251
|
Romao S, Gasser N, Becker AC, Guhl B, Bajagic M, Vanoaica D, Ziegler U, Roesler J, Dengjel J, Reichenbach J, Münz C. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. ACTA ACUST UNITED AC 2014; 203:757-66. [PMID: 24322427 PMCID: PMC3857489 DOI: 10.1083/jcb.201308173] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A subset of phagosomes in human macrophages and dendritic cells that is marked by a coat of autophagy-related proteins maintains phagocytosed antigens for prolonged presentation on MHC class II molecules. Antigen preservation for presentation is a hallmark of potent antigen-presenting cells. In this paper, we report that in human macrophages and dendritic cells, a subset of phagosomes gets coated with Atg8/LC3, a component of the molecular machinery of macroautophagy, and maintains phagocytosed antigens for prolonged presentation on major histocompatibility complex class II molecules. These Atg8/LC3-positive phagosomes are formed around the antigen with TLR2 agonists and require reactive oxygen species production by NOX2 for their generation. A deficiency in the NOX2-dependent formation of these antigen storage phagosomes could contribute to compromise antifungal immune control in chronic granulomatous disease patients.
Collapse
Affiliation(s)
- Susana Romao
- Viral Immunobiology, Institute of Experimental Immunology, and 2 Center for Microscopy and Image Analysis, University of Zürich, 8006 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
253
|
Abstract
Aberrations of both innate immunity and adaptive immunity in genetically predisposed individuals evoked by environmental factors are suggested to be implicated in pathophysiological processes of systemic lupus erythematosus (SLE). Autophagy, a degradation pathway in which cytoplasmic content is engulfed and degraded by the lysosome, has been recently demonstrated to be involved in multiple cytoplasmic homeostatic progresses and interact with nearly all parts of the innate and adaptive immune system. More recently, some lines of evidence from genetic, cell biology and model animal studies also suggests a pivotal role of autophagy in mediating the occurrence and development of SLE. We discuss and synthesize studies that have begun to demonstrate how autophagy cause and/or promote autoimmunity in SLE.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) , Ministry of Education, Beijing , China
| | | | | |
Collapse
|
254
|
Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 2014; 14:94-108. [PMID: 24445665 DOI: 10.1038/nri3582] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) and macrophages use various receptors to recognize foreign antigens and to receive feedback control from adaptive immune cells. Although it was long believed that all immunoglobulin Fc receptors are universally expressed by phagocytes, recent findings indicate that only monocyte-derived DCs and macrophages express high levels of activating Fc receptors for IgG (FcγRs), whereas conventional and plasmacytoid DCs express the inhibitory FcγR. In this Review, we discuss how the uptake, processing and presentation of antigens by DCs and macrophages is influenced by FcγR recognition of immunoglobulins and immune complexes in the steady state and during inflammation.
Collapse
Affiliation(s)
- Martin Guilliams
- 1] Laboratory of Immunoregulation, VIB Inflammation Research Center, 9052 Ghent, Belgium. [2] Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Pierre Bruhns
- 1] Institut Pasteur, Département d'Immunologie, Laboratoire Anticorps en Thérapie et Pathologie, 75015 Paris, France. [2] Institut National de la Santé et de la Recherche Médicale, U760, 75015 Paris, France
| | - Yvan Saeys
- 1] Laboratory of Immunoregulation, VIB Inflammation Research Center, 9052 Ghent, Belgium. [2] Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Hamida Hammad
- 1] Laboratory of Immunoregulation, VIB Inflammation Research Center, 9052 Ghent, Belgium. [2] Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- 1] Laboratory of Immunoregulation, VIB Inflammation Research Center, 9052 Ghent, Belgium. [2] Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium. [3] Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| |
Collapse
|
255
|
Kim S, Kaiser V, Beier E, Bechheim M, Guenthner-Biller M, Ablasser A, Berger M, Endres S, Hartmann G, Hornung V. Self-priming determines high type I IFN production by plasmacytoid dendritic cells. Eur J Immunol 2014; 44:807-818. [PMID: 24338737 DOI: 10.1002/eji.201343806] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are responsible for the robust and immediate production of type I IFNs during viral infection. pDCs employ TLR7 and TLR9 to detect RNA and CpG motifs present in microbial genomes. CpG-A was the first synthetic stimulus available that induced large amounts of IFN-α (type I IFN) in pDCs. CpG-B, however, only weakly activates pDCs to produce IFN-α. Here, we demonstrate that differences in the kinetics of TLR9 activation in human pDCs are essential for the understanding of the functional difference between CpG-A and CpG-B. While CpG-B quickly induces IFN-α production in pDCs, CpG-A stimulation results in delayed yet maximal IFN-α induction. Constitutive production of low levels of type I IFN in pDCs, acting in a paracrine and autocrine fashion, turned out to be the key mechanism responsible for this phenomenon. At high cell density, pDC-derived, constitutive type I IFN production primes pDCs for maximal TLR responsiveness. This accounts for the high activity of higher structured TLR agonists that trigger type I IFN production in a delayed fashion. Altogether, these data demonstrate that high type I IFN production by pDCs cannot be simply ascribed to cell-autonomous mechanisms, yet critically depends on the local immune context.
Collapse
Affiliation(s)
- Sarah Kim
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Vera Kaiser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Esther Beier
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Matthias Bechheim
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Margit Guenthner-Biller
- Center of Integrated Protein Science (CIPS-M), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Andrea Ablasser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Michael Berger
- Center of Integrated Protein Science (CIPS-M), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science (CIPS-M), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
256
|
Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol 2014; 24:360-9. [PMID: 24439965 DOI: 10.1016/j.tcb.2013.12.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/14/2013] [Accepted: 12/19/2013] [Indexed: 02/08/2023]
Abstract
Over the past decade we have learned much about nucleic acid recognition by the innate immune system and in particular by Toll-like receptors (TLRs). These receptors localize to endosomal compartments where they are poised to recognize microbial nucleic acids. Multiple regulatory mechanisms function to limit responses to self DNA or RNA, and breakdowns in these mechanisms can contribute to autoimmune or inflammatory disorders. In this review we discuss our current understanding of the cell biology of TLRs involved in nucleic acid recognition and how localization and trafficking of these receptors regulates their function.
Collapse
Affiliation(s)
- Bettina L Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
257
|
Pimentel-Muiños FX, Boada-Romero E. Selective autophagy against membranous compartments: Canonical and unconventional purposes and mechanisms. Autophagy 2014; 10:397-407. [PMID: 24419294 DOI: 10.4161/auto.27244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved.
Collapse
Affiliation(s)
- Felipe X Pimentel-Muiños
- Instituto de Biología Molecular y Celular del Cáncer; Centro de Investigación del Cáncer; CSIC-Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca, Spain
| | - Emilio Boada-Romero
- Instituto de Biología Molecular y Celular del Cáncer; Centro de Investigación del Cáncer; CSIC-Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca, Spain
| |
Collapse
|
258
|
Abstract
Autophagy is used by the cell to degrade various substrates; this is achieved either through the canonical, non-selective autophagy pathway or through selective autophagy. Both pathways proceed via distinct key steps and use specific molecular mechanisms. The canonical autophagy pathway has been studied in detail in mammalian cells and in model organisms, such as yeast. The molecular mechanisms underlying non-canonical autophagy, in addition to alternative pathways that are independent of some of the key autophagy machinery, are beginning to become clear. Besides degradation of cellular proteins, autophagy proteins are also involved in many other functions, some of which are important during bacterial infections. Autophagy functions as an antibacterial mechanism. The induction and recognition mechanisms for several bacterial species have been elucidated. Bacteria can escape killing by autophagy and some can even use autophagy to promote infection of host cells, through the interaction between bacterial effector proteins and autophagy components. The knowledge about bacteria–autophagy interactions will inform the design of new drugs and treatments against bacterial infections.
Autophagy not only degrades components of host cells but can also target intracellular bacteria and thus contribute to host defences. Here, Huang and Brumell discuss the canonical and selective pathways of antibacterial autophagy, as well as the ways in which bacteria can escape from them and sometimes even use them to promote infection. Autophagy is a cellular process that targets proteins, lipids and organelles to lysosomes for degradation, but it has also been shown to combat infection with various pathogenic bacteria. In turn, bacteria have developed diverse strategies to avoid autophagy by interfering with autophagy signalling or the autophagy machinery and, in some cases, they even exploit autophagy for their growth. In this Review, we discuss canonical and non-canonical autophagy pathways and our current knowledge of antibacterial autophagy, with a focus on the interplay between bacterial factors and autophagy components.
Collapse
|
259
|
Abstract
Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
260
|
Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, Lotze MT, Tang D. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4:e966. [PMID: 24336086 PMCID: PMC3877563 DOI: 10.1038/cddis.2013.493] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/19/2013] [Accepted: 10/28/2013] [Indexed: 12/16/2022]
Abstract
Resistance to ‘apoptotic' cell death is one of the major hallmarks of cancer, contributing to tumor development and therapeutic resistance. Damage-associated molecular patterns (DAMPs) are molecules released or exposed by dead, dying, injured, or stressed non-apoptotic cells, with multiple roles in inflammation and immunity. Release of DAMPs not only contributes to tumor growth and progression but also mediates skewing of antitumor immunity during so-called immunogenic tumor cell death (ICD). Autophagy is a lysosome-mediated homeostatic degradation process in which cells digest their own effete organelles and macromolecules to meet bioenergetic needs and enable protein synthesis. For tumor cells, autophagy is a double-edged sword. Autophagy, in balance with apoptosis, can function as a tumor suppressor; autophagy deficiency, associated with alterations in apoptosis, initiates tumorigenesis in many settings. In contrast, autophagy-related stress tolerance generally promotes cell survival, which enables tumor growth and promotes therapeutic resistance. Most anticancer therapies promote DAMP release and enhance autophagy. Autophagy not only regulates DAMP release and degradation, but also is triggered and regulated by DAMPs. This interplay between autophagy and DAMPs, serving as ‘strange attractors' in the dynamic system that emerges in cancer, regulates the effectiveness of antitumor treatment. This interplay also shapes the immune response to dying cells upon ICD, culling the least fit tumor cells and promoting survival of others. Thus, DAMPs and autophagy are suitable emergent targets for cancer therapy, considering their more nuanced role in tumor progression.
Collapse
Affiliation(s)
- W Hou
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| | - Q Zhang
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| | - Z Yan
- 1] Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA [2] Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - R Chen
- 1] Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA [2] Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - H J Zeh Iii
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| | - R Kang
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| | - M T Lotze
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| | - D Tang
- Department of Surgery-DAMP Laboratory, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh 15213, PA, USA
| |
Collapse
|
261
|
Abstract
Autophagy is a fundamental eukaryotic pathway that has multiple effects on immunity. Autophagy is induced by pattern recognition receptors and, through autophagic adaptors, it provides a mechanism for the elimination of intracellular microorganisms. Autophagy controls inflammation through regulatory interactions with innate immune signalling pathways, by removing endogenous inflammasome agonists and through effects on the secretion of immune mediators. Moreover, autophagy contributes to antigen presentation and to T cell homeostasis, and it affects T cell repertoires and polarization. Thus, as we discuss in this Review, autophagy has multitiered immunological functions that influence infection, inflammation and immunity.
Collapse
|
262
|
Moretti J, Blander JM. Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol 2013; 26:100-10. [PMID: 24556406 DOI: 10.1016/j.coi.2013.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023]
Abstract
A decade of work shows that the core function of phagocytosis in engulfment and destruction of microorganisms is only a small facet of the full spectrum of roles for phagocytosis in the immune system. The regulation of phagocytosis and its outcomes by inflammatory pattern recognition receptors (PRRs) is now followed by new studies strengthening this concept and adding further complexity to the relationship between phagocytosis and innate immune signaling. Phagocytosis forms the platform for activation of distinct members of the Toll-like receptor family, and even dictates their signaling outcomes. In many cases, phagocytosis is a necessary precedent to the activation of cytosolic PRRs and assembly of canonical and non-canonical inflammasomes, leading to strong pro-inflammatory responses and inflammatory cell death.
Collapse
Affiliation(s)
- Julien Moretti
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, United States
| | - J Magarian Blander
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, United States.
| |
Collapse
|
263
|
TIM-4 Glycoprotein-Mediated Degradation of Dying Tumor Cells by Autophagy Leads to Reduced Antigen Presentation and Increased Immune Tolerance. Immunity 2013; 39:1070-81. [DOI: 10.1016/j.immuni.2013.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/27/2013] [Indexed: 01/16/2023]
|
264
|
Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr Opin Immunol 2013; 26:69-75. [PMID: 24556403 DOI: 10.1016/j.coi.2013.10.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 01/06/2023]
Abstract
Noncanonical autophagy is utilized by phagocytes to kill and digest extracellular pathogens. This process is initiated at the cell surface by receptors that recruit elements of the autophagy machinery, like LC3, to the phagosome. Also known as LC3-associated phagocytosis, the intersection of autophagy and phagocytosis was initially described as a pathway that limits the proliferation of engulfed pathogens by expediting phagosome maturation. Emerging evidences suggest that this pathway confers previously unsuspected versatility to the immune response as it regulates functions like the interferon pathway, dead cell clearance, and antigen presentation. Here we review recent advances in understanding the functional consequences of linking the autophagy machinery to phagocytosis in innate immunity.
Collapse
Affiliation(s)
- Payal Mehta
- RIA, Research Department, MedImmune, Gaithersburg, MD 20878, USA
| | - Jill Henault
- RIA, Research Department, MedImmune, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- RIA, Research Department, MedImmune, Gaithersburg, MD 20878, USA
| | - Miguel A Sanjuan
- RIA, Research Department, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
265
|
Nair-Gupta P, Blander JM. An updated view of the intracellular mechanisms regulating cross-presentation. Front Immunol 2013; 4:401. [PMID: 24319447 PMCID: PMC3837292 DOI: 10.3389/fimmu.2013.00401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/08/2013] [Indexed: 02/05/2023] Open
Abstract
Cross-presentation involves the presentation of peptides derived from internalized cargo on major histocompatibility complex class I molecules by dendritic cells, a process critical for tolerance and immunity. Detailed studies of the pathways mediating cross-presentation have revealed that this process takes place in a specialized subcellular compartment with a unique set of proteins. In this review, we focus on the recently appreciated role for intracellular vesicular traffic, which serves to equip compartments such as endosomes and phagosomes with the necessary apparatus for conducting the various steps of cross-presentation. We also consider how these pathways may integrate with inflammatory signals particularly from pattern recognition receptors that detect the presence of microbial components during infection. We discuss the consequences of such signals on initiating cross-presentation to stimulate adaptive CD8 T cell responses.
Collapse
Affiliation(s)
- Priyanka Nair-Gupta
- Department of Medicine, Immunology Institute, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | |
Collapse
|
266
|
Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 2013; 18:55-65. [PMID: 24262302 DOI: 10.1016/j.intimp.2013.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
In its classical form, autophagy is an essential, homeostatic process by which cytoplasmic components are degraded in a double-membrane-bound autophagosome in response to starvation. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. The roles of autophagy bridge both the innate and adaptive immune systems and autophagic dysfunction is associated with inflammation, infection, neurodegeneration and cancer. In this review, we discuss the contribution of autophagy to inflammatory, infectious and neurodegenerative diseases, as well as cancer.
Collapse
|
267
|
Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013; 39:211-27. [PMID: 23973220 DOI: 10.1016/j.immuni.2013.07.017] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022]
Abstract
Autophagy constitutes a mechanism for the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy not only represents an essential cell-intrinsic mechanism to protect against internal and external stress conditions but also shapes cellular immunity. Recent evidence indicates that autophagic responses in antigen-donor cells affect the release of several cytokines and "danger signals." Thus, especially when it precedes cell death, autophagy alerts innate immune effectors to elicit cognate immune responses. Autophagy is also important for the differentiation, survival, and activation of myeloid and lymphoid cells. Accordingly, inherited mutations in autophagy-relevant genes are associated with immune diseases, whereas oncogenesis-associated autophagic defects promote the escape of developing tumors from immunosurveillance. Here, we discuss the regulation of autophagy in the course of cellular immune responses and emphasize its impact on the immunogenicity of antigen-donor cells and on the activity of antigen-presenting cells and T lymphocytes.
Collapse
Affiliation(s)
- Yuting Ma
- INSERM, U848, F-94805 Villejuif, France; Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | |
Collapse
|
268
|
Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol 2013; 35:114-22. [PMID: 24246474 DOI: 10.1016/j.it.2013.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/24/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023]
Abstract
Although the major targets of HIV infection are CD4⁺ T cells, dendritic cells (DCs) represent a crucial subset in HIV infection because they influence viral transmission and target cell infection and presentation of HIV antigens. DCs are potent antigen-presenting cells that can modulate antiviral immune responses. Through secretion of inflammatory cytokines and interferons (IFNs), DCs also alter T cell proliferation and differentiation, participating in the immune dysregulation characteristic of chronic HIV infection. Their wide distribution in close proximity with the mucosal epithelia makes them one of the first cell types to encounter HIV during sexual transmission. We discuss here the multiple roles that DCs play at different stages of HIV infection, emphasizing their relevance to HIV pathology and progression.
Collapse
Affiliation(s)
- Olivier Manches
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA
| | - Davor Frleta
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA.
| |
Collapse
|
269
|
Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 2013; 32:3130-44. [PMID: 24185898 DOI: 10.1038/emboj.2013.233] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023] Open
Abstract
Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion.
Collapse
|
270
|
Wu Q, van Dyk LF, Jiang D, Dakhama A, Li L, White SR, Gross A, Chu HW. Interleukin-1 receptor-associated kinase M (IRAK-M) promotes human rhinovirus infection in lung epithelial cells via the autophagic pathway. Virology 2013; 446:199-206. [PMID: 24074582 PMCID: PMC3804030 DOI: 10.1016/j.virol.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Human rhinovirus (HRV) is the most common viral etiology in acute exacerbations of asthma. However, the exact mechanisms underlying HRV infection in allergic airways are poorly understood. IL-13 increases interleukin-1 receptor associated kinase M (IRAK-M) and subsequently inhibits airway innate immunity against bacteria. However, the role of IRAK-M in lung HRV infection remains unclear. Here, we provide the first evidence that IRAK-M over-expression promotes lung epithelial HRV-16 replication and autophagy, but inhibits HRV-16-induced IFN-β and IFN-λ1 expression. Inhibiting autophagy reduces HRV-16 replication. Exogenous IFN-β and IFN-λ1 inhibit autophagy and HRV-16 replication. Our data indicate the enhancing effect of IRAK-M on epithelial HRV-16 infection, which is partly through the autophagic pathway. Impaired anti-viral interferon production may serve as a direct or an indirect (e.g., autophagy) mechanism of enhanced HRV-16 infection by IRAK-M over-expression. Targeting autophagic pathway or administrating anti-viral interferons may prevent or attenuate viral (e.g., HRV-16) infections in allergic airways.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Linda F. van Dyk
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Steven R. White
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL, USA
| | - Ashley Gross
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
271
|
Spel L, Boelens JJ, Nierkens S, Boes M. Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation. Oncoimmunology 2013; 2:e26403. [PMID: 24482744 PMCID: PMC3894247 DOI: 10.4161/onci.26403] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses.
Collapse
Affiliation(s)
- Lotte Spel
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Jaap-Jan Boelens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Stefan Nierkens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Marianne Boes
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| |
Collapse
|
272
|
López P, Alonso-Pérez E, Rodríguez-Carrio J, Suárez A. Influence of Atg5 mutation in SLE depends on functional IL-10 genotype. PLoS One 2013; 8:e78756. [PMID: 24205307 PMCID: PMC3799636 DOI: 10.1371/journal.pone.0078756] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence supports the involvement of autophagy in the etiopathology of autoimmune diseases. Despite the identification of autophagy-related protein (Atg)-5 as one of the susceptibility loci in systemic Lupus erythematosus (SLE), the consequences of the carriage of these mutations for patients remain unclear. The present work analyzed the association of Atg5 rs573775 single nucleotide polymorphism (SNP) with SLE susceptibility, IFNα, TNFα and IL-10 serum levels, and clinical features, in 115 patients and 170 healthy individuals. Patients who where carriers of the rs573775 T* minor allele presented lower IFNα levels than those with the wild genotype, whereas the opposite result was detected for IL-10. Thus, since IL-10 production was regulated by rs1800896 polymorphisms, we evaluated the effect of this Atg5 mutation in genetically high and low IL-10 producers. Interestingly, we found that the rs573775 T* allele was a risk factor for SLE in carriers of the high IL-10 producer genotype, but not among genetically low producers. Moreover, IL-10 genotype influences SLE features in patients presenting the Atg5 mutated allele. Specifically, carriage of the rs573775 T* allele led to IL-10 upregulation, reduced IFNα and TNFα production and a low frequency of cytopenia in patients with the high IL-10 producer genotype, whereas patients with the same Atg5 allele that were low IL-10 producers presented reduced amounts of all these cytokines, had a lower prevalence of anti-dsDNA antibodies and the latest onset age. In conclusion, the Atg5 rs573775 T* allele seems to influence SLE susceptibility, cytokine production and disease features depending on other factors such as functional IL-10 genotype.
Collapse
Affiliation(s)
- Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- * E-mail:
| | - Elisa Alonso-Pérez
- Laboratorio de Investigación, Instituto de Investigación Sanitaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
273
|
Kim JY, Zhao H, Martinez J, Doggett TA, Kolesnikov AV, Tang PH, Ablonczy Z, Chan CC, Zhou Z, Green DR, Ferguson TA. Noncanonical autophagy promotes the visual cycle. Cell 2013; 154:365-76. [PMID: 23870125 DOI: 10.1016/j.cell.2013.06.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/06/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Phagocytosis and degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is fundamental to vision. Autophagy is also responsible for bulk degradation of cellular components, but its role in POS degradation is not well understood. We report that the morning burst of RPE phagocytosis coincided with the enzymatic conversion of autophagy protein LC3 to its lipidated form. LC3 associated with single-membrane phagosomes containing engulfed POS in an Atg5-dependent manner that required Beclin1, but not the autophagy preinitiation complex. The importance of this process was verified in mice with Atg5-deficient RPE cells that showed evidence of disrupted lysosomal processing. These mice also exhibited decreased photoreceptor responses to light stimuli and decreased chromophore levels that were restored with exogenous retinoid supplementation. These results establish that the interplay of phagocytosis and autophagy within the RPE is required for both POS degradation and the maintenance of retinoid levels to support vision.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 2013; 155:688-98. [PMID: 24119841 DOI: 10.1016/j.cell.2013.09.049] [Citation(s) in RCA: 535] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by microbial or self-DNA, as well as cyclic dinucleotides (CDNs), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent proinflammatory disease by mechanisms that remain unknown. We demonstrate here that, after autophagy-dependent STING delivery of TANK-binding kinase 1 (TBK1) to endosomal/lysosomal compartments and activation of transcription factors interferon regulatory factor 3 (IRF3) and NF-κB, STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1), and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor AMP activated protein kinase (AMPK) and was elicited by CDNs generated by the cGAMP synthase, cGAS. Thus, although CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.
Collapse
Affiliation(s)
- Hiroyasu Konno
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
275
|
Bestebroer J, V'kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 2013; 14:1029-41. [PMID: 23837619 PMCID: PMC7169877 DOI: 10.1111/tra.12091] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 12/27/2022]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double‐membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)‐related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy‐independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER‐associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy‐independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.
Collapse
Affiliation(s)
- Jovanka Bestebroer
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
276
|
Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol 2013; 3:37. [PMID: 23908972 PMCID: PMC3726833 DOI: 10.3389/fcimb.2013.00037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022] Open
Abstract
The innate immune system has evolved endosomal and cytoplasmic receptors for the detection of viral nucleic acids as sensors for virus infection. Some of these pattern recognition receptors (PRR) detect features of viral nucleic acids that are not found in the host such as long stretches of double-stranded RNA (dsRNA) and uncapped single-stranded RNA (ssRNA) in case of Toll-like receptor (TLR) 3 and RIG-I, respectively. In contrast, TLR7/8 and TLR9 are unable to distinguish between viral and self-nucleic acids on the grounds of distinct molecular patterns. The ability of these endosomal TLR to act as PRR for viral nucleic acids seems to rely solely on the mode of access to the endolysosomal compartment in which recognition takes place. The current dogma states that self-nucleic acids do not enter the TLR-sensing compartment under normal physiological conditions. However, it is still poorly understood how dendritic cells (DC) evade activation by self-nucleic acids, in particular with regard to specific DC subsets, which are specialized in taking up material from dying cells for cross-presentation of cell-associated antigens. In this review we discuss the current understanding of how the immune system distinguishes between foreign and self-nucleic acids and point out some of the key aspects that still require further research and clarification.
Collapse
Affiliation(s)
- Eva Brencicova
- Peter Gorer Department of Immunobiology, Guy's Hospital, King's College London, London, UK
| | | |
Collapse
|
277
|
Abstract
A growing list of innate immune receptors is being defined that recognize polysaccharides of microbial cell walls. Fungal β-glucan recognition by the receptor Dectin-1 triggers inflammatory immune responses in macrophages and dendritic cells that are appropriate for defense against fungal pathogens. Among these responses is the specific recruitment of the autophagy-related protein light chain 3 (LC3) to phagosomes containing fungi. Studies documenting LC3's recruitment to phagosomes containing β-glucan and other nonsugar particles suggest that LC3 plays a role in regulating phagocytosis and its related immunological responses.
Collapse
Affiliation(s)
- Jun Ma
- Research Division of Immunology, Department of Biomedical Sciences, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
278
|
Martinez J, Verbist K, Wang R, Green DR. The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab 2013; 17:895-900. [PMID: 23747248 PMCID: PMC3696504 DOI: 10.1016/j.cmet.2013.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innate immune response is shaped by multiple factors, including both traditional autophagy and LC3-associated phagocytosis (LAP). As the autophagic machinery is engaged during times of nutrient stress, arising from scarcity or pathogens, we examine how autophagy, specifically LAP, and cellular metabolism together influence macrophage function and the innate immune response.
Collapse
Affiliation(s)
- Jennifer Martinez
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA
| | - Katherine Verbist
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA
| | - Ruoning Wang
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Institute, Memphis, TN 38105, USA.
| |
Collapse
|
279
|
Kim SE, Overholtzer M. Autophagy proteins regulate cell engulfment mechanisms that participate in cancer. Semin Cancer Biol 2013; 23:329-36. [PMID: 23726896 DOI: 10.1016/j.semcancer.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022]
Abstract
Recent evidence has uncovered cross-regulation of mechanisms of cell engulfment by proteins of the autophagy pathway, in what is called LC3-Associated Phagocytosis, or LAP. By LAP, lysosome fusion to phagosomes and the degradation of engulfed extracellular cargo are facilitated by autophagy proteins that lipidate LC3 onto phagosome membranes. Here we discuss the contexts where LAP is known to occur by focusing on potential roles in tumorigenesis, including predicted consequences of LAP inhibition.
Collapse
Affiliation(s)
- Sung Eun Kim
- BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
280
|
Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, Uchida K, Wada K, Kabuta T. Direct uptake and degradation of DNA by lysosomes. Autophagy 2013; 9:1167-71. [PMID: 23839276 PMCID: PMC3748189 DOI: 10.4161/auto.24880] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lysosomes contain various hydrolases that can degrade proteins, lipids, nucleic acids and carbohydrates. We recently discovered “RNautophagy,” an autophagic pathway in which RNA is directly taken up by lysosomes and degraded. A lysosomal membrane protein, LAMP2C, a splice variant of LAMP2, binds to RNA and acts as a receptor for this pathway. In the present study, we show that DNA is also directly taken up by lysosomes and degraded. Like RNautophagy, this autophagic pathway, which we term “DNautophagy,” is dependent on ATP. The cytosolic sequence of LAMP2C also directly interacts with DNA, and LAMP2C functions as a receptor for DNautophagy, in addition to RNautophagy. Similarly to RNA, DNA binds to the cytosolic sequences of fly and nematode LAMP orthologs. Together with the findings of our previous study, our present findings suggest that RNautophagy and DNautophagy are evolutionarily conserved systems in Metazoa.
Collapse
Affiliation(s)
- Yuuki Fujiwara
- Department of Degenerative Neurological Diseases; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Kodaira, Tokyo Japan; Department of Electrical Engineering and Bioscience; Graduate School of Advanced Science and Engineering; Waseda University; Shinjuku, Tokyo Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks. Front Immunol 2013; 4:88. [PMID: 23596443 PMCID: PMC3625920 DOI: 10.3389/fimmu.2013.00088] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/03/2023] Open
Abstract
Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation, and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that autophagy is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs) in autophagy related gene 5 (Atg5), and Atg16l1 with susceptibility to systemic lupus erythematosus (SLE) and Crohn’s disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression, or exacerbation of autoimmune processes.
Collapse
|
282
|
Guéry L, Hugues S. Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol 2013; 4:59. [PMID: 23508732 PMCID: PMC3589693 DOI: 10.3389/fimmu.2013.00059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a particular subset of DCs that link innate and adaptive immunity. They are responsible for the substantial production of type 1 interferon (IFN-I) in response to viral RNA or DNA through activation of TLR7 and 9. Furthermore, pDCs present antigens (Ag) and induce naïve T cell differentiation. It has been demonstrated that pDCs can induce immunogenic T cell responses through differentiation of cytotoxic CD8+ T cells and effector CD4+ T cells. Conversely, pDCs exhibit strong tolerogenic functions by inducing CD8+ T cell deletion, CD4+ T cell anergy, and Treg differentiation. However, since IFN-I produced by pDCs efficiently activates and recruits conventional DCs, B cells, T cells, and NK cells, pDCs also indirectly affect the nature and the amplitude of adaptive immune responses. As a consequence, the precise role of Ag-presenting functions of pDCs in adaptive immunity has been difficult to dissect in vivo. Additionally, different experimental procedures led to conflicting results regarding the outcome of T cell responses induced by pDCs. During the development of autoimmunity, pDCs have been shown to play both immunogenic and tolerogenic functions depending on disease, disease progression, and the experimental conditions. In this review, we will discuss the relative contribution of innate and adaptive pDC functions in modulating T cell responses, particularly during the development of autoimmunity.
Collapse
Affiliation(s)
- Leslie Guéry
- Department of Pathology and Immunology, University of Geneva Medical School Geneva, Switzerland
| | | |
Collapse
|
283
|
|