251
|
Xia JJ, Wang F, Jiang XN, Jiang TT, Shen LJ, Liu Y, You DL, Ding Y, Ju XF, Wang L, Wu X, Hu SY. Serum iron levels are an independent predictor of in-hospital mortality of critically ill patients: a retrospective, single-institution study. J Int Med Res 2018; 47:66-75. [PMID: 30179058 PMCID: PMC6384462 DOI: 10.1177/0300060518795528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective This study aimed to examine the relationship between serum iron levels and in-hospital mortality in critically ill patients. Methods We retrospectively studied 250 critically ill patients who received treatment at the intensive care unit between June 2015 and May 2017. Blood chemistry and hepatic and renal function were measured. Kaplan–Meier survival curves were plotted according to serum iron levels. Correlations between serum iron levels and other variables were analyzed. Results A total of 165 (66.0%) patients had abnormally low serum iron levels (<10.6 μmol/L). Patients who died during hospitalization had markedly higher Acute Physiology and Chronic Health Evaluation II scores and significantly lower serum iron levels compared with those who survived. Cumulative survival was significantly lower in patients with low serum iron levels than in those with normal serum iron levels in subgroup analysis of older patients (n = 192). Multivariate regression analysis showed that, after adjusting for relevant factors, low serum iron levels remained an independent risk for in-hospital mortality (odds ratio 2.014; 95% confidence interval 1.089, 3.725). Conclusions Low serum iron levels are present in a significant proportion of critically ill patients and are associated with higher in-hospital mortality, particularly in older patients.
Collapse
Affiliation(s)
- Jian-Jun Xia
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Wang
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao-Nan Jiang
- 3 Jiading Town Community Healthcare Center of Jiading District, Shanghai, China
| | - Ting-Ting Jiang
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li-Juan Shen
- 4 Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yue Liu
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Da-Li You
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yong Ding
- 3 Jiading Town Community Healthcare Center of Jiading District, Shanghai, China
| | - Xue-Feng Ju
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li Wang
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao Wu
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shan-You Hu
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
252
|
Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11:ph11030084. [PMID: 30200471 PMCID: PMC6161156 DOI: 10.3390/ph11030084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana C Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Gonçalo Mesquita
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
253
|
Pathophysiology and classification of iron overload diseases; update 2018. Transfus Clin Biol 2018; 26:80-88. [PMID: 30173950 DOI: 10.1016/j.tracli.2018.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
Iron overload pathophysiology has benefited from significant advances in the knowledge of iron metabolism and in molecular genetics. As a consequence, iron overload nosology has been revisited. The hematologist may be confronted to a number of iron overload syndromes, from genetic or acquired origin. Hemochromatoses, mostly but not exclusively related to the HFE gene, correspond to systemic iron overload of genetic origin in which iron excess is the consequence of hepcidin deficiency, hepcidin being the hormone regulating negatively plasma iron. Iron excess develops following hypersideremia and the formation of non-transferrin-bound iron, which targets preferentially parenchymal cells (hepatocytes). The ferroportin disease has a totally different iron overload mechanism consisting of defective egress of cellular iron into the plasma, iron deposition taking place mostly within the macrophages (spleen). Hereditary aceruloplasminemia is peculiar since systemic iron overload involves the brain. Two main types of acquired iron overload can be seen by the hematologist, one related to dyserythropoiesis (involving hypohepcidinemia ), the other related to multiple transfusions (thalassemias, myelodysplasia, hematopoietic stem cell transplantation). Congenital sideroblastic anemias, either monosyndromic (anemia) or polysyndromic (anemia plus extra-hematological syndromes), develop both compartimental iron excess within the erythroblast mitochondria, and systemic iron overload (through dyserythropoiesis and/or transfusions).
Collapse
|
254
|
Singh MM, Kumar R, Tewari S, Agarwal S. Association of GSTT1/GSTM1 and ApoE variants with left ventricular diastolic dysfunction in thalassaemia major patients. ACTA ACUST UNITED AC 2018; 24:20-25. [PMID: 30095041 DOI: 10.1080/10245332.2018.1502397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cardiomyocytes are particularly susceptible to complications from iron loading. The blood transfusions in thalassaemia major create loading of iron that cannot be naturally excreted. Apolipoprotein E and Glutathione S-transferase act as the scavenger of free radicals, which are generated due to excess iron. The variants of Apolipoprotein E (ApoE) and Glutathione S-transferase (GST) may play a role in oxidative damage-induced cardiomyopathy, so we aimed to study the association of genetic variants of these genes on diastolic dysfunction in our patients. MATERIALS AND METHODS One hundred and five β-thalassaemia patients older than 10 years were enrolled for the study. Two-dimensional and M-mode echocardiography analysis was done in all patients. Genotyping of the genetic variants of aforementioned genes was done using the PCR-RFLP method. Serum Glutathione S-transferase levels were estimated by ELISA. RESULTS Diastolic dysfunction was observed in 24 (22.8%) patients, whereas left ventricular hypertrophy was present in 37(35.2%) patients. There was a significant association of GSTM1 null allele with diastolic dysfunction only. Serum GST levels were also positively correlated with e/a and e/e' ratio. Positive association of ApoE E2 allele with the diastolic dysfunction was also seen. CONCLUSIONS Patients having Glutathione S-transferase M1 allele and Apolipoprotein E E2 allele are predisposed to oxidative stress-induced cardiac injury.
Collapse
Affiliation(s)
- Mable Misha Singh
- a Department of Medical Genetics , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Ravindra Kumar
- b Division of Genetic Disorders , ICMR-National Institute for Research in Tribal Health , Jabalpur , India
| | - Satyendra Tewari
- c Department of Cardiology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Sarita Agarwal
- a Department of Medical Genetics , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
255
|
Golfeyz S, Lewis S, Weisberg IS. Hemochromatosis: pathophysiology, evaluation, and management of hepatic iron overload with a focus on MRI. Expert Rev Gastroenterol Hepatol 2018; 12:767-778. [PMID: 29966105 DOI: 10.1080/17474124.2018.1496016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemochromatosis (HH) is an autosomal recessive disorder that occurs in approximately 1 in 200-250 individuals. Mutations in the HFE gene lead to excess iron absorption. Excess iron in the form of non-transferrin-bound iron (NTBI) causes injury and is readily uptaken by cardiomyocytes, pancreatic islet cells, and hepatocytes. Symptoms greatly vary among patients and include fatigue, abdominal pain, arthralgias, impotence, decreased libido, diabetes, and heart failure. Untreated hemochromatosis can lead to chronic liver disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Many invasive and noninvasive diagnostic tests are available to aid in diagnosis and treatment. MRI has emerged as the reference standard imaging modality for the detection and quantification of hepatic iron deposition, as ultrasound (US) is unable to detect iron overload and computed tomography (CT) findings are nonspecific and influenced by multiple confounding variables. If caught and treated early, HH disease progression can significantly be altered. Area covered: The data on Hemochromatosis, iron overload, and MRI were gathered by searching PubMed. Expert commentary: MRI is a great tool for diagnosis and management of iron overload. It is safe, effective, and a standard protocol should be included in diagnostic algorithms of future treatment guidelines.
Collapse
Affiliation(s)
- Shmuel Golfeyz
- a Department of Internal Medicine , Mount Sinai Beth Israel , New York , NY , USA
| | - Sara Lewis
- b Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,c Translational and Molecular Imaging Institute , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Ilan S Weisberg
- d Department of Digestive Diseases and Hepatology , Mount Sinai Beth Israel , New York , NY , USA
| |
Collapse
|
256
|
Serum iron levels increased by cancer chemotherapy correlate the chemotherapy-induced nausea and vomiting. Int J Clin Oncol 2018; 23:1196-1200. [DOI: 10.1007/s10147-018-1321-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022]
|
257
|
Lu H, Lei X, Zhang Q. Liver-specific knockout of histone methyltransferase G9a impairs liver maturation and dysregulates inflammatory, cytoprotective, and drug-processing genes. Xenobiotica 2018; 49:740-752. [PMID: 29912608 DOI: 10.1080/00498254.2018.1490044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methyltransferase G9a is essential for a key gene silencing mark, histone H3 dimethylation at lysine-9 (H3K9me2). Hepatic G9a expression is down-regulated by xenobiotics and diabetes. However, little is known about the role of G9a in liver. Thus, we generated mice with liver-specific knockout (Liv-KO) of G9a. Adult G9a Liv-KO mice had marked loss of H3K9me2 proteins in liver, without overt liver injury or infiltration of inflammatory cells. However, G9a-null livers had ectopic induction of certain genes normally expressed in neural and immune systems. Additionally, G9a-null livers had moderate down-regulation of cytoprotective genes, markedly altered expression of certain important drug-processing genes, elevated endogenous reactive oxygen species, induction of ER stress marker Chop, but decreased glutathione and nuclear Nrf2. microRNA-383, a negative regulator of the PI3K/Akt pathway, was strongly induced in G9a Liv-KO mice. After LPS treatment, G9a Liv-KO mice had aggravated lipid peroxidation and proinflammatory response. Taken together, the present study demonstrates that G9a regulates liver maturation by silencing neural and proinflammatory genes but maintaining/activating cytoprotective and drug-processing genes, in which the G9a/miR-383/PI3K/Akt/Nrf2 (Chop) pathways may play important roles. G9a deficiency due to genetic polymorphism and/or environmental exposure may alter xenobiotic metabolism and aggravate inflammation and liver dysfunction.
Collapse
Affiliation(s)
- Hong Lu
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Xiaohong Lei
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Qinghao Zhang
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| |
Collapse
|
258
|
Brissot P, Bernard DG, Brissot E, Loréal O, Troadec MB. Rare anemias due to genetic iron metabolism defects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:52-63. [PMID: 30115430 DOI: 10.1016/j.mrrev.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
Anemia is defined by a deficiency of hemoglobin, an iron-rich protein that binds oxygen in the blood. It can be due to multiple causes, either acquired or genetic. Alterations of genes involved in iron metabolism may be responsible, usually at a young age, for rare forms of chronic and often severe congenital anemia. These diseases encompass a variety of sideroblastic anemias, characterized by the presence of ring sideroblasts in the bone marrow. Clinical expression of congenital sideroblastic anemia is either monosyndromic (restricted to hematological lineages) or polysyndromic (with systemic expression), depending on whether iron metabolism, and especially heme synthesis, is directly or indirectly affected. Beside sideroblastic anemias, a number of other anemias can develop due to mutations of key proteins acting either on cellular iron transport (such as the DMT1 transporter), plasma iron transport (transferrin), and iron recycling (ceruloplasmin). Contrasting with the aforementioned entities which involve compartmental, and sometimes, systemic iron excess, the iron refractory iron deficiency anemia (IRIDA) corresponds to a usually severe anemia with whole body iron deficiency related to chronic increase of plasma hepcidin, the systemic negative regulator of plasma iron. Once clinically suggested, these diseases are confirmed by genetic testing in specialized laboratories.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ Rennes, INRA, Institut NUMECAN (Nutrition, Metabolisms and Cancer), UMR_S 1241, F-35000 Rennes, France.
| | - Delphine G Bernard
- UMR 1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, Univ. Brest, EFS, IBSAM, Brest, France
| | - Eolia Brissot
- Sorbonne Universités, UPMC Univ. Paris 06, AP-HP, Centre de recherche Saint-Antoine, UMR-S938, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRA, Institut NUMECAN (Nutrition, Metabolisms and Cancer), UMR_S 1241, F-35000 Rennes, France
| | - Marie-Bérengère Troadec
- Univ. Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France.
| |
Collapse
|
259
|
Hepcidin Protects against Lethal Escherichia coli Sepsis in Mice Inoculated with Isolates from Septic Patients. Infect Immun 2018; 86:IAI.00253-18. [PMID: 29735522 DOI: 10.1128/iai.00253-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/01/2018] [Indexed: 01/12/2023] Open
Abstract
Iron is an essential micronutrient for most microbes and their hosts. Mammalian hosts respond to infection by inducing the iron-regulatory hormone hepcidin, which causes iron sequestration and a rapid decrease in the plasma and extracellular iron concentration (hypoferremia). Previous studies showed that hepcidin regulation of iron is essential for protection from infection-associated mortality with the siderophilic pathogens Yersinia enterocolitica and Vibrio vulnificus However, the evolutionary conservation of the hypoferremic response to infection suggests that not only rare siderophilic bacteria but also common pathogens may be targeted by this mechanism. We tested 10 clinical isolates of Escherichia coli from children with sepsis and found that both genetic iron overload (by hepcidin-1 knockout [HKO]) and iatrogenic iron overload (by intravenous iron) potentiated infection with 8 out of the 10 studied isolates: after peritoneal injection of E. coli, iron-loaded mice developed sepsis with 60% to 100% mortality within 24 h, while control wild-type mice suffered 0% mortality. Using one strain for more detailed study, we show that iron overload allows rapid bacterial multiplication and dissemination. We further found that the presence of non-transferrin-bound iron (NTBI) in the circulation is more important than total plasma or tissue iron in rendering mice susceptible to infection and mortality. Postinfection treatment of HKO mice with just two doses of the hepcidin agonist PR73 abolished NTBI and completely prevented sepsis-associated mortality. We demonstrate that the siderophilic phenotype extends to clinically common pathogens. The use of hepcidin agonists promises to be an effective early intervention in patients with infections and dysregulated iron metabolism.
Collapse
|
260
|
Pai AB, Pai MP, Meyer DE, Bales BC, Cotero VE, Zheng N, Jiang W. In vitro and in vivo DFO-chelatable labile iron release profiles among commercially available intravenous iron nanoparticle formulations. Regul Toxicol Pharmacol 2018; 97:17-23. [PMID: 29857115 DOI: 10.1016/j.yrtph.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/19/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022]
Abstract
Intravenous (IV) iron formulations are complex colloidal suspensions of iron oxide nanoparticles. Small changes in formulation can allow more labile iron to be released after injection causing toxicity. Thus, bioequivalence (BE) evaluation of generic IV iron formulations remains challenging. We evaluated labile iron release in vitro and in vivo using a high performance liquid chromatography chelatable iron assay to develop a relational model to support BE. In vitro labile iron release and in vivo labile iron pharmacokinetics were evaluated for Venofer®, Ferrlecit®, generic sodium ferric gluconate complex, InFeD®, Feraheme® and a pre-clinical formulation GE121333. Labile iron release profiles were studied in vitro in 150 mM saline and a biorelevant matrix (rat serum) at 0.952 mgFe/mL. In vivo plasma labile iron concentration-time profiles (t0-240 min) were studied in rats after a 40 mgFe/kg IV dose. In vitro labile iron release in saline was significantly higher compared to rat serum, especially with InFeD®. An in vitro release constant (iKr) was calculated which correlated well with maximal plasma concentrations in the in vivo rat PK model (R2 = 0.711). These data suggest an in vitro to in vivo correlation model of labile iron release kinetics could be applied to BE. Other generic IV iron formulations need to be studied to validate this model.
Collapse
Affiliation(s)
- Amy Barton Pai
- University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI, 48109, USA.
| | - Manjunath P Pai
- University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI, 48109, USA
| | - Dan E Meyer
- General Electric Global Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Brian C Bales
- General Electric Global Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Victoria E Cotero
- General Electric Global Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Nan Zheng
- Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD, 20903, USA
| | - Wenlei Jiang
- Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD, 20903, USA
| |
Collapse
|
261
|
Tripathi AK, Karmakar S, Asthana A, Ashok A, Desai V, Baksi S, Singh N. Transport of Non-Transferrin Bound Iron to the Brain: Implications for Alzheimer's Disease. J Alzheimers Dis 2018; 58:1109-1119. [PMID: 28550259 DOI: 10.3233/jad-170097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct correlation between brain iron and Alzheimer's disease (AD) raises questions regarding the transport of non-transferrin-bound iron (NTBI), a toxic but less researched pool of circulating iron that is likely to increase due to pathological and/or iatrogenic systemic iron overload. Here, we compared the distribution of radiolabeled-NTBI (59Fe-NTBI) and transferrin-bound iron (59Fe-Tf) in mouse models of iron overload in the absence or presence of inflammation. Following a short pulse, most of the 59Fe-NTBI was taken up by the liver, followed by the kidney, pancreas, and heart. Notably, a strong signal of 59Fe-NTBI was detected in the brain ventricular system after 2 h, and the brain parenchyma after 24 h. 59Fe-Tf accumulated mainly in the femur and spleen, and was transported to the brain at a much slower rate than 59Fe-NTBI. In the kidney, 59Fe-NTBI was detected in the cortex after 2 h, and outer medulla after 24 hours. Most of the 59Fe-NTBI and 59Fe-Tf from the kidney was reabsorbed; negligible amount was excreted in the urine. Acute inflammation increased the uptake of 59Fe-NTBI by the kidney and brain from 2-24 hours. Chronic inflammation, on the other hand, resulted in sequestration of iron in the liver and kidney, reducing its transport to the brain. These observations provide direct evidence for the transport of NTBI to the brain, and reveal a complex interplay between inflammation and brain iron homeostasis. Further studies are necessary to determine whether transient increase in NTBI due to systemic iron overload is a risk factor for AD.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Vilok Desai
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shounak Baksi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
262
|
Liu Z, Qiao J, Nagy T, Xiong MP. ROS-triggered degradable iron-chelating nanogels: Safely improving iron elimination in vivo. J Control Release 2018; 283:84-93. [PMID: 29792889 DOI: 10.1016/j.jconrel.2018.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/08/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Iron-mediated generation of highly toxic Reactive Oxygen Species (ROS) plays a major role in the process leading to iron overload-related diseases. The long-term subcutaneous administration of Deferoxamine (DFO) is currently clinically-approved to improve patient symptoms and survival. However, non-specific toxicity and short circulation times of the drug in humans often leads to poor patient compliance. Herein, thioketal-based ROS-responsive polymeric nanogels containing DFO moieties (rNG-DFO) were designed to chelate iron and to degrade under oxidative stimuli into fragments <10 nm to enhance excretion of iron-bound chelates. Serum ferritin levels and iron concentrations in major organs of IO mice decreased following treatment with rNG-DFO, and fecal elimination of iron-bound chelates increased compared to free DFO. Furthermore, rNG-DFO decreased iron mediated oxidative stress levels in vitro and reduced iron-mediated inflammation in the liver of IO mice. The study confirms that ROS-responsive nanogels may serve as a promising alternative to DFO for safer and more efficient iron chelation therapy.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7388, USA
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA.
| |
Collapse
|
263
|
Zhou L, Zhao B, Zhang L, Wang S, Dong D, Lv H, Shang P. Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. Int J Mol Sci 2018; 19:E1545. [PMID: 29789480 PMCID: PMC5983609 DOI: 10.3390/ijms19051545] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential element for the growth and proliferation of cells. Cellular iron uptake, storage, utilization and export are tightly regulated to maintain iron homeostasis. However, cellular iron metabolism pathways are disturbed in most cancer cells. To maintain rapid growth and proliferation, cancer cells acquire large amounts of iron by altering expression of iron metabolism- related proteins. In this paper, normal cellular iron metabolism and the alterations of iron metabolic pathways in cancer cells were summarized. Therapeutic strategies based on targeting the altered iron metabolism were also discussed and disrupting redox homeostasis by intracellular high levels of iron provides new insight for cancer therapy. Altered iron metabolism constitutes a promising therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Liangfu Zhou
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lixiu Zhang
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Huanhuan Lv
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
264
|
Span K, Pieters EHE, Brinks V, Hennink WE, Schellekens H. Evaluation of the suitability of a Sprague Dawley rat model to assess intravenous iron preparations. J Pharmacol Toxicol Methods 2018; 91:7-17. [PMID: 29278742 DOI: 10.1016/j.vascn.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
The aim of the study was to examine the reproducibility of a rat model to assess the preclinical similarity in safety profiles and tissue accumulation of iron products. Accordingly, the effect of several doses of intravenously administered Venofer® and of Ferrlecit® on blood parameters, and on kidney and particularly liver toxicity were examined in non-anemic Sprague Dawley rats. The different analysis showed neither a clear treatment nor a dose effect after multiple injections. The parameters measured in this rat strain showed some iron induced adverse effects, but these could not be correlated to treatment specific differences. The findings presented in this paper indicate the difficulty to define a useful preclinical model to evaluate iron-based nano-colloidal preparations.
Collapse
Affiliation(s)
- Kimberley Span
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Ebel H E Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Vera Brinks
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.
| | - Huub Schellekens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
265
|
Fang S, Zhuo Z, Yu X, Wang H, Feng J. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. J Trace Elem Med Biol 2018; 47:12-20. [PMID: 29544798 DOI: 10.1016/j.jtemb.2018.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations in the intestine and liver. Impaired intestinal barrier function could increase iron transportation, and inflammation along with oxidative stress-enhanced liver iron deposition may cause further liver injury in a vicious circle. These effects were accompanied by lower intestinal segment damage and altered gut microbial composition of rats toward a profile with an increased risk of gut disease.
Collapse
Affiliation(s)
- Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhao Zhuo
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haichao Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
266
|
Abstract
Haemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin-ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein. Non-HFE forms of haemochromatosis due to mutations in HAMP, HJV or TFR2 are much rarer. Mutations in SLC40A1 (also known as FPN1; encoding ferroportin) that prevent hepcidin-ferroportin binding also cause haemochromatosis. Cellular iron excess in HFE and non-HFE forms of haemochromatosis is caused by increased concentrations of plasma iron, which can lead to the accumulation of iron in parenchymal cells, particularly hepatocytes, pancreatic cells and cardiomyocytes. Diagnosis is noninvasive and includes clinical examination, assessment of plasma iron parameters, imaging and genetic testing. The mainstay therapy is phlebotomy, although iron chelation can be used in some patients. Hepcidin supplementation might be an innovative future approach.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for Haemochromatosis, University Hospital of Modena, Modena, Italy
| | - Paul C. Adams
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | | | - Olivier Loréal
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
267
|
Wermke M, Eckoldt J, Götze KS, Klein SA, Bug G, de Wreede LC, Kramer M, Stölzel F, von Bonin M, Schetelig J, Laniado M, Plodeck V, Hofmann WK, Ehninger G, Bornhäuser M, Wolf D, Theurl I, Platzbecker U. Enhanced labile plasma iron and outcome in acute myeloid leukaemia and myelodysplastic syndrome after allogeneic haemopoietic cell transplantation (ALLIVE): a prospective, multicentre, observational trial. LANCET HAEMATOLOGY 2018; 5:e201-e210. [PMID: 29628397 DOI: 10.1016/s2352-3026(18)30036-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND The effect of systemic iron overload on outcomes after allogeneic haemopoietic cell transplantation (HCT) has been a matter of substantial debate. We aimed to investigate the predictive value of both stored (MRI-derived liver iron content) and biologically active iron (enhanced labile plasma iron; eLPI) on post-transplantation outcomes in patients with acute myeloid leukaemia or myelodysplastic syndrome undergoing allogenic HCT. METHODS The prospective, multicentre, observational, ALLogeneic Iron inVEstigators (ALLIVE) trial recruited patients at five centres in Germany. We enrolled patients with acute myeloid leukaemia or myelodysplastic syndrome undergoing allogeneic HCT. Patients underwent cytotoxic conditioning for a median of 6 days (IQR 6-7) before undergoing allogeneic HCT and were followed up for up to 1 year (±3 months) post-transplantation. eLPI was measured in serum samples with the FeROS eLPI kit (Aferrix, Tel-Aviv, Israel) and values greater than 0·4 μmol/L were considered to represent raised eLPI. Liver iron content was measured by MRI. The primary endpoints were the quantitative delineation of eLPI dynamics during allogeneic HCT and the correlation coefficient between liver iron content before HCT and dynamic eLPI (eLPIdyn; maximum eLPI minus baseline eLPI). All patients with available data were included in all analyses. This is the final analysis of this completed trial, which is registered with ClinicalTrials.gov, number NCT01746147. FINDINGS Between Dec 13, 2012, and Dec 23, 2014, 112 patients underwent allogeneic HCT. Liver iron content before allogeneic HCT was not significantly correlated with eLPIdyn (ρ=0·116, p=0·22). Serum eLPI concentrations rapidly increased during conditioning, and most (79 [73%] of 108) patients had raised eLPI by the day of transplantation. Patients with a pretransplant liver iron content greater than or equal to 125 μmol/g had an increased incidence of non-relapse mortality (20%, 95% CI 14-26) compared with those with lower concentrations (7%, 2-12; p=0·039) at day 100. Patients who had raised eLPI at baseline also had a significantly increased incidence of non-relapse mortality at day 100 (33%, 15-52) compared with those who had normal eLPI at baseline (7%, 2-13; p=0·00034). INTERPRETATION eLPI is a possible biological mediator of iron-related toxicity. Peritransplantation eLPI-scavenging strategies could be explored in prospective interventional clinical trials for patients with systemic iron overload. FUNDING The Technical University of Dresden and Novartis.
Collapse
Affiliation(s)
- Martin Wermke
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; Medizinische Fakultät der Technischen Universität, Universitäts KrebsCentrum, Early Clinical Trial Unit, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany.
| | - Julia Eckoldt
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Katharina S Götze
- Technische Universität München, Medizinische Klinik III, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Stefan A Klein
- Universitätsmedizin Mannheim, Medizinische Klinik III, Mannheim, Germany
| | - Gesine Bug
- Universitätsklinikum Frankfurt, Medizinische Klinik II, Frankfurt, Germany
| | - Liesbeth C de Wreede
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands; DKMS Trial Unit, Dresden, Germany
| | - Michael Kramer
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany
| | - Malte von Bonin
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany
| | - Johannes Schetelig
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; DKMS Trial Unit, Dresden, Germany; DKMS gemeinnützige GmbH, Tübingen, Germany
| | - Michael Laniado
- National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; Universitätsklinikum Carl-Gustav-Carus der Technischen Universität, Institut und Poliklinik für Radiologie, Dresden, Germany
| | - Verena Plodeck
- National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; Universitätsklinikum Carl-Gustav-Carus der Technischen Universität, Institut und Poliklinik für Radiologie, Dresden, Germany
| | | | - Gerhard Ehninger
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany
| | - Dominik Wolf
- Universitätsklinikum Bonn (UKB), Medizinische Klinik 3, Onkologie, Hämatologie, Immunologie und Rheumatologie, Bonn, Germany; Universitätsklinik für Innere Medizin 5, Medical University Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Medizinische Universität Innsbruck, Innere Medizin II, Innsbruck, Austria
| | - Uwe Platzbecker
- Medizinische Fakultät Carl-Gustav-Carus der Technischen Universität, Medizinische Klinik und Poliklinik I, University Hospital Carl-Gustav-Carus, Dresden, Germany; National Center for Tumor Diseases (NCT)-Partner Site Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany
| |
Collapse
|
268
|
Chutvanichkul B, Vattanaviboon P, Mas-Oodi S, U-Pratya Y, Wanachiwanawin W. Labile iron pool as a parameter to monitor iron overload and oxidative stress status in β-thalassemic erythrocytes. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:631-636. [PMID: 29486524 DOI: 10.1002/cyto.b.21633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Labile iron pool (LIP) is intracellular nonprotein bound iron that can generate oxygen radicals via the Fenton reaction resulting in oxidative cell damage. Therefore, quantitative measurement of LIP will be helpful for detecting and monitoring the toxic iron status in iron overloaded patients. This study demonstrated LIP level and its correlation to oxidative stress status in β-thalassemic erythrocytes. METHODS LIP and reactive oxygen species (ROS) level, numbers of erythrocyte vesicles and apoptosis were assayed by flow cytometric methods in 30 blood samples from β-thalassemia/hemoglobin E patients and 17 blood samples from healthy volunteers with normal hemoglobin type. RESULTS β-thalassemic erythrocytes showed higher LIP level, defined as the difference in calcein fluorescent intensity of the cells treated with or without deferiprone, than normal erythrocytes (mean ± 2SD as 62.39 ± 39.58 versus 44.65 ± 35.86, P = 0.003). The LIP level above 67, a cutoff value of LIP level obtained from receiver operating characteristic curve analysis, had a significant positive correlation with oxidative stress status for ROS level (r = 0.90, P < 0.001) and also the amount of erythrocyte vesicles (r = 0.79, P = 0.002). In contrast, the LIP level showed a significant negative correlation with the patients' hemoglobin level (r = -0.66, P = 0.028). CONCLUSIONS The LIP assay is suggested as an alternative test to monitor the magnitude of iron overload and its consequent oxidative stress in β-thalassemia. LIP level may also be used as a marker for therapeutic response to iron chelation treatment. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Boonyanuch Chutvanichkul
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hosipital, Mahidol University, Bangkok, 10700, Thailand
| | - Phantip Vattanaviboon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Sumana Mas-Oodi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hosipital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanchai Wanachiwanawin
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hosipital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
269
|
Gummery L, Johnston PEJ, Sutton DGM, Raftery AG. Two cases of hepatopathy and hyperferraemia managed with deferoxamine and phlebotomy. EQUINE VET EDUC 2018. [DOI: 10.1111/eve.12913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L. Gummery
- Weipers Centre Equine Hospital; School of Veterinary Medicine; University of Glasgow; Glasgow UK
| | - P. E. J. Johnston
- Weipers Centre Equine Hospital; School of Veterinary Medicine; University of Glasgow; Glasgow UK
| | - D. G. M. Sutton
- Weipers Centre Equine Hospital; School of Veterinary Medicine; University of Glasgow; Glasgow UK
| | - A. G. Raftery
- Weipers Centre Equine Hospital; School of Veterinary Medicine; University of Glasgow; Glasgow UK
| |
Collapse
|
270
|
Nakatani S, Nakatani A, Ishimura E, Toi N, Tsuda A, Mori K, Emoto M, Hirayama Y, Saito A, Inaba M. Urinary Iron Excretion is Associated with Urinary Full-Length Megalin and Renal Oxidative Stress in Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:458-470. [PMID: 29590662 DOI: 10.1159/000488470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Megalin mediates the uptake of glomerular-filtered iron in the proximal tubules. Urinary full length megalin (C-megalin) excretion has been found to be increased in association with megalin-mediated metabolic load to the endo-lysosomal system in proximal tubular epithelial cells (PTECs) of residual nephrons. In the present study, we investigated the association between urinary iron and C-megalin in chronic kidney disease (CKD) patients, and the possible harmful effect of iron in renal tubules. METHODS Urinary levels of iron and C-megalin were measured in 63 CKD patients using automatic absorption spectrometry and a recently-established sandwich ELISA, respectively. RESULTS Although both urinary C-megalin and urinary total protein levels were correlated with urinary iron (C-megalin: ρ = 0.574, p <0.001; total protein: ρ = 0.500, p <0.001, respectively), urinary C-megalin alone emerged as an independent factor positively associated with urinary iron (β = 0.520, p <0.001) (R2 = 0.75, p <0.001). Furthermore, urinary iron was significantly and positively associated with urinary 8-hydroxydeoxyguanosine, an oxidative stress marker, while no association with other markers of renal tubular injury, i.e., β2-microglobulin and N-acetyl-β-D-glucosaminidase, was noted. CONCLUSIONS Our findings suggest that renal iron handling may be associated with megalin-mediated endo-lysosomal metabolic load in PTECs of residual nephrons and oxidative stress in renal tubules.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Toi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Hirayama
- Reagent Research and Development Department, Denka Seiken Co., Ltd., Gosen, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
271
|
Abstract
Hepcidin agonists are a new class of compounds that regulate blood iron levels, limit iron absorption, and could improve the treatment of hemochromatosis, β-thalassemia, polycythemia vera, and other disorders in which disrupted iron homeostasis causes or contributes to disease. Hepcidin agonists also have the potential to prevent severe complications of siderophilic infections in patients with iron overload or chronic liver disease. This review highlights the preclinical studies that support the development of hepcidin agonists for the treatment of these disorders.
Collapse
|
272
|
Mino Y. [Bioinorganic Chemistry of Iron]. YAKUGAKU ZASSHI 2018; 138:373-387. [PMID: 29503431 DOI: 10.1248/yakushi.17-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on 59Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe3+-H2O2 mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.
Collapse
|
273
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
274
|
Phiwchai I, Yuensook W, Sawaengsiriphon N, Krungchanuchat S, Pilapong C. Tannic acid (TA): A molecular tool for chelating and imaging labile iron. Eur J Pharm Sci 2018; 114:64-73. [DOI: 10.1016/j.ejps.2017.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022]
|
275
|
Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2018; 314:H659-H668. [PMID: 29127238 PMCID: PMC5899260 DOI: 10.1152/ajpheart.00452.2017] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that myocardial iron is a risk factor for left ventricular remodeling in patients after myocardial infarction. Ferroptosis has recently been reported as a mechanism of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well understood. Mechanistic target of rapamycin (mTOR) protects the heart against pathological stimuli such as ischemia. To define the role of cardiac mTOR on cell survival in iron-mediated cell death, we examined cardiomyocyte (CM) cell viability under excess iron and ferroptosis conditions. Adult mouse CMs were isolated from cardiac-specific mTOR transgenic mice, cardiac-specific mTOR knockout mice, or control mice. CMs were treated with ferric iron [Fe(III)]-citrate, erastin, a class 1 ferroptosis inducer, or Ras-selective lethal 3 (RSL3), a class 2 ferroptosis inducer. Live/dead cell viability assays revealed that Fe(III)-citrate, erastin, and RSL3 induced cell death. Cotreatment with ferrostatin-1, a ferroptosis inhibitor, inhibited cell death in all conditions. mTOR overexpression suppressed Fe(III)-citrate, erastin, and RSL3-induced cell death, whereas mTOR deletion exaggerated cell death in these conditions. 2',7'-Dichlorodihydrofluorescein diacetate measurement of reactive oxygen species (ROS) production showed that erastin-induced ROS production was significantly lower in mTOR transgenic versus control CMs. These findings suggest that ferroptosis is a significant type of cell death in CMs and that mTOR plays an important role in protecting CMs against excess iron and ferroptosis, at least in part, by regulating ROS production. Understanding the effects of mTOR in preventing iron-mediated cell death will provide a new therapy for patients with myocardial infarction. NEW & NOTEWORTHY Ferroptosis has recently been reported as a new form of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well characterized. Using cultured adult mouse cardiomyocytes, we demonstrated that the mechanistic target of rapamycin plays an important role in protecting cardiomyocytes against excess iron and ferroptosis.
Collapse
Affiliation(s)
- Yuichi Baba
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University , Kochi , Japan
| | - Jason K Higa
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Briana K Shimada
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Kate M Horiuchi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Tomohiro Suhara
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
- Department of Anesthesiology, Keio University School of Medicine , Tokyo , Japan
| | - Motoi Kobayashi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Jonathan D Woo
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Hiroko Aoyagi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Karra S Marh
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Hiroaki Kitaoka
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University , Kochi , Japan
| | - Takashi Matsui
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| |
Collapse
|
276
|
Guo X, Chen M, Zeng H, Liu P, Zhu X, Zhou F, Liu J, Zhang J, Dong Z, Tang Y, Gao C, Yao P. Quercetin Attenuates Ethanol-Induced Iron Uptake and Myocardial Injury by Regulating the Angiotensin II-L-Type Calcium Channel. Mol Nutr Food Res 2018; 62. [PMID: 29266790 DOI: 10.1002/mnfr.201700772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/19/2017] [Indexed: 01/19/2023]
Abstract
SCOPE Increased iron deposition in the myocardium in alcoholics may lead to increased risk of cardiac dysfunction. Quercetin has been demonstrated to quench production of intracellular free iron-induced -OH, but the effect of quercetin in ethanol-induced cardiac damage remains unclear. This study aims to explore whether quercetin attenuates ethanol-induced iron uptake and myocardial injury by regulating angiotensin II-L-type voltage-dependent Ca2+ channel (Ang II-LTCC). METHODS AND RESULTS Adult male C57BL/6J mice are isocalorically pair-fed either a regular or ethanol-containing Lieber De Carli liquid diets supplemented with either quercetin (100 mg kg-1 bw) or desferrioxamine mesylate (DFO, 100 mg kg-1 bw) for 15 weeks. Quercetin alleviated ethanol-induced histopathological changes, creatine kinase isoenzyme release, Ang II secretion, ROS generation, total cardiac iron, and labile iron level. Ethanol exposure or quercetin intervention fails to regulate traditional iron transporters except LTCC. LTCC is upregulated by ethanol and inhibited by quercetin. In H9C2 cell, LTCC is increased by ethanol (100 mm) and/or Ang II (1 μm) concomitant with iron disorders and oxidative stress. This effect is partially normalized by quercetin (50 μm), nifedipine (LTCC inhibitor, 15 μm), or losartan (Ang II receptor antagonist, 100 μm). CONCLUSION Alcohol-induced cardiac injury is associated with excessive NTBI uptake mediated by Ang II-LTCC activation which may be mediated by quercetin against ethanol cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Chen
- Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Hongmei Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghong Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuangzhuang Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
277
|
Wish JB, Aronoff GR, Bacon BR, Brugnara C, Eckardt KU, Ganz T, Macdougall IC, Núñez J, Perahia AJ, Wood JC. Positive Iron Balance in Chronic Kidney Disease: How Much is Too Much and How to Tell? Am J Nephrol 2018; 47:72-83. [PMID: 29439253 DOI: 10.1159/000486968] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Regulation of body iron occurs at cellular, tissue, and systemic levels. In healthy individuals, iron absorption and losses are minimal, creating a virtually closed system. In the setting of chronic kidney disease and hemodialysis (HD), increased iron losses, reduced iron absorption, and limited iron availability lead to iron deficiency. Intravenous (IV) iron therapy is frequently prescribed to replace lost iron, but determining an individual's iron balance and stores can be challenging and imprecise, contributing to uncertainty about the long-term safety of IV iron therapy. SUMMARY Patients on HD receiving judicious doses of IV iron are likely to be in a state of positive iron balance, yet this does not appear to confer an overt risk for clinically relevant iron toxicity. The concomitant use of iron with erythropoiesis-stimulating agents, the use of maintenance iron dosing regimens, and the reticuloendothelial distribution of hepatic iron deposition likely minimize the potential for iron toxicity in patients on HD. Key Messages: Because no single diagnostic test can, at present, accurately assess iron status and risk for toxicity, clinicians need to take an integrative approach to avoid iron doses that impose excessive exposure while ensuring sufficient replenishment of iron stores capable of overcoming hepcidin blockade and allowing for effective erythropoiesis.
Collapse
Affiliation(s)
- Jay B Wish
- Division of Nephrology, Indiana University Health, Indianapolis, Indiana, USA
| | - George R Aronoff
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- DaVita Kidney Care, Denver, Colorado, USA
| | - Bruce R Bacon
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin, Berlin, Germany
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Iain C Macdougall
- Department of Renal Medicine, King's College Hospital, Denmark Hill, London, United Kingdom
| | - Julio Núñez
- Cardiology Service, Hospital Clínico Universitario, INCLIVA, CIBERCV and University of Valencia, Valencia, Spain
| | - Adam J Perahia
- NorthStar Strategic Consulting, LLC, Gladstone, New Jersey, USA
| | - John C Wood
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
278
|
Determination of Non-Transferrin Bound Iron, Transferrin Bound Iron, Drug Bound Iron and Total Iron in Serum in a Rats after IV Administration of Sodium Ferric Gluconate Complex by Simple Ultrafiltration Inductively Coupled Plasma Mass Spectrometric Detection. NANOMATERIALS 2018; 8:nano8020101. [PMID: 29439469 PMCID: PMC5853732 DOI: 10.3390/nano8020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
A rapid, sensitive and specific ultrafiltration inductively-coupled plasma mass spectrometry (UF-ICP-MSICP-MS) method was developed and validated for the quantification of non-transferrin bound iron (NTBI), transferrin bound iron (TBI), drug bound iron (DI) and total iron (TI) in the same rat serum sample after intravenous (IV) administration of iron gluconate nanoparticles in sucrose solution (Ferrlecit®). Ultrafiltration with a 30 kDa molecular cut-off filter was used for sample cleanup. Different elution solvents were used to separate each form of iron from sample serum. Isolated fractions were subjected to inductively-coupled mass spectrometric analysis after microwave digestion in 4% nitric acid. The reproducibility of the method was evaluated by precision and accuracy. The calibration curve demonstrated linearity from 5-500 ng/mL with a regression (r²) of more than 0.998. This method was effectively implemented to quantify rat pharmacokinetic study samples after intravenous administration of Ferrlecit®. The method was successfully applied to a pharmacokinetic (PK) study of Ferrlecit in rats. The colloidal iron followed first order kinetics with half-life of 2.2 h and reached background or pre-dose levels after 12 h post-dosing. The drug shown a clearance of 0.31 mL/min/kg and volume of distribution of 0.05 L/kg. 19.4 ± 2.4 mL/h/kg.
Collapse
|
279
|
Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem Toxicol 2018; 114:190-203. [PMID: 29432835 DOI: 10.1016/j.fct.2018.02.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
Iron is a life-supporting micronutrient that is required in the human diet, and is essential for maintaining physiological homeostasis. Properly harnessing a redox-active metal such as iron is a great challenge for cells and organisms because an excess of highly reactive iron catalyzes the formation of reactive oxygen species and can lead to cell and tissue damage. Quercetin is a typical flavonoid that is commonly found in fruits and vegetables and has versatile biological effects. From a classical viewpoint, owing to its unique chemical characteristics, quercetin has long been associated with iron metabolism only in the context of its iron-chelating and ROS-scavenging activities. However, within the field of human iron biology, expanding concepts of the roles of quercetin are flourishing, and great strides are being made in understanding the interactions between quercetin and iron. This progress highlights the varied roles of quercetin in iron metabolism, which involve much more than iron chelation alone. A review of these studies provides an ideal context to summarize recent progress and discuss compelling evidence for therapeutic opportunities that could arise from a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
280
|
Ogura J, Babu E, Miyauchi S, Ramachandran S, Nemeth E, Bhutia YD, Ganapathy V. Identification of a novel Na +-coupled Fe 3+-citrate transport system, distinct from mammalian INDY, for uptake of citrate in mammalian cells. Sci Rep 2018; 8:2519. [PMID: 29410496 PMCID: PMC5802838 DOI: 10.1038/s41598-018-20620-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/22/2018] [Indexed: 01/05/2023] Open
Abstract
NaCT is a Na+-coupled transporter for citrate expressed in hepatocytes and neurons. It is the mammalian ortholog of INDY (I’m Not Dead Yet), a transporter which modifies lifespan in Drosophila. Here we describe a hitherto unknown transport system for citrate in mammalian cells. When liver and mammary epithelial cells were pretreated with the iron supplement ferric ammonium citrate (FAC), uptake of citrate increased >10-fold. Iron chelators abrogated the stimulation of citrate uptake in FAC-treated cells. The iron exporter ferroportin had no role in this process. The stimulation of citrate uptake also occurred when Fe3+ was added during uptake without pretreatment. Similarly, uptake of Fe3+ was enhanced by citrate. The Fe3+-citrate uptake was coupled to Na+. This transport system was detectable in primary hepatocytes and neuronal cell lines. The functional features of this citrate transport system distinguish it from NaCT. Loss-of-function mutations in NaCT cause early-onset epilepsy and encephalopathy; the newly discovered Na+-coupled Fe3+-citrate transport system might offer a novel treatment strategy for these patients to deliver citrate into affected neurons independent of NaCT. It also has implications to iron-overload conditions where circulating free iron increases, which would stimulate cellular uptake of citrate and consequently affect multiple metabolic pathways.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ellappan Babu
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Seiji Miyauchi
- Department of Pharmaceutics, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Sabarish Ramachandran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Elizebeta Nemeth
- Department of Medicine and Center for Iron Disorders, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
281
|
Increased sympathovagal imbalance evaluated by heart rate variability is associated with decreased T2* MRI and left ventricular function in transfusion-dependent thalassemia patients. Biosci Rep 2018; 38:BSR20171266. [PMID: 29330222 PMCID: PMC5794499 DOI: 10.1042/bsr20171266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/24/2022] Open
Abstract
Early detection of iron overload cardiomyopathy is an important strategy for decreasing the mortality rate of patients with transfusion-dependent thalassemia (TDT). Although cardiac magnetic resonance (CMR) T2* is effective in detecting cardiac iron deposition, it is costly and not generally available. We investigated whether heart rate variability (HRV) can be used as a screening method of iron overload cardiomyopathy in TDT patients. HRV, evaluated by 24-h Holter monitoring, non-transferrin bound iron (NTBI), serum ferritin, left ventricular (LV) ejection fraction (LVEF), and CMR-T2* were determined. Patients with a cardiac iron overload condition had a significantly higher low frequency/high frequency (LF/HF) ratio than patients without a cardiac iron overload condition. Log-serum ferritin (r = -0.41, P=0.008), serum NTBI (r = -0.313, P=0.029), and LF/HF ratio (r = -0.286, P=0.043) showed a significant correlation with CMR-T2*, however only the LF/HF ratio was significantly correlated with LVEF (r = -0.264, P=0.043). These significant correlations between HRV and CMR-T2* and LVEF in TDT confirmed the beneficial role of HRV as a potential early screening tool of cardiac iron overload in thalassemia patients, especially in a medical center in which CMR T2* is not available. A larger number of TDT patients with cardiac iron overload are needed to confirm this finding.
Collapse
|
282
|
Sherman HG, Jovanovic C, Stolnik S, Rawson FJ. Electrochemical System for the Study of Trans-Plasma Membrane Electron Transport in Whole Eukaryotic Cells. Anal Chem 2018; 90:2780-2786. [DOI: 10.1021/acs.analchem.7b04853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harry G. Sherman
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Snow Stolnik
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Frankie J. Rawson
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
283
|
Brissot P, Cavey T, Ropert M, Gaboriau F, Loréal O. Hemochromatosis: a model of metal-related human toxicosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2007-2013. [PMID: 27628916 DOI: 10.1007/s11356-016-7576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Many environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality. Iron excess can be either of acquired (mostly transfusional) or of genetic origin. Hemochromatosis is the archetype of genetic iron overload diseases and represents a serious health problem. A better understanding of iron metabolism has deeply modified the hemochromatosis field which today benefits from much more efficient diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Hepatology, Faculty of Medicine, University of Rennes1, 2, avenue Pr. Léon BERNARD, 35043, Rennes, France.
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France.
- Inserm-UMR 991, University of Rennes1, Rennes, France.
| | - Thibault Cavey
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | - Martine Ropert
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | | | | |
Collapse
|
284
|
K N L, Venkataranganna M, Gowtham Raj G, Patil H, Dave H. Augmentation of antioxidant and iron(III) chelation properties of tertiary mixture of bioactive ligands. J Trace Elem Med Biol 2018; 45:114-124. [PMID: 29173467 DOI: 10.1016/j.jtemb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
The excess of iron in plasma and cellular compartment pose direct and indirect toxic effects. In the present investigation, we proposed additive function of nutritional bioactive ligands in combination which has shown enhanced antioxidant and iron(III) chelation property. The optimal interaction and in vitro antioxidant activity of tertiary mixture comprising of curcumin+quercetin+gallic acid was validated by central composite design (CCD) based on ferric reducing antioxidant power assay (FRAP). The additive denticity of nutritional bioactive ligands was investigated by UV-vis, FTIR & MALDI-TOF-MS analysis, which has given substantial evidence for the formation of tris-bidentate [curcumin-quercetin-gallic acid-Fe(III)] co-ordination complex. The in vivo proof of concept of the hypothesis was tested in iron intoxicated male wistar rats intoxicated with iron dextran. Co-administration curcumin+quercetin+gallic acid (CQG) exhibit dose dependent response & found effective in subsiding acute iron intoxication both at plasma and cellular level, evaluated by studies including serum ferritin, ICP-OES, lipid peroxidation and histopathology studies among others. Thus, we conclude that in vitro and in vivo studies supported our hypothesis to deduce additive function nutritional ligands to counteract direct and indirect effects of iron(III).
Collapse
Affiliation(s)
- Lokesh K N
- Ramaiah Institute of Technology, Bangaluru, 560054, Karnataka, India; Visvesvaraya Technological University, Belgavi, 590018, Karnataka, India.
| | | | - Gunti Gowtham Raj
- Connexios Life Sciences Pvt Ltd, Bangaluru, 560078, Karnataka, India
| | - Hansraj Patil
- Connexios Life Sciences Pvt Ltd, Bangaluru, 560078, Karnataka, India
| | - Hardik Dave
- Connexios Life Sciences Pvt Ltd, Bangaluru, 560078, Karnataka, India
| |
Collapse
|
285
|
Zacharski LR, Shamayeva G, Chow BK. Iron reduction response and demographic differences between diabetics and non-diabetics with cardiovascular disease entered into a controlled clinical trial. Metallomics 2018; 10:264-277. [DOI: 10.1039/c7mt00282c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filings of elemental iron separated magnetically from a homogenate of breakfast cereal implicated in the risk of cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Leo R. Zacharski
- Veterans Affairs New England Health Care System
- Research Service (151)
- VA Medical Center
- White River Jct
- USA
| | - Galina Shamayeva
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| | - Bruce K. Chow
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| |
Collapse
|
286
|
Manto M, Hampe CS. Endocrine disorders and the cerebellum: from neurodevelopmental injury to late-onset ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:353-368. [PMID: 29891071 DOI: 10.1016/b978-0-444-64189-2.00023-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hormonal disorders are a source of cerebellar ataxia in both children and adults. Normal development of the cerebellum is critically dependent on thyroid hormone, which crosses both the blood-brain barrier and the blood-cerebrospinal fluid barrier thanks to specific transporters, including monocarboxylate transporter 8 and the organic anion-transporting polypeptide 1C1. In particular, growth and dendritic arborization of Purkinje neurons, synaptogenesis, and myelination are dependent on thyroid hormone. Disturbances of thyroid hormone may also impact on cerebellar ataxias of other origin, decompensating or aggravating the pre-existing ataxia manifesting with motor ataxia, oculomotor ataxia, and/or Schmahmann syndrome. Parathyroid disorders are associated with a genuine cerebellar syndrome, but symptoms may be subtle. The main conditions combining diabetes and cerebellar ataxia are Friedreich ataxia, ataxia associated with anti-GAD antibodies, autoimmune polyglandular syndromes, aceruloplasminemia, and cerebellar ataxia associated with hypogonadism (especially Holmes ataxia/Boucher-Neuhäuser syndrome). The general workup of cerebellar disorders should include the evaluation of hormonal status, including thyroid-stimulating hormone and free thyroxine levels, and hormonal replacement should be considered depending on the laboratory results. Cerebellar deficits may be reversible in some cases.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
287
|
Barone E, Arena A, Head E, Butterfield DA, Perluigi M. Disturbance of redox homeostasis in Down Syndrome: Role of iron dysmetabolism. Free Radic Biol Med 2018; 114:84-93. [PMID: 28705658 PMCID: PMC5748256 DOI: 10.1016/j.freeradbiomed.2017.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/08/2023]
Abstract
Down Syndrome (DS) is the most common genetic form of intellectual disability that leads in the majority of cases to development of early-onset Alzheimer-like dementia (AD). The neuropathology of DS has several common features with AD including alteration of redox homeostasis, mitochondrial deficits, and inflammation among others. Interestingly, some of the genes encoded by chromosome 21 are responsible of increased oxidative stress (OS) conditions that are further exacerbated by decreased antioxidant defense. Previous studies from our groups showed that accumulation of oxidative damage is an early event in DS neurodegeneration and that oxidative modifications of selected proteins affects the integrity of the protein degradative systems, antioxidant response, neuronal integrity and energy metabolism. In particular, the current review elaborates recent findings demonstrating the accumulation of oxidative damage in DS and we focus attention on specific deregulation of iron metabolism, which affects both the central nervous system and the periphery. Iron dysmetabolism is a well-recognized factor that contributes to neurodegeneration; thus we opine that better understanding how and to what extent the concerted loss of iron dyshomeostasis and increased OS occur in DS could provide novel insights for the development of therapeutic strategies for the treatment of Alzheimer-like dementia.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506 USA; Department of Neurology, University of Kentucky, Lexington, KY 40506 USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506 USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
288
|
Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological Roles of Iron in Cardiovascular Disease. Curr Drug Targets 2018; 19:1068-1076. [PMID: 29874997 PMCID: PMC6469984 DOI: 10.2174/1389450119666180605112235] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral required for a variety of vital biological functions. Despite being vital for life, iron also has potentially toxic aspects. Iron has been investigated as a risk factor for coronary artery disease (CAD), however, iron's toxicity in CAD patients still remains controversial. One possible mechanism behind the toxicity of iron is "ferroptosis", a newly described form of irondependent cell death. Ferroptosis is an iron-dependent form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in ischemiareperfusion (I/R) injury and several other diseases. Recently, we reported that ferroptosis is a significant form of cell death in cardiomyocytes. Moreover, myocardial hemorrhage, a major event in the pathogenesis of heart failure, could trigger the release of free iron into cardiac muscle and is an independent predictor of adverse left ventricular remodeling after myocardial infarction. Iron deposition in the heart can now be detected with advanced imaging methods, such as T2 star (T2*) cardiac magnetic resonance imaging, which can non-invasively predict iron levels in the myocardium and detect myocardial hemorrhage, thus existing technology could be used to assess myocardial iron. We will discuss the role of iron in cardiovascular diseases and especially with regard to myocardial I/R injury.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nicholas K. Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Jason K. Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| |
Collapse
|
289
|
|
290
|
Beekman CR, Matta M, Thomas CD, Mohammad A, Stewart S, Xu L, Chockalingam A, Shea K, Sun D, Jiang W, Patel V, Rouse R. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 8:E10. [PMID: 29283393 PMCID: PMC5791097 DOI: 10.3390/nano8010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Relative biodistribution of FDA-approved innovator and generic sodium ferric gluconate (SFG) drug products was investigated to identify differences in tissue distribution of iron after intravenous dosing to rats. Three equal cohorts of 42 male Sprague-Dawley rats were created with each cohort receiving one of three treatments: (1) the innovator SFG product dosed intravenously at a concentration of 40 mg/kg; (2) the generic SFG product dosed intravenously at a concentration of 40 mg/kg; (3) saline dosed intravenously at equivalent volume to SFG products. Sampling time points were 15 min, 1 h, 8 h, 1 week, two weeks, four weeks, and six weeks post-treatment. Six rats from each group were sacrificed at each time point. Serum, femoral bone marrow, lungs, brain, heart, kidneys, liver, and spleen were harvested and evaluated for total iron concentration by ICP-MS. The ICP-MS analytical method was validated with linearity, range, accuracy, and precision. Results were determined for mean iron concentrations (µg/g) and mean total iron (whole tissue) content (µg/tissue) for each tissue of all groups at each time point. A percent of total distribution to each tissue was calculated for both products. At any given time point, the overall percent iron concentration distribution did not vary between the two SFG drugs by more than 7% in any tissue. Overall, this study demonstrated similar tissue biodistribution for the two SFG products in the examined tissues.
Collapse
Affiliation(s)
- Christopher R Beekman
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Murali Matta
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Christopher D Thomas
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Adil Mohammad
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Division of Product Quality Research, Silver Spring, MD 20993, USA.
| | - Sharron Stewart
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Lin Xu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Ashok Chockalingam
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Katherine Shea
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Dajun Sun
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, USA.
| | - Wenlei Jiang
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, USA.
| | - Vikram Patel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| |
Collapse
|
291
|
Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Med 2017; 46:e272-e278. [DOI: 10.1016/j.lpm.2017.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
|
292
|
Kalhan TG, Bateman DA, Bowker RM, Hod EA, Kashyap S. Effect of red blood cell storage time on markers of hemolysis and inflammation in transfused very low birth weight infants. Pediatr Res 2017; 82:964-969. [PMID: 28738026 PMCID: PMC5685900 DOI: 10.1038/pr.2017.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/18/2017] [Indexed: 12/19/2022]
Abstract
BackgroundProlonged storage of transfused red blood cells (RBCs) is associated with hemolysis in healthy adults and inflammation in animal models. We aimed to determine whether storage duration affects markers of hemolysis (e.g., serum bilirubin, iron, and non-transferrin-bound iron (NTBI)) and inflammation (e.g., interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1) in transfused very low birth weight (VLBW) infants.MethodsBlood samples from 23 independent transfusion events were collected by heel stick before and 2-6 h after transfusion.ResultsSerum iron, total bilirubin, NTBI, and MCP-1 levels were significantly increased after transfusion of RBCs (P<0.05 for each comparison). The storage age of transfused RBCs positively correlated with increases in NTBI following transfusion (P<0.001; R2=0.44). No associations between storage duration and changes in the other analytes were observed.ConclusionTransfusion of RBCs into VLBW infants is associated with increased markers of hemolysis and the inflammatory chemokine MCP-1. RBC-storage duration only correlated with increases in NTBI levels following transfusion. NTBI was only observed in healthy adults following 35 days of storage; however, this study suggests that VLBW infants are potentially more susceptible to produce this pathological form of iron, with increased levels observed after transfusion of only 20-day-old RBCs.
Collapse
Affiliation(s)
- Tamara G. Kalhan
- Division of Neonatology, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David A. Bateman
- Division of Neonatology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Rakhee M. Bowker
- Division of Neonatology, Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032,Correspondence: Eldad A. Hod, M.D., Department of Pathology and Cell Biology, 630 West 168th St, Room P&S 14-434, Laboratory of Transfusion Biology, College of Physicians & Surgeons of Columbia University, New York, NY 10032; Phone: 212-342-5648;
| | - Sudha Kashyap
- Division of Neonatology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
293
|
Pfeiffer CM, Looker AC. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr 2017; 106:1606S-1614S. [PMID: 29070545 PMCID: PMC5701713 DOI: 10.3945/ajcn.117.155887] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biochemical assessment of iron status relies on serum-based indicators, such as serum ferritin (SF), transferrin saturation, and soluble transferrin receptor (sTfR), as well as erythrocyte protoporphyrin. These indicators present challenges for clinical practice and national nutrition surveys, and often iron status interpretation is based on the combination of several indicators. The diagnosis of iron deficiency (ID) through SF concentration, the most commonly used indicator, is complicated by concomitant inflammation. sTfR concentration is an indicator of functional ID that is not an acute-phase reactant, but challenges in its interpretation arise because of the lack of assay standardization, common reference ranges, and common cutoffs. It is unclear which indicators are best suited to assess excess iron status. The value of hepcidin, non-transferrin-bound iron, and reticulocyte indexes is being explored in research settings. Serum-based indicators are generally measured on fully automated clinical analyzers available in most hospitals. Although international reference materials have been available for years, the standardization of immunoassays is complicated by the heterogeneity of antibodies used and the absence of physicochemical reference methods to establish "true" concentrations. From 1988 to 2006, the assessment of iron status in NHANES was based on the multi-indicator ferritin model. However, the model did not indicate the severity of ID and produced categorical estimates. More recently, iron status assessment in NHANES has used the total body iron stores (TBI) model, in which the log ratio of sTfR to SF is assessed. Together, sTfR and SF concentrations cover the full range of iron status. The TBI model better predicts the absence of bone marrow iron than SF concentration alone, and TBI can be analyzed as a continuous variable. Additional consideration of methodologies, interpretation of indicators, and analytic standardization is important for further improvements in iron status assessment.
Collapse
Affiliation(s)
| | - Anne C Looker
- National Center for Health Statistics, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
294
|
Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio L, Moreno J, Tarin C, Burillo E, Fernandez-Garcia C, Egido J, Meilhac O, Michel JB, Martin-Ventura J. Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: Detoxifying mechanisms and potential therapeutic options. Thromb Haemost 2017; 108:435-42. [DOI: 10.1160/th12-04-0248] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022]
Abstract
SummaryOxidative stress is involved in the chronic pathological vascular remodelling of both abdominal aortic aneurysm and occlusive atherosclerosis. Red blood cells (RBCs), leukocytes and platelets present in both, aneurysmal intraluminal thrombus and intraplaque haemorraghes, could be involved in the redox imbalance inside diseased arterial tissues. RBCs haemolysis may release the pro-oxidant haemoglobin (Hb), which transfers heme to tissue and low-density lipoproteins. Heme-iron potentiates molecular, cell and tissue toxicity mediated by leukocytes and other sources of reactive oxygen species (ROS). Polymorphonuclear neutrophils release myeloperoxidase and, along with activated platelets, produce superoxide mediated by NADPH oxidase, causing oxidative damage. In response to this pro-oxidant milieu, several anti-oxidant molecules of plasma or cell origin can prevent ROS production. Free Hb binds to haptoglobin (Hp) and once Hp-Hb complex is endocytosed by CD163, liberated heme is converted into less toxic compounds by heme oxygenase-1. Iron homeostasis is mainly regulated by transferrin, which transports ferric ions to other cells. Transferrin-bound iron is internalised via endocytosis mediated by transferrin receptor. Once inside the cell, iron is mainly stored by ferritin. Other non hemo-iron related antioxidant enzymes (e.g. superoxide dismutase, catalase, thioredoxin and peroxiredoxin) are also involved in redox modulation in vascular remodelling. Oxidative stress is a main determinant of chronic pathological remodelling of the arterial wall, partially linked to the presence of RBCs, leukocytes, platelets and oxidised fibrin within tissue and to the imbalance between pro-/anti-oxidant molecules. Understanding the complex mechanisms underlying redox imbalance could help to define novel potential targets to decrease atherothrombotic risk.
Collapse
|
295
|
Brissot P, Cavey T, Ropert M, Guggenbuhl P, Loréal O. Genetic hemochromatosis: Pathophysiology, diagnostic and therapeutic management. Presse Med 2017; 46:e288-e295. [PMID: 29158016 DOI: 10.1016/j.lpm.2017.05.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
The term hemochromatosis (HC) corresponds to several diseases characterized by systemic iron overload of genetic origin and affecting both the quality of life and life expectancy. Major improvement in the knowledge of iron metabolism permits to divide these diseases into two main pathophysiological categories. For most HC forms (types 1, 2, 3 and 4B HC) iron overload is related to cellular hepcidin deprivation which causes an increase of plasma iron concentration and the appearance of plasma non-transferrin bound iron. In contrast, iron excess in type 4A ferroportin disease is related to decreased cellular iron export. Whatever the HC type, the diagnosis rests on a non-invasive strategy, combining clinical, biological and imaging data. The mainstay of the treatment remains venesection therapy with the perspective of hepcidin supplementation for hepcidin deprivation-related HC. Prevention of HC is critical at the family level and, for type 1 HC, remains a major goal, although still debated, at the population level.
Collapse
Affiliation(s)
- Pierre Brissot
- University of Rennes 1, Hepatology, Faculty of Medicine, 2, avenue du Pr. Léon-Bernard, 35000 Rennes, France; Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France.
| | - Thibault Cavey
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Specialized Biochemistry, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Martine Ropert
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Specialized Biochemistry, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Pascal Guggenbuhl
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Rheumatology, 2, rue Henri-Le-Guilloux, Rennes, France
| | - Olivier Loréal
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| |
Collapse
|
296
|
de Swart L, Reiniers C, Bagguley T, van Marrewijk C, Bowen D, Hellström-Lindberg E, Tatic A, Symeonidis A, Huls G, Cermak J, van de Loosdrecht AA, Garelius H, Culligan D, Macheta M, Spanoudakis M, Panagiotidis P, Krejci M, Blijlevens N, Langemeijer S, Droste J, Swinkels DW, Smith A, de Witte T. Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes. Haematologica 2017; 103:69-79. [PMID: 29122992 PMCID: PMC5777192 DOI: 10.3324/haematol.2017.171884] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant-mediated tissue injury through the formation of toxic iron species, caused either by red blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron metabolism and the presence of potentially toxic iron species and their impact on survival. Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients without. Increases of hepcidin and non-transferrin bound iron levels were visible early in follow-up of all transfusion-dependent patient groups. Hepcidin levels significantly decreased over time in transfusion-independent patients with ringed sideroblasts. Increased soluble transferrin receptor levels in transfusion-independent patients with ringed sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of hepcidin production in these patients. Detectable labile plasma iron levels in combination with high transferrin saturation levels occurred almost exclusively in patients with ringed sideroblasts and all transfusion-dependent patient groups. Detectable labile plasma iron levels in transfusion-dependent patients without ringed sideroblasts were associated with decreased survival. In conclusion, toxic iron species occurred in all transfusion-dependent patients and in transfusion-independent patients with ringed sideroblasts. Labile plasma iron appeared to be a clinically relevant measure for potential iron toxicity and a prognostic factor for survival in transfusion-dependent patients. clinicaltrials.gov Identifier: 00600860.
Collapse
Affiliation(s)
- Louise de Swart
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Chloé Reiniers
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Timothy Bagguley
- Epidemiology and Cancer Statistics Group, University of York, UK
| | - Corine van Marrewijk
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - David Bowen
- St. James's Institute of Oncology, Leeds Teaching Hospitals, UK
| | - Eva Hellström-Lindberg
- Department of Medicine, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Argiris Symeonidis
- Department of Medicine, Division of Hematology, University of Patras Medical School, Greece
| | - Gerwin Huls
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology & Blood Transfusion, Prague, Czech Republic
| | | | - Hege Garelius
- Department of Medicine, Section of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Mac Macheta
- Department of Haematology, Blackpool Victoria Hospital, Lancashire, UK
| | | | - Panagiotis Panagiotidis
- Department of Hematology, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Marta Krejci
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Czech Republic
| | - Nicole Blijlevens
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Saskia Langemeijer
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Jackie Droste
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Hepcidinanalysis.com, and Radboudumc expertise center for iron disorders, Radboud university medical center, Nijmegen, the Netherlands and
| | - Alex Smith
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Theo de Witte
- Nijmegen Center for Molecular Life Sciences, Department of Tumor Immunology, Radboud university medical center, the Netherlands
| | | |
Collapse
|
297
|
Stein J, Aksan A, Farrag K, Dignass A, Radeke HH. Management of inflammatory bowel disease-related anemia and iron deficiency with specific reference to the role of intravenous iron in current practice. Expert Opin Pharmacother 2017; 18:1721-1737. [PMID: 29019427 DOI: 10.1080/14656566.2017.1391790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anemia is a common extraintestinal manifestation in patients with inflammatory bowel disease, impacting disease prognosis, morbidity, hospitalization rates and time lost from work. While iron deficiency anemia and anemia of chronic inflammation predominate, combinations of hematimetric and biochemical markers facilitate the diagnosis and targeted therapy of other etiologies according to their underlying pathophysiological causes. Intravenous iron replacement is currently recommended in IBD patients with moderate to severe anemia or intolerance to oral iron. Areas covered: This review examines the impact, pathophysiology and diagnostics of iron deficiency and anemia, compares the characteristics and safety profiles of available oral and intravenous iron preparations, and highlights issues which require consideration in decision making for therapy administration and monitoring. Expert opinion: Modern intravenous iron formulations have been shown to be safe and effective in IBD patients, allowing rapid anemia correction and repletion of iron stores. While traditional oral iron preparations are associated with increased inflammation, negative effects on the microbiome, and poor tolerance and compliance, first clinical trial data indicate that newer oral compounds such as ferric maltol and sucrosomial iron offer improved tolerability and may thus offer a viable alternative for the future.
Collapse
Affiliation(s)
- Jürgen Stein
- a Crohn Colitis Clinical Research Center Rhein-Main , Frankfurt/Main , Germany
- b Department of Pharmaceutical Chemistry , University of Frankfurt , Frankfurt/Main , Germany
- c Department of Gastroenterology and Clinical Nutrition , DGD Clinics Sachsenhausen , Frankfurt/Main , Germany
| | - Ayşegül Aksan
- a Crohn Colitis Clinical Research Center Rhein-Main , Frankfurt/Main , Germany
- d Faculty of Health Sciences , Hacettepe University , Ankara , Turkey
| | - Karima Farrag
- a Crohn Colitis Clinical Research Center Rhein-Main , Frankfurt/Main , Germany
- c Department of Gastroenterology and Clinical Nutrition , DGD Clinics Sachsenhausen , Frankfurt/Main , Germany
| | - Axel Dignass
- a Crohn Colitis Clinical Research Center Rhein-Main , Frankfurt/Main , Germany
- e Department of Medicine I , Agaplesion Markus Hospital , Frankfurt/Main , Germany
| | - Heinfried H Radeke
- a Crohn Colitis Clinical Research Center Rhein-Main , Frankfurt/Main , Germany
- b Department of Pharmaceutical Chemistry , University of Frankfurt , Frankfurt/Main , Germany
| |
Collapse
|
298
|
Strzelak K, Rybkowska N, Wiśniewska A, Koncki R. Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum. Anal Chim Acta 2017; 995:43-51. [PMID: 29126480 DOI: 10.1016/j.aca.2017.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/28/2023]
Abstract
The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L-1 and 9.1 μmol L-1, respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC.
Collapse
Affiliation(s)
- Kamil Strzelak
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| | - Natalia Rybkowska
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Wiśniewska
- Medical University of Warsaw, Faculty of Health Sciences, Department of Laboratory Diagnostics, Banacha 1a, 02-097 Warsaw, Poland
| | - Robert Koncki
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
299
|
Deschemin JC, Mathieu JRR, Zumerle S, Peyssonnaux C, Vaulont S. Pulmonary Iron Homeostasis in Hepcidin Knockout Mice. Front Physiol 2017; 8:804. [PMID: 29089902 PMCID: PMC5650979 DOI: 10.3389/fphys.2017.00804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
Pulmonary iron excess is deleterious and contributes to a range of chronic and acute inflammatory diseases. Optimal lung iron concentration is maintained through dynamic regulation of iron transport and storage proteins. The iron-regulatory hormone hepcidin is also expressed in the lung. In order to better understand the interactions between iron-associated molecules and the hepcidin-ferroportin axis in lung iron balance, we examined lung physiology and inflammatory responses in two murine models of systemic iron-loading, either hepcidin knock-out (Hepc KO) or liver-specific hepcidin KO mice (Hepc KOliv), which do (Hepc KOliv) or do not (Hepc KO) express lung hepcidin. We have found that increased plasma iron in Hepc KO mice is associated with increased pulmonary iron levels, consistent with increased cellular iron uptake by pulmonary epithelial cells, together with an increase at the apical membrane of the cells of the iron exporter ferroportin, consistent with increased iron export in the alveoli. Subsequently, alveolar macrophages (AM) accumulate iron in a non-toxic form and this is associated with elevated production of ferritin. The accumulation of iron in the lung macrophages of hepcidin KO mice contrasts with splenic and hepatic macrophages which contain low iron levels as we have previously reported. Hepc KOliv mice with liver-specific hepcidin deficiency demonstrated same pulmonary iron overload profile as the Hepc KO mice, suggesting that pulmonary hepcidin is not critical in maintaining local iron homeostasis. In addition, the high iron load in the lung of Hepc KO mice does not appear to enhance acute lung inflammation or injury. Lastly, we have shown that intraperitoneal LPS injection is not associated with pulmonary hepcidin induction, despite high levels of inflammatory cytokines. However, intranasal LPS injection stimulates a hepcidin response, likely derived from AM, and alters pulmonary iron content in Hepc KO mice.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- Institut National de la Santé et de la Recherche Médicale, U1016 Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jacques R R Mathieu
- Institut National de la Santé et de la Recherche Médicale, U1016 Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sara Zumerle
- Institut National de la Santé et de la Recherche Médicale, U1016 Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Institut National de la Santé et de la Recherche Médicale, U1016 Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Institut National de la Santé et de la Recherche Médicale, U1016 Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
300
|
Bardou-Jacquet E, Lainé F, Guggenbuhl P, Morcet J, Jézéquel C, Guyader D, Moirand R, Deugnier Y. Worse Outcomes of Patients With HFE Hemochromatosis With Persistent Increases in Transferrin Saturation During Maintenance Therapy. Clin Gastroenterol Hepatol 2017; 15:1620-1627. [PMID: 28111337 DOI: 10.1016/j.cgh.2016.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Even if patients with hemochromatosis maintain low serum levels of ferritin, they still have an increased risk of general and joint symptoms, which reduce quality of life. This could be related to persistently increased transferrin saturation. We assessed whether duration of exposure to increased transferrin saturation during maintenance therapy is associated with more severe general and joint symptoms. METHODS We performed a longitudinal cohort study of 266 individuals homozygous for the C282Y substitution in HFE, seen at a tertiary reference center in Rennes, France, and followed for 3 or more years after initial iron removal. Serum ferritin and transferrin saturation were measured at the same time points; values were used to calculate duration of exposure to serum ferritin 50 μg/L or more (FRT50exp) and to determine transferrin saturation 50% or greater (SAT50exp). Clinical and biochemical follow-up data were recorded from log books completed during maintenance therapy. The primary outcome was change in general and joint symptoms, determined from answers to a self-administered questionnaire. RESULTS Patients were followed for 13.5 ± 5.9 years. FRT50exp (3.2 ± 3.5 years) and SAT50exp (4.5 ± 3.4 years) values correlated (r = 0.38; P < .0001), but each associated with different variables in multivariate analysis. We found independent associations, regardless of follow-up time, between SAT50exp ≥6 years and worsened joint symptoms (odds ratio [OR], 4.19; 95% confidence interval [CI], 1.88-9.31), and between SAT50exp ≥6 years and decreased athletic ability (OR, 2.35; 95% CI, 1.16-4.73). SAT50exp ≥8 years associated independently with decreased work ability (OR, 3.20; 95% CI, 1.40-7.30) and decreased libido (OR, 3.49; 95% CI, 1.56-7.80). CONCLUSIONS In a longitudinal study of patients treated for hemochromatosis, we associated duration of exposure to increased transferrin saturation (longer than 6 years) with more severe general and joint symptoms. Maintenance of serum levels of ferritin at 50 μg/L or less does not indicate control of transferrin saturation, so guidelines on the management of hemochromatosis require revision.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France.
| | - Fabrice Lainé
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Pascal Guggenbuhl
- University of Rennes 1, Faculty of Medicine, Rennes, France; CHU Rennes, Service de Rhumatologie, Rennes, France; INSERM UMR 991, Rennes, France
| | | | - Caroline Jézéquel
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Dominique Guyader
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Romain Moirand
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Yves Deugnier
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| |
Collapse
|