The present paper summarizes and discusses these results in relation to current theories on hippocampal synaptic plasticity, especially with regard to the ideas of glutamate spillover and silent synapses. Our finding of a correspondence between AMPA and NMDA responses with respect to fluctuations is compatible with our previous finding of equal relative changes of the two during activity induced synaptic plasticity. However, the results argue against the glutamate spillover model according to which the effect of glutamate--and hence the induction of plasticity--may spread unspecifically between synapses. But how can silent synapses become functional if no spread of glutamate occurs and no initial signal is present to trigger the functionalization? Is it necessary that NMDA responses are present at these synapses, which are then silent merely with respect to AMPA receptors, or do other alternatives exist? Our discussion aims to elucidate these questions.
Collapse
Affiliation(s)
- M Y Xiao
- Department of Medical Biophysics, Göteborg University, Medicinaregatan 11, Box 433, SE 405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
266
|
Abstract
The second messenger cascade of cyclic AMP (cAMP) plays an important physiological role in neurones, modulating neuronal excitability and synaptic transmission. The fluorescent probe FlCRhR allows real time ratiometric imaging of cAMP changes inside cells (Nature 349 (1991) 694). Until now, the only way to introduce FlCRhR into cells was microinjection, which restricted the use of FlCRhR to large invertebrate neurones. This report describes the use of the patch-clamp technique to deliver FlCRhR into the cytosol of several types of neurones in brain slice preparations. Direct activation of adenylate cyclase by forskolin produced marked increases in fluorescence ratio, confirming that the probe can report cAMP increases. However, some neurones failed to exhibit a cAMP response and this lack of response was related to the nucleus integrity. Stimulation of membrane receptors positively coupled to adenylate cyclase elicited cAMP increases in various neuronal cell types. This is the first report of a cAMP response to neuromodulators measured by an imaging technique in neurones in brain slices. The method described here could find many applications such as testing the ability of agonists to specifically activate the cAMP cascade in identified neurones, studying the kinetics of the cAMP response and determining the subcellular localisation of cAMP changes.
Collapse
Affiliation(s)
- P Vincent
- Equipe Neurobiologie Cellulaire, Neurobiologie des Processus Adaptatifs FRE 2371, CNRS Université Paris VI, Mailbox #16, 9, quai St. Bernard, F-75005 Paris, France.
| | | |
Collapse
|
267
|
Abstract
Whole-cell patch-clamp recordings were used to investigate the electrophysiological properties of mitral cells in rat main olfactory bulb brain slice preparations. The majority of mitral cells are bistable. These cells spontaneously alternate between two membrane potentials, separated by approximately 10 mV: a relatively depolarized potential (upstate), which is perithreshold for spike generation, and a relatively hyperpolarized potential (downstate), in which spikes do not occur. Bistability occurs spontaneously in the absence of ionotropic excitatory or inhibitory synaptic inputs. Bistability is voltage dependent; transition from the downstate to the upstate is a regenerative event activated by brief depolarization. A brief hyperpolarization can switch the membrane potential from the upstate to the downstate. In response to olfactory nerve (ON) stimulation, mitral cells in the upstate are more likely to fire an action potential than are those in the downstate. ON stimulation can switch the membrane potential from the downstate to the upstate, producing a prolonged and amplified depolarization in response to a brief synaptic input. We conclude that bistability is an intrinsic property of mitral cells that is a major determinant of their responses to ON input.
Collapse
|
268
|
Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. J Neurosci 2001. [PMID: 11425888 DOI: 10.1523/jneurosci.21-13-04600.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After the onset of an acute episode of arrested circulation to the brain and consequent cerebral hypoxia, EEG changes and modifications of consciousness ensue within seconds. This in part reflects the rapid effect of hypoxia on the neocortex, where oxygen deprivation leads to impaired neuronal excitability and abnormal synaptic transmission. To identify the cellular mechanisms responsible for the earliest changes in neocortical function and to determine their time course, we have used patch-in-slice recording techniques to investigate the effects of acute hypoxia on the synaptic and intrinsic properties of layer 5 neurons. Coronal slices of mouse somatosensory cortex were maintained at 37 degrees C and challenged with episodes of hypoxia (3-4 min of exposure to 95% N(2), 5% CO(2)). In recordings with cell-attached patch electrodes, activation of ATP-sensitive potassium channels first became detectable 211 +/- 11 sec (range, 185-240 sec; n = 6 patches) after the onset of hypoxia. Similar recording techniques revealed no alterations in the properties of Na(+) currents in the first 4 min after the onset of hypoxia. The earliest hypoxia-induced disturbance was a marked increase in the frequency of spontaneous EPSCs and IPSCs, which began within 15-30 sec of the removal of oxygen. This rapid synaptic effect was not sensitive to TTX and was present in Ca(2+)-free perfusate, indicating that the hypoxia had a direct influence on the vesicular release mechanisms. The incoherent, massive increase in miniature PSCs would be expected to deplete the readily releasable pool of vesicles in cortical terminals, and to thereby markedly distort the neuronal interactions that underlie normal circuit function.
Collapse
|
269
|
Yasuda K, Robinson DM, Selvaratnam SR, Walsh CW, McMorland AJ, Funk GD. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro. J Physiol 2001; 534:447-64. [PMID: 11454963 PMCID: PMC2278713 DOI: 10.1111/j.1469-7793.2001.00447.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Accepted: 03/29/2001] [Indexed: 12/01/2022] Open
Abstract
1. The effects of substance P (SP), acting at NK1 receptors, on the excitability and inspiratory activity of hypoglossal (XII) motoneurons (MNs) were investigated using rhythmically active medullary-slice preparations from neonatal mice (postnatal day 0-3). 2. Local application of the NK1 agonist [SAR(9),Met (O(2))(11)]-SP (SP(NK1)) produced a dose-dependent, spantide- (a non-specific NK receptor antagonist) and GR82334-(an NK1 antagonist) sensitive increase in inspiratory burst amplitude recorded from XII nerves. 3. Under current clamp, SP(NK1) significantly depolarized XII MNs, potentiated repetitive firing responses to injected currents and produced a leftward shift in the firing frequency-current relationships without affecting slope. 4. Under voltage clamp, SP(NK1) evoked an inward current and increased input resistance, but had no effect on inspiratory synaptic currents. SP(NK1) currents persisted in the presence of TTX, were GR82334 sensitive, were reduced with hyperpolarization and reversed near the expected E(K). 5. Effects of the alpha(1)-noradrenergic receptor agonist phenylephrine (PE) on repetitive firing behaviour were virtually identical to those of SP(NK1). Moreover, SP(NK1) currents were completely occluded by PE, suggesting that common intracellular pathways mediate the actions of NK1 and alpha(1)-noradrenergic receptors. In spite of the similar actions of SP(NK1) and PE on XII MN responses to somally injected current, alpha(1)-noradrenergic receptor activation potentiated inspiratory synaptic currents and was more than twice as effective in potentiating XII nerve inspiratory burst amplitude. 6. GR82334 reduced XII nerve inspiratory burst amplitude and generated a small outward current in XII MNs. These observations, together with the first immunohistochemical evidence in the newborn for SP immunopositive terminals in the vicinity of SP(NK1)-sensitive inspiratory XII MNs, support the endogenous modulation of XII MN excitability by SP. 7. In contrast to phrenic MNs (Ptak et al. 2000), blocking NMDA receptors with AP5 had no effect on the modulation of XII nerve activity by SP(NK1). 8. In conclusion, SP(NK1) modulates XII motoneuron responses to inspiratory drive primarily through inhibition of a resting, postsynaptic K+ leak conductance. The results establish the functional significance of SP in controlling upper airway tone during early postnatal life and indicate differential modulation of motoneurons controlling airway and pump muscles by SP.
Collapse
Affiliation(s)
- K Yasuda
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, 85 Park Road, Grafton, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
The aim of the present study was to investigate the effect of dopamine (DA) on the excitability of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neurons using the patch-clamp technique in brain slices. Bath application of DA (1-300 microM) produced a concentration-dependent membrane depolarization in all 5-HT neurons examined. This effect persisted in the presence of tetrodotoxin (TTX; 1 microM) and low extracellular calcium. Moreover, blockade of ionotropic glutamate receptors with 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 2-amino-5-phosphonopentanoic acid (AP5) did not prevent DA-induced depolarization, indicating that it was mediated by a direct effect of DA on 5-HT neurons. The DA-induced depolarization was not antagonized by selective alpha1-adrenergic receptor antagonists, prazosin and WB 4101, but by a nonselective DA receptor antagonist, haloperidol. In addition, the selective D2-like receptor agonist quinpirole and antagonist sulpiride mimicked and blocked DA-induced depolarization, respectively. These results indicate that DA-induced membrane depolarization in DRN 5-HT neurons is mediated by the activation of D2-like DA receptors. The DA-induced membrane depolarization and inward current were associated with an increase in membrane conductance. Examination of the current-voltage (I-V) relationship for the DA-induced inward current revealed that the amplitude of the current increased with membrane hyperpolarization and reversed polarity at a potential near -15 mV. These data suggest that DA-induced depolarization in DRN 5-HT neurons is not mediated by a decrease in potassium conductance, but most likely by the activation of a nonselective cation current.
Collapse
Affiliation(s)
- S Haj-Dahmane
- Research Institute on Addictions, University at Buffalo, SUNY at Buffalo, 1021 Main Street, Buffalo, New York 14203, USA.
| |
Collapse
|
271
|
Yang K, Li Y, Kumamoto E, Furue H, Yoshimura M. Voltage-clamp recordings of postsynaptic currents in substantia gelatinosa neurons in vitro and its applications to assess synaptic transmission. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:235-40. [PMID: 11431124 DOI: 10.1016/s1385-299x(01)00069-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe here procedures for recording postsynaptic currents in substantia gelatinosa neurons on a transverse spinal cord slice preparation with an attached dorsal root. At the holding potential of -70 mV, glutamatergic spontaneous excitatory postsynaptic currents (EPSCs) and dorsal root (A delta and/or C fiber) stimulation-evoked EPSCs could be observed. Whereas at the holding potential of 0 mV, spontaneous inhibitory postsynaptic currents (IPSCs) and dorsal root A delta fiber stimulation-evoked IPSCs could be encountered. The methods make it possible to evaluate synaptic transmission by analysing the postsynaptic currents on dorsal root attached spinal cord slice.
Collapse
Affiliation(s)
- K Yang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | |
Collapse
|
272
|
Abstract
The laterodorsal tegmentum (LDT) neurons supply most of the cholinergic tone to the brainstem and diencephalon necessary for physiological arousal. It is known that application of adenosine in the LDT nucleus increases sleep in vivo (Portas et al., 1997) and directly inhibits LDT neurons in vitro by activating postsynaptic adenosine A(1) receptors (Rainnie et al., 1994). However, adenosine effects on synaptic inputs to LDT neurons has not been previously reported. We found that both evoked glutamatergic EPSCs and GABAergic IPSCs were reduced by adenosine (50 micrometer). A presynaptic site of action for adenosine A(1) receptors on glutamatergic afferents was suggested by the following: (1) adenosine did not affect exogenous glutamate-mediated current, (2) adenosine reduced glutamatergic miniature EPSC (mEPSC) frequency, without affecting the amplitude, and (3) inhibition of the evoked EPSC was mimicked by the A(1) agonist N6-cyclohexyladenosine (100 nm) but not by the A(2) agonist N6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)-ethyl]-adenosine (10 nm). The A(1) receptor antagonist 8-cyclopentyltheophylline (CPT; 200 nm) potentiated the evoked EPSCs, suggesting the presence of a tonic activation of presynaptic A(1) receptors by endogenous adenosine. The adenosine kinase inhibitor, 5-iodotubercidin (10 micrometer), mimicked adenosine presynaptic and postsynaptic effects. These effects were antagonized by CPT or adenosine deaminase (0.8 IU/ml), suggesting mediation by increased extracellular endogenous adenosine. Together, these data suggest that the activity of LDT neurons is under inhibitory tone by endogenous adenosine through the activation of both presynaptic A(1) receptors on excitatory terminals and postsynaptic A(1) receptors. Furthermore, an alteration of adenosine kinase activity modifies the degree of this inhibitory tone.
Collapse
|
273
|
Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex. J Neurosci 2001. [PMID: 11245694 DOI: 10.1523/jneurosci.21-06-02104.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spike responses for many cells of cat primary visual cortex are optimized for the length of a drifting grating stimulus. Stimuli that are longer or shorter than this optimal length elicit submaximal spike responses. To investigate the mechanisms responsible for this length tuning, we have recorded intracellularly from visual cortical neurons in the cat while presenting drifting grating stimuli of varying lengths. We have found that the membrane potential responses of the cells also exhibit length tuning, but that the suppression of spike responses at lengths longer than the preferred is 30-50% stronger than the corresponding suppression of the membrane potential responses. This difference may be attributed to the effects of spike threshold. Furthermore, using steady injected currents, we have measured changes in the excitatory and inhibitory components of input conductance evoked by stimuli of different lengths. We find that, compared with optimal stimuli, long stimuli evoke both an increase in inhibitory conductance and a decrease in excitatory conductance. These two mechanisms differ in their contrast sensitivity, resulting in stronger end stopping and shorter optimal lengths for high-contrast stimuli. These patterns suggest that response suppression for long stimuli is generated by a combination of active inhibition from stimuli outside the excitatory receptive field, as well as decreased excitation from other cortical cells that are themselves end-inhibited.
Collapse
|
274
|
Martin LA, Wei DS, Alger BE. Heterogeneous susceptibility of GABA(A) receptor-mediated IPSCs to depolarization-induced suppression of inhibition in rat hippocampus. J Physiol 2001; 532:685-700. [PMID: 11313439 PMCID: PMC2278572 DOI: 10.1111/j.1469-7793.2001.0685e.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Depolarization-induced suppression of inhibition (DSI) in central neurons is mediated by a transient reduction of [gamma]-aminobutyric acid (GABA) release from interneurons. DSI is induced by a retrograde signal emitted from principal cells. We used electrophysiological recordings from CA1 neurons of the rat hippocampal slice to test the hypothesis that only certain classes of interneurons are susceptible to DSI. DSI of action potential-dependent, spontaneous, inhibitory postsynaptic currents (sIPSCs) in hippocampus is facilitated by carbachol (3 microM), which increases the occurrence of large sIPSCs. Besides carbachol, noradrenaline (norepinephrine; 10 microM), or elevated extracellular potassium (8 mM), could abruptly increase the occurrence of large sIPSCs and DSI in many cases. DSI appeared and disappeared concomitantly with the onset and offset of these large sIPSCs. In contrast, application of AP-5 and CNQX often markedly increased baseline sIPSC activity without enhancing DSI. A brief train of extracellular electrical stimulation could trigger the onset of prolonged, repetitive IPSC activity that was susceptible to DSI. The magnitude of DSI of single evoked IPSCs (eIPSCs) in a given pyramidal cell could be altered by changes in stimulus strength, but there was no simple relationship between stimulus strength and DSI. Baclofen (0.5-5 microM) eliminated the increase in sIPSC activity and DSI induced by carbachol. A GABA(B)receptor antagonist, CGP 35348, reversed the effects of baclofen. Carbachol-induced sIPSCs had relatively rapid rise and decay phases. There was no marked distinction between DSI-susceptible and non-susceptible sIPSCs. Nevertheless, two kinetically distinct components of the eIPSC could be distinguished by their decay times. DSI reduced GABA(A),(fast) without affecting GABA(A),(slow). Furosemide (frusemide), which blocks only GABA(A),(fast), reduced the eIPSC and occluded DSI. The data suggest that, with respect to DSI, there are at least three functionally distinct types of IPSCs. Two types (one susceptible to DSI and one not) have relatively rapid kinetics are probably made by perisomatic synapses. A third, slow IPSC, which is insensitive to DSI, may be produced by distal dendritic synapses.
Collapse
Affiliation(s)
- L A Martin
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
275
|
Molnár P, Nadler JV. Lack of Effect of Mossy Fiber-Released Zinc on Granule Cell GABAAReceptors in the Pilocarpine Model of Epilepsy. J Neurophysiol 2001; 85:1932-40. [PMID: 11353010 DOI: 10.1152/jn.2001.85.5.1932] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABAAreceptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABAAreceptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 μM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABAAreceptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K+]o, nominally Mg2+-free medium, 33°C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABAAreceptors sufficient to inhibit agonist-evoked activation.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology and Cancer Biology and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
276
|
Proctor WR, Dunwiddie TV. Electrophysiological analysis of G protein-coupled receptors in mammalian neurons. CURRENT PROTOCOLS IN PHARMACOLOGY 2001; Chapter 11:Unit11.2. [PMID: 21965065 DOI: 10.1002/0471141755.ph1102s07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes general techniques that are useful for recording electrophysiological responses that are mediated via the activation of G-protein coupled receptors (GPCRs). It includes a brief description of preparations, but focuses primarily on experiments using hippocampal brain slice preparations. Techniques for the preparation of brain slices, electrodes, filling solutions, and the recording protocols that are suitable for assessing the activity of GPCRs using electrophysiological techniques are summarized, and various protocols for the activation of these receptors are discussed.
Collapse
Affiliation(s)
- W R Proctor
- Veterans Administration Medical Research Service, Denver, Colorado, USA
| | | |
Collapse
|
277
|
Garraway SM, Hochman S. Serotonin Increases the Incidence of Primary Afferent-Evoked Long-Term Depression in Rat Deep Dorsal Horn Neurons. J Neurophysiol 2001; 85:1864-72. [PMID: 11353003 DOI: 10.1152/jn.2001.85.5.1864] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-hydroxytryptamine (5-HT) is released in spinal cord by descending systems that modulate somatosensory transmission and can potently depress primary afferent-evoked synaptic responses in dorsal horn neurons. Since primary afferent activity-induced long-term potentiation (LTP) may contribute to central sensitization of nociception, we studied the effects of 5-HT on the expression of sensory-evoked LTP and long-term depression (LTD) in deep dorsal horn (DDH) neurons. Whole cell, predominantly current clamp, recordings were obtained from DDH neurons in transverse slices of neonatal rat lumbar spinal cord. The effect of 5-HT on dorsal-root stimulation-evoked synaptic responses was tested before, during, or after high-frequency conditioning stimulation (CS). In most cells (80%), 5-HT caused a depression of the naı̈ve synaptic response. Even though 5-HT depressed evoked responses, CS in the presence of 5-HT was not only still capable of inducing LTD but also increased its incidence from 54% in controls to 88% ( P < 0.001). Activation of ligands selective for 5-HT1A/1B and 5-HT1B, but not 5-HT2A/2C or 5-HT3receptors, best reproduced these actions. 5-HT also potently depressed postconditioning synaptic responses regardless of whether the induced plasticity was LTP or LTD. Our results demonstrate that in addition to depressing the amplitude of evoked sensory input, 5-HT can also control the direction of its long-term modifiability, favoring the expression of LTD. These findings demonstrate cellular mechanisms that may contribute to the descending serotonergic control of nociception.
Collapse
Affiliation(s)
- S M Garraway
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | |
Collapse
|
278
|
Chub N, O'Donovan MJ. Post-Episode Depression of GABAergic Transmission in Spinal Neurons of the Chick Embryo. J Neurophysiol 2001; 85:2166-76. [PMID: 11353031 DOI: 10.1152/jn.2001.85.5.2166] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [ embryonic days 10 to 11 ( E10–E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 ± 1.2 mV, mean ± SE), which dissipated as a slow (0.5–1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 ± 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential ( E GABAa = −29 ± 3 mV) and allowed estimation of the physiological intracellular [Cl−] = 50 mM. In whole cell configuration (with physiological electrode [Cl−]), two distinct types of endogenous GABAergic currents ( I GABAa) were found during the inter-episode interval. The first comprised TTX-resistant, asynchronous miniature postsynaptic currents (mPSCs), an indicator of quantal GABA release (up to 42% of total mPSCs). The second (tonic I GABAa) was complimentary to the slow membrane depolarization and may arise from persistent activation of extrasynaptic GABAa receptors. We estimate that approximately 10 postsynaptic channels are activated by a single quantum of GABA release during an mPSC and that about 30 extrasynaptic GABAa channels are required for generation of the tonic I GABAa in ventral horn neurons. We investigated the post-episode depression of I GABAa by local application of GABA or isoguvacine (100 μM, for 10–30 s) applied before and after an episode at holding potentials ( V hold) −60 mV. The amplitude of the evoked I GABA was compared after clamping the cell during the episode at one of three different V hold: −60 mV, below E GABAa resulting in Cl− efflux; −30 mV, close to E GABAa with minimal Cl− flux; and 0 mV, above E GABAa resulting in Cl− influx during the episode. The amplitude of the evoked I GABA changed according to the direction of Cl− flux during the episode: at −60 mV a 41% decrease, at −30 mV a 4% reduction, and at 0 mV a 19% increase. These post-episode changes were accompanied by shifts of E GABAa of −10, −1.2, and +7 mV, respectively. We conclude that redistribution of intracellular [Cl−] during spontaneous episodes is likely to be an important postsynaptic mechanism involved in the post-episode depression of GABAergic transmission in chick embryo spinal neurons.
Collapse
Affiliation(s)
- N Chub
- Section on Developmental Neurobiology, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
279
|
Affiliation(s)
- Greg Stuart
- John Curtin School of Medical Research, Australian National University Canberra Australia
| |
Collapse
|
280
|
Takahashi M, Freed R, Blackmer T, Alford S. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses. J Physiol 2001; 532:323-36. [PMID: 11306653 PMCID: PMC2278557 DOI: 10.1111/j.1469-7793.2001.0323f.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The mechanisms by which 5-hydroxytryptamine (5-HT) depresses transmitter release from lamprey reticulospinal axons were investigated. These axons make glutamatergic synapses onto spinal ventral horn neurons. 5-HT reduces release at these synapses, yet the mechanisms remain unclear. 2. Excitatory postsynaptic currents (EPSCs) evoked by stimulation of reticulospinal axons were recorded in ventral horn neurons. 5-HT depressed the EPSCs in a dose-dependent manner with an apparent Km of 2.3 microM. 3. To examine the presynaptic effect of 5-HT, electrophysiological and optical recordings were made from presynaptic axons. Action potentials evoked Ca(2+) transients in the axons loaded with a Ca(2+)-sensitive dye. 5-HT slightly reduced the Ca(2+) transient. 4. A third-power relationship between Ca(2+) entry and transmitter release was determined. However, presynaptic Ca(2+) currents were unaffected by 5-HT. 5. Further, in the presence of a K(+) channel blocker, 4-aminopyridine (4-AP), 5-HT left unaltered the presynaptic Ca(2+) transient, ruling out the possibility of its direct action on presynaptic Ca(2+) current. 5-HT activated a 4-AP-sensitive current with a reversal potential of -95 mV in these axons. 6. The basal Ca(2+) concentration did not affect 5-HT-mediated inhibition of release. Although 5-HT caused a subtle reduction in resting axonal [Ca(2+)]i, synaptic responses recorded during enhanced resting [Ca(2+)]i, by giving stimulus trains, were equally depressed by 5-HT. 7. 5-HT reduced the frequency of TTX-insensitive spontaneous EPSCs at these synapses, but had no effect on their amplitude. We propose a mechanism of inhibition for transmitter release by 5-HT that is independent of presynaptic Ca(2+) entry.
Collapse
Affiliation(s)
- M Takahashi
- Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
281
|
Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 2001; 292:293-7. [PMID: 11303105 DOI: 10.1126/science.1058803] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nervous system can modulate neurotransmitter release by neurotransmitter activation of heterotrimeric GTP-binding protein (G protein)-coupled receptors. We found that microinjection of G protein betagamma subunits (Gbetagamma) mimics serotonin's inhibitory effect on neurotransmission. Release of free Gbetagamma was critical for this effect because a Gbetagamma scavenger blocked serotonin's effect. Gbetagamma had no effect on fast, action potential-evoked intracellular Ca2+ release that triggered neurotransmission. Inhibition of neurotransmitter release by serotonin was still seen after blockade of all classical Gbetagamma effector pathways. Thus, Gbetagamma blocked neurotransmitter release downstream of Ca2+ entry and may directly target the exocytotic fusion machinery at the presynaptic terminal.
Collapse
Affiliation(s)
- T Blackmer
- Department of Molecular Pharmacology and Biological Chemistry, Department of Physiology, Northwestern University Institute for Neuroscience, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
282
|
Garraway SM, Hochman S. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat. Br J Pharmacol 2001; 132:1789-98. [PMID: 11309251 PMCID: PMC1572723 DOI: 10.1038/sj.bjp.0703983] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord slices and whole-cell patch clamp recordings were used to investigate the effects of serotonergic receptor ligands on dorsal root-evoked synaptic responses in deep dorsal horn (DDH) neurons of the neonatal rat at postnatal days (P) 3 - 6 and P10 - 14. Bath applied 5-hydroxytryptamine (5-HT) potently depressed synaptic responses in most neurons. Similarly, the 5-HT(1/7) receptor agonist, 5-carboxamidotryptamine (5-CT) depressed synaptic responses. This action was probably mediated by 5-HT(1A) receptor activation, since it occurred in the presence of the 5-HT(7) receptor antagonist clozapine and was not observed in the presence of NAN-190, a 5-HT(1A) receptor antagonist. In the absence of any agonist, 5-HT(1A) receptor antagonists often facilitated synaptic responses, suggesting that there is sufficient endogenous 5-HT to tonically activate 5-HT(1A) receptors. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), the 5-HT(1A/7) receptor agonist, facilitated synaptic responses, an action probably mediated by 5-HT(7) receptors, since the facilitation could be reversed by subsequent application of the 5-HT(7) receptor antagonist clozapine. Agonists for the 5-HT(1B), 5-HT(2) and 5-HT(3) receptors exerted only modest modulatory actions. A pharmacological analysis of the depression evoked by 5-HT suggested an action partly mediated by 5-HT(1A) receptor activation, since antagonism of the 5-HT(1A) receptor with NAN-190 or WAY-100635 partly reversed 5-HT-evoked depression. In comparison, 5-HT(7) receptor activation could account for much of the 5-HT-evoked facilitation. We conclude that 5-HT is capable of modulating sensory input onto DDH neurons via several receptor subtypes, producing both facilitatory and depressant actions. Also, the actions of most receptor ligands on the evoked responses were similar within the first 2 postnatal weeks.
Collapse
Affiliation(s)
- Sandra M Garraway
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | - Shawn Hochman
- Department of Physiology, Emory University, Atlanta, Georgia, GA 30322, U.S.A
- Author for correspondence:
| |
Collapse
|
283
|
Yamada K, Hasuo H, Ishimatsu M, Akasu T. Characterization of outward currents induced by 5-HT in neurons of rat dorsolateral septal nucleus. J Neurophysiol 2001; 85:1453-60. [PMID: 11287469 DOI: 10.1152/jn.2001.85.4.1453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Properties of the 5-hydroxytryptamine (5-HT)-induced current (I(5-HT)) were examined in neurons of rat dorsolateral septal nucleus (DLSN) by using whole cell patch-clamp techniques. I(5-HT) was associated with an increase in the membrane conductance of DLSN neurons. The reversal potential of I(5-HT) was -93 +/- 6 (SE) mV (n = 7) in the artificial cerebrospinal fluid (ACSF) and was changed by 54 mV per decade change in the external K(+) concentration, indicating that I(5-HT) is carried exclusively by K(+). Voltage dependency of the K(+) conductance underlying I(5-HT) was investigated by using current-voltage relationship. I(5-HT) showed a linear I-V relation in 63%, inward rectification in 21%, and outward rectification in 16% of DLSN neurons. (+/-)-8-Hydroxy-dipropylaminotetralin hydrobromide (30 microM), a selective 5-HT(1A) receptor agonist, also produced outward currents with three types of voltage dependency. Ba(2+) (100 microM) blocked the inward rectifier I(5-HT) but not the outward rectifier I(5-HT). In I(5-HT) with linear I-V relation, blockade of the inward rectifier K(+) current by Ba(2+) (100 microM) unmasked the outward rectifier current in DLSN neurons. These results suggest that I(5-HT) with linear I-V relation is the sum of inward rectifier and outward rectifier K(+) currents in DLSN neurons. Intracellular application of guanosine-5'-O-(3-thiotriphosphate) (300 microM) and guanosine-5'-O-(2-thiodiphosphate) (5 mM), blockers of G protein, irreversibly depressed I(5-HT). Protein kinase C (PKC) 19-36 (20 microM), a specific PKC inhibitor, depressed the outward rectifier I(5-HT) but not the inward rectifier I(5-HT). I(5-HT) was depressed by N-ethylmaleimide, which uncouples the G-protein-coupled receptor from pertussis-toxin-sensitive G proteins. H-89 (10 microM) and adenosine 3',5'-cyclic monophosphothioate Rp-isomer (300 microM), protein kinase A inhibitors, did not depress I(5-HT). Phorbol 12-myristate 13-acetate (10 microM), an activator of PKC, produced an outward rectifying K(+) current. These results suggest that both 5-HT-induced inward and outward rectifying currents are mediated by a G protein and that PKC is probably involved in the transduction pathway of the outward rectifying I(5-HT) in DLSN neurons.
Collapse
Affiliation(s)
- K Yamada
- Department of Physiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | |
Collapse
|
284
|
Armstrong JN, MacVicar BA. Theta-frequency facilitation of AMPA receptor-mediated synaptic currents in the principal cells of the medial septum. J Neurophysiol 2001; 85:1709-18. [PMID: 11287493 DOI: 10.1152/jn.2001.85.4.1709] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that Ca(2+)-permeable AMPA receptors display rapid, short-lasting current facilitation. In this study, we investigated the properties of AMPA receptor-mediated synaptic currents in medial septal neurons of the rat in an in vitro slice preparation. Immunocytochemistry with a selective antibody to the GluR2 subunit revealed that both choline acetyltransferase-containing and parvalbumin-containing neurons of the medial septum express no detectable GluR2 subunit immunoreactivity. We used whole cell voltage-clamp recordings to measure synaptically evoked AMPA receptor-mediated currents from medial septal neurons following stimulation of midline afferents. The GYKI 52466 (50 microM)- and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (20 microM)-sensitive AMPA receptor-mediated component of the synaptic response was isolated by blocking GABA(A)- and N-methyl-D-aspartate receptor-mediated currents with 30 microM bicuculline and 100 microM 2-amino-5-phosphonovaleric acid, respectively. In some cases, patched cells were filled with Lucifer yellow (0.1%) and imaged using 2-photon laser scanning microscopy. AMPA receptor-mediated currents that were observed in large medial septal neurons (20--30 microm) displayed rectification. These currents were sensitive to external application of philanthotoxin-343 (PhTx-343, 50 microM), a potent, high-affinity antagonist of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Rectifying AMPA receptor-mediated currents also displayed a rapid increase in amplitude when evoked five times at low frequency such as 6 Hz. In contrast to currents observed in large medial septal neurons, AMPA-receptor mediated currents evoked in the remaining small (8--11 microm) neurons were nonrectifying and displayed rapid synaptic depression when stimulated five times at 6 Hz. The currents evoked in these cells were unaffected by external application of PhTx-343 and were therefore GluR2-containing AMPA receptors. The results of the present study demonstrate that the principal projection neurons of the medial septum contain PhTx-343-sensitive, GluR2-lacking AMPA receptors that display rapid current facilitation when stimulated at low frequencies.
Collapse
Affiliation(s)
- J N Armstrong
- Neuroscience Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
285
|
Di Pasquale E, Tell F, Ptak K, Monteau R, Hilaire G. Perinatal changes of I(h) in phrenic motoneurons. Eur J Neurosci 2001; 13:1403-10. [PMID: 11298801 DOI: 10.1046/j.0953-816x.2001.01513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hyperpolarization-activated cationic current (I(h)) was characterized and its maturation studied on phrenic motoneurons (PMNs), from reduced preparations of foetal (E18 and E21) and newborn (P0-P3) rats, using the whole-cell patch-clamp technique. In voltage-clamp mode, 2-s hyperpolarizing steps (5-mV, -50 to -110 mV) elicited a noninactivating inward current, blocked by external application of Cs+ or ZD 7288. At -110 mV, Ih current density averaged 0.67 +/- 0.41 pA/pF at E18, reached a transient peak at E21 (1.38 +/- 0.11 pA/pF) and decreased at P0-P3 (0.77 +/- 0.22 pA/pF). V1/2 was similar at E18 and E21 (-79 mV) but was significantly hyperpolarized at P0-P3 (-90 mV). The time constant of activation was voltage-dependent, and significantly faster at E21. Reversal potential was similar at all ages when estimated by extrapolation or tail current procedures. It was positively shifted by 25 +/- 6 mV when external potassium was raised from 3 to 10 m M, suggesting a similar sensitivity to K+ from E18 to P0-3. Cs(+) or ZD 7288 applications on PMNs at rest in current-clamp mode, in a partitioned chamber, induced a 10 +/- 2 mV hyperpolarization at E18 and E21, and an 8 +/- 2 mV hyperpolarization at P0-3. The area of the central respiratory drive potential or current was increased by 33 and 31%, respectively, at E21, but was not significantly modified at E18 and P0-3. Our data suggest a critical period during the perinatal maturation of Ih during which it is transiently upregulated and attenuates the influence of the central respiratory drive on PMNs just prior to birth.
Collapse
Affiliation(s)
- E Di Pasquale
- ESA CNRS 6034, Faculté des Sciences de St Jérôme, 13397 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
286
|
Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M, Adelman JP, Fakler B. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 2001; 276:9762-9. [PMID: 11134030 DOI: 10.1074/jbc.m010001200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and calmodulin. The channels are activated by Ca(2+) binding to calmodulin that induces conformational changes resulting in channel opening, and channel deactivation is the reverse process brought about by dissociation of Ca(2+) from calmodulin. Here we show that SK channel gating is effectively modulated by 1-ethyl-2-benzimidazolinone (EBIO). Application of EBIO to cloned SK channels shifts the Ca(2+) concentration-response relation into the lower nanomolar range and slows channel deactivation by almost 10-fold. In hippocampal CA1 neurons, EBIO increased both the medium and slow AHP, strongly reducing electrical activity. Moreover, EBIO suppressed the hyperexcitability induced by low Mg(2+) in cultured cortical neurons. These results underscore the importance of SK channels for shaping the electrical response patterns of central neurons and suggest that modulating SK channel gating is a potent mechanism for controlling excitability in the central nervous system.
Collapse
Affiliation(s)
- P Pedarzani
- Max-Planck Institut für Experimentelle Medizin, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Lo FS, Erzurumlu RS. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons. J Neurophysiol 2001; 85:1088-96. [PMID: 11247979 PMCID: PMC3676675 DOI: 10.1152/jn.2001.85.3.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the brain stem trigeminal complex of rats and mice, presynaptic afferent arbors and postsynaptic target cells form discrete modules ("barrelettes"), the arrangement of which duplicates the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. Within the barrelette region of the nucleus principalis of the trigeminal nerve (PrV), neurons participating in barrelettes and those with dendritic spans covering multiple barrelettes (interbarrelette neurons) can be identified by their morphological and electrophysiological characteristics as early as postnatal day 1. Barrelette cells have focal dendritic processes, are characterized by a transient K(+) conductance (I(A)), whereas interbarrelette cells with larger soma and extensive dendritic fields characteristically exhibit low-threshold T-type Ca(2+) spikes (LTS). In this study, we surveyed membrane properties of barrelette and interbarrelette neurons during and after consolidation of barrelettes in the PrV and effects of peripheral deafferentation on these properties. During postnatal development (PND1-13), there were no changes in the resting potential, composition of active conductances and Na(+) spikes of both barrelette and interbarrelette cells. The only notable changes were a decline in input resistance and a slight increase in the amplitude of LTS. The infraorbital (IO) branch of the trigeminal nerve provides the sole afferent input source to the whisker pad. IO nerve transection at birth abolishes barrelette formation as well as whisker-related neuronal patterns all the way to the neocortex. Surprisingly this procedure had no effect on membrane properties of PrV neurons. The results of the present study demonstrate that distinct membrane properties of barrelette and interbarrelette cells are maintained even in the absence of input from the whiskers during the critical period of pattern formation.
Collapse
Affiliation(s)
- F S Lo
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
288
|
Lea PM, Wroblewska B, Sarvey JM, Neale JH. beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor. J Neurophysiol 2001; 85:1097-106. [PMID: 11247980 DOI: 10.1152/jn.2001.85.3.1097] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-Acetylaspartylglutamate (NAAG) is an agonist at the type 3 metabotropic glutamate receptor (mGluR3), which is coupled to a Gi/o protein. When activated, the mGluR3 receptor inhibits adenylyl cyclase and reduces the cAMP-mediated second-messenger cascade. Long-term potentiation (LTP) in the medial perforant path (MPP) of the hippocampal dentate gyrus requires increases in cAMP. The presence of mGluR3 receptors and NAAG in neurons of the dentate gyrus suggests that this peptide transmitter may inhibit LTP in the dentate gyrus. High-frequency stimulation (100 Hz; 2 s) of the MPP resulted in LTP of extracellularly recorded excitatory postsynaptic potentials at the MPP-granule cell synapse of rat hippocampal slices. Perfusion of the slice with NAAG (50 and 200 microM) blocked LTP. Neither 50 nor 200 microM NAAG produced N-methyl-D-aspartate receptor currents in the granule cells of the acute hippocampal slice. The group II mGluR antagonist ethyl glutamate (100 microM) and a structural analogue of NAAG, beta-NAAG (100 microM), prevented the blockade of LTP by NAAG. Paired-pulse depression of the excitatory postsynaptic potential at 20- and 80-ms interpulse intervals (IPI) was not affected by NAAG or beta-NAAG. beta-NAAG did not affect inositol trisphosphate production stimulated by the agonist glutamate in cells expressing the group I mGluR1alpha or mGluR5. beta-NAAG blocked the decrease in forskolin-stimulated cAMP by the group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) but not the group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid in cerebellar granule cells. In cells transfected with mGluR3, but not mGluR2, beta-NAAG blocked forskolin-stimulated cAMP responses to glutamate, NAAG, the nonspecific group I, II agonist trans-ACPD, and the group II agonist DCG-IV. We conclude that beta-NAAG is a selective mGluR antagonist capable of differentiating between mGluR2 and mGluR3 subtypes and that the mGluR3 receptor functions to regulate activity-dependent synaptic potentiation in the hippocampus.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cricetinae
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Dipeptides/chemistry
- Dipeptides/metabolism
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Male
- Neurotransmitter Agents/metabolism
- Patch-Clamp Techniques
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Stereoisomerism
Collapse
Affiliation(s)
- P M Lea
- Department of Physiology, Uniformed Services University, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
289
|
Chiou LC, Chou HH. Characterization of synaptic transmission in the ventrolateral periaqueductal gray of rat brain slices. Neuroscience 2001; 100:829-34. [PMID: 11036216 DOI: 10.1016/s0306-4522(00)00348-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synaptic transmission evoked by focal stimulation in the ventrolateral periaqueductal gray was characterized using the whole-cell recording technique in rat brain slices. At resting membrane potential (-62+/-1 mV), focal stimulation (0.05-0.1 ms, 0.03 Hz) usually evoked a 6-cyano-7-nitroquinoxaline-2, 3-dione-sensitive fast excitatory postsynaptic potential and a DL-2-amino-5-phosphonopentanoic acid-sensitive slow excitatory postsynaptic potential with a bicuculline-sensitive inhibitory postsynaptic potential in between. In the presence of kynurenic acid, bicuculline-sensitive inhibitory postsynaptic currents recorded in the voltage-clamp mode displayed a reversal potential of -68+/-3 mV, resembling GABA(A) receptor-mediated inhibitory postsynaptic currents. However, no GABA(B) receptor-mediated inhibitory postsynaptic current was evoked, even at stronger stimulating intensity. 6-Cyano-7-nitroquinoxaline-2,3-dione-sensitive fast excitatory postsynaptic currents were isolated by DL-2-amino-5-phosphonopentanoic acid plus bicuculline and DL-2-amino-5-phosphonopentanoic acid-sensitive slow fast excitatory postsynaptic currents by bicuculline plus 6-cyano-7-nitroquinoxaline-2,3-dione. Both types of excitatory postsynaptic current reversed at potentials near 0 mV. The I-V curve of slow fast excitatory postsynaptic currents or N-methyl-D-aspartate currents displayed a negative slope at potentials more negative than -30 mV in an Mg(2+)-sensitive manner. The control postsynaptic currents reversed at potentials between -50 and -35 mV, inclined to the reversal potential of GABA(A), but not glutamate, receptor channels. It is concluded that, in the ventrolateral periaqueductal gray, focal stimulation elicits both inhibitory and excitatory transmission, while the former is dominant. The inhibitory transmission is mediated by GABA(A) but not GABA(B) receptors. The excitatory transmission is mediated by glutamate acting on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate as well as N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- L C Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Section 1, Taipei, Taiwan.
| | | |
Collapse
|
290
|
Butler AK, Dantzker JL, Shah RB, Callaway EM. Development of visual cortical axons: layer-specific effects of extrinsic influences and activity blockade. J Comp Neurol 2001; 430:321-31. [PMID: 11169470 DOI: 10.1002/1096-9861(20010212)430:3<321::aid-cne1033>3.0.co;2-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During normal cortical development, individual pyramidal neurons form intracortical axonal arbors that are specific for particular cortical layers. Pyramidal neurons within layer 6 are able to develop layer-specific projections in cultured slices of ferret visual cortex, indicating that extrinsic influences, including patterned visual activity, are not required (Dantzker and Callaway [1998] J Neurosci 18:4145-4154). However, when spontaneous activity is blocked in cultures with tetrodotoxin, layer 6 pyramidal neurons fail to preferentially target their axons to layer 4. To determine whether mechanisms that regulate the development of layer 6 pyramidal neuron arbors can be generalized to pyramidal neurons in other layers, we examined the development of layer 5 and layer 2/3 pyramidal neurons in cultured slices of ferret visual cortex prepared on postnatal day 14 or 15. Layer 5 pyramidal neurons developed layer-specific axonal arbors during 5-7 days in vitro. However, unlike layer 6 pyramidal neurons, layer 5 pyramidal neurons formed layer-specific axonal arbors in the presence of tetrodotoxin. In contrast to layer 5 and layer 6 pyramidal neurons, layer 2/3 pyramidal neurons did not form appropriate layer-specific projections during 5-7 days in vitro. Taken together, these data suggest that the development of layer-specific axons is regulated by different mechanisms for neurons in different layers and cannot be categorically classified as either activity-dependent or independent. Instead, the type of pyramidal neuron, the layers targeted, and the type of activity must be considered.
Collapse
Affiliation(s)
- A K Butler
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
291
|
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409:714-20. [PMID: 11217860 DOI: 10.1038/35055553] [Citation(s) in RCA: 1422] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.
Collapse
Affiliation(s)
- S C Noctor
- Department of Neurology, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
292
|
Huang Y, Lu W, Ali DW, Pelkey KA, Pitcher GM, Lu YM, Aoto H, Roder JC, Sasaki T, Salter MW, MacDonald JF. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 2001; 29:485-96. [PMID: 11239437 DOI: 10.1016/s0896-6273(01)00220-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-term potentiation (LTP) is an activity-dependent enhancement of synaptic efficacy, considered a model of learning and memory. The biochemical cascade producing LTP requires activation of Src, which upregulates the function of NMDA receptors (NMDARs), but how Src becomes activated is unknown. Here, we show that the focal adhesion kinase CAKbeta/Pyk2 upregulated NMDAR function by activating Src in CA1 hippocampal neurons. Induction of LTP was prevented by blocking CAKbeta/Pyk2, and administering CAKbeta/Pyk2 intracellularly mimicked and occluded LTP. Tyrosine phosphorylation of CAKbeta/Pyk2 and its association with Src was increased by stimulation that produced LTP. Finally, CAKbeta/Pyk2-stimulated enhancement of synaptic AMPA responses was prevented by blocking NMDARS, chelating intracellular Ca(2+), or blocking Src. Thus, activating CAKbeta/Pyk2 is required for inducing LTP and may depend upon downstream activation of Src to upregulate NMDA receptors.
Collapse
Affiliation(s)
- Y Huang
- Programmes in Brain and, Behaviour & Cell Biology, Hospital for Sick Children, Ontario, M5G 1X8, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci U S A 2001. [PMID: 11120888 PMCID: PMC14588 DOI: 10.1073/pnas.011523098] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the mammalian main olfactory bulb (MOB), the release of glutamate from lateral dendrites of mitral cells onto the dendrites of granule cells evokes recurrent and lateral inhibition of mitral cell activity. Whole-cell voltage recordings in the mouse MOB in vivo and in vitro show that recurrent and lateral inhibition together control the number, duration, and onset of odor-evoked action potential (AP) firing in mitral cells. APs in mitral cells propagate into the lateral dendrites and evoke a transient increase in dendritic calcium concentration ([Ca2+]), which is decremental with distance from the soma, and increases with AP number. These results suggest that the extent of AP propagation in lateral dendrites of mitral cells, along with the concomitant dendritic Ca(2+) transient, controls the amplitude of lateral and recurrent inhibition and thus is a critical determinant of odor-specific AP patterns in the MOB.
Collapse
|
294
|
Margrie TW, Sakmann B, Urban NN. Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci U S A 2001; 98:319-24. [PMID: 11120888 PMCID: PMC14588 DOI: 10.1073/pnas.98.1.319] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the mammalian main olfactory bulb (MOB), the release of glutamate from lateral dendrites of mitral cells onto the dendrites of granule cells evokes recurrent and lateral inhibition of mitral cell activity. Whole-cell voltage recordings in the mouse MOB in vivo and in vitro show that recurrent and lateral inhibition together control the number, duration, and onset of odor-evoked action potential (AP) firing in mitral cells. APs in mitral cells propagate into the lateral dendrites and evoke a transient increase in dendritic calcium concentration ([Ca2+]), which is decremental with distance from the soma, and increases with AP number. These results suggest that the extent of AP propagation in lateral dendrites of mitral cells, along with the concomitant dendritic Ca(2+) transient, controls the amplitude of lateral and recurrent inhibition and thus is a critical determinant of odor-specific AP patterns in the MOB.
Collapse
Affiliation(s)
- T W Margrie
- Abteilung Zellphysiologie, Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
295
|
Duffy SN, Craddock KJ, Abel T, Nguyen PV. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem 2001; 8:26-34. [PMID: 11160761 PMCID: PMC311356 DOI: 10.1101/lm.36301] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.
Collapse
Affiliation(s)
- S N Duffy
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
296
|
Fan YP, Horn EM, Waldrop TG. Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability. J Neurophysiol 2000; 84:2896-903. [PMID: 11110819 DOI: 10.1152/jn.2000.84.6.2896] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the caudal hypothalamus (CH) are responsible for the modulation of various processes including respiratory and cardiovascular output. Previous results from this and other laboratories have demonstrated in vivo that these neurons have firing rhythms matched to the respiratory and cardiovascular cycles. The goal of the present study was to characterize the biophysical properties of neurons in the CH with particular emphasis in those properties responsible for rhythmic firing behavior. Whole cell, patch-clamped CH neurons displayed a resting membrane potential of -58.0 +/- 1.1 mV and an input resistance of 319.3 +/- 16.6 MOmega when recorded in current-clamp mode in an in vitro brain slice preparation. A large proportion of these neurons displayed postinhibitory rebound (PIR) that was dependent on the duration and magnitude of hyperpolarizing current as well as the resting membrane potential of the cell. Furthermore these neurons discharged tonically in response to a depolarizing current pulse at a depolarized resting membrane potential (more positive than -65 mV) but switched to a rapid burst of firing to the same stimulus when the resting membrane potential was lowered. The PIR observed in these neurons was calcium dependent as demonstrated by the ability to block its amplitude by perfusion of Ca(2+)-free bath solution or by application of Ni(2+) (0.3-0.5 mM) or nifedipine (10 microM). These properties suggest that low-voltage-activated (LVA) calcium current is involved in the PIR and bursting firing of these CH neurons. In addition, high-voltage-activated calcium responses were detected after blockade of outward potassium current or in Ba(2+)-replacement solution. In addition, almost all of the CH neurons studied showed spike frequency adaptation that was decreased following Ca(2+) removal, indicating the involvement of Ca(2+)-dependent K(+) current (I(K,Ca)) in these cells. In conclusion, CH neurons have at least two different types of calcium currents that contribute to their excitability; the dominant current is the LVA or T-type. This LVA current appears to play a significant role in the bursting characteristics that may underlie the rhythmic firing of CH neurons.
Collapse
Affiliation(s)
- Y P Fan
- Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
297
|
Farries MA, Perkel DJ. Electrophysiological properties of avian basal ganglia neurons recorded in vitro. J Neurophysiol 2000; 84:2502-13. [PMID: 11067993 DOI: 10.1152/jn.2000.84.5.2502] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The forebrains of mammals and birds appear quite different in their gross morphology, making it difficult to identify homologies between them and to assess how far they have diverged in organization. Nevertheless one set of forebrain structures, the basal ganglia, has been successfully compared in mammals and birds. Anatomical, histochemical, and molecular data have identified the avian homologues of the mammalian basal ganglia and indicate that they are very similar in organization, suggesting that they perform similar functions in the two classes. However, the physiological properties of the avian basal ganglia have not been studied, and these properties are critical for inferring functional similarity. We have used a zebra finch brain slice preparation to characterize the intrinsic physiological properties of neurons in the avian basal ganglia, particularly in the input structure of the basal ganglia, the striatum. We found that avian striatum contains a cell type that closely resembles the medium spiny neuron, the principal cell type of mammalian striatum. Avian striatum also contains a rare cell type that is very similar to an interneuron class found in mammalian striatum, the low-threshold spike cell. On the other hand, we found an aspiny, fast-firing cell type in avian striatum that is distinct from all known classes of mammalian striatal neuron. These neurons usually fired spontaneously at 10 Hz or more and were capable of sustained firing at very high rates when injected with depolarizing current. The existence of this cell type represents an important difference between avian striatum and mammalian dorsal striatum. Our data support the general idea that the organization and functional properties of the basal ganglia have been largely conserved in mammals and birds, but they imply that avian striatum is not identical to mammalian dorsal striatum.
Collapse
Affiliation(s)
- M A Farries
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
298
|
Belleau ML, Warren RA. Postnatal development of electrophysiological properties of nucleus accumbens neurons. J Neurophysiol 2000; 84:2204-16. [PMID: 11067966 DOI: 10.1152/jn.2000.84.5.2204] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the postnatal development of the physiological characteristics of nucleus accumbens (nAcb) neurons in slices from postnatal day 1 (P1) to P49 rats using the whole cell patch-clamp technique. The majority of neurons (102/108) were physiologically identified as medium spiny (MS) projection neurons, and only these were subjected to detailed analysis. The remaining neurons displayed characteristics suggesting that they were not MS neurons. Around the time of birth and during the first postnatal weeks, the membrane and firing characteristics of MS neurons were quite different from those observed later. These characteristics changed rapidly during the first 3 postnatal weeks, at which point they began to resemble those found in adults. Both whole cell membrane resistance and membrane time constant decreased more than fourfold during the period studied. The resting membrane potential (RMP) also changed significantly from an average of -50 mV around birth to less than -80 mV by the end of the third postnatal week. During the first postnatal week, the current-voltage relationship of all encountered MS neurons was linear over a wide range of membrane potentials above and below RMP. Through the second postnatal week, the proportion of neurons displaying inward rectification in the hyperpolarized range increased steadily and after P15, all recorded MS neurons displayed significant inward rectification. At all ages, inward rectification was blocked by extracellular cesium and tetra-ethyl ammonium and was not changed by 4-aminopyridine; this shows that inward rectification was mediated by the same currents in young and mature MS neurons. MS neurons fired single and repetitive Na(+)/K(+) action potentials as early as P1. Spike threshold and amplitude remained constant throughout development in contrast to spike duration, which decreased significantly over the same period. Depolarizing current pulses from rest showed that immature MS neurons fired action potentials more easily than their older counterparts. Taken together, the results from the present study suggest that young and adult nAcb MS neurons integrate excitatory synaptic inputs differently because of differences in their membrane and firing properties. These findings provide important insights into signal processing within nAcb during this critical period of development.
Collapse
Affiliation(s)
- M L Belleau
- Centre de Recherche Fernand-Seguin and Department of Psychiatry, University of Montréal, Montreal, Quebec H1N 3V2, Canada
| | | |
Collapse
|
299
|
Nguyen PV, Duffy SN, Young JZ. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol 2000; 84:2484-93. [PMID: 11067991 DOI: 10.1152/jn.2000.84.5.2484] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic and knockout mice are used extensively to elucidate the molecular mechanisms of hippocampal synaptic plasticity. However, genetic and phenotypic variations between inbred mouse strains that are used to construct genetic models may confound the interpretation of cellular neurophysiological data derived from these models. Using in vitro slice stimulation and recording methods, we compared the membrane biophysical, cellular electrophysiological, and synaptoplastic properties of hippocampal CA1 neurons in four specific strains of inbred mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms/J. Hippocampal long-term potentiation (LTP) induced by theta-pattern stimulation, and by repeated multi-burst 100-Hz stimulation at various interburst intervals, was better maintained in area CA1 of slices from BL/6J mice than in slices from CBA and DBA mice. At an interburst interval of 20 s, maintenance of LTP was impaired in CBA and DBA slices, as compared with BL/6J slices. When the interburst interval was reduced to 3 s, induction of LTP was significantly enhanced in129/SvEms slices, but not in DBA and CBA slices. Long-term depression (LTD) was not significantly different between slices from these four strains. For the four strains examined, CA1 pyramidal neurons showed no significant differences in spike-frequency accommodation, membrane input resistance, and number of spikes elicited by current injection. Synaptically-evoked glutamatergic postsynaptic currents did not significantly differ among CA1 pyramidal neurons in these four strains. Since the observed LTP deficits resembled those previously seen in transgenic mice with reduced hippocampal cAMP-dependent protein kinase (PKA) activity, we searched for possible strain-dependent differences in cAMP-dependent synaptic facilitation induced by forskolin (an activator of adenylate cyclase) and IBMX (a phosphodiesterase inhibitor). We found that forskolin/IBMX-induced synaptic facilitation was deficient in area CA1 of DBA/2J and CBA/J slices, but not in BL/6J and 129/SvEms/J slices. These defects in cAMP-induced synaptic facilitation may underlie the deficits in memory, observed in CBA/J and DBA/2J mice, that have been previously reported. We conclude that hippocampal LTP is influenced by genetic background and by the temporal characteristics of the stimulation protocol. The plasticity of hippocampal synapses in some inbred mouse strains may be "tuned" to particular temporal patterns of synaptic activity. From a broader perspective, our data support the notion that strain-dependent variation in genetic background is an important factor that can influence the synaptoplastic phenotypes observed in studies that use genetically modified mice to explore the molecular bases of synaptic plasticity.
Collapse
Affiliation(s)
- P V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
300
|
Grunze H. Neurotoxicity of NMDA antagonists: a glutamatergic theory of schizophrenia based on selective impairment of local inhibitory feedback circuits. DIALOGUES IN CLINICAL NEUROSCIENCE 2000. [PMID: 22033472 PMCID: PMC3181601 DOI: 10.31887/dcns.2000.2.3/hgrunze] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modulation of recurrent inhibition is critical not only for the normal function of highly excitable regions of the brain, especially the limbic system, but may also be a primary determining factor for the viability of neurons in these regions. Standard extracellular and intracellular recordings from in vitro brain slices of rat hippocampi were employed to show that recurrent inhibition onto CA1 neurons can be modulated by N-methyl-D-aspartate (NMDA) antagonists. Besides reducing the amplitude of inhibitory postsynaptic potentials (IPSPs) at resting membrane potential conditions, different NMDA antagonists, including the endogenous substance N-acetyl-L-aspartyl-L-glutamic acid (NAAG), are able to block long-term potentiation (LIP) of recurrent inhibition completely at concentrations that are not sufficient to block LTP of the excitatory drive onto pyramidal neurons. This LTP of recurrent inhibition may play a significant role in stimulus discrimination and learning, as simulated in a biophysical computer model of a basic neuronal circuit. Both the amplitude of the IPSP and LTP of the recurrent inhibitory circuit also undergo developmental changes showing their highest expression and vulnerability to chronic NMDA antagonist injections in juvenile rats. Finally, blocking NMDA receptor-dependent transmission in the recurrent inhibition loop may lead to an overall increased excitability of the neuronal network. This may resemble the positive schizophrenic symptoms observed in man, presumably caused by elevated levels of the endogenous NMDA antagonist NAAG.
Collapse
|