251
|
Haugsten EM, Malecki J, Bjørklund SMS, Olsnes S, Wesche J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell 2008; 19:3390-403. [PMID: 18480409 DOI: 10.1091/mbc.e07-12-1219] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endocytosis and targeting of growth factor receptors for lysosomal degradation have been associated with ubiquitination of the intracellular part of the receptors. To elucidate the role of receptor ubiquitination in internalization and sorting of fibroblast growth factor receptor (FGFR), we constructed several mutants of FGFR1 in which lysines, potential ubiquitination sites, were substituted for arginines. Substitution of all lysine residues in the intracellular part of FGFR1 resulted in inactivation of the tyrosine kinase domain of the receptor. However, several multilysine FGFR1 mutants, where up to 26 of 29 lysines in the intracellular part of the receptor were mutated, retained tyrosine kinase activity. The active multilysine mutants were poorly ubiquitinated, but internalized normally, indicating that ubiquitination of the receptor is not required for endocytosis. In contrast, degradation of the multilysine mutants was dramatically reduced as the mutants were inefficiently transported to lysosomes but rather sorted to recycling endosomes. The altered sorting resulted in sustained signaling. The duration of FGFR1 signaling seems to be tightly regulated by receptor ubiquitination and subsequent sorting to the lysosomes for degradation.
Collapse
Affiliation(s)
- Ellen Margrethe Haugsten
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
252
|
Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 2008; 4:e1000054. [PMID: 18437204 PMCID: PMC2291027 DOI: 10.1371/journal.pgen.1000054] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 03/18/2008] [Indexed: 01/11/2023] Open
Abstract
A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
Collapse
|
253
|
Mori S, Wu CY, Yamaji S, Saegusa J, Shi B, Ma Z, Kuwabara Y, Lam KS, Isseroff RR, Takada YK, Takada Y. Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J Biol Chem 2008; 283:18066-75. [PMID: 18441324 DOI: 10.1074/jbc.m801213200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrins play a role in fibroblast growth factor (FGF) signaling through cross-talk with FGF receptors (FGFRs), but the mechanism underlying the cross-talk is unknown. We discovered that FGF1 directly bound to soluble and cell-surface integrin alphavbeta3 (K(D) about 1 microm). Antagonists to alphavbeta3 (monoclonal antibody 7E3 and cyclic RGDfV) blocked this interaction. alphavbeta3 was the predominant, if not the only, integrin that bound to FGF1, because FGF1 bound only weakly to several beta1 integrins tested. We presented evidence that the CYDMKTTC sequence (the specificity loop) within the ligand-binding site of beta3 plays a role in FGF1 binding. We found that the integrin-binding site of FGF1 overlaps with the heparin-binding site but is distinct from the FGFR-binding site using docking simulation and mutagenesis. We identified an FGF1 mutant (R50E) that was defective in integrin binding but still bound to heparin and FGFR. R50E was defective in inducing DNA synthesis, cell proliferation, cell migration, and chemotaxis, suggesting that the direct integrin binding to FGF1 is critical for FGF signaling. Nevertheless, R50E induced phosphorylation of FGFR1 and FRS2alpha and activation of AKT and ERK1/2. These results suggest that the defect in R50E in FGF signaling is not in the initial activation of FGF signaling pathway components, but in the later steps in FGF signaling. We propose that R50E is a useful tool to identify the role of integrins in FGF signaling.
Collapse
Affiliation(s)
- Seiji Mori
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Cotton LM, O'Bryan MK, Hinton BT. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 2008; 29:193-216. [PMID: 18216218 PMCID: PMC2528845 DOI: 10.1210/er.2007-0028] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/29/2007] [Indexed: 12/25/2022]
Abstract
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system.
Collapse
Affiliation(s)
- Leanne M Cotton
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
255
|
Lee E, Haiman CA, Ma H, Van Den Berg D, Bernstein L, Ursin G. The role of established breast cancer susceptibility loci in mammographic density in young women. Cancer Epidemiol Biomarkers Prev 2008; 17:258-60. [PMID: 18199735 DOI: 10.1158/1055-9965.epi-07-2749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
256
|
Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt AB. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol 2008; 215:1-7. [DOI: 10.1002/jcp.21357] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
257
|
Allerstorfer S, Sonvilla G, Fischer H, Spiegl-Kreinecker S, Gauglhofer C, Setinek U, Czech T, Marosi C, Buchroithner J, Pichler J, Silye R, Mohr T, Holzmann K, Grasl-Kraupp B, Marian B, Grusch M, Fischer J, Micksche M, Berger W. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 2008; 27:4180-90. [PMID: 18362893 DOI: 10.1038/onc.2008.61] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.
Collapse
Affiliation(s)
- S Allerstorfer
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Carafoli F, Saffell JL, Hohenester E. Structure of the tandem fibronectin type 3 domains of neural cell adhesion molecule. J Mol Biol 2008; 377:524-34. [PMID: 18261743 PMCID: PMC2267215 DOI: 10.1016/j.jmb.2008.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 11/28/2022]
Abstract
Activation of the fibroblast growth factor receptor (FGFR) by neural cell adhesion molecule (NCAM) is essential for NCAM-mediated neurite outgrowth. Previous peptide studies have identified two regions in the fibronectin type 3 (FN3)-like domains of NCAM as being important for these activities. Here we report the crystal structure of the NCAM FN3 domain tandem, which reveals an acutely bent domain arrangement. Mutation of a non-conserved surface residue (M610R) led to a second crystal form showing a substantially different conformation. Thus, the FN3 domain linker is highly flexible, suggesting that it corresponds to the hinge seen in electron micrographs of NCAM. The two putative FGFR1-binding segments, one in each NCAM FN3 domain, are situated close to the domain interface. They form a contiguous patch in the more severely bent conformation but become separated upon straightening of the FN3 tandem, suggesting that conformational changes within NCAM may modulate FGFR1 activation. Surface plasmon resonance experiments demonstrated only a very weak interaction between the NCAM FN3 tandem and soluble FGFR1 proteins expressed in mammalian cells (dissociation constant >100 muM). Thus, the NCAM-FGFR1 interaction at the cell surface is likely to depend upon avidity effects due to receptor clustering.
Collapse
Affiliation(s)
| | | | - Erhard Hohenester
- Department of Life Sciences, Biophysics Section, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
259
|
Grubbs EG, Rich TA, Li G, Sturgis EM, Younes MN, Myers JN, Edeiken-Monroe B, Fornage BD, Monroe DP, Staerkel GA, Williams MD, Waguespack SG, Hu MI, Cote G, Gagel RF, Cohen J, Weber RS, Anaya DA, Holsinger FC, Perrier ND, Clayman GL, Evans DB. Recent advances in thyroid cancer. Curr Probl Surg 2008; 45:156-250. [PMID: 18346477 DOI: 10.1067/j.cpsurg.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Cha JY, Lambert QT, Reuther GW, Der CJ. Involvement of Fibroblast Growth Factor Receptor 2 Isoform Switching in Mammary Oncogenesis. Mol Cancer Res 2008; 6:435-45. [DOI: 10.1158/1541-7786.mcr-07-0187] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
261
|
Abdel-Rahman WM, Kalinina J, Shoman S, Eissa S, Ollikainen M, Elomaa O, Eliseenkova AV, Bützow R, Mohammadi M, Peltomäki P. Somatic FGF9 mutations in colorectal and endometrial carcinomas associated with membranous beta-catenin. Hum Mutat 2008; 29:390-397. [PMID: 18165946 DOI: 10.1002/humu.20653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously described striking molecular features including high frequency of membranous beta-catenin in subsets of familial colon cancers with as yet unknown predisposition. We hypothesized that such tumors might carry mutations in Wnt/beta-catenin target genes. Fibroblast growth factor 9 (FGF9) was an attractive target, as it maps to a common area of loss of heterozygosity (LOH) in colorectal carcinomas on 13q12.11. Here, we report, for the first time, the occurrence of FGF9 mutations in human cancers. We found a total of six distinct FGF9 mutations including one frameshift, four missense, and one nonsense, in 10 (six colorectal and four endometrial) out of 203 tumors and cell lines. The frameshift mutation was detected in five different tumors. Mapping of these mutations onto the crystal structure of FGF9 predicted that they should all lead to loss of function albeit through variable mechanisms. The p.R173K mutation should diminish ligand affinity for heparin/heparan sulfate, the p.V192M, p.D203G, and p.L188YfsX18 (FGF9(Delta205-208)) mutations should negatively impact ligand's interaction with receptor, while p.G84E and p.E142X (FGF9(Delta142-208)) mutations should interfere with ligand folding. Consistent with these structural predictions, the p.V192M, p.D203G, and p.L188YfsX18 (FGF9(Delta205-208)) mutations impaired the ability of ligand to activate mitogen-activated protein kinase (MAPK) cascade in cultured cells expressing FGF receptors. LOH was observed in seven out of nine FGF9 mutant tumors, supporting the predicted loss of function. Interestingly, eight out of 10 (80%) of the FGF9 mutant tumors showed normal membranous beta-catenin expression and the absence of mutation in the beta-catenin gene (CTNNB1). These data suggest that FGF9 plays a role in colorectal and endometrial carcinogenesis.
Collapse
|
262
|
Abstract
BACKGROUND Several studies of drugs that inhibit tumour angiogenesis have shown improvements in the survival of cancer patients, thus validating angiogenesis as a clinically relevant target. Both intracellular and extracellular approaches have shown promising results in clinical situations. OBJECTIVES To compare and contrast oligosaccharide therapies and other anti-angiogenic compounds for their benefits and toxicity. METHODS Analysis of the relevant literature including presentations at recent conferences. RESULTS Receptor tyrosine kinase inhibitors are orally available but have a broad spectrum of activity which is associated with toxicity. Antibodies are associated with different toxicities, however, they are administered parenterally. Oligosaccharides that act as competitive inhibitors of heparan sulfate (HS) are in the early and late phases of clinical development. The advantage of oligosaccharides should be that they can be designed to target several angiogenic molecules, that they are relatively safe and that they can be administered subcutaneously at home. The key questions concerning their development focus on whether compounds with sufficient affinity and relative specificity can be generated, whether they are active at doses that do not perturb the coagulation cascade to a clinically dangerous level, whether the synthetic routes are scalable and, whether the current Phase III trials will yield positive results. CONCLUSIONS Saccharides represent a novel and exciting therapeutic approach that targets a spectrum of angiogenic molecules that cannot be inhibited through established drug development programmes.
Collapse
Affiliation(s)
- Claire Louise Cole
- Translational Angiogenesis Group, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | |
Collapse
|
263
|
Taverna S, Rigogliuso S, Salamone M, Vittorelli ML. Intracellular trafficking of endogenous fibroblast growth factor‐2. FEBS J 2008; 275:1579-1592. [DOI: 10.1111/j.1742-4658.2008.06316.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Simona Taverna
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Italy
| | | | - Monica Salamone
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Italy
| | | |
Collapse
|
264
|
Parsa S, Ramasamy SK, De Langhe S, Gupte VV, Haigh JJ, Medina D, Bellusci S. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol 2008; 317:121-31. [PMID: 18381212 DOI: 10.1016/j.ydbio.2008.02.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 01/31/2023]
Abstract
We previously demonstrated that Fibroblast Growth Factor 10 (FGF10) and its receptor FGFR2b play a key role in controlling the very early stages of mammary gland development during embryogenesis [Mailleux, A.A., Spencer-Dene, B., Dillon, C., Ndiaye, D., Savona-Baron, C., Itoh, N., Kato, S., Dickson, C., Thiery, J.P., and Bellusci, S. (2002). Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129, 53-60. Veltmaat, J. M., Relaix, F., Le, L.T., Kratochwil, K., Sala, F.G., van Veelen, W., Rice, R., Spencer-Dene, B., Mailleux, A.A., Rice, D.P., Thiery, J.P., and Bellusci, S. (2006). Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133, 2325-35.]. However, the role of FGFR2b signaling in postnatal mammary gland development is still elusive. We show that FGF10 is expressed at high level throughout the adipose tissue in the mammary gland of young virgin female mice whereas its main receptor FGFR2 is found mostly in the epithelium. Using a rtTA transactivator/tetracycline promoter approach allowing inducible and reversible attenuation of the FGFR2b signaling throughout the adult mouse, we are now reporting that FGFR2b signaling is also critical during postnatal mammary gland development. Ubiquitous attenuation of FGFR2b signaling in the postnatal mouse for 6 weeks starting immediately after birth is not lethal and leads to minor defects in the animal. Upon dissection of the mammary glands, a 40% reduction in size compared to the WT control is observed. Further examination shows a rudimentary mammary epithelial tree with completely absent terminal end buds (TEBs), compared to a well-branched structure observed in wild type. Transplantation of mammary gland explants into cleared fat pad of wild type mouse recipients indicates that the observed abnormal branching results from defective FGFR2b signaling in the epithelium. We also demonstrate that this rudimentary tree reforms TEBs and resumes branching upon removal of doxycycline suggesting that the regenerative capacities of the mammary epithelial progenitor cells were still functional despite long-term inactivation of the FGFR2b pathway. At the cellular level, upon FGFR2b attenuation, we show an increase in apoptosis associated with a decrease in the proliferation of the mammary luminal epithelium. We conclude that during puberty, there is a differential requirement for FGFR2b signaling in ductal vs. TEBs epithelium. FGFR2b signaling is crucial for the survival and proliferation of the mammary luminal epithelial cells, but does not affect the regenerative potential of the mammary epithelial progenitor cells.
Collapse
Affiliation(s)
- Sara Parsa
- Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
265
|
Goodger SJ, Robinson CJ, Murphy KJ, Gasiunas N, Harmer NJ, Blundell TL, Pye DA, Gallagher JT. Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 2008; 283:13001-8. [PMID: 18281281 DOI: 10.1074/jbc.m704531200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin-like saccharides play an essential role in binding to both fibroblast growth factors (FGF) and their receptors at the cell surface. In this study we prepared a series of heparin oligosaccharides according to their size and sulfation level. We then investigated their affinity for FGF2 and their ability to support FGF2 mitogenesis of heparan sulfate-deficient cells expressing FGFR1c. Tetra- and hexasaccharides bound FGF2, but failed to dimerize the growth factor. Nevertheless, these saccharides promoted FGF2-mediated cell growth. Furthermore, whereas enzymatic removal of the non-reducing end 2-O-sulfate group had little effect on the 1:1 interaction with FGF2, it eliminated the mitogenic activity of these saccharides. This evidence supports the symmetric two-end model of ternary complex formation. In contrast, even at very low concentrations, octasaccharide and larger heparin fragments conferred a potent mitogenic activity that was independent of terminal 2-O-sulfation. This correlated with the ability to dimerize FGF2 in an apparently cooperative manner. This data suggests that potent mitogenic signaling results from heparin-mediated trans-dimerization of FGF2, consistent with the asymmetric model of ternary complex formation. We propose that, depending on saccharide structure, there are different architectures and modes of ternary complex assembly that differ in stability and/or efficiency of transmembrane signaling.
Collapse
Affiliation(s)
- Sarah J Goodger
- Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Ma C, Bower KA, Chen G, Shi X, Ke ZJ, Luo J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. J Biol Chem 2008; 283:9248-56. [PMID: 18263590 DOI: 10.1074/jbc.m707316200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Ewing's sarcoma family of tumors (ESFT) includes Ewing's sarcoma (ES), Askin's tumor of the chest wall, and peripheral primitive neuroectodermal tumor. Basic fibroblast growth factor (FGF2) suppresses the growth of ESFT cells and causes their apoptosis. The underlying mechanism is unclear. Using a human peripheral primitive neuroectodermal tumor cell line, SK-N-MC, we demonstrated FGF2 stimulated phosphorylation of ERK1 and ERK2 (pERK1/2) and GSK3beta (pGSK3beta(Tyr-216)), all of which were primarily retained in the cytoplasm. FGF2 promoted the association between ERK and pGSK3beta(Tyr-216). Inhibitors for GSK3beta (TDZD and LiCl) and ERK (PD98059) protected cells from FGF2-induced apoptosis. On the other hand, inhibitors of GSK3beta, but not PD98059 decreased ERK/pGSK3beta(Tyr-216) association and caused a nuclear translocation of pERK1/2. Similarly, expression of a kinase-deficient (K85R) GSK3beta or GSK3beta-small interfering RNA inhibited FGF2-regulated ERK/pGSK3beta(Tyr-216) association and translocated pERK to the nucleus. Both K85R GSK3beta and small interfering RNA offered protection against FGF2-induced cell death. In contrast, overexpression of wild-type GSK3beta sensitized cells to FGF2 cytotoxicity. Hydrogen peroxide and ethanol enhanced FGF2-stimulated pGSK3beta(Tyr-216), ERK/pGSK3beta(Tyr-216) association, and cytoplasmic retention of pERK1/2. As a result, they potentiated FGF2-induced cell death. Taken together, our results suggested that FGF2-induced accumulation of pERK1/2 in the cytoplasm is toxic for SK-N-MC cells. The formation of an ERK.GSK3beta complex retained pERK1/2 in the cytoplasm. In contrast, disruption of the ERK.GSK3beta complex resulted in nuclear translocation of pERK1/2 and offered protection.
Collapse
Affiliation(s)
- Cuiling Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
267
|
Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 2008; 20:141-63. [PMID: 18034870 DOI: 10.1111/j.1365-2826.2007.01627.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unravelling of the genetic basis of the hypogonadotrophic hypogonadal disorders, including Kallmann syndrome (KS), has led to renewed interest into the developmental biology of gonadotrophin-releasing hormone (GnRH) neurones and, more generally, into the molecular mechanisms of reproduction. KS is characterised by the association of GnRH deficiency with diminished olfaction. Until recently, only two KS-associated genes were known: KAL1 and KAL2. KAL1 encodes the cell membrane and extracellular matrix-associated secreted protein anosmin-1 which is implicated in the X-linked form of KS. Anosmin-1 shows high affinity binding to heparan sulphate (HS) and its function remains the focus of ongoing investigation, although a role in axonal guidance and neuronal migration, which are processes essential for normal GnRH ontogeny and olfactory bulb histogenesis, has been suggested. KAL2, identified as the fibroblast growth factor receptor 1 (FGFR1) gene, has now been recognised to be the underlying genetic defect for an autosomal dominant form of KS. The diverse signalling pathways initiated upon FGFR activation can elicit pleiotropic cellular responses depending on the cellular context. Signalling through FGFR requires HS for receptor dimerisation and ligand binding. Current evidence supports a HS-dependent interaction between anosmin-1 and FGFR1, where anosmin-1 serves as a co-ligand activator enhancing the signal activity, the finer details of whose mechanism remain the subject of intense investigation. Recently, mutations in the genes encoding prokineticin 2 (PK2) and prokineticin receptor 2 (PKR2) were reported in a cohort of KS patients, further reinforcing the view of KS as a multigenic trait involving divergent pathways. Here, we review the historical and current understandings of KS and discuss the latest findings from the molecular and cellular studies of the KS-associated proteins, and describe the evidence that suggests convergence of several of these pathways during normal GnRH and olfactory neuronal ontogeny.
Collapse
Affiliation(s)
- S-H Kim
- Centre for Neuroendocrinology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
268
|
Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40:2040-52. [DOI: 10.1016/j.biocel.2008.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 02/06/2023]
|
269
|
Sahni A, Simpson-Haidaris PJ, Sahni SK, Vaday GG, Francis CW. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost 2008; 6:176-83. [PMID: 17949478 DOI: 10.1111/j.1538-7836.2007.02808.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fibroblast growth factor (FGF)-2 is a critical growth factor in normal and malignant cell proliferation and tumor-associated angiogenesis. Fibrinogen and fibrin bind to FGF-2 and modulate FGF-2 functions. Furthermore, we have shown that extrahepatic epithelial cells are capable of endogenous production of fibrinogen. OBJECTIVE Herein we examined the role of fibrinogen and FGF-2 interactions on prostate and lung adenocarcinoma cell growth in vitro. METHODS Cell proliferation was measured by (3)H-thymidine uptake and the specificity of FGF-2-fibrinogen interactions was measured using wild-type and mutant FGF-2s, fibrinogen gamma-chain (FGG) RNAi and co-immunoprecipitation. Metabolic labeling, immunopurification and fluorography demonstrated de novo fibrinogen production. RESULTS FGF-2 stimulated DU-145 cell proliferation, whereas neither FGF-2 nor fibrinogen affected the growth of PC-3 or A549 cells. Fibrinogen augmented the proliferative effect of FGF-2 on DU-145 cells. The role of fibrinogen in FGF-2-enhanced DNA synthesis was confirmed using an FGF-2 mutant that exhibits no binding affinity for fibrinogen. FGG transcripts were present in PC-3, A549 and DU-145 cells, but only PC-3 and A549 cells produced detectable levels of intact protein. RNAi-mediated knockdown of FGG expression resulted in decreased production of fibrinogen protein and inhibited (3)H-thymidine uptake in A549 and PC-3 cells by 60%, which was restored by exogenously added fibrinogen. FGF-2 and fibrinogen secreted by the cells were present in the medium as a soluble complex, as determined by coimmunoprecipitation studies. CONCLUSIONS These data indicate that endogenously synthesized fibrinogen promotes the growth of lung and prostate cancer cells through interaction with FGF-2.
Collapse
Affiliation(s)
- A Sahni
- Hematology/Oncology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | | | | | | | | |
Collapse
|
270
|
Francavilla C, Loeffler S, Piccini D, Kren A, Christofori G, Cavallaro U. Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci 2007; 120:4388-94. [DOI: 10.1242/jcs.010744] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neural cell adhesion molecule (NCAM) mediates cell-cell adhesion and signaling in the nervous system, yet NCAM is also expressed in non-neural tissues, in which its function has in most parts remained elusive. We have previously reported that NCAM stimulates cell-matrix adhesion and neurite outgrowth by activating fibroblast growth factor receptor (FGFR) signaling. Here, we investigated whether the interplay between NCAM and FGFR has any impact on the response of FGFR to its classical ligands, FGFs. To this end, we employed two fibroblast cell lines, NCAM-negative L cells and NCAM-positive NIH-3T3 cells, in which the expression of NCAM was manipulated by means of transfection or RNAi technologies, respectively. The results demonstrate that NCAM expression reduces FGF-stimulated ERK1/2 activation, cell proliferation and cell-matrix adhesion, in both L and NIH-3T3 cells. Furthermore, our data show that NCAM inhibits the binding of FGF to its high-affinity receptor in a competitive manner, providing the mechanisms for the NCAM-mediated suppression of FGF function. In this context, a small peptide that mimics the binding of NCAM to FGFR was sufficient to block FGF-dependent cell proliferation. These findings point to NCAM as being a major regulator of FGF-FGFR interaction, thus introducing a novel type of control mechanism for FGFR activity and opening new therapeutic perspectives for those diseases characterized by aberrant FGFR function.
Collapse
Affiliation(s)
| | | | - Daniele Piccini
- IFOM-FIRC Institute of Molecular Oncology, I-20139 Milano, Italy
| | - Angelika Kren
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, Center of Biomedicine, University of Basel, Switzerland
| | - Gerhard Christofori
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, Center of Biomedicine, University of Basel, Switzerland
| | - Ugo Cavallaro
- IFOM-FIRC Institute of Molecular Oncology, I-20139 Milano, Italy
| |
Collapse
|
271
|
Vecchione A, Cooper HJ, Trim KJ, Akbarzadeh S, Heath JK, Wheldon LM. Protein partners in the life history of activated fibroblast growth factor receptors. Proteomics 2007; 7:4565-78. [DOI: 10.1002/pmic.200700615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
272
|
Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M, Spencer DM. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007; 12:559-71. [PMID: 18068632 DOI: 10.1016/j.ccr.2007.11.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/03/2007] [Accepted: 11/01/2007] [Indexed: 11/15/2022]
Abstract
Fibroblast Growth Factor Receptor-1 (FGFR1) is commonly overexpressed in advanced prostate cancer (PCa). To investigate causality, we utilized an inducible FGFR1 (iFGFR1) prostate mouse model. Activation of iFGFR1 with chemical inducers of dimerization (CID) led to highly synchronous, step-wise progression to adenocarcinoma that is linked to an epithelial-to-mesenchymal transition (EMT). iFGFR1 inactivation by CID withdrawal led to full reversion of prostatic intraepithelial neoplasia, whereas PCa lesions became iFGFR1-independent. Gene expression profiling at distinct stages of tumor progression revealed an increase in EMT-associated Sox9 and changes in the Wnt signaling pathway, including Fzd4, which was validated in human PCa. The iFGFR1 model clearly implicates FGFR1 in PCa progression and demonstrates how CID-inducible models can help evaluate candidate molecules in tumor progression and maintenance.
Collapse
Affiliation(s)
- Victor D Acevedo
- Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Goldstein M, Meller I, Orr-Urtreger A. FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5' CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes. Genes Chromosomes Cancer 2007; 46:1028-38. [PMID: 17696196 DOI: 10.1002/gcc.20489] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma likely results from abnormal proliferation and differentiation during skeletal myogenesis. Multiple genetic alterations are associated with the three RMS histopathological subtypes, embryonal, alveolar, and pleomorphic adult variant. Recently, we reported the novel amplification of the FGFR1 gene in a RMS tumor. The involvement of FGFR1 in RMS was now further studied in primary tumors and RMS cell lines by mutation screening, quantitative RNA expression, and methylation analyses. No mutation was found by DHPLC and sequencing of the entire FGFR1 coding sequence and exon-intron boundaries. However, FGFR1 over-expression was detected in all primary RMS tumors and cell lines tested. A hypomethylation of a CpG island upstream to FGFR1 exon 1 was identified in the primary RMS tumors, using sodium bisulfite modification method, suggesting a molecular mechanism to FGFR1 over-expression. Expression analysis of additional genes, AKT1, NOG and its antagonist BMP4, which interact downstream to FGFR1, demonstrated expression differences between primary RMS tumors and normal skeletal muscles. Our data suggest an important role for FGFR1 and FGFR1-downstream genes in RMS tumorigenesis and a possible association with the deregulation of proliferation and differentiation of skeletal myoblasts in RMS.
Collapse
Affiliation(s)
- Myriam Goldstein
- Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, 64239 Israel
| | | | | |
Collapse
|
274
|
Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007; 30:1819-25. [PMID: 17917244 DOI: 10.1248/bpb.30.1819] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factors (Fgfs) were originally isolated as growth factors for fibroblasts. However, Fgfs are now recognized as polypeptide growth factors of ca. 150-250 amino acid residues with diverse biological activities and expression profiles. The Fgf signaling system has been identified in multicelluar but not in unicellular organisms. In contrast to the only two Fgf genes and one Fgf receptor (Fgfr) gene in Caenorhabditis elegans, both the human and mouse Fgf and Fgfr gene families comprise twenty-two and four members, respectively. Their evolutional processes indicate that the Fgf and Fgfr gene families greatly co-expanded during the evolution of early vertebrates. The expansion of the Fgf and Fgfr gene families has enabled this signaling system to acquire diversity of function and a nearly ubiquitous involvement in many developmental and physiological processes. The zebrafish fgf gene family comprises twenty-seven members with several paralogs generated by an additional genome duplication. The mouse and zebrafish are useful models for studying gene functions. Fgf knockout mice have been generated. Several Fgf knockout mice die in the embryonic or early postnatal stages, indicating crucial roles for these genes in various developmental processes. However, other Fgf knockout mice survive with subtle phenotypic alterations. Their functions might be redundant. Studies using zebrafish embryos with mutated or knockdown fgfs also indicate that fgfs play crucial roles in development in that species. Although most Fgfs act in development in a paracrine and/or autocrine manner, some have potential roles in metabolism in an endocrine manner. In humans, Fgf signaling disorders result in hereditary diseases and cancers.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
275
|
Belleudi F, Leone L, Nobili V, Raffa S, Francescangeli F, Maggio M, Morrone S, Marchese C, Torrisi MR. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 2007; 8:1854-1872. [PMID: 17944804 DOI: 10.1111/j.1600-0854.2007.00651.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.
Collapse
Affiliation(s)
- Francesca Belleudi
- Dipartimento di Medicina Sperimentale, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Kondo T, Zhu X, Asa SL, Ezzat S. The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin Cancer Res 2007; 13:4713-20. [PMID: 17699848 DOI: 10.1158/1078-0432.ccr-07-0618] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fibroblast growth factor (FGF) signals play fundamental roles in development and tumorigenesis. Thyroid cancer is an example of a tumor with nonoverlapping genetic mutations that up-regulate mitogen-activated protein kinase. We reported recently that FGF receptor 2 (FGFR2) is down-regulated through extensive DNA promoter methylation in thyroid cancer. Reexpression of the FGFR2-IIIb isoform impedes signaling upstream of the BRAF/mitogen-activated protein kinase pathway to interrupt tumor progression. In this analysis, we examined a novel target of FGFR2-IIIb signaling, melanoma-associated antigen-A3 and A6 (MAGE-A3/6). EXPERIMENTAL DESIGN cDNA microarray analysis was done on human WRO thyroid cancer cells transfected with FGFR2-IIIb or empty vector. Identified gene target was confirmed by reverse transcription-PCR and Western blotting. Gene regulation was examined by treatment of WRO cells with the methylation inhibitor 5'-azacytidine followed by methylation-specific PCR and reverse transcription-PCR and by chromatin immunoprecipitation. RESULTS Gene expression profiling identified the cancer/testis antigen MAGE-A3/6 as a novel target of FGFR2-IIIb signaling. MAGE-A3/6 regulation was mediated through DNA methylation and chromatin modifications. In particular, FGF7/FGFR2-IIIb activation resulted in histone 3 methylation and deacetylation associated with the MAGE-A3/6 promoter to down-regulate gene expression. CONCLUSIONS These data unmask a complex repertoire of epigenetically controlled signals that govern FGFR2-IIIb and MAGE-A3/6 expression. Our findings provide insights into the interrelationship between novel tumor markers that may also represent overlapping therapeutic targets.
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
277
|
Abstract
Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases resulting in hypoxia. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and metabolites. The key regulator of hypoxia-induced angiogenesis is the transcription factor hypoxia inducible factor (HIF)-1. Multiple HIF-1 target genes have been shown to modulate angiogenesis by promoting the mitogenic and migratory activities of endothelial cells. Because of this, hypoxia-induced angiogenesis has become an attractive target for cancer therapy, however the mechanisms involved during this process and how best to target it for cancer therapy are still under investigation. This review will cover the current understanding of hypoxia-induced tumor angiogenesis and discuss the caveats of hypoxia-targeted antiangiogenic therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Debbie Liao
- Department of Molecular Pathology, University of California San Diego, San Diego, CA, USA.
| | | |
Collapse
|
278
|
Hou S, Maccarana M, Min TH, Strate I, Pera EM. The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. Dev Cell 2007; 13:226-41. [PMID: 17681134 DOI: 10.1016/j.devcel.2007.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/19/2007] [Accepted: 07/03/2007] [Indexed: 11/16/2022]
Abstract
We found that the secreted serine protease xHtrA1, expressed in the early embryo and transcriptionally activated by FGF signals, promotes posterior development in mRNA-injected Xenopus embryos. xHtrA1 mRNA led to the induction of secondary tail-like structures, expansion of mesoderm, and formation of ectopic neurons in an FGF-dependent manner. An antisense morpholino oligonucleotide or a neutralizing antibody against xHtrA1 had the opposite effects. xHtrA1 activates FGF/ERK signaling and the transcription of FGF genes. We show that Xenopus Biglycan, Syndecan-4, and Glypican-4 are proteolytic targets of xHtrA1 and that heparan sulfate and dermatan sulfate trigger posteriorization, mesoderm induction, and neuronal differentiation via the FGF signaling pathway. The results are consistent with a mechanism by which xHtrA1, through cleaving proteoglycans, releases cell-surface-bound FGF ligands and stimulates long-range FGF signaling.
Collapse
Affiliation(s)
- Shirui Hou
- Department of Developmental Biochemistry, Institute of Biochemistry and Cell Biology, Georg August University Göttingen, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
279
|
Vékony H, Ylstra B, Wilting SM, Meijer GA, van de Wiel MA, Leemans CR, van der Waal I, Bloemena E. DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma. Clin Cancer Res 2007; 13:3133-9. [PMID: 17545515 DOI: 10.1158/1078-0432.ccr-06-2555] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is a malignant salivary gland tumor with a high mortality rate due to late, distant metastases. This study aimed at unraveling common genetic abnormalities associated with ACC. Additionally, chromosomal changes were correlated with patient characteristics and survival. EXPERIMENTAL DESIGN Microarray-based comparative genomic hybridization was done to a series of 18 paraffin-embedded primary ACCs using a genome-wide scanning BAC array. RESULTS A total of 238 aberrations were detected, representing more gains than losses (205 versus 33, respectively). Most frequent gains (>60%) were observed at 9q33.3-q34.3, 11q13.3, 11q23.3, 19p13.3-p13.11, 19q12-q13.43, 21q22.3, and 22q13.33. These loci harbor numerous growth factor [fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF)] and growth factors receptor (FGFR3 and PDGFRbeta) genes. Gains at the FGF(R) regions occurred significantly more frequently in the recurred/metastasized ACCs compared with indolent ACCs. Furthermore, patients with 17 or more chromosomal aberrations had a significantly less favorable outcome than patients with fewer chromosomal aberrations (log-rank = 5.2; P = 0.02). CONCLUSIONS Frequent DNA copy number gains at loci of growth factors and their receptors suggest their involvement in ACC initiation and progression. Additionally, the presence of FGFR3 and PDGFRbeta in increased chromosomal regions suggests a possible role for autocrine stimulation in ACC tumorigenesis.
Collapse
Affiliation(s)
- Hedy Vékony
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Academic Centre for Dentistry Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, Yamada Y, Tamura T, Fukuoka K, Kimura H, Saijo N, Nishio K. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res 2007; 13:3051-7. [PMID: 17505008 DOI: 10.1158/1078-0432.ccr-06-2743] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE AZD2171 is an oral, highly potent, and selective vascular endothelial growth factor signaling inhibitor that inhibits all vascular endothelial growth factor receptor tyrosine kinases. The purpose of this study was to investigate the activity of AZD2171 in gastric cancer. EXPERIMENTAL DESIGN We examined the antitumor effect of AZD2171 on the eight gastric cancer cell lines in vitro and in vivo. RESULTS AZD2171 directly inhibited the growth of two gastric cancer cell lines (KATO-III and OCUM2M), with an IC(50) of 0.15 and 0.37 micromol/L, respectively, more potently than the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib. Reverse transcription-PCR experiments and immunoblotting revealed that sensitive cell lines dominantly expressed COOH terminus-truncated fibroblast growth factor receptor 2 (FGFR2) splicing variants that were constitutively phosphorylated and spontaneously dimerized. AZD2171 completely inhibited the phosphorylation of FGFR2 and downstream signaling proteins (FRS2, AKT, and mitogen-activated protein kinase) in sensitive cell lines at a 10-fold lower concentration (0.1 micromol/L) than in the other cell lines. An in vitro kinase assay showed that AZD2171 inhibited kinase activity of immunoprecipitated FGFR2 with submicromolar K(i) values ( approximately 0.05 micromol/L). Finally, we assessed the antitumor activity of AZD2171 in human gastric tumor xenograft models in mice. Oral administration of AZD2171 (1.5 or 6 mg/kg/d) significantly and dose-dependently inhibited tumor growth in mice bearing KATO-III and OCUM2M tumor xenografts. CONCLUSIONS AZD2171 exerted potent antitumor activity against gastric cancer xenografts overexpressing FGFR2. The results of these preclinical studies indicate that AZD2171 may provide clinical benefit in patients with certain types of gastric cancer.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dimerization
- Gefitinib
- Humans
- Mice
- Mice, Inbred Strains
- Quinazolines/administration & dosage
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- RNA, Small Interfering/pharmacology
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/enzymology
- Up-Regulation/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Masayuki Takeda
- Shien Lab, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Kondo T, Zheng L, Liu W, Kurebayashi J, Asa SL, Ezzat S. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res 2007; 67:5461-70. [PMID: 17545628 DOI: 10.1158/0008-5472.can-06-4477] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) signals play fundamental roles in development and tumorigenesis. Thyroid cancer is an example of a tumor with nonoverlapping genetic mutations that up-regulate mitogen-activated protein kinase (MAPK). Here, we show that FGF receptor 1 (FGFR1), which is expressed mainly in neoplastic thyroid cells, propagates MAPK activation and promotes tumor progression. In contrast, FGFR2 is down-regulated in neoplastic thyroid cells through DNA promoter methylation. Reexpression of FGFR2 competes with FGFR1 for the immediate substrate FGFR substrate 2 to impede signaling upstream of the BRAF/MAPK pathway. These data unmask an epigenetically controlled FGFR2 signal that imposes precisely on the intragenically modified BRAF/MAPK pathway to modulate thyroid cancer behavior.
Collapse
MESH Headings
- Cell Growth Processes/physiology
- Cell Line, Tumor
- DNA Methylation
- Disease Progression
- Down-Regulation
- Epigenesis, Genetic
- Humans
- MAP Kinase Signaling System/genetics
- Neoplasm Invasiveness
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Small Interfering/genetics
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transfection
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
282
|
Cho K, Ishiwata T, Uchida E, Nakazawa N, Korc M, Naito Z, Tajiri T. Enhanced expression of keratinocyte growth factor and its receptor correlates with venous invasion in pancreatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1964-74. [PMID: 17525264 PMCID: PMC1899460 DOI: 10.2353/ajpath.2007.060935] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keratinocyte growth factor (KGF) and KGF receptor (KGFR) have been implicated in cancer growth as well as tissue development and repair. In this study, we examined whether KGF and KGFR have a role in human pancreatic ductal adenocarcinoma (PDAC). KGFR mRNA was expressed in eight pancreatic cancer cell lines, whereas the KGF mRNA was detected in seven of the cell lines and was absent in MIA PaCa-2 cells. KGFR and KGF immunoreactivity were localized in the cancer cells in 41.5 and 34.0% of patients, respectively. There was a significant correlation between KGFR or KGF immunoreactivity and venous invasion and a significant correlation between the presence of both markers and venous invasion, vascular endothelial growth factor (VEGF)-A expression, and poor prognosis. Exogenous KGF increased VEGF-A expression and release in MIA PaCa-2 cells, and PANC-1 cells stably transfected to overexpress KGF-exhibited increased VEGF-A expression. Moreover, short hairpin-KGFR transfection in MIA PaCa-2 cells reduced the stimulatory effect of exogenous KGF on VEGF-A expression. Short hairpin-KGF transfection in KLM-1 cells reduced VEGF-A expression in the cells. KGFR and KGF may act to promote venous invasion and tumor angiogenesis in PDAC, raising the possibility that they may serve as novel therapeutic targets in anti-angiogenic strategies in PDAC.
Collapse
Affiliation(s)
- Kazumitsu Cho
- Department of Integrative Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
283
|
Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Hoover RN, Thomas G, Chanock SJ. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007; 39:870-4. [PMID: 17529973 PMCID: PMC3493132 DOI: 10.1038/ng2075] [Citation(s) in RCA: 1150] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/18/2007] [Indexed: 01/28/2023]
Abstract
We conducted a genome-wide association study (GWAS) of breast cancer by genotyping 528,173 SNPs in 1,145 postmenopausal women of European ancestry with invasive breast cancer and 1,142 controls. We identified four SNPs in intron 2 of FGFR2 (which encodes a receptor tyrosine kinase and is amplified or overexpressed in some breast cancers) that were highly associated with breast cancer and confirmed this association in 1,776 affected individuals and 2,072 controls from three additional studies. Across the four studies, the association with all four SNPs was highly statistically significant (P(trend) for the most strongly associated SNP (rs1219648) = 1.1 x 10(-10); population attributable risk = 16%). Four SNPs at other loci most strongly associated with breast cancer in the initial GWAS were not associated in the replication studies. Our summary results from the GWAS are available online in a form that should speed the identification of additional risk loci.
Collapse
Affiliation(s)
- David J Hunter
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Tassi E, Walter S, Aigner A, Cabal-Manzano RH, Ray R, Reier PJ, Wellstein A. Effects on neurite outgrowth and cell survival of a secreted fibroblast growth factor binding protein upregulated during spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2007; 293:R775-83. [PMID: 17553847 DOI: 10.1152/ajpregu.00737.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor binding protein (FGF-BP; GenBank accession no. NP_005121) is a secreted protein that mobilizes FGFs from the extracellular matrix, protects them from degradation, and enhances their biological activity. Several previous studies reported that FGF-BP is an early response gene upregulated during tissue repair processes including wound healing and atherogenesis. In this study we analyzed whether FGF-BP expression was impacted by spinal cord injury and could have an effect on neuronal cell viability. Immunohistochemical and in situ hybridization studies revealed a dramatic upregulation of FGF-BP protein and mRNA levels following unilateral hemisection and contusion injury of adult rat spinal cord. In spinal cord sections of laminectomized rats, increased FGF-BP expression was observed in the fibers and cell bodies ipsilateral to the lesion site but was absent in the uninjured spinal cord tissue contralateral to the lesion. Increased expression of FGF-BP was observed at all postinjury time points, examined with peak levels occurring at day 4, a time when injury-induced increased levels of FGF2 have also been reported to be maximal. Moreover, using PC12 cells as a neuronal model, we observed that exogenous FGF-BP increased the capacity of FGF2 to stimulate neurite outgrowth and to increase cell survival. At the molecular level, FGF-BP enhanced FGF2-induced protein tyrosine phosphorylation and AKT/PKB activation. Collectively, these results suggest that FGF-BP is an early response gene after spinal cord injury and that its upregulation in regenerating spinal cord tissue may provide a molecular mechanism for enhancing the initial FGF2-mediated neurotrophic effects occurring after such tissue damage.
Collapse
Affiliation(s)
- Elena Tassi
- Lombardi Comprehensive Cancer Center, Research Bldg. E311, Georgetown University, 3970 Reservoir Road, N.W., Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
285
|
De L Karlson T, Whiting CV, Bland PW. Proinflammatory cytokine synthesis by mucosal fibroblasts from mouse colitis is enhanced by interferon-gamma-mediated up-regulation of CD40 signalling. Clin Exp Immunol 2007; 147:313-23. [PMID: 17223973 PMCID: PMC1810481 DOI: 10.1111/j.1365-2249.2006.03267.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut mesenchymal fibroblasts form complex phenotypical and functional populations. They participate actively in homeostatic maintenance of the extracellular matrix, epithelial barrier function, repair mechanisms and leucocyte migration. In inflammation, they become activated, change matrix expression and synthesize proinflammatory mediators. Subpopulations of mucosal fibroblasts express CD40 and the aim of this study was to define its role in their proinflammatory function. Stable primary fibroblast lines derived from normal mouse colon and inflamed colon from CD4(+) CD45RB(high)-transplanted SCID mice were used as models to explore the role of mucosal fibroblast CD40 in the inflammatory process. Phenotype correlated with in situ fibroblast phenotype in the tissues of origin. Lines from both sources co-expressed CD40 and Thy1.2 independently of alpha-smooth muscle actin. A subpopulation of CD40(+) fibroblasts from normal colon expressed CD40 at high levels and expression was enhanced by interferon (IFN)-gamma treatment, whereas all CD40(+) fibroblasts from colitis expressed at low levels and expression was unaffected by IFN-gamma treatment. Despite lower-level expression of CD40 by cells from colitis, they secreted constitutively interleukin (IL)-6 and C-C chemokine (CCL)2. Ligation of CD40 enhanced secretion of these mediators and induced secretion of CCL3. CD40 in cells from colitis was more responsive to ligation than CD40 on cells from normal tissue and this sensitivity was amplified selectively by the action of IFN-gamma. We conclude that the inflammatory milieu in colitis induces long-lasting changes in phenotype and proinflammatory function in colonic fibroblasts. In particular, proinflammatory signalling from fibroblast CD40 is amplified synergistically by the Th1 effector T cell cytokine, IFN-gamma.
Collapse
Affiliation(s)
- T De L Karlson
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden.
| | | | | |
Collapse
|
286
|
Liu Z, Neiss N, Zhou S, Henne-Bruns D, Korc M, Bachem M, Kornmann M. Identification of a fibroblast growth factor receptor 1 splice variant that inhibits pancreatic cancer cell growth. Cancer Res 2007; 67:2712-9. [PMID: 17363592 DOI: 10.1158/0008-5472.can-06-3843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor receptors (FGFR) play important roles in many biological processes. Nothing is presently known about possible roles of the human FGFR1-IIIb mRNA splice variant. In this study, we characterized for the first time the effects of FGFR1-IIIb expression on the transformed phenotype of human pancreatic cancer cells. The full-length FGFR1-IIIb cDNA was generated and stably expressed in PANC-1 and MIA PaCa-2 pancreatic cancer and TAKA-1 pancreatic ductal cells. FGFR1-IIIb-expressing cells synthesized a glycosylated 110-kDa protein enhancing tyrosine phosphorylation of FGFR substrate-2 on FGF-1 stimulation. The basal anchorage-dependent and anchorage-independent cell growth was significantly inhibited. These effects were associated with a marked reduction of p44/42 mitogen-activated protein kinase (MAPK) phosphorylation in combination with enhanced activity of p38 MAPK and c-Jun NH(2)-terminal kinase. FGFR1-IIIb expression inhibited single-cell movement and in vitro invasion as determined by time-lapse microscopy and Boyden chamber assay as well as in vivo tumor formation and growth in nude mice. Microscopic analysis of the xenograft tumors revealed a reduced Ki-67 labeling and a lower amount of tumor necrosis in FGFR1-IIIb-expressing tumors. Our results show that FGFR1-IIIb is a functional FGFR that inhibits the transformed phenotype of human pancreatic cancer cells.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Female
- Humans
- Immunohistochemistry
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
Collapse
Affiliation(s)
- Zhanbing Liu
- Department of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
287
|
Zisman-Rozen S, Fink D, Ben-Izhak O, Fuchs Y, Brodski A, Kraus MH, Bejar J, Ron D. Downregulation of Sef, an inhibitor of receptor tyrosine kinase signaling, is common to a variety of human carcinomas. Oncogene 2007; 26:6093-8. [PMID: 17420726 DOI: 10.1038/sj.onc.1210424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carcinomas are tumors of epithelial origin accounting for over 80% of all human malignancies. A substantial body of evidence implicates oncogenic signaling by receptor tyrosine kinases (RTKs) in carcinoma development. Here we investigated the expression of Sef, a novel inhibitor of RTK signaling, in normal human epithelial tissues and derived malignancies. Human Sef (hSef) was highly expressed in normal epithelial cells of breast, prostate, thyroid gland and the ovarian surface. By comparison, substantial downregulation of hSef expression was observed in the majority of tumors originating from these epithelia. Among 186 primary carcinomas surveyed by RNA in situ hybridization, hSef expression was undetectable in 116 cases including 72/99 (73%) breast, 11/16 (69%) thyroid, 16/31 (52%) prostate and 17/40 (43%) ovarian carcinomas. Moderate reduction of expression was observed in 17/186, and marked reduction in 40/186 tumors. Only 13/186 cases including 12 low-grade and one intermediate grade tumor retained high hSef expression. The association of hSef downregulation and tumor progression was statistically significant (P<0.001). Functionally, ectopic expression of hSef suppressed proliferation of breast carcinoma cells, whereas inhibition of endogenous hSef expression accelerated fibroblast growth factor and epidermal growth factor-dependent proliferation of cervical carcinoma cells. The inhibitory effect of hSef on cell proliferation combined with consistent downregulation in human carcinoma indicates a tumor suppressor-like role for hSef, and implicates loss of hSef expression as a common mechanism in epithelial neoplasia.
Collapse
Affiliation(s)
- S Zisman-Rozen
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Preissler T, Luft T, Kapczinski F, Quevedo J, Schwartsmann G, Roesler R. Basic Fibroblast Growth Factor Prevents the Memory Impairment Induced by Gastrin-Releasing Peptide Receptor Antagonism in Area CA1 of the Rat Hippocampus. Neurochem Res 2007; 32:1381-6. [PMID: 17406984 DOI: 10.1007/s11064-007-9320-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Increasing evidence indicates that the gastrin-releasing peptide receptor (GRPR) is implicated in regulating synaptic plasticity and memory formation in the hippocampus and other brain areas. However, the molecular mechanisms underlying the memory-impairing effects of GRPR antagonism have remained unclear. Here we report that basic fibroblast growth factor (bFGF/FGF-2) rescues the memory impairment induced by GRPR antagonism in the rat dorsal hippocampus. The GRPR antagonist [D-Tpi(6), Leu(13) psi(CH(2)NH)-Leu(14)] bombesin (6-14) (RC-3095) at 1.0 microg impaired, whereas bFGF at 0.25 microg enhanced, 24 h retention of inhibitory avoidance (IA) when infused immediately after training into the CA1 hippocampal area in male rats. Coinfusion with an otherwise ineffective dose of bFGF blocked the memory-impairing effect of RC-3095. These findings suggest that the memory-impairing effects of GRPR antagonists might be partially mediated by an inhibition in the function and/or expression of neuronal bFGF or diminished activation of intracellular protein kinase pathways associated with bFGF signaling.
Collapse
Affiliation(s)
- Thales Preissler
- Department of Pharmacology, Institute for Basic Health Sciences, Cellular and Molecular Neuropharmacology Research Group, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
289
|
Fischer B, Marinov M, Arcaro A. Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 2007; 33:391-406. [PMID: 17368733 DOI: 10.1016/j.ctrv.2007.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/15/2007] [Accepted: 01/23/2007] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer, which represents 13% of all cases and is strongly associated with cigarette smoking. The survival of SCLC patients is dismal and has not greatly improved in the last 20 years, despite advances in chemotherapy regimens and a better understanding of SCLC biology. The development of resistance to chemotherapy and metastasis are commonly recognized as important causes of poor clinical outcome in SCLC. Targeting receptor tyrosine kinase (RTK) signalling represents an attractive approach to develop new drugs for SCLC, in view of the accumulating data demonstrating that polypeptide growth factors play a key role in driving SCLC cell proliferation, chemoresistance and metastasis. The insulin-like growth factor-I receptor (IGF-IR), c-Kit, vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) have been identified as potential drug targets in SCLC. Moreover, downstream signalling mediators of RTKs, such as phosphoinositide 3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) may also represent attractive candidate molecules for anti-cancer therapies in SCLC. Here we will review the available data concerning results with RTK inhibitors in SCLC and the clinical trials undertaken to investigate the potential of these compounds as anti-tumour agents in SCLC.
Collapse
Affiliation(s)
- Barbara Fischer
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| | | | | |
Collapse
|
290
|
Grose R, Fantl V, Werner S, Chioni AM, Jarosz M, Rudling R, Cross B, Hart IR, Dickson C. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J 2007; 26:1268-78. [PMID: 17304214 PMCID: PMC1817631 DOI: 10.1038/sj.emboj.7601583] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/09/2007] [Indexed: 11/10/2022] Open
Abstract
The epithelial isoform of fibroblast growth factor receptor 2 (Fgfr2b) is essential for embryogenesis, and Fgfr2b-null mice die at birth. Using Cre-Lox transgenics to delete Fgfr2b in cells expressing keratin 5, we show that mice lacking epidermal Fgfr2b survive into adulthood but display striking abnormalities in hair and sebaceous gland development. Epidermal hyperthickening develops with age, and 10% of mutant mice develop spontaneous papillomas, demonstrating the role of Fgfr2b in post-natal skin development and in adult skin homeostasis. Mice lacking epithelial Fgfr2b show great sensitivity to chemical carcinogenic insult, displaying several oncogenic ha-ras mutations with dramatic development of papillomas and squamous cell carcinomas. Mutant mice have increased inflammation in the skin, with increased numbers of macrophages and gammadeltaT cells with abnormal morphology. Mutant skin shows several changes in gene expression, including enhanced expression of the pro-inflammatory cytokine interleukin 18 and decreased expression of Serpin a3b, a potential tumor suppressor. Thus we describe a novel role of Fgfr2b and provide the first evidence of a tyrosine kinase receptor playing a tumor suppressive role in the skin.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Epidermis/metabolism
- Epidermis/pathology
- Female
- Hair/metabolism
- Hair/pathology
- Hair Follicle/metabolism
- Hair Follicle/pathology
- Homeostasis/physiology
- Immunohistochemistry
- Keratin-5/genetics
- Keratin-5/metabolism
- Male
- Mice
- Mice, Knockout
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Papilloma/metabolism
- Papilloma/pathology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Sebaceous Glands/metabolism
- Sebaceous Glands/pathology
- Skin/metabolism
- Skin/pathology
- Skin/physiopathology
Collapse
Affiliation(s)
- Richard Grose
- Centre for Tumour Biology, Institute of Cancer, Bart's & The London, Queen Mary's School of Medicine & Dentistry, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Xian W, Schwertfeger KL, Rosen JM. Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Mol Endocrinol 2007; 21:987-1000. [PMID: 17284663 DOI: 10.1210/me.2006-0518] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two related receptor tyrosine kinases (RTKs), fibroblast growth factor receptor 1 and 2 (FGFR1 and FGFR2), exert distinct effects during carcinogenesis. To examine FGFR1 and FGFR2 signaling in polarized epithelia, we have developed an in vitro three-dimensional HC11 mouse mammary epithelial cell culture model combined with a chemically inducible FGFR (iFGFR) dimerization system. Although activation of both RTKs led to reinitiation of cell proliferation and loss of cell polarity, only iFGFR1 activation induced cell survival and epithelial to mesenchymal transition. In contrast, iFGFR2 activation induced cell apoptosis even in the cells in direct contact with the extracellular matrix. Activation of iFGFR2, but not iFGFR1, led to rapid receptor down-regulation and transient activation of downstream signaling, which were partially rescued by Cbl small interfering RNA knockdown or the proteasome inhibitor lactacystin. Importantly, inhibition of proteasome activity in iFGFR2-activated structures led to epithelial to mesenchymal transition and invasive phenotypes resembling those observed after iFGFR1 activation. These studies demonstrate, for the first time, that the duration of downstream signaling determines the distinct phenotypes mediated by very homologous RTKs in three-dimensional cultures.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Animals
- Apoptosis
- Cell Culture Techniques
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- Epithelium/pathology
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/enzymology
- Mesoderm/pathology
- Mice
- Mice, Transgenic
- Phenotype
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proto-Oncogene Proteins c-cbl/antagonists & inhibitors
- Proto-Oncogene Proteins c-cbl/genetics
- RNA, Small Interfering/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/agonists
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/agonists
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
Collapse
Affiliation(s)
- Wa Xian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
292
|
Liu TC, Zhang T, Fukuhara H, Kuroda T, Todo T, Canron X, Bikfalvi A, Martuza RL, Kurtz A, Rabkin SD. Dominant-negative fibroblast growth factor receptor expression enhances antitumoral potency of oncolytic herpes simplex virus in neural tumors. Clin Cancer Res 2007; 12:6791-9. [PMID: 17121900 DOI: 10.1158/1078-0432.ccr-06-0263] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic herpes simplex viruses (HSV) appear to be a promising platform for cancer therapy. However, efficacy as single agents has thus far been unsatisfactory. Fibroblast growth factor (FGF) signaling is important for the growth and migration of endothelial and tumor cells. Here, we examine the strategy of arming oncolytic HSV with a dominant-negative FGF receptor (dnFGFR) that targets the FGF signaling pathway. EXPERIMENTAL DESIGN A mouse Nf1:p53 malignant peripheral nerve sheath tumor (MPNST) cell line expressing dnFGFR was generated by transfection. The effects of dnFGFR expression on cell growth and migration in vitro and tumor formation in vivo were determined. The dnFGFR transgene was then inserted into oncolytic HSV G47Delta using a bacterial artificial chromosome construction system. Antitumoral and antiangiogenic activities of bG47Delta-dnFGFR were examined. RESULTS MPNST 61E4 cells expressing dnFGFR grew less well than parental control cells. bG47Delta-dnFGFR showed enhanced killing of both tumor (human U87 glioma and F5 malignant meningioma cells and murine MPNST 61E4 and 37-3-18-4 cells) and proliferating endothelial cells (human umbilical vascular endothelial cell and Py-4-1) in vitro compared with the control vector bG47Delta-empty without inhibiting viral replication. In vivo, bG47Delta-dnFGFR was more efficacious than its nonexpressing parent bG47Delta-empty at inhibiting tumor growth and angiogenesis in both human U87 glioma and mouse 37-3-18-4 MPNST tumors in nude mice. CONCLUSIONS By using multiple therapeutic mechanisms, including destruction of both tumor cells and tumor endothelial cells, an oncolytic HSV encoding dnFGFR enhances antitumor efficacy. This strategy can be applied to other oncolytic viruses and for clinical translation.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, Reifel-Miller A, Kharitonenkov A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol 2007; 210:1-6. [PMID: 17063460 DOI: 10.1002/jcp.20847] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblast growth factor (FGF)-21 is a novel regulator of insulin-independent glucose transport in 3T3-L1 adipocytes and has glucose and triglyceride lowering effects in rodent models of diabetes. The precise mechanisms whereby FGF-21 regulates metabolism remain to be determined. Here we describe the early signaling events triggered by FGF-21 treatment of 3T3-L1 adipocytes and reveal a functional interplay between FGF-21 and peroxisome proliferator-activated receptor gamma (PPARgamma) pathways that leads to a marked stimulation of glucose transport. While the early actions of FGF-21 on 3T3-L1 adipocytes involve rapid accumulation of intracellular calcium and phosphorylation of Akt, GSK-3, p70(S6K), SHP-2, MEK1/2, and Stat3, continuous treatment for 72 h induces an increase in PPARgamma protein expression. Moreover, chronic activation of the PPARgamma pathway in 3T3-L1 adipocytes with the PPARgamma agonist and anti-diabetic agent, rosiglitazone (BRL 49653), enhances FGF-21 action to induce tyrosine phosphorylation of FGF receptor-2. Strikingly, treatment of cells with FGF-21 and rosiglitazone in combination leads to a pronounced increase in expression of the GLUT1 glucose transporter and a marked synergy in stimulation of glucose transport. Together these results reveal a novel synergy between two regulators of glucose homeostasis, FGF-21 and PPARgamma, and further define FGF-21 mechanism of action.
Collapse
Affiliation(s)
- Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Eswarakumar VP, Özcan F, Lew ED, Bae JH, Tomé F, Booth CJ, Adams DJ, Lax I, Schlessinger J. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci U S A 2006; 103:18603-8. [PMID: 17132737 PMCID: PMC1693709 DOI: 10.1073/pnas.0609157103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Craniosynostosis, the fusion of one or more of the sutures of the skull vault before the brain completes its growth, is a common (1 in 2,500 births) craniofacial abnormality, approximately 20% of which occurrences are caused by gain-of-function mutations in FGF receptors (FGFRs). We describe a genetic and pharmacological approach for the treatment of a murine model system of Crouzon-like craniosynostosis induced by a dominant mutation in Fgfr2c. Using genetically modified mice, we demonstrate that premature fusion of sutures mediated by Crouzon-like activated Fgfr2c mutant is prevented by attenuation of signaling pathways by selective uncoupling between the docking protein Frs2alpha and activated Fgfr2c, resulting in normal skull development. We also demonstrate that attenuation of Fgfr signaling in a calvaria organ culture with an Fgfr inhibitor prevents premature fusion of sutures without adversely affecting calvaria development. These experiments show that attenuation of FGFR signaling by pharmacological intervention could be applied for the treatment of craniosynostosis or other severe bone disorders caused by mutations in FGFRs that currently have no treatment.
Collapse
Affiliation(s)
| | | | | | | | - F. Tomé
- *Department of Pharmacology and
| | - C. J. Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - D. J. Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
| | - I. Lax
- *Department of Pharmacology and
| | - J. Schlessinger
- *Department of Pharmacology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
295
|
Abstract
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr Bethesda, MD 20892, USA
| | | | | |
Collapse
|
296
|
Sørensen V, Wiedlocha A, Haugsten EM, Khnykin D, Wesche J, Olsnes S. Different abilities of the four FGFRs to mediate FGF-1 translocation are linked to differences in the receptor C-terminal tail. J Cell Sci 2006; 119:4332-41. [PMID: 17003104 DOI: 10.1242/jcs.03209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Members of the fibroblast growth factor family bind to one or more of the four closely related membrane-spanning FGF receptors. In addition to signaling through the receptors, exogenous FGF-1 and FGF-2 are endocytosed and translocated to the cytosol and nucleus where they stimulate RNA and DNA synthesis. Here we have studied the ability of the four FGF receptors to facilitate translocation of exogenous FGF-1 to the cytosol and nucleus. FGFR1 and FGFR4 were able to mediate translocation, whereas FGFR2 and FGFR3 completely lacked this ability. By analyzing mutant FGFRs we found that the tyrosine kinase domain could be deleted from FGFR1 without abolishing translocation, whereas the C-terminal tail of the FGFRs, constituted by approximately 50 amino acids downstream of the kinase domain, plays a crucial role in FGF-1 translocation. Three amino acids residues within the C-terminal tail were found to be of particular importance for translocation. For FGFR2, the two amino acid substitutions Q774M and P800H were sufficient to enable the receptor to support FGF-1 translocation. The results demonstrate a striking diversity in function of the four FGFRs determined by their C-terminal domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- COS Cells
- Cattle
- Chlorocebus aethiops
- Electrophoresis, Polyacrylamide Gel
- Fibroblast Growth Factor 1/metabolism
- HeLa Cells
- Humans
- Kinetics
- Mice
- Molecular Sequence Data
- Mutation/genetics
- Phosphorylation
- Protein Transport/physiology
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Vigdis Sørensen
- The Department of Biochemistry, Institute for Cancer Research, The University of Oslo, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
297
|
Lo TL, Fong CW, Yusoff P, McKie AB, Chua MS, Leung HY, Guy GR. Sprouty and cancer: The first terms report. Cancer Lett 2006; 242:141-50. [PMID: 16469433 DOI: 10.1016/j.canlet.2005.12.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 11/15/2022]
Abstract
The Ras/Erk signaling pathway has a central role in development of multi-cellular organisms as well as in signal transmission in the mature individual. Recently, a family of genes, designated Sprouty, induced by the Ras/Erk pathway was found to specify proteins that inhibited the upstream pathway. Being in a position that is likely to control well-characterized oncogene products suggested that the expression levels of the Sprouty genes may be relevant in human carcinogenesis. Early data on the deregulation of Sprouty expression in breast, prostate and liver cancers is discussed along with the notion that some of them might have potential as tumour markers or that the derived proteins may act as tumour suppressors.
Collapse
Affiliation(s)
- Ting Ling Lo
- Signal Transduction laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, #6-01, Proteos, Singapore, 138673
| | | | | | | | | | | | | |
Collapse
|
298
|
Schwertfeger KL, Xian W, Kaplan AM, Burnett SH, Cohen DA, Rosen JM. A critical role for the inflammatory response in a mouse model of preneoplastic progression. Cancer Res 2006; 66:5676-85. [PMID: 16740705 DOI: 10.1158/0008-5472.can-05-3781] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment, which includes inflammatory cells, vasculature, extracellular matrix, and fibroblasts, is a critical mediator of neoplastic progression and metastasis. Using an inducible transgenic mouse model of preneoplastic progression in the mammary gland, we discovered that activation of inducible fibroblast growth factor receptor-1 (iFGFR1) in the mammary epithelium rapidly increased the expression of several genes involved in the inflammatory response. Further analysis revealed that iFGFR1 activation induced recruitment of macrophages to the epithelium and continued association with the alveolar hyperplasias that developed following long-term activation. Studies using HC-11 mammary epithelial cells showed that iFGFR1-induced expression of the macrophage chemoattractant osteopontin was required for macrophage recruitment in vitro. Finally, conditional depletion of macrophages inhibited iFGFR1-mediated epithelial cell proliferation and lateral budding. These findings show that inflammatory cells, specifically macrophages, are critical for mediating early events in an inducible transgenic mouse model of preneoplastic progression.
Collapse
MESH Headings
- Animals
- Cell Movement/physiology
- Dimerization
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/immunology
- Macrophages/physiology
- Mammary Glands, Animal
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Osteopontin
- Precancerous Conditions/genetics
- Precancerous Conditions/immunology
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/immunology
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/genetics
- Sialoglycoproteins/immunology
- Sialoglycoproteins/metabolism
Collapse
Affiliation(s)
- Kathryn L Schwertfeger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
299
|
Sørensen V, Nilsen T, Wiedłocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays 2006; 28:504-14. [PMID: 16615083 DOI: 10.1002/bies.20405] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of the subcellular localization of certain proteins is a mechanism for the regulation of their biological activities. FGF-2 can be produced as distinct isoforms by alternative initiation of translation on a single mRNA and the isoforms are differently sorted in cells. High molecular weight FGF-2 isoforms are not secreted from the cell, but are transported to the nucleus where they regulate cell growth or behavior in an intracrine fashion. 18 kDa FGF-2 can be secreted to the extracellular medium where it acts as a conventional growth factor by binding to and activation of cell-surface receptors. Furthermore, following receptor-mediated endocytosis, the exogenous FGF-2 can be transported to the nuclei of target cells, and this is of importance for the transmittance of a mitogenic signal. The growth factor is able to interact with several intracellular proteins. Here, the mode of action and biological role of intracellular FGF-2 are discussed.
Collapse
Affiliation(s)
- Vigdis Sørensen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Norway
| | | | | |
Collapse
|
300
|
Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281:15694-700. [PMID: 16597617 PMCID: PMC2080618 DOI: 10.1074/jbc.m601252200] [Citation(s) in RCA: 910] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.
Collapse
Affiliation(s)
- Xiuqin Zhang
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Omar A. Ibrahimi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shaun K. Olsen
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Hisashi Umemori
- Department of Biological Chemistry, Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - David M. Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|