251
|
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC. Huntington's disease: from pathology and genetics to potential therapies. Biochem J 2008; 412:191-209. [PMID: 18466116 DOI: 10.1042/bj20071619] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
Affiliation(s)
- Sara Imarisio
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA. Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis 2008; 30:365-374. [PMID: 18417352 PMCID: PMC2442575 DOI: 10.1016/j.nbd.2008.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/31/2008] [Accepted: 02/22/2008] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease is caused by polyglutamine expansion in the huntingtin protein. Huntingtin directly interacts with profilin, a major actin monomer sequestering protein and a key integrator of signals leading to actin polymerization. We observed a progressive loss of profilin in the cerebral cortex of Huntington's disease patients, and in cell culture and Drosophila models of polyglutamine disease. This loss of profilin is likely due to increased degradation through the ubiquitin proteasome system. Profilin loss reduces the F/G actin ratio, indicating a shift in actin polymerization. Overexpression of profilin abolishes mutant huntingtin toxicity in cells and partially ameliorates the morphological and functional eye phenotype and extends lifespan in a transgenic polyglutamine Drosophila model. These results indicate a link between huntingtin and profilin and implicate profilin in Huntington's disease pathogenesis.
Collapse
Affiliation(s)
- Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
| | - Jaime Andrews
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Srikanth Ranganathan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Nicholas A Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
253
|
Collins MO, Yu L, Campuzano I, Grant SGN, Choudhary JS. Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol Cell Proteomics 2008; 7:1331-48. [PMID: 18388127 DOI: 10.1074/mcp.m700564-mcp200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the mouse forebrain cytosolic phosphoproteome using sequential (protein and peptide) IMAC purifications, enzymatic dephosphorylation, and targeted tandem mass spectrometry analysis strategies. In total, using complementary phosphoenrichment and LC-MS/MS strategies, 512 phosphorylation sites on 540 non-redundant phosphopeptides from 162 cytosolic phosphoproteins were characterized. Analysis of protein domains and amino acid sequence composition of this data set of cytosolic phosphoproteins revealed that it is significantly enriched in intrinsic sequence disorder, and this enrichment is associated with both cellular location and phosphorylation status. The majority of phosphorylation sites found by MS were located outside of structural protein domains (97%) but were mostly located in regions of intrinsic sequence disorder (86%). 368 phosphorylation sites were located in long regions of disorder (over 40 amino acids long), and 94% of proteins contained at least one such long region of disorder. In addition, we found that 58 phosphorylation sites in this data set occur in 14-3-3 binding consensus motifs, linear motifs that are associated with unstructured regions in proteins. These results demonstrate that in this data set protein phosphorylation is significantly depleted in protein domains and significantly enriched in disordered protein sequences and that enrichment of intrinsic sequence disorder may be a common feature of phosphoproteomes. This supports the hypothesis that disordered regions in proteins allow kinases, phosphatases, and phosphorylation-dependent binding proteins to gain access to target sequences to regulate local protein conformation and activity.
Collapse
Affiliation(s)
- Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB101SA, United Kingdom
| | | | | | | | | |
Collapse
|
254
|
Abstract
During a decade of proof-of-principle analysis in model organisms, protein networks have been used to further the study of molecular evolution, to gain insight into the robustness of cells to perturbation, and for assignment of new protein functions. Following these analyses, and with the recent rise of protein interaction measurements in mammals, protein networks are increasingly serving as tools to unravel the molecular basis of disease. We review promising applications of protein networks to disease in four major areas: identifying new disease genes; the study of their network properties; identifying disease-related subnetworks; and network-based disease classification. Applications in infectious disease, personalized medicine, and pharmacology are also forthcoming as the available protein network information improves in quality and coverage.
Collapse
Affiliation(s)
- Trey Ideker
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
255
|
Beresewicz M, Kowalczyk JE, Zabłocka B. Kalirin-7, a protein enriched in postsynaptic density, is involved in ischemic signal transduction. Neurochem Res 2008; 33:1789-94. [PMID: 18338255 DOI: 10.1007/s11064-008-9631-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/14/2008] [Indexed: 11/24/2022]
Abstract
Regulators of mitogen activated protein kinases (MAPK) and c-Jun N-terminal/stress-activated kinase (JNK) include Rho-like small GTP-binding proteins and their regulators. SynGAP and kalirin-7 are postsynaptic density-enriched proteins identified through their interaction with Rho GTPases and PSD-95 scaffold protein. We examined immunoreactivity of SynGAP, kalirin-7, and PSD-95, phosphorylation of MAPK and JNK in control and postischemic hippocampus in gerbil model of transient forebrain ischemia. In normal brain higher amount of kalirin-7 but a lower amount of P-JNK was found in ischemia-resistant hippocampal area: CA2-3, DG than in ischemia-vulnerable CA1. After 5 min ischemia and 1 h reperfusion a decrease of P-ERK and increase of P-JNK were uniformly observed in the hippocampal parts. By contrast, the amount of kalirin-7 in CA2-3, DG reached 56% (P < 0.001) of control while was doubled in CA1. Oppositely, the immunoreactivity of SynGAP was increased in CA2-3, DG and reduced in CA1. Our data indicate that SynGAP and kalirin-7 take part in the regulation of ischemic signal transduction but the mechanism does not seem directly connected with the activation of MAPK and JNK.
Collapse
Affiliation(s)
- Małgorzata Beresewicz
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106, Warsaw, Poland
| | | | | |
Collapse
|
256
|
Romero E, Cha GH, Verstreken P, Ly CV, Hughes RE, Bellen HJ, Botas J. Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron 2008; 57:27-40. [PMID: 18184562 PMCID: PMC2277511 DOI: 10.1016/j.neuron.2007.11.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 06/21/2007] [Accepted: 11/06/2007] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of a translated CAG repeat in the N terminus of the huntingtin (htt) protein. Here we describe the generation and characterization of a full-length HD Drosophila model to reveal a previously unknown disease mechanism that occurs early in the course of pathogenesis, before expanded htt is imported into the nucleus in detectable amounts. We find that expanded full-length htt (128Qhtt(FL)) leads to behavioral, neurodegenerative, and electrophysiological phenotypes. These phenotypes are caused by a Ca2+-dependent increase in neurotransmitter release efficiency in 128Qhtt(FL) animals. Partial loss of function in synaptic transmission (syntaxin, Snap, Rop) and voltage-gated Ca2+ channel genes suppresses both the electrophysiological and the neurodegenerative phenotypes. Thus, our data indicate that increased neurotransmission is at the root of neuronal degeneration caused by expanded full-length htt during early stages of pathogenesis.
Collapse
Affiliation(s)
- Eliana Romero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Protein-protein interactions: analysis and prediction. MODERN GENOME ANNOTATION 2008. [PMCID: PMC7120725 DOI: 10.1007/978-3-211-75123-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins represent the tools and appliances of the cell — they assemble into larger structural elements, catalyze the biochemical reactions of metabolism, transmit signals, move cargo across membrane boundaries and carry out many other tasks. For most of these functions proteins cannot act in isolation but require close cooperation with other proteins to accomplish their task. Often, this collaborative action implies physical interaction of the proteins involved. Accordingly, experimental detection, in silico prediction and computational analysis of protein-protein interactions (PPI) have attracted great attention in the quest for discovering functional links among proteins and deciphering the complex networks of the cell.
Collapse
|
258
|
Pal A, Severin F, Höpfner S, Zerial M. Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions. Methods Enzymol 2008; 438:239-57. [PMID: 18413253 DOI: 10.1016/s0076-6879(07)38017-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vesicular transport of signaling molecules, specifically neurotrophins, in neurons is essential for their differentiation, survival, and plasticity. Neurotrophins such as neuron growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are internalized by receptor-mediated endocytosis at synaptic terminals and loaded into endosomes for microtubule-based transport along axons to the cell body where they exert their signaling function in the nucleus. The molecular mechanisms underlying this intracellular transport are not only relevant from a basic knowledge viewpoint, but have also important implications for neurodegenerative diseases. Defects in trafficking are increasingly implicated in the pathology of Huntington's disease (HD) and other neurodegenerative disorders. The small GTPases Rab5 and Rab7 play important roles in the endocytic trafficking of neurotrophins. We have recently identified Huntingtin (Htt) and Huntingtin associated protein of 40 kDa (HAP40) as a novel Rab5 effector complex that regulates endosome motility. In HD, we detected higher HAP40 protein levels compared with normal cells. Such increase causes an augmented recruitment of Htt onto Rab5-positive early endosomes that drastically reduces their motility by "switching" these organelles from microtubules to F-actin. These findings suggest a mechanism by which impaired Rab5-mediated trafficking of neurotrophic factors may be a key event of the pathogenetic process leading to neurodegeneration in HD. To dissect the mechanisms by which Htt, HAP40, and Rab5 function in early endosome interactions with the cytoskeleton, we developed assays to investigate endosome-cytoskeleton interactions that can be applied to normal and pathological conditions. We provide here detailed protocols for, first, an assay that measures binding of early endosomes to microtubules and F-actin. Second, we describe an improved protocol for a cell-free assay that recapitulates the motility of early endosomes along microtubules in vitro. These assays provide mechanistic insights into the dysfunction of endosome motility occurring in HD as well as other neurodegenerative disorders.
Collapse
Affiliation(s)
- Arun Pal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
259
|
Janitz M. Assigning functions to genes--the main challenge of the post-genomics era. Rev Physiol Biochem Pharmacol 2007; 159:115-29. [PMID: 17846923 DOI: 10.1007/112_2007_0703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genome-sequencing projects yield enormous amounts of information that can lead to revolutions in our understanding of life and provide new platforms for the treatment of human diseases. However, DNA sequencing alone does not provide enough information to determine the molecular pathways of an organism in healthy and disease states. A huge number of gene products await functional characterization. Hence, there is a strong demand for technological solutions that help to assign the functions of proteins and genes. This review discusses high-throughput molecular biology methods, which promise to meet the challenges of the post-genomic era.
Collapse
Affiliation(s)
- M Janitz
- Max Planck Institute for Molecular Genetics, Fabeckstrasse 60-62, 14195 Berlin, Germany.
| |
Collapse
|
260
|
|
261
|
Totaro A, Paris S, Asperti C, de Curtis I. Identification of an intramolecular interaction important for the regulation of GIT1 functions. Mol Biol Cell 2007; 18:5124-38. [PMID: 17898078 PMCID: PMC2096589 DOI: 10.1091/mbc.e07-06-0550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/07/2007] [Accepted: 09/13/2007] [Indexed: 11/11/2022] Open
Abstract
G-protein coupled receptor kinase-interacting protein (GIT) proteins include an N-terminal Arf GTPase-activating protein domain, and a C terminus that binds proteins regulating adhesion and motility. Given their ability to form large molecular assemblies, the GIT1 protein must be tightly regulated. However, the mechanisms regulating GIT1 functions are poorly characterized. We found that carboxy-terminal-truncated fragments of GIT1 bind their partners with higher efficiency compared with the full-length GIT1. We have explored the hypothesis that GIT1 is regulated by an intramolecular mechanism, and we identified two distinct intramolecular interactions between the N and C terminus of GIT1. The release of these interactions increases binding of GIT1 to paxillin and liprin-alpha, and it correlates with effects on cell spreading. Analysis of cells plated on fibronectin has shown that different deletion mutants of GIT1 either enhance or inhibit spreading, depending on their subcellular localization. Moreover, although the association between betaPIX and GIT1 is insufficient to activate GIT1 binding to paxillin, binding of a PAK1 fragment including the betaPIX-binding domain enhances paxillin binding to betaPIX/GIT1, indicating that p21-activated kinase can activate the binding of paxillin to GIT1 by a kinase-independent mechanism. The release of the identified intramolecular interaction seems to be an important mechanism for the regulation of GIT1 functions.
Collapse
Affiliation(s)
- Antonio Totaro
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Paris
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Asperti
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
262
|
Candiani S, Pestarino M, Cattaneo E, Tartari M. Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae. BMC DEVELOPMENTAL BIOLOGY 2007; 7:127. [PMID: 18005438 PMCID: PMC2206037 DOI: 10.1186/1471-213x-7-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Huntington's disease is an inherited neurodegenerative disorder that is caused by the expansion of an N-terminal polyQ stretch in the huntingtin protein. In order to investigate the hypothesis that huntingtin was already involved in development of the nervous system in the last common ancestor of chordates, we isolated and characterised the huntingtin homologue from the amphioxus Branchiostoma floridae. In the present paper the amphioxus general term must be referred to Branchiostoma floridae. RESULTS In this report, we show that the exon-intron organization of the amphioxus huntingtin gene is highly conserved with that of other vertebrates species. The AmphiHtt protein has two glutamine residues in the position of the typical vertebrate polyQ tract. Sequence conservation is greater along the entire length of the protein than in a previously identified Ciona huntingtin. The first three N-terminal HEAT repeats are highly conserved in vertebrates and amphioxus, although exon rearrangement has occurred in this region. AmphiHtt expression is detectable by in situ hybridization starting from the early neurula stage, where it is found in cells of the neural plate. At later stages, it is retained in the neural compartment but also it appears in limited and well-defined groups of non-neural cells. At subsequent larval stages, AmphiHtt expression is detected in the neural tube, with the strongest signal being present in the most anterior part. CONCLUSION The cloning of amphioxus huntingtin allows to infer that the polyQ in huntingtin was already present 540 million years ago and provides a further element for the study of huntingtin function and its evolution along the deuterostome branch.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Mario Pestarino
- Department of Biology, University of Genoa, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Elena Cattaneo
- Centre for Stem Cell Research and Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marzia Tartari
- Centre for Stem Cell Research and Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
263
|
Li XJ, Friedman M, Li S. Interacting proteins as genetic modifiers of Huntington disease. Trends Genet 2007; 23:531-3. [DOI: 10.1016/j.tig.2007.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/21/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
264
|
Truant R, Atwal RS, Burtnik A. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease. Prog Neurobiol 2007; 83:211-27. [PMID: 17240517 DOI: 10.1016/j.pneurobio.2006.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 01/08/2023]
Abstract
There are nine genetic neurodegenerative diseases caused by a similar genetic defect, a CAG DNA triplet-repeat expansion in the disease gene's open reading frame resulting in a polyglutamine expansion in the disease proteins. Despite the commonality of polyglutamine expansion, each of the polyglutamine diseases manifest as unique diseases, with some similarities, but important differences. These differences suggest that the context of the polyglutamine expansion is important to the mechanism of pathology of the disease proteins. Therefore, it is becoming increasingly paramount to understand the normal functions of these polyglutamine disease proteins, which include huntingtin, the polyglutamine-expanded protein in Huntington's disease (HD). Transcriptional dysregulation is seen in HD. Here we discuss the role of normal huntingtin in transcriptional regulation and misregulation in Huntington's disease in relation to potentially analogous model systems, and to other polyglutamine disease proteins. Huntingtin has functional roles in both the cytoplasm and the nucleus. One commonality of activity of polyglutamine disease proteins is at the level of protein dynamics and ability to import and export to and from the nucleus. Knowing the temporal location of huntingtin protein in response to signaling and neuronal communication could lead to valuable insights into an important trigger of HD pathology.
Collapse
Affiliation(s)
- Ray Truant
- McMaster University, Department of Biochemistry and Biomedical Sciences, HSC4H24A, 1200 Main Street West, Hamilton, Ontario, Canada L8N3Z5.
| | | | | |
Collapse
|
265
|
Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 2007; 27:11056-64. [PMID: 17928447 DOI: 10.1523/jneurosci.1941-07.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Collapse
|
266
|
Cañete-Soler R, Schlaepfer WW. The complex relation between genotype and phenotype in motor neuron disease. Ann Neurol 2007; 62:8-14. [PMID: 17469207 DOI: 10.1002/ana.21128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success in mapping genetic loci and identifying mutant genes in familial neurodegenerative disease has outpaced our ability to understand the linkage between genotype and phenotype of disease. The results have led to a backlog of genetic information with limited clarification of underlying disease mechanisms. A major dilemma is how mutations in widely expressed proteins lead to degeneration or dysfunction of small subsets of neurons. The problem raises fundamental questions as to the nature and interrelation of pathways that maintain the homeostasis of differentiated neurons. The issue also bears on the pathogenesis of sporadic forms of disease and prospective efficacy of therapeutic applications. This review examines the problem as it relates to motor neuron disease.
Collapse
Affiliation(s)
- Rafaela Cañete-Soler
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | |
Collapse
|
267
|
Abstract
The discovery that expansion of unstable repeats can cause a variety of neurological disorders has changed the landscape of disease-oriented research for several forms of mental retardation, Huntington disease, inherited ataxias, and muscular dystrophy. The dynamic nature of these mutations provided an explanation for the variable phenotype expressivity within a family. Beyond diagnosis and genetic counseling, the benefits from studying these disorders have been noted in both neurobiology and cell biology. Examples include insight about the role of translational control in synaptic plasticity, the role of RNA processing in the integrity of muscle and neuronal function, the importance of Fe-S-containing enzymes for cellular energy, and the dramatic effects of altering protein conformations on neuronal function and survival. It is exciting that within a span of 15 years, pathogenesis studies of this class of disorders are beginning to reveal pathways that are potential therapeutic targets.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
268
|
Abstract
This review traces the emergence of biotechnology as a new scientific discipline since the 1980s, when it became a major economic force. Significant changes in theoretical perception, research strategies, aims, and experimental methods, mainly in genetic engineering techniques, occurred during this period. The article is based on an analysis of its scientific status over four decades: the 60s and 70s when work in the field proceeded in different disciplines with a low level of coherence and little integration, then a significant change during the 80s and 90s when common approaches and the merging of molecular biology and biochemical engineering created a new discipline. The analysis covers scientific highlights and outstanding technical progress, presenting two studies undertaken by scientific and governmental agencies in Germany and the USA, as well as results of interviews and a questionnaire dealing with the scientific status of biotechnology. Answers to the questionnaire were obtained from internationally known scientists and from young scientists with biotechnology degrees. The results collected trace the transition of biotechnology from heterogeneous specialties and approaches towards a scientific discipline of its own. A hypothesis is put forward suggesting a new common paradigm allowing for a coherent perception the of phenomena observed.
Collapse
Affiliation(s)
- Klaus Buchholz
- Institute for Chemical Technology, Technical University, Braunschweig, Germany.
| |
Collapse
|
269
|
Majumder P, Choudhury A, Banerjee M, Lahiri A, Bhattacharyya NP. Interactions of HIPPI, a molecular partner of Huntingtin interacting protein HIP1, with the specific motif present at the putative promoter sequence of the caspase-1, caspase-8 and caspase-10 genes. FEBS J 2007; 274:3886-99. [PMID: 17623017 DOI: 10.1111/j.1742-4658.2007.05922.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the mechanism of increased expression of caspase-1 caused by exogenous Hippi, observed earlier in HeLa and Neuro2A cells, in this work we identified a specific motif AAAGACATG (- 101 to - 93) at the caspase-1 gene upstream sequence where HIPPI could bind. Various mutations in this specific sequence compromised the interaction, showing the specificity of the interactions. In the luciferase reporter assay, when the reporter gene was driven by caspase-1 gene upstream sequences (- 151 to - 92) with the mutation G to T at position - 98, luciferase activity was decreased significantly in green fluorescent protein-Hippi-expressing HeLa cells in comparison to that obtained with the wild-type caspase-1 gene 60 bp upstream sequence, indicating the biological significance of such binding. It was observed that the C-terminal 'pseudo' death effector domain of HIPPI interacted with the 60 bp (- 151 to - 92) upstream sequence of the caspase-1 gene containing the motif. We further observed that expression of caspase-8 and caspase-10 was increased in green fluorescent protein-Hippi-expressing HeLa cells. In addition, HIPPI interacted in vitro with putative promoter sequences of these genes, containing a similar motif. In summary, we identified a novel function of HIPPI; it binds to specific upstream sequences of the caspase-1, caspase-8 and caspase-10 genes and alters the expression of the genes. This result showed the motif-specific interaction of HIPPI with DNA, and indicates that it could act as transcription regulator.
Collapse
Affiliation(s)
- P Majumder
- Structural Genomics Section, Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, India
| | | | | | | | | |
Collapse
|
270
|
Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha GH, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J, Hughes RE. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 2007; 3:e82. [PMID: 17500595 PMCID: PMC1866352 DOI: 10.1371/journal.pgen.0030082] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 04/06/2007] [Indexed: 12/25/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%–4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity. Huntington's Disease (HD) is a fatal inherited neurodegenerative disease, which typically begins in middle age and progresses with symptoms of severe uncontrolled movements and cognitive dysfunction. HD is uniformly fatal with death occurring ten to 15 years after onset of symptoms. There is currently no effective treatment for HD. The genetic mutation underlying HD causes a protein called huntingtin (Htt) to contain an abnormally long tract of the amino acid glutamine. This extended span of glutamines changes the shape of the Htt protein, which can cause it to interact in abnormal ways with other cellular proteins. In this study, we have identified a large number of new proteins that bind to normal and mutant forms of the Htt protein. To establish a potential role for these interacting proteins in HD, we show that changing the expression of many of these proteins can modulate the pathological effects of mutant Htt on fly neurons that deteriorate when they express mutant Htt. Identifying cellular proteins that bind to Htt and modulate its pathological activity may facilitate the discovery of an effective treatment for HD.
Collapse
Affiliation(s)
- Linda S Kaltenbach
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Eliana Romero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Robert R Becklin
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Rakesh Chettier
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Russell Bell
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Amit Phansalkar
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Andrew Strand
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cameron Torcassi
- Buck Institute for Age Research, Novato, California, United States of America
| | - Justin Savage
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Anthony Hurlburt
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Guang-Ho Cha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lubna Ukani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Yuejun Zhen
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | | | - James Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cornelia Kurschner
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Lisa M Ellerby
- Buck Institute for Age Research, Novato, California, United States of America
| | - John M Peltier
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (JB); (REH)
| | - Robert E Hughes
- Prolexys Pharmaceuticals, Salt Lake City, Utah, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
- * To whom correspondence should be addressed. E-mail: (JB); (REH)
| |
Collapse
|
271
|
Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M. The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics 2007; 23:2129-38. [PMID: 17553855 DOI: 10.1093/bioinformatics/btm307] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Neurodegenerative disorders (NDDs) are progressive and fatal disorders, which are commonly characterized by the intracellular or extracellular presence of abnormal protein aggregates. The identification and verification of proteins interacting with causative gene products are effective ways to understand their physiological and pathological functions. The objective of this research is to better understand common molecular pathogenic mechanisms in NDDs by employing protein-protein interaction networks, the domain characteristics commonly identified in NDDs and correlation among NDDs based on domain information. RESULTS By reviewing published literatures in PubMed, we created pathway maps in Kyoto Encyclopedia of Genes and Genomes (KEGG) for the protein-protein interactions in six NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA) and prion disease (PRION). We also collected data on 201 interacting proteins and 13 compounds with 282 interactions from the literature. We found 19 proteins common to these six NDDs. These common proteins were mainly involved in the apoptosis and MAPK signaling pathways. We expanded the interaction network by adding protein interaction data from the Human Protein Reference Database and gene expression data from the Human Gene Expression Index Database. We then carried out domain analysis on the extended network and found the characteristic domains, such as 14-3-3 protein, phosphotyrosine interaction domain and caspase domain, for the common proteins. Moreover, we found a relatively high correlation between AD, PD, HD and PRION, but not ALS or DRPLA, in terms of the protein domain distributions. AVAILABILITY http://www.genome.jp/kegg/pathway/hsa/hsa01510.html (KEGG pathway maps for NDDs).
Collapse
Affiliation(s)
- Vachiranee Limviphuvadh
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
272
|
Huntington's and other polyglutamine diseases: many effects of single gene mutations. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddmec.2007.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
273
|
Huang B, Ahn YT, McPherson L, Clayberger C, Krensky AM. Interaction of PRP4 with Kruppel-like factor 13 regulates CCL5 transcription. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7081-7. [PMID: 17513757 PMCID: PMC2674583 DOI: 10.4049/jimmunol.178.11.7081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of resting T lymphocytes initiates differentiation into mature effector cells over 3-7 days. The chemokine CCL5 (RANTES) and its major transcriptional regulator, Krüppel-like factor 13 (KLF13), are expressed late (3-5 days) after activation in T lymphocytes. Using yeast two-hybrid screening of a human thymus cDNA library, PRP4, a serine/threonine protein kinase, was identified as a KLF13-binding protein. Specific interaction of KLF13 and PRP4 was confirmed by reciprocal coimmunoprecipitation. PRP4 is expressed in PHA-stimulated human T lymphocytes from days 1 and 7 with a peak at day 3. Using an in vitro kinase assay, it was found that PRP4 phosphorylates KLF13. Furthermore, although phosphorylation of KLF13 by PRP4 results in lower binding affinity to the A/B site of the CCL5 promoter, coexpression of PRP4 and KLF13 increases nuclear localization of KLF13 and CCL5 transcription. Finally, knock-down of PRP4 by small interfering RNA markedly decreases CCL5 expression in T lymphocytes. Thus, PRP4-mediated phosphorylation of KLF13 plays a role in the regulation of CCL5 expression in T lymphocytes.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Active Transport, Cell Nucleus/immunology
- Amino Acid Sequence
- Animals
- COS Cells
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cells, Cultured
- Chemokine CCL5/biosynthesis
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chlorocebus aethiops
- Gene Expression Regulation/immunology
- Humans
- Kruppel-Like Transcription Factors/biosynthesis
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/physiology
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- Molecular Sequence Data
- Phosphorylation
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Ribonucleoprotein, U4-U6 Small Nuclear/biosynthesis
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/physiology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/enzymology
- Thymus Gland/immunology
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Boli Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yong-Tae Ahn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisa McPherson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Carol Clayberger
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
274
|
Schlicker A, Huthmacher C, Ramírez F, Lengauer T, Albrecht M. Functional evaluation of domain-domain interactions and human protein interaction networks. Bioinformatics 2007; 23:859-65. [PMID: 17456608 DOI: 10.1093/bioinformatics/btm012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Large amounts of protein and domain interaction data are being produced by experimental high-throughput techniques and computational approaches. To gain insight into the value of the provided data, we used our new similarity measure based on the Gene Ontology (GO) to evaluate the molecular functions and biological processes of interacting proteins or domains. The applied measure particularly addresses the frequent annotation of proteins or domains with multiple GO terms. RESULTS Using our similarity measure, we compare predicted domain-domain and human protein-protein interactions with experimentally derived interactions. The results show that our similarity measure is of significant benefit in quality assessment and confidence ranking of domain and protein networks. We also derive useful confidence score thresholds for dividing domain interaction predictions into subsets of low and high confidence. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andreas Schlicker
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
275
|
Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun 2007; 355:318-323. [PMID: 17303076 DOI: 10.1016/j.bbrc.2007.01.187] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/26/2007] [Indexed: 11/26/2022]
Abstract
DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for the first the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B.
Collapse
Affiliation(s)
- Sung-Hak Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Zourlidou A, Gidalevitz T, Kristiansen M, Landles C, Woodman B, Wells DJ, Latchman DS, de Belleroche J, Tabrizi SJ, Morimoto RI, Bates GP. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 2007; 16:1078-90. [PMID: 17360721 DOI: 10.1093/hmg/ddm057] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.
Collapse
Affiliation(s)
- Alexandra Zourlidou
- Department of Medical and Molecular Genetics, King's College London, School of Medicine, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Meriin AB, Zhang X, Alexandrov IM, Salnikova AB, Ter-Avanesian MD, Chernoff YO, Sherman MY. Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB J 2007; 21:1915-25. [PMID: 17341688 DOI: 10.1096/fj.06-6878com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cell's failure to refold or break down abnormal polypeptides often leads to their aggregation, which could cause toxicity and various pathologies. Here we investigated cellular factors involved in protein aggregation in yeast and mammalian cells using model polypeptides containing polyglutamine domains. In yeast, a number of mutations affecting the complex responsible for formation of the endocytic vesicle reduced the aggregation. Components of the endocytic complex (EC) Sla1, Sla2, and Pan1 were seen as clusters in the polyglutamine aggregates. These proteins associate with EC at the later stages of its maturation. In contrast, Ede1 and Ent1, the elements of EC at the earlier stages, were not found in the aggregates, suggesting that late ECs are involved in polyglutamine aggregation. Indeed, stabilization of the late complexes by inhibition of actin polymerization enhanced aggregation of polypeptides with polyglutamine domains. Similarly, in mammalian cells, inhibitors of actin polymerization, as well as depletion of a mediator of actin polymerization, Arp2, strongly enhanced the aggregation. In contrast, destabilization of EC by depletion or inhibition of a scaffolding protein N-WASP effectively suppressed the aggregation. Therefore, EC appears to play a pivotal role in aggregation of cytosolic polypeptides with polyglutamine domains in both yeast and mammalian cells.
Collapse
Affiliation(s)
- Anatoli B Meriin
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
278
|
Abstract
MOTIVATION Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthias E Futschik
- Institute for Theoretical Biology, Charité, Humboldt-Universität, 10115 Berlin, Germany.
| | | | | |
Collapse
|
279
|
Abstract
A large yeast two-hybrid study shows that some proteins mutated in different spinocerebellar ataxias have interacting protein partners in common. A large yeast two-hybrid study investigating whether the proteins mutated in different forms of spinocerebellar ataxia have interacting protein partners in common suggests that some forms do share common pathways, and will provide a valuable resource for future work on these diseases.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|
280
|
Ralser M, Heeren G, Breitenbach M, Lehrach H, Krobitsch S. Triose phosphate isomerase deficiency is caused by altered dimerization--not catalytic inactivity--of the mutant enzymes. PLoS One 2006; 1:e30. [PMID: 17183658 PMCID: PMC1762313 DOI: 10.1371/journal.pone.0000030] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/02/2006] [Indexed: 10/26/2022] Open
Abstract
Triosephosphate isomerase (TPI) deficiency is an autosomal recessive disorder caused by various mutations in the gene encoding the key glycolytic enzyme TPI. A drastic decrease in TPI activity and an increased level of its substrate, dihydroxyacetone phosphate, have been measured in unpurified cell extracts of affected individuals. These observations allowed concluding that the different mutations in the TPI alleles result in catalytically inactive enzymes. However, despite a high occurrence of TPI null alleles within several human populations, the frequency of this disorder is exceptionally rare. In order to address this apparent discrepancy, we generated a yeast model allowing us to perform comparative in vivo analyses of the enzymatic and functional properties of the different enzyme variants. We discovered that the majority of these variants exhibit no reduced catalytic activity per se. Instead, we observed, the dimerization behavior of TPI is influenced by the particular mutations investigated, and by the use of a potential alternative translation initiation site in the TPI gene. Additionally, we demonstrated that the overexpression of the most frequent TPI variant, Glu104Asp, which displays altered dimerization features, results in diminished endogenous TPI levels in mammalian cells. Thus, our results reveal that enzyme deregulation attributable to aberrant dimerization of TPI, rather than direct catalytic inactivation of the enzyme, underlies the pathogenesis of TPI deficiency. Finally, we discovered that yeast cells expressing a TPI variant exhibiting reduced catalytic activity are more resistant against oxidative stress caused by the thiol-oxidizing reagent diamide. This observed advantage might serve to explain the high allelic frequency of TPI null alleles detected among human populations.
Collapse
Affiliation(s)
- Markus Ralser
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Gino Heeren
- Department of Cell Biology, University of SalzburgSalzburg, Austria
| | | | - Hans Lehrach
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular GeneticsBerlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
281
|
Chaurasia G, Iqbal Y, Hänig C, Herzel H, Wanker EE, Futschik ME. UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 2006; 35:D590-4. [PMID: 17158159 PMCID: PMC1781159 DOI: 10.1093/nar/gkl817] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systematic mapping of protein-protein interactions has become a central task of functional genomics. To map the human interactome, several strategies have recently been pursued. The generated interaction datasets are valuable resources for scientists in biology and medicine. However, comparison reveals limited overlap between different interaction networks. This divergence obstructs usability, as researchers have to interrogate numerous heterogeneous datasets to identify potential interaction partners for proteins of interest. To facilitate direct access through a single entry gate, we have started to integrate currently available human protein interaction data in an easily accessible online database. It is called UniHI (Unified Human Interactome) and is available at http://www.mdc-berlin.de/unihi. At present, it is based on 10 major interaction maps derived by computational and experimental methods. It includes more than 150,000 distinct interactions between more than 17 000 unique human proteins. UniHI provides researchers with a flexible integrated tool for finding and using comprehensive information about the human interactome.
Collapse
Affiliation(s)
- Gautam Chaurasia
- Institute for Theoretical Biology, Charité, Humboldt-UniversitätBerlin, Germany
- Max Delbrück Center for Molecular MedicineBerlin, Germany
| | - Yasir Iqbal
- Institute for Theoretical Biology, Charité, Humboldt-UniversitätBerlin, Germany
| | | | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité, Humboldt-UniversitätBerlin, Germany
| | | | - Matthias E. Futschik
- Institute for Theoretical Biology, Charité, Humboldt-UniversitätBerlin, Germany
- To whom correspondence should be addressed. Tel: +49 2093 9106; Fax: +49 2093 8801;
| |
Collapse
|
282
|
Gao YG, Yan XZ, Song AX, Chang YG, Gao XC, Jiang N, Zhang Q, Hu HY. Structural Insights into the Specific Binding of Huntingtin Proline-Rich Region with the SH3 and WW Domains. Structure 2006; 14:1755-65. [PMID: 17161366 DOI: 10.1016/j.str.2006.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 09/12/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.
Collapse
Affiliation(s)
- Yong-Guang Gao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Zhang Y, Leavitt BR, van Raamsdonk JM, Dragatsis I, Goldowitz D, MacDonald ME, Hayden MR, Friedlander RM. Huntingtin inhibits caspase-3 activation. EMBO J 2006; 25:5896-906. [PMID: 17124493 PMCID: PMC1698892 DOI: 10.1038/sj.emboj.7601445] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 10/25/2006] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease results from a mutation in the HD gene encoding for the protein huntingtin. The function of huntingtin, although beginning to be elucidated, remains largely unclear. To probe the prosurvival function of huntingtin, we modulate levels of wild-type huntingtin in a number of cellular and in vivo models. Huntingtin depletion resulted in caspase-3 activation, and overexpression of huntingtin resulted in caspase-3 inhibition. Additionally, we demonstrate that huntingtin physically interacts with active caspase-3. Interestingly, mutant huntingtin binds active caspase-3 with a lower affinity and lower inhibitory effect on active caspase-3 than does wild-type huntingtin. Although reduction of huntingtin levels resulted in caspase-3 activation in all conditions examined, the cellular response was cell-type specific. Depletion of huntingtin resulted in either overt cell death, or in increased vulnerability to cell death. These data demonstrate that huntingtin inhibits caspase-3 activity, suggesting a mechanism whereby caspase-mediated huntingtin depletion results in a detrimental amplification cascade leading to further caspase-3 activation, resulting in cell dysfunction and cell death.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroapoptosis Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Blair R Leavitt
- Center for Molecular Medicine and Therapeutics and Department of Medical Genetics, University of British Columbia, Children's & Women's Hospital, Vancouver, British Columbia, Canada
| | - Jeremy M van Raamsdonk
- Center for Molecular Medicine and Therapeutics and Department of Medical Genetics, University of British Columbia, Children's & Women's Hospital, Vancouver, British Columbia, Canada
| | - Ioannis Dragatsis
- Department of Physiology, Health Science Center, University of Tennessee, Memphis, TN, USA
| | - Dan Goldowitz
- Department of Anatomy and Neurobiology, Health Science Center, University of Tennessee, Memphis, TN, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael R Hayden
- Center for Molecular Medicine and Therapeutics and Department of Medical Genetics, University of British Columbia, Children's & Women's Hospital, Vancouver, British Columbia, Canada
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA. Tel.: +1 617 525 7775; Fax: +1 617 734 8342; E-mail:
| |
Collapse
|
284
|
Tan SH, Hugo W, Sung WK, Ng SK. A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinformatics 2006; 7:502. [PMID: 17107624 PMCID: PMC1665647 DOI: 10.1186/1471-2105-7-502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 11/16/2006] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND An important class of interaction switches for biological circuits and disease pathways are short binding motifs. However, the biological experiments to find these binding motifs are often laborious and expensive. With the availability of protein interaction data, novel binding motifs can be discovered computationally: by applying standard motif extracting algorithms on protein sequence sets each interacting with either a common protein or a protein group with similar properties. The underlying assumption is that proteins with common interacting partners will share some common binding motifs. Although novel binding motifs have been discovered with such approach, it is not applicable if a protein interacts with very few other proteins or when prior knowledge of protein group is not available or erroneous. Experimental noise in input interaction data can further deteriorate the dismal performance of such approaches. RESULTS We propose a novel approach of finding correlated short sequence motifs from protein-protein interaction data to effectively circumvent the above-mentioned limitations. Correlated motifs are those motifs that consistently co-occur only in pairs of interacting protein sequences, and could possibly interact with each other directly or indirectly to mediate interactions. We adopted the (l, d)-motif model and formulate finding the correlated motifs as an (l, d)-motif pair finding problem. We present both an exact algorithm, D-MOTIF, as well as its approximation algorithm, D-STAR to solve this problem. Evaluation on extensive simulated data showed that our approach not only eliminated the need for any prior protein grouping, but is also more robust in extracting motifs from noisy interaction data. Application on two biological datasets (SH3 interaction network and TGFbeta signaling network) demonstrates that the approach can extract correlated motifs that correspond to actual interacting subsequences. CONCLUSION The correlated motif approach outlined in this paper is able to find correlated linear motifs from sparse and noisy interaction data. This, in turn, will expedite the discovery of novel linear binding motifs, and facilitate the studies of biological pathways mediated by them.
Collapse
Affiliation(s)
- Soon-Heng Tan
- Knowledge Discovery Department, Institute for Infocomm Research, Singapore
- Present address: Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada
| | - Willy Hugo
- Knowledge Discovery Department, Institute for Infocomm Research, Singapore
- Department of Computer Science, National University of Singapore, Singapore
| | - Wing-Kin Sung
- Department of Computer Science, National University of Singapore, Singapore
- Department of Information and Mathematical Science, Genome Institute of Singapore
| | - See-Kiong Ng
- Knowledge Discovery Department, Institute for Infocomm Research, Singapore
| |
Collapse
|
285
|
Weidemann W, Stelzl U, Lisewski U, Bork K, Wanker EE, Hinderlich S, Horstkorte R. The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 2006; 580:6649-54. [PMID: 17118363 DOI: 10.1016/j.febslet.2006.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
Sialic acids (Sia) are expressed as terminal sugars in many glycoconjugates. They are involved in a variety of cell-cell interactions and therefore play an important role during development and regeneration. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme in the de novo synthesis of Sia and it is a regulator of cell surface sialylation. Inactivation of GNE in mice results in early embryonic lethality. Mutations in the GNE gene are of clinical relevance in hereditary inclusion body myopathy, but these mutations do not necessarily decrease the enzymatic activity of GNE. In this study, we searched for novel function of the GNE protein beside its enzymatic function in the Sia biosynthesis. We here report the identification of novel GNE-interacting proteins. Using a human prey matrix we identified four proteins interacting with GNE in a yeast two-hybrid assay. For two of them, the collapsin response mediator protein 1 and the promyelocytic leukemia zinc finger protein, we could verify protein-protein interaction with GNE.
Collapse
Affiliation(s)
- Wenke Weidemann
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195 Berlin-Dahlem, Germany
| | | | | | | | | | | | | |
Collapse
|
286
|
|
287
|
Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. BMC Genomics 2006; 7:288. [PMID: 17092333 PMCID: PMC1636649 DOI: 10.1186/1471-2164-7-288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/08/2006] [Indexed: 01/20/2023] Open
Abstract
Background To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed. Results The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons. Conclusion During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements.
Collapse
|
288
|
Xia XG, Zhou H, Xu Z. Promises and challenges in developing RNAi as a research tool and therapy for neurodegenerative diseases. NEURODEGENER DIS 2006; 2:220-31. [PMID: 16909029 DOI: 10.1159/000089629] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) is a recently discovered mechanism that is conserved in a wide range of eukaryotic species. Triggered by double-stranded RNA, RNAi identifies and destroys the mRNA that shares homology with the double-stranded RNA. Because of its specificity, RNAi has a high potential for being a powerful investigative and therapeutic tool. Indeed, its use as a reverse genetics tool to determine gene functions in invertebrates and cultured mammalian cells has already been experiencing an explosive growth. Gratifyingly we have also seen its application in dissecting neurodegeneration pathways in vitro. Although early studies suggested that RNAi could be readily adapted for in vivo studies in mammals using the transgenic technology, difficulties including low transgenicity and low RNAi efficacy have emerged, which has prevented the wide use of transgenic RNAi. The potential of RNAi therapy for human diseases has been a great source of excitement. Several new studies have demonstrated this concept in animal models of neurodegenerative disease. In this review, we highlight the recent literature and our own data in applying RNAi in research and therapy in the area of neurodegenerative diseases. We discuss the present and future challenges in the full realization of the potential for RNAi.
Collapse
Affiliation(s)
- Xu Gang Xia
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | |
Collapse
|
289
|
Dortay H, Mehnert N, Bürkle L, Schmülling T, Heyl A. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 2006; 273:4631-44. [PMID: 16965536 DOI: 10.1111/j.1742-4658.2006.05467.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.
Collapse
Affiliation(s)
- Hakan Dortay
- Institute of Biology/Applied Genetics, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
290
|
Uhrig JF. Protein interaction networks in plants. PLANTA 2006; 224:771-81. [PMID: 16575597 DOI: 10.1007/s00425-006-0260-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 03/03/2006] [Indexed: 05/08/2023]
Abstract
Protein-protein interactions are fundamental to virtually every aspect of cellular functions. With the development of high-throughput technologies of both the yeast two-hybrid system and tandem mass spectrometry, genome-wide protein-linkage mapping has become a major objective in post-genomic research. While at least partial "interactome" networks of several model organisms are already available, in the plant field, progress in this respect is slow. However, even with comprehensive protein interaction data still missing, substantial recent advance in the graph-theoretical functional interpretation of complex network architectures might pave the way for novel approaches in plant research. This article reviews current progress and discussions in network biology. Emphasis is put on the question of what can be learned about protein functions and cellular processes by studying the topology of complex protein interaction networks and the evolutionary mechanisms underlying their development. Particularly the intermediate and local levels of network organization--the modules, motifs and cliques--are increasingly recognized as the operational units of biological functions. As demonstrated by some recent results from systematic analyses of plant protein families, protein interaction networks promise to be a valuable tool for a molecular understanding of functional specificities and for identifying novel regulatory components and pathways.
Collapse
Affiliation(s)
- Joachim F Uhrig
- Botanisches Institut III, Universität zu Köln, Gyrhof Strasse 15, 50931 Koln, Germany.
| |
Collapse
|
291
|
Abstract
The G-protein-coupled receptor (GPCR)-kinase-interacting proteins 1 and 2 (GIT1 and GIT2) are ubiquitous multidomain proteins involved in diverse cellular processes. They traffic between three distinct cellular compartments (cytoplasmic complexes, focal adhesions and the cell periphery) through interactions with proteins including ARF, Rac1 and Cdc42 GTPases, p21-activated kinase (PAK), PAK-interacting exchange factor (PIX), the kinase MEK1, phospholipase Cgamma (PLCgamma) and paxillin. GITs and PIX cooperate to form large oligomeric complexes to which other proteins are transiently recruited. Activation of Rac1 and Cdc42 drives association of PAK with these oligomers, which unmasks the paxillin-binding site in GITs that recruits them to focal complexes. There, they regulate cytoskeletal dynamics by feedback inhibition of Rac1. GITs also participate in receptor internalization by regulating membrane trafficking between the plasma membrane and endosomes, targeting ARF GTPases through their ARF GTPase-activating protein (ARF-GAP) activity. Furthermore, GITs act as scaffolds to control spatial activation of several signaling molecules. Finally, recent results suggest pathogenic roles for GIT proteins in Huntington's disease and HIV infection.
Collapse
Affiliation(s)
- Ryan J Hoefen
- Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
292
|
Parrish JR, Gulyas KD, Finley RL. Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 2006; 17:387-93. [PMID: 16806892 DOI: 10.1016/j.copbio.2006.06.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/01/2006] [Accepted: 06/15/2006] [Indexed: 11/23/2022]
Abstract
Interactome mapping, the systematic identification of protein interactions within an organism, promises to facilitate systems-level studies of biological processes. Using in vitro technologies that measure specific protein interactions, static maps are being generated that include many of the protein networks that occur in vivo. Most of the binary protein interaction data currently available was generated by large-scale yeast two-hybrid screens. Recent efforts to map interactions in model organisms and in humans illustrate the promise and some of the limitations of the two-hybrid approach. Although these maps are incomplete and include false positives, they are proving useful as a framework around which to elaborate and model the in vivo interactome.
Collapse
Affiliation(s)
- Jodi R Parrish
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
293
|
Zabel C, Sagi D, Kaindl AM, Steireif N, Kläre Y, Mao L, Peters H, Wacker MA, Kleene R, Klose J. Comparative Proteomics in Neurodegenerative and Non-neurodegenerative Diseases Suggest Nodal Point Proteins in Regulatory Networking. J Proteome Res 2006; 5:1948-58. [PMID: 16889417 DOI: 10.1021/pr0601077] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurodegenerative disorders (ND) encompass clinically and genetically heterogeneous diseases with considerable overlap of their clinical, neuropathological and molecular phenotype. Various causes of neurodegeneration in disease may affect eventually the same proteins within protein networks. To identify common changes in ND, we compared brain protein changes detected by 2-D electrophoresis in four mouse models for ND: (i) Parkinson's disease, (ii) Huntington's disease, (iii) prion disease Scrapie, and (iv) a model for impaired synaptic transmission. To determine specificity of these changes for ND, we extended the scope of our investigation to three neurological conditions that do not result in neurodegeneration (non-ND). We detected 12 to 216 consistent qualitative or quantitative protein changes in individual ND and non-ND models when compared to controls. Up to 36% of these proteins were found to be altered in multiple disease states (at least three) and were therefore termed nodal point proteins. Alterations in alpha B-Crystallin and splicing factor 3b (subunit 4) occurred in at least three ND but not in non-ND. In contrast, alterations in peroxiredoxin 1 and 3, astrocytic phosphoprotein PEA15, complexin 2 and aminoacylase 1 were common to both ND and non-ND. Finally, we investigated the expression pattern of the nodal point proteins in three inbred mouse strains and found different protein abundance (expression polymorphisms) in all cases. Nodal point proteins showing expression polymorphisms may be candidate proteins for disease associated modifiers.
Collapse
Affiliation(s)
- Claus Zabel
- Institute of Human Genetics, Charité, University Medicine Berlin, Augustenbuger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S. A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci U S A 2006; 103:11051-6. [PMID: 16832049 PMCID: PMC1544172 DOI: 10.1073/pnas.0604548103] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several neurodegenerative diseases are associated with the toxicity of misfolded proteins. This toxicity must arise from a combination of the amino acid sequences of the misfolded proteins and their interactions with other factors in their environment. A particularly compelling example of how profoundly these intramolecular and intermolecular factors can modulate the toxicity of a misfolded protein is provided by the polyglutamine (polyQ) diseases. All of these disorders are caused by glutamine expansions in proteins that are broadly expressed, yet the nature of the proteins that harbor the glutamine expansions and the particular pathologies they produce are very different. We find, using a yeast model, that amino acid sequences that modulate polyQ toxicity in cis can also do so in trans. Furthermore, the prion conformation of the yeast protein Rnq1 and the level of expression of a suite of other glutamine-rich proteins profoundly affect polyQ toxicity. They can convert polyQ expansion proteins from toxic to benign and vice versa. Our work presents a paradigm for how a complex, dynamic interplay between intramolecular features of polyQ proteins and intermolecular factors in the cellular environment might determine the unique pathobiologies of polyQ expansion proteins.
Collapse
Affiliation(s)
- Martin L. Duennwald
- *Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and
| | - Smitha Jagadish
- *Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and
| | - Flaviano Giorgini
- Department of Pharmacology and Center for Neurodegeneration and Neurotherapeutics, University of Washington, Seattle, WA 98195
| | - Paul J. Muchowski
- Department of Pharmacology and Center for Neurodegeneration and Neurotherapeutics, University of Washington, Seattle, WA 98195
| | - Susan Lindquist
- *Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and
| |
Collapse
|
295
|
Webb DJ, Mayhew MW, Kovalenko M, Schroeder MJ, Jeffery ED, Whitmore L, Shabanowitz J, Hunt DF, Horwitz AF. Identification of phosphorylation sites in GIT1. J Cell Sci 2006; 119:2847-50. [PMID: 16825424 DOI: 10.1242/jcs.03044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Horn SC, Lalowski M, Goehler H, Dröge A, Wanker EE, Stelzl U. Huntingtin interacts with the receptor sorting family protein GASP2. J Neural Transm (Vienna) 2006; 113:1081-90. [PMID: 16835690 DOI: 10.1007/s00702-006-0514-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 04/05/2006] [Indexed: 01/15/2023]
Abstract
Protein interaction networks are useful resources for the functional annotation of proteins. Recently, we have generated a highly connected protein-protein interaction network for Huntington's disease (HD) by automated yeast two-hybrid (Y2H) screening (Goehler et al., 2004). The network included several novel direct interaction partners for the disease protein huntingtin (htt). Some of these interactions, however, have not been validated by independent methods. Here we describe the verification of the interaction between htt and GASP2 (G protein-coupled receptor associated sorting protein 2), a protein involved in membrane receptor degradation. Using membrane-based and classical coimmunoprecipitation assays we demonstrate that htt and GASP2 form a complex in cotransfected mammalian cells. Moreover, we show that the two proteins colocalize in SH-SY5Y cells, raising the possibility that htt and GASP2 interact in neurons. As the GASP protein family plays a role in G protein-coupled receptor sorting, our data suggest that htt might influence receptor trafficking via the interaction with GASP2.
Collapse
Affiliation(s)
- S C Horn
- Department of Neuroproteomics, Max-Delbrück-Centrum for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | | | | | |
Collapse
|
297
|
Abstract
In this issue of Cell, Lim et al. (2006) describe a protein-protein interaction network for inherited human ataxias, a group of diseases characterized by degeneration of cerebellar Purkinje cells. This protein interactome shows that the cerebellar ataxias not only share clinical and pathological characteristics but also have proteins, processes, and pathways in common.
Collapse
|
298
|
Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006; 125:801-14. [PMID: 16713569 DOI: 10.1016/j.cell.2006.03.032] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/08/2006] [Accepted: 03/13/2006] [Indexed: 01/29/2023]
Abstract
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Gusella JF, MacDonald ME. Huntington's disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci 2006; 31:533-40. [PMID: 16829072 DOI: 10.1016/j.tibs.2006.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/05/2006] [Accepted: 06/27/2006] [Indexed: 02/03/2023]
Abstract
Thirteen years ago, the culmination of genetic rather than biochemical strategies resulted in the identification of the root cause of Huntington's disease: an expanded CAG trinucleotide repeat that leads to an elongated polyglutamine tract in the huntingtin protein. Since then, biochemical and cell biological attempts to elucidate pathogenesis have largely focused on N-terminal polyglutamine-containing huntingtin fragments. However, continued application of genetic strategies has suggested that the disease process is, in fact, triggered by the presence of expanded polyglutamine in intact huntingtin. An increased emphasis on the earliest presymptomatic stages of the disease, facilitated by incorporating genetic lessons from human patients into the search for biochemical targets, could provide a route to a rational treatment to prevent or slow the onset of this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
300
|
Za L, Albertinazzi C, Paris S, Gagliani M, Tacchetti C, de Curtis I. betaPIX controls cell motility and neurite extension by regulating the distribution of GIT1. J Cell Sci 2006; 119:2654-66. [PMID: 16787945 DOI: 10.1242/jcs.02996] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. GIT1/p95-APP1 is a member of a family of GTPase-activating proteins for ARF GTPases that affect endocytosis, adhesion and migration. GIT1 associates with paxillin and a complex including the Rac/Cdc42 exchanging factors PIX/Cool and the kinase PAK. In this study, we show that overexpression of betaPIX induces the accumulation of endogenous and overexpressed GIT1 at large structures similar to those induced by an ArfGAP-defective mutant of GIT1 (p95-C2). Immunohistochemical analysis and immunoelectron microscopy reveal that these structures include the endogenous transferrin receptor. Time-lapse analysis during motogenic stimuli shows that the formation and perinuclear accumulation of the p95-C2-positive structures is paralleled by inhibition of lamellipodium formation and cell retraction. Both dimerization and a functional SH3 domain of betaPIX are required for the accumulation of GIT1 in fibroblasts, which is prevented by the monomeric PIX-PG-DeltaLZ. This mutant also prevents the formation of endocytic aggregates and inhibition of neurite outgrowth in retinal neurons expressing p95-C2. Our results indicate that betaPIX is an important regulator of the subcellular distribution of GIT1, and suggest that alteration in the level of expression of the complex affects the endocytic compartment and cell motility.
Collapse
Affiliation(s)
- Lorena Za
- Cell Adhesion Unit, Department of Molecular Biology and Functional Genomics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|