251
|
Guo Q, Meng L, Humphreys MW, Scullion J, Mur LAJ. Expression of FlHMA3, a P 1B2-ATPase from Festulolium loliaceum, correlates with response to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:270-277. [PMID: 28113076 DOI: 10.1016/j.plaphy.2017.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 05/04/2023]
Abstract
Heavy metal ATPase 3 (HMA3), a P1B2-ATPase, is a key tonoplast transporter involved in mediating the vacuolar sequestration of cadmium (Cd) to detoxify the intake of this element by plants. HMA3 expression in response to Cd stress has not been previously examined in the grass hybrid species Festulolium loliaceum (Huds.) P. Fourn. In this study, FlHMA3 isolated from F. loliaceum was found to comprise 833 amino acid residues with 77% homology to the rice OsHMA3. Transient expression of FlHMA3 fused to enhanced green fluorescent protein in Arabidopsis protoplasts suggested its localization to vacuolar membranes. Quantitative real-time RT-PCR analysis of F. loliaceum revealed that FlHMA3 is expressed predominantly within roots and up-regulated by excess Cd. Over the 168 h treatment, Cd content of F. loliaceum roots was significantly higher than that of shoots, regardless of external CdCl2 concentrations. A significant positive correlation was found between FlHMA3 expression and Cd accumulation in roots of F. loliaceum seedlings subjected to 10-100 mg L-1 CdCl2 for 168 h or, in a separate experiment, to 25 or 100 mg L-1 CdCl2 for the same duration. These findings provide evidence that FlHMA3 encodes a vacuolar P1B2-ATPase that may play an important role in Cd2+ sequestration into root cell vacuoles, thereby limiting the entry of Cd2+ into the cytoplasm and reducing Cd2+ toxicity.
Collapse
Affiliation(s)
- Qiang Guo
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China.
| | - Mike W Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - John Scullion
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
252
|
Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:183-192. [PMID: 28088020 DOI: 10.1016/j.plaphy.2016.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/25/2016] [Accepted: 12/25/2016] [Indexed: 05/12/2023]
Abstract
The present study investigates modulation in hexavalent chromium [Cr(VI) 25 μM] toxicity by sulphur (S; 0.5, 1.0 and 1.5 mM S as low (LS), medium (MS) and high sulphur (HS), respectively) in Solanum melongena (eggplant) seedlings. Biomass accumulation (fresh and dry weights), photosynthetic pigments, photosynthetic oxygen evolution and S content were declined by Cr(VI) toxicity. Furthermore, fluorescence characteristics (JIP-test) were also affected by Cr(VI), but Cr(VI) toxicity on photosystem II photochemistry was ameliorated by HS treatment via reducing damaging effect on PS II reaction centre and its reduction side. Enhanced respiration, Cr content and oxidative biomarkers: superoxide radical, hydrogen peroxide, lipid peroxidation and membrane damage were observed under Cr(VI) stress. Though Cr(VI) enhanced adenosine triphasphate sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), glutathione-S-transferase (GST), glutathione reductase (GR) and ascorbate peroxidase (APX) activity, and content of total glutathione, cysteine and NP-SH, however, their levels/activity were further enhanced by S being maximum with HS treatment. The results show that Cr(VI) toxicity does increase under LS treatment while HS protected Cr(VI)-induced damaging effects in brinjal seedlings. Under HS treatment, in mitigating Cr(VI) toxicity, S assimilation and its associated metabolites such as cysteine, glutathione and NP-SH play crucial role.
Collapse
Affiliation(s)
- Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Bishwajit Kumar Kushwaha
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
253
|
Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:133-141. [PMID: 27409403 DOI: 10.1080/15226514.2016.1207598] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Controlling the uptake, transport, translocation, and accumulation of excessive amounts of cadmium from polluted environments is critical for plants and, consequently, humans with regard to food safety. Plants adopt various cellular and molecular mechanisms to minimize Cd toxicity. Upon exposure to Cd, plants initially implement avoidance strategies, such as production of organic acids, chelation, and sequestration, to prevent metal access to root cells. Nevertheless, Cd can be transported through the roots, stems, and leaves via apoplastic and symplastic pathways. These processes have been controlled by specific sites at the root surface and root cortex, in cells responsible for loading the root xylem, at the transition between the vascular systems of the root and the shoot, and in connecting tissues and cells at the stem. Although resistance to heavy metal cadmium can be achieved by either avoidance or tolerance, genetic basis to tolerance is therefore implied, in that these mechanisms are heritable attributes of tolerant mutants or genotypes.
Collapse
Affiliation(s)
- Yu Song
- a School of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou , China
- b Environment Management College of China , Qinhuangdao , China
| | - Liang Jin
- c Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum , Shanghai , China
| | - Xiaojuan Wang
- c Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum , Shanghai , China
| |
Collapse
|
254
|
Marmiroli M, Mussi F, Imperiale D, Lencioni G, Marmiroli N. Abiotic Stress Response to As and As+Si, Composite Reprogramming of Fruit Metabolites in Tomato Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:2201. [PMID: 29312426 PMCID: PMC5744081 DOI: 10.3389/fpls.2017.02201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/07/2023]
Abstract
The toxic element arsenic interacts with the beneficial element silicon at many levels of the plant metabolism. The ability of the tomato plant to take up and translocate As into its fruit has risen concerns that it could facilitate the entry of this element into the human food chain above the admitted level. Here, the fruit of two contrasting tomato cultivars, Aragon and Gladis, were evaluated following exposures of either 48 h or 14 days to As-contaminated irrigation water, with or without supplementary Si. The focus was on selected biochemical stress response indicators to dissect metabolic fruit reprogramming induced by As and Si. A multivariate statistical approach was utilized to establish the relationship between tissue As and Si concentrations and selected biochemical aspects of the stress response mechanisms to identify a set of relevant stress response descriptors. This resulted in the recognition of strong cultivar and temporal effects on metabolic and biochemical stress parameters following the treatments. In this paper the metabolic changes in H2O2 content, lipid peroxidation, lycopene and carotenoids content, ascorbate and GSH redox state, total phenolics, ABTS and DPPH radicals inhibition were in favor of an oxidative stress. The significance of some of these parameters as reliable arsenic exposition biomarkers is discussed in the context of the limited knowledge on the As-induced stress response mechanisms at the level of the ripening fruit which presents a distinctive molecular background dissimilar from roots and shoots.
Collapse
|
255
|
Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen QF. OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1868. [PMID: 29163593 PMCID: PMC5670359 DOI: 10.3389/fpls.2017.01868] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Bioaccumulation of arsenic (As) in rice (Oryza sativa) increases human exposure to this toxic, carcinogenic element. Recent studies identified several As transporters, but the regulation of these transporters remains unclear. Here, we show that the rice R2R3 MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE MYB1) regulates As-associated transporters genes. Treatment with As(III) induced OsARM1 transcript accumulation and an OsARM1-GFP fusion localized to the nucleus. Histochemical analysis of OsARM1pro::GUS lines indicated that OsARM1 was expressed in the phloem of vascular bundles in basal and upper nodes. Knockout of OsARM1 (OsARM1-KO CRISPR/Cas9-generated mutants) improved tolerance to As(III) and overexpression of OsARM1 (OsARM1-OE lines) increased sensitivity to As(III). Measurement of As in As(III)-treated plants showed that under low As(III) conditions (2 μM), more As was transported from the roots to the shoots in OsARM1-KOs. By contrast, more As accumulated in the roots in OsARM1-OEs in response to high As(III) exposure (25 μM). In particular, the As(III) levels in node I were significantly higher in OsARM1-KOs, but significantly lower in OsARM1-OEs, compared to wild-type plants, implying that OsARM1 is important for the regulation of root-to-shoot translocation of As. Moreover, OsLsi1, OsLsi2, and OsLsi6, which encode key As transporters, were significantly downregulated in OsARM1-OEs and upregulated in OsARM1-KOs compared to wild type. Chromatin immunoprecipitation-quantitative PCR of OsARM1-OEs indicated that OsARM1 binds to the conserved MYB-binding sites in the promoters or genomic regions of OsLsi1, OsLsi2, and OsLsi6 in rice. Our findings suggest that the OsARM1 transcription factor has essential functions in regulating As uptake and root-to-shoot translocation in rice.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qin-Fang Chen
| |
Collapse
|
256
|
Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:73-137. [PMID: 27300014 DOI: 10.1007/398_2016_8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès-Toulouse II, 5 Allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia
| | | |
Collapse
|
257
|
Stolpe C, Müller C. Effects of single and combined heavy metals and their chelators on aphid performance and preferences. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:3023-3030. [PMID: 27167884 DOI: 10.1002/etc.3489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 05/28/2023]
Abstract
When present at elevated levels in the environment, heavy metals are toxic for most organisms. However, so-called hyperaccumulator plants tolerate heavy metals and use chelators for their internal long-distance transport. Thus, phloem-sucking insects may come in contact with the chelated metals. In the present study, the effects of individual and combined heavy metals, zinc (Zn) and cadmium (Cd), as well as of common chelators, nicotianamine and phytochelatin, were investigated on the performance, preferences, and metal accumulation of the generalist aphid Myzus persicae, using artificial diets. Added Zn increased aphid growth, whereas Cd reduced the survival of aphids. Chelators had neither protective nor negative effects on aphids. The combination of the 2 heavy metals in chelated or nonchelated form caused a potentiation effect that led to an extinction of the aphids within less than 2 wk, before they could reproduce. Both Cd and Zn accumulated in the aphids, indicating a possible biomagnification. In choice assays, aphids preferred diets amended with Zn with or without nicotianamine compared to a control diet. In contrast, a Cd-containing diet led to neither attraction nor aversion. The present study provides insight into how mixtures of heavy metals and their chelators influence the life history of a generalist aphid. The results have implications for the use of phytoremediation to remove heavy metals from contaminated soils. Environ Toxicol Chem 2016;35:3023-3030. © 2016 SETAC.
Collapse
Affiliation(s)
- Clemens Stolpe
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
258
|
Mwamba TM, Li L, Gill RA, Islam F, Nawaz A, Ali B, Farooq MA, Lwalaba JL, Zhou W. Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:239-249. [PMID: 27639199 DOI: 10.1016/j.ecoenv.2016.08.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
Metal subcellular fractions and chemical profile highly reflect their level of toxicity to plants. Cadmium and Cu, two different but potentially toxic metals, were compared in the present study for their subcellular distribution and chemical forms in two Brassica napus cultivars (Zheda 622 and ZS 758). Five-week-old seedlings were hydroponically exposed to metal stress and analyzed after 15 days of treatment. In both cultivars, Cd was less retained at cell wall, thus major part of Cd accumulated in the soluble fraction. By contrast, handsome amount of Cu was sequestrated in both cell wall and vacuole containing fraction. Across sensitive organelles, Cu preferentially accumulated in chloroplasts, while Cd was equally distributed in chloroplasts and mitochondria; the two metals intruded nucleus at lesser degree. Further, Cd and Cu differentially interacted with various cellular ligands, and the extent of interaction was higher in the tolerant cultivar ZS 758. Copper was remarkably sequestrated by phosphates, and secondarily by peptide-ligands; inversely, the role of phosphates was secondary in Cd complexation, which was mainly achieved by peptide-ligands. Additional amount of Cu was aggregated with oxalates, but oxalate-bound Cd was scarcely detected. Current results have demonstrated varied toxicological and detoxification pathways of Cd and Cu in B. napus, suggesting that the efficiency of different alleviation strategies could vary against Cd and Cu toxicity to plants.
Collapse
Affiliation(s)
- Theodore M Mwamba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; Faculty of Agriculture, Department of Crop Science, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Amir Nawaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn 53115, Germany
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jonas L Lwalaba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; Faculty of Agriculture, Department of Crop Science, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
259
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
260
|
Yamaguchi C, Takimoto Y, Ohkama-Ohtsu N, Hokura A, Shinano T, Nakamura T, Suyama A, Maruyama-Nakashita A. Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:2353-2366. [PMID: 27590710 DOI: 10.1093/pcp/pcw156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/29/2016] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a highly toxic and non-essential element for plants, whereas phytochelatins and glutathione are low-molecular-weight sulfur compounds that function as chelators and play important roles in detoxification. Cadmium exposure is known to induce the expression of sulfur-assimilating enzymes and sulfate uptake by roots. However, the molecular mechanism underlying Cd-induced changes remains largely unknown. Accordingly, we analyzed the effects of Cd treatment on the uptake and translocation of sulfate and accumulation of thiols in Arabidopsis thaliana Both wild type (WT) and null mutant (sel1-10 and sel1-18) plants of the sulfate transporter SULTR1;2 exhibited growth inhibition when treated with CdCl2 However, the mutant plants exhibited a lower growth rate and lower Cd accumulation. Cadmium treatment also upregulated the transcription of SULTR1;2 and sulfate uptake activity in WT plants, but not in mutant plants. In addition, the sulfate, phytochelatin and total sulfur contents were preferentially accumulated in the shoots of both WT and mutant plants treated with CdCl2, and sulfur K-edge XANES spectra suggested that sulfate was the main compound responsible for the increased sulfur content in the shoots of CdCl2-treated plants. Our results demonstrate that Cd-induced sulfate uptake depends on SULTR1;2 activity, and that CdCl2 treatment greatly shifts the distribution of sulfate to shoots, increases the sulfate concentration of xylem sap and upregulates the expression of SULTRs involved in root-to-shoot sulfate transport. Therefore, we conclude that root-to-shoot sulfate transport is stimulated by Cd and suggest that the uptake and translocation of sulfate in CdCl2-treated plants are enhanced by demand-driven regulatory networks.
Collapse
Affiliation(s)
- Chisato Yamaguchi
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuki Takimoto
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akiko Hokura
- Department of Green and Sustainable Chemistry School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Takuro Shinano
- NARO Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, 062-8555, Japan
- Present address: Agricultural Radiation Research Center, NARO Tohoku Agricultural Research Center, 50 Aza-Harajyukuminami, Arai, Fukushima, 210-2156
| | - Toshiki Nakamura
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Akiko Suyama
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan
| |
Collapse
|
261
|
Wiggenhauser M, Bigalke M, Imseng M, Müller M, Keller A, Murphy K, Kreissig K, Rehkämper M, Wilcke W, Frossard E. Cadmium Isotope Fractionation in Soil-Wheat Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9223-31. [PMID: 27485095 DOI: 10.1021/acs.est.6b01568] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Analyses of stable metal isotope ratios constitute a novel tool in order to improve our understanding of biogeochemical processes in soil-plant systems. In this study, we used such measurements to assess Cd uptake and transport in wheat grown on three agricultural soils under controlled conditions. Isotope ratios of Cd were determined in the bulk C and A horizons, in the Ca(NO3)2-extractable Cd soil pool, and in roots, straw, and grains. The Ca(NO3)2-extractable Cd was isotopically heavier than the Cd in the bulk A horizon (Δ(114/110)Cdextract-Ahorizon = 0.16 to 0.45‰). The wheat plants were slightly enriched in light isotopes relative to the Ca(NO3)2-extractable Cd or showed no significant difference (Δ(114/110)Cdwheat-extract = -0.21 to 0.03‰). Among the plant parts, Cd isotopes were markedly fractionated: straw was isotopically heavier than roots (Δ(114/110)Cdstraw-root = 0.21 to 0.41‰), and grains were heavier than straw (Δ(114/110)Cdgrain-straw = 0.10 to 0.51‰). We suggest that the enrichment of heavy isotopes in the wheat grains was caused by mechanisms avoiding the accumulation of Cd in grains, such as the chelation of light Cd isotopes by thiol-containing peptides in roots and straw. These results demonstrate that Cd isotopes are significantly and systematically fractionated in soil-wheat systems, and the fractionation patterns provide information on the biogeochemical processes in these systems.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich , Eschikon 33, CH-8315 Lindau, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern , Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Martin Imseng
- Institute of Geography, University of Bern , Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Michael Müller
- Swiss Soil Monitoring Network (NABO), Agroscope , Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Armin Keller
- Swiss Soil Monitoring Network (NABO), Agroscope , Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Katy Murphy
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Katharina Kreissig
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT) , P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich , Eschikon 33, CH-8315 Lindau, Switzerland
| |
Collapse
|
262
|
Zhang M, Mo H, Sun W, Guo Y, Li J. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach. PLoS One 2016; 11:e0161147. [PMID: 27579677 PMCID: PMC5007098 DOI: 10.1371/journal.pone.0161147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Mo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wen Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
263
|
Fan T, Yang L, Wu X, Ni J, Jiang H, Zhang Q, Fang L, Sheng Y, Ren Y, Cao S. The PSE1 gene modulates lead tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4685-95. [PMID: 27335453 PMCID: PMC4973742 DOI: 10.1093/jxb/erw251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40.
Collapse
Affiliation(s)
- Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Libo Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xi Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jiaojiao Ni
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Haikun Jiang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Qi'an Zhang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ling Fang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Yibao Sheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongbing Ren
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shuqing Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
264
|
Park JH, Han YS, Seong HJ, Ahn JS, Nam IH. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions. CHEMOSPHERE 2016; 154:283-288. [PMID: 27058920 DOI: 10.1016/j.chemosphere.2016.03.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering.
Collapse
Affiliation(s)
- Jin Hee Park
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Young-Soo Han
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Hye Jin Seong
- Department of Energy & Resources Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan, 49112, Republic of Korea
| | - Joo Sung Ahn
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - In-Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon, 34132, Republic of Korea.
| |
Collapse
|
265
|
Ma J, Sheng H, Li X, Wang L. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:71-80. [PMID: 27017433 DOI: 10.1016/j.plaphy.2016.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells.
Collapse
Affiliation(s)
- Jie Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Sheng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
266
|
Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:266-77. [PMID: 27061371 DOI: 10.1016/j.plaphy.2016.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 05/21/2023]
Abstract
The arsenic (As) is a toxic element causing major health concern worldwide. Arsenate stress caused no significant reduction in growth parameters and shoot electrolyte leakage but showed increased root arsenate reductase activity along with relatively lower root As content and shoot translocation rate in As-tolerant BRRI 33 than in As-sensitive BRRI 51. It indicates that As inhibition and tolerance mechanisms are driven by root responses. Interestingly, As stress showed consistent decrease in phosphate content and expression of phosphate transporters (OsPT8, OsPT4, OsPHO1;2) under both high and low phosphate conditions in roots of BRRI 33, suggesting that limiting phosphate transport mainly mediated by OsPHO1;2 directs less As accumulation in BRRI 33. Further, BRRI 33 showed simultaneous increase in OsPCS1 (phytochelatin synthase) expression and phytochelatins (PCs) content in roots under As exposure supporting the hypothesis that root As sequestration acts as 'firewall system' in limiting As translocation in shoots. Furthermore, increased CAT, POD, SOD, GR, along with elevated glutathione, methionine, cysteine and proline suggests that strong antioxidant defense plays integral part to As tolerance in BRRI 33. Again, BRRI 33 self-grafts and plants having BRRI 33 rootstock combined with BRRI 51 scion had no adverse effect on morphological parameters but showed reduced As translocation rate, increased root arsenate reductase activity, shoot PC synthesis and root OsPHO1;2 expression due to As stress. It confirms that signal driving As tolerance mechanisms is generated in the roots. These findings can be implemented for As detoxification and As-free transgenic rice production for health safety.
Collapse
Affiliation(s)
- Most Champa Begum
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | - Monirul Islam
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ruhul Amin
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Rajshahi 6206, Bangladesh
| | | | | |
Collapse
|
267
|
Liu M, Qiu W, He X, Zheng L, Song X, Han X, Jiang J, Qiao G, Sang J, Liu M, Zhuo R. Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:965. [PMID: 27446189 PMCID: PMC4925709 DOI: 10.3389/fpls.2016.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 05/19/2023]
Abstract
Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Wenming Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Liu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Mingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Vocational Secondary Specialized School of Hedong District, LinyiChina
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| |
Collapse
|
268
|
Han X, Yin H, Song X, Zhang Y, Liu M, Sang J, Jiang J, Li J, Zhuo R. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1470-1483. [PMID: 26801211 PMCID: PMC5066797 DOI: 10.1111/pbi.12512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 05/15/2023]
Abstract
The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jiang Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
269
|
Zhou S, Kai H, Zha Z, Fang Z, Wang D, Du L, Zhang D, Feng X, Jin Y, Xia C. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:60-66. [PMID: 27010411 DOI: 10.1016/j.jenvrad.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th.
Collapse
Affiliation(s)
- Sai Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hailu Kai
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhongyong Zha
- Logistic Engineering University, Chongqing 401311, China
| | - Zhendong Fang
- Logistic Engineering University, Chongqing 401311, China
| | - Dingna Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaojie Feng
- Logistic Engineering University, Chongqing 401311, China.
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
270
|
Weremczuk A, Barabasz A, Ruszczyńska A, Bulska E, Antosiewicz DM. Determination the Usefulness of AhHMA4p1::AhHMA4 Expression in Biofortification Strategies. WATER, AIR, AND SOIL POLLUTION 2016; 227:186. [PMID: 27358503 PMCID: PMC4877419 DOI: 10.1007/s11270-016-2877-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/06/2016] [Indexed: 06/06/2023]
Abstract
AhHMA4 from Arabidopsis thaliana encodes Zn/Cd export protein that controls Zn/Cd translocation to shoots. The focus of this manuscript is the evaluation of AhHMA4 expression in tomato for mineral biofortification (more Zn and less Cd in shoots and fruits). Hydroponic and soil-based experiments were performed. Transgenic and wild-type plants were grown on two dilution levels of Knop's medium (1/10, 1/2) with or without Cd, to determine if mineral composition affects the pattern of root/shoot partitioning of both metals due to AhHMA4 expression. Facilitation of Zn translocation to shoots of 19-day-old transgenic tomato was noted only when plants were grown in the more diluted medium. Moreover, the expression pattern of Zn-Cd-Fe cross-homeostasis genes (LeIRT1, LeChln, LeNRAMP1) was changed in transgenics in a medium composition-dependent fashion. In plants grown in soil (with/without Cd) up to maturity, expression of AhHMA4 resulted in more efficient translocation of Zn to shoots and restriction of Cd. These results indicate the usefulness of AhHMA4 expression to improve the growth of tomato on low-Zn soil, also contaminated with Cd.
Collapse
Affiliation(s)
- Aleksandra Weremczuk
- />Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Anna Barabasz
- />Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Anna Ruszczyńska
- />Faculty of Chemistry, University of Warsaw, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Ewa Bulska
- />Faculty of Chemistry, University of Warsaw, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- />Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa str 1, 02-096 Warszawa, Poland
| |
Collapse
|
271
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
272
|
Clemens S, Ma JF. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:489-512. [PMID: 27128467 DOI: 10.1146/annurev-arplant-043015-112301] [Citation(s) in RCA: 580] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic, cadmium, lead, and mercury are toxic elements that are almost ubiquitously present at low levels in the environment because of anthropogenic influences. Dietary intake of plant-derived food represents a major fraction of potentially health-threatening human exposure, especially to arsenic and cadmium. In the interest of better food safety, it is important to reduce toxic element accumulation in crops. A molecular understanding of the pathways responsible for this accumulation can enable the development of crop varieties with strongly reduced concentrations of toxic elements in their edible parts. Such understanding is rapidly progressing for arsenic and cadmium but is in its infancy for lead and mercury. Basic discoveries have been made in Arabidopsis, rice, and other models, and most advances in crops have been made in rice. Proteins mediating the uptake of arsenic and cadmium have been identified, and the speciation and biotransformations of arsenic are now understood. Factors controlling the efficiency of root-to-shoot translocation and the partitioning of toxic elements through the rice node have also been identified.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| |
Collapse
|
273
|
Zemanová V, Pavlík M, Pavlíková D, Hnilička F, Vondráčková S. Responses to Cd Stress in Two Noccaea Species (Noccaea praecox and Noccaea caerulescens) Originating from Two Contaminated Sites in Mežica, Slovenia and Redlschlag, Austria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:464-74. [PMID: 26250450 DOI: 10.1007/s00244-015-0198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/23/2015] [Indexed: 05/07/2023]
Abstract
The two Noccaea species-Noccaea praecox originating from Mežica, Slovenia (Me) (Pb, Zn, Cd pollution) and Noccaea caerulescens from Redlschlag, Austria (Re) (high levels of Ni, Cr, Mg)-were studied to compare Cd accumulation and tolerance. After 120 days of plant cultivation in Cd-contaminated soil (90 mg Cd kg(-1) soil), gas-exchange parameters (e.g. net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration), fatty acids, and selected macro- and microelements were determined in addition to N utilization by plants. The comparison between ecotypes showed that Cd stress resulted in similar changes in gas-exchange parameters. Contrasting responses of plants to Cd contamination were confirmed by the macro- and microelement contents and fatty acid and amino acid metabolism. Significantly higher accumulations of Cd and strong decreases in the levels of K, Ca, Na, and Fe were observed in the Me plants in contrast to the Re plants. The higher Re plant ability to take in some cations is a result of selective pressure due to contamination. Different ion uptake by plants affected the activities of metalloenzymes. Significant increases in the glutamic acid/proline ratio resulted from higher adaption of the Me in contrast to the Re plants.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic.
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic
| | - Stanislava Vondráčková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic
| |
Collapse
|
274
|
Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. PLANTA 2016; 243:605-22. [PMID: 26563149 PMCID: PMC4757632 DOI: 10.1007/s00425-015-2428-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION The heterologous expression of AtPCS1 in tobacco plants exposed to arsenic plus cadmium enhances phytochelatin levels, root As/Cd accumulation and pollutants detoxification, but does not prevent root cyto-histological damages. High phytochelatin (PC) levels may be involved in accumulation and detoxification of both cadmium (Cd) and arsenic (As) in numerous plants. Although polluted environments are frequently characterized by As and Cd coexistence, how increased PC levels affect the adaptation of the entire plant and the response of its cells/tissues to a combined contamination by As and Cd needs investigation. Consequently, we analyzed tobacco seedlings overexpressing Arabidopsis phytochelatin synthase1 gene (AtPCS1) exposed to As and/or Cd, to evaluate the levels of PCs and As/Cd, the cyto-histological modifications of the roots and the Cd/As leaf extrusion ability. When exposed to As and/or Cd the plants overexpressing AtPCS1 showed higher PC levels, As plus Cd root accumulation, and detoxification ability than the non-overexpressing plants, but a blocked Cd-extrusion from the leaf trichomes. In all genotypes, As, and Cd in particular, damaged lateral root apices, enhancing cell-vacuolization, causing thinning and stretching of endodermis initial cells. Alterations also occurred in the primary structure region of the lateral roots, i.e., cell wall lignification in the external cortex, cell hypertrophy in the inner cortex, crushing of endodermis and stele, and nuclear hypertrophy. Altogether, As and/or Cd caused damage to the lateral roots (and not to the primary one), with such damage not counteracted by AtPCS1 overexpression. The latter, however, positively affected accumulation and detoxification to both pollutants, highlighting that Cd/As accumulation and detoxification due to PCS1 activity do not reduce the cyto-histological damage.
Collapse
Affiliation(s)
- Letizia Zanella
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Patrizia Brunetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, "Sapienza" University of Rome, Rome, Italy
| | - Enrica Roccotiello
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Polo Botanico Hanbury, University of Genoa, Genoa, Italy
| | - Laura Cornara
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Polo Botanico Hanbury, University of Genoa, Genoa, Italy
| | - Simone D'Angeli
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | | | - Maura Cardarelli
- Istituto di Biologia Medicina Molecolare e Nanobiotecnologie Consiglio Nazionale delle Ricerche, "Sapienza" University of Rome, Rome, Italy
| | - Maurizio Barbieri
- Dipartimento di Scienze della Terra, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Giuseppina Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
275
|
Wang HY, Wen SL, Chen P, Zhang L, Cen K, Sun GX. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3781-3788. [PMID: 26498817 DOI: 10.1007/s11356-015-5638-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.
Collapse
Affiliation(s)
- Hong-Yan Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shi-Lin Wen
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lu Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
276
|
Hwang SG, Park HM, Han AR, Jang CS. Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:140-8. [PMID: 26788958 DOI: 10.1016/j.jplph.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 05/25/2023]
Abstract
High levels of arsenic (As) in plants are a serious threat to human health, and arsenic accumulation affects plant metabolism and ultimately photosynthesis, growth, and development. We attempted to isolate As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase genes from rice, and we have designated one such gene Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1). OsAIR1 expression was induced under abiotic stress conditions, including drought, salt, heat, and As exposure. Results from an in vitro ubiquitination assay showed that OsAIR1 possesses E3 ligase activity. Within the cell, the expression of this gene was found to be localized to the vacuole. In a network-based analysis, we found significantly enriched gene ontology (GO) functions, which included ribonucleoprotein complexes such as ribosomes, suggesting that the function of OsAIR1 are related to translation. Differences in the proportion of seedlings with expanded cotyledons and root lengths, and the lack of differences in germination rates between OsAIR1-overexpressing lines and control plants under AsV stress, suggest that OsAIR1 may positively regulate post-germination plant growth under stress conditions.
Collapse
Affiliation(s)
- Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Hyeon Mi Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - A-Reum Han
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea.
| |
Collapse
|
277
|
Li N, Wang J, Song WY. Arsenic Uptake and Translocation in Plants. PLANT & CELL PHYSIOLOGY 2016; 57:4-13. [PMID: 26454880 DOI: 10.1093/pcp/pcv143] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/20/2015] [Indexed: 05/02/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Jingchao Wang
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Won-Yong Song
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
278
|
Armendariz AL, Talano MA, Travaglia C, Reinoso H, Wevar Oller AL, Agostini E. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:119-27. [PMID: 26686284 DOI: 10.1016/j.plaphy.2015.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Even though vast areas contaminated with arsenic (As) are under soybean (Glycine max) cultivation, little is known about the growth and intrinsic antioxidant metabolism of soybean in response to As exposure. Thus, an evaluation was carried out of plant growth, root anatomy, antioxidant system and photosynthetic pigment content under arsenate (As(V)) and arsenite (As(III)) treatment. Soybean seedling growth was significantly affected at 25 μM or higher concentrations of As(V) or As(III), and the toxic effect on root growth was associated with cell death of root tips. Microscopic analysis of cross-sections of As-treated root showed a reduction in the cortex area, dark deposits in cortex cells and broken cells in the outer layer. Similarly, in the vascular cylinder, dark deposits within xylem vessel elements and phloem cell walls were observed. In all the analyzed parameters, the deleterious effect was more evident under As(III) than As(V) treatment. Arsenic-treated soybean seedlings showed increased activity of antioxidant enzymes [total peroxidases (Px) and superoxide dismutase (SOD)] in root and shoot harvested after 2 and 5 d of treatment. However, a reduction in chlorophyll content and an increase in membrane lipids peroxidation were observed. It is suggested that root structural alterations induced by As, such as the particular pattern of dark depositions in the vascular system, could be associated with an adaptation or detoxification mechanism to prevent As translocation to the aboveground tissues.
Collapse
Affiliation(s)
- Ana L Armendariz
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Claudia Travaglia
- Departamento de Morfología Vegetal, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Herminda Reinoso
- Departamento de Morfología Vegetal, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Ana L Wevar Oller
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
279
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
280
|
Borišev M, Pajević S, Nikolić N, Orlović S, Župunski M, Pilipović A, Kebert M. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:164-170. [PMID: 26247775 DOI: 10.1080/15226514.2015.1073670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Evidence exists that Cd and certain nutrient elements, such as Fe and Mg, could share similar mechanisms of plant uptake and accumulation. Here we report that Mg and Fe deficiency in mature plants of Salix viminalis, grown in hydroponic solutions containing 5 µg ml(-1) of Cd, caused a significant increase in Cd accumulation in roots, stems and leaves. Cd (µg g(-1) dry weight) was determined following three treatments: 1) Cd treatment in complete nutrient solution; 2) Cd treatment with Fe deficiency; and 3) Cd treatment with Mg deficiency, yielding, respectively: in young leaves (65.3, 76.1, and 92.2), mature leaves (51.5 to 76.3 and 87.1), upper stems (80.6, 116.8, and 130.6) lower stems (67.2, 119, and 102.3), roots (377.1, 744.8, and 442,5). Our results suggest that Cd utilizes the same uptake and transport pathways as Mg and Fe. Evidence exists that Mg and Fe uptake and translocation could be further facilitated by plants as an adaptive response to deficiency of these elements. Such physiological reaction could additionally stimulate Cd accumulation. Although Cd uptake was mostly confined in roots, high Cd content in aerial plant parts (51.5-130.6 µg g(-1)) indicates that the analysed Salix viminalis genotype is suitable for phytoextraction.
Collapse
Affiliation(s)
- M Borišev
- a Department for Biology and Ecology , Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića , Novi Sad , Serbia
| | - S Pajević
- a Department for Biology and Ecology , Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića , Novi Sad , Serbia
| | - N Nikolić
- a Department for Biology and Ecology , Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića , Novi Sad , Serbia
| | - S Orlović
- b Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova , Novi Sad , Serbia
| | - M Župunski
- a Department for Biology and Ecology , Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića , Novi Sad , Serbia
| | - A Pilipović
- b Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova , Novi Sad , Serbia
| | - M Kebert
- b Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova , Novi Sad , Serbia
| |
Collapse
|
281
|
Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:340812. [PMID: 26798635 PMCID: PMC4698539 DOI: 10.1155/2015/340812] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
Abstract
The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
282
|
Taamalli M, D'Alessandro A, Marrocco C, Gevi F, Timperio AM, Zolla L. Proteomic and metabolic profiles of Cakile maritima Scop. Sea Rocket grown in the presence of cadmium. MOLECULAR BIOSYSTEMS 2015; 11:1096-109. [PMID: 25639878 DOI: 10.1039/c4mb00567h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent physiological reports have documented how Cakile maritima Scop. Sea Rocket could accumulate high doses of Cd without altering its physiological parameters. In the present study, we performed an integrated proteomics (2DE) and metabolomics (HPLC-MS) investigation to determine the molecular mechanisms underlying cadmium (Cd) tolerance of this halophyte. Peculiar features were observed: (i) up-regulation of thiol compound anabolism, including glutathione and phytochelatin homeostasis, which allows an intracellular chelation of Cd and its compartmentalization into vacuole by a significant up-regulation of vacuolar transporters; (ii) up-regulation of the PPP and Calvin cycle (both at the enzyme and metabolite level), which utterly promoted the maintenance of NADPH/NADP(+) homeostasis, other than the accumulation of triose-phosphates (serving as anabolic intermediates for triacylglycerol biosynthesis) and the glyoxylate precursor phosphoglycolate, to promote photorespiration and consequently CO2 release. An up-regulation of carbonic anhydrase was also observed. This halophyte is also correlated with a highly efficient antioxidant system, especially a high up-regulation of SOD1, resulting more efficient in coping with heavy metals stress than common plants. Interestingly, exposure to high Cd concentrations partly affected photosystem integrity and metabolic activity, through the up-regulation of enzymes from the Calvin cycle and glutathione-ascorbate homeostasis and PAP3 which stabilizes thylakoid membrane structures. In addition, up-regulation of Peptidyl-prolyl isomerase CYP38 increases stability and biogenesis of PSII. Finally, metabolomics results confirmed proteomics and previous physiological evidence, also suggesting that osmoprotectants, betaine and proline, together with plant hormones, methyl jasmonate and salicylic acid, might be involved in mediating responses to Cd-induced stress. Taken together, these peculiar features confirm that Cakile maritima Scop. Sea Rocket seemed to be naturally equipped to withstand even high doses of Cd pollution.
Collapse
Affiliation(s)
- Manel Taamalli
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| | | | | | | | | | | |
Collapse
|
283
|
Li J, Yu H, Luan Y. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:14958-73. [PMID: 26703632 PMCID: PMC4690895 DOI: 10.3390/ijerph121214959] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 02/02/2023]
Abstract
The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.
Collapse
Affiliation(s)
- Jing Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Haixin Yu
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Yaning Luan
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
284
|
Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 2015; 5:16205. [PMID: 26552588 PMCID: PMC4639781 DOI: 10.1038/srep16205] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/12/2015] [Indexed: 11/09/2022] Open
Abstract
Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.
Collapse
|
285
|
Yang GD, Xie WY, Zhu X, Huang Y, Yang XJ, Qiu ZQ, Lv ZM, Wang WN, Lin WX. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:7-12. [PMID: 26024808 DOI: 10.1016/j.ecoenv.2015.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.
Collapse
Affiliation(s)
- Gui-Di Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wan-Ying Xie
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xi Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Jun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zong-Qing Qiu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen-Mao Lv
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Na Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Xiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
286
|
Xu XY, Ding ZJ, Chen L, Yan JY, Li GX, Zheng SJ. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:848-58. [PMID: 25559189 DOI: 10.1111/jipb.12329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/31/2014] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Ying Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
287
|
Saminathan T, Malkaram SA, Patel D, Taylor K, Hass A, Nimmakayala P, Huber DH, Reddy UK. Transcriptome Analysis of Invasive Plants in Response to Mineral Toxicity of Reclaimed Coal-Mine Soil in the Appalachian Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10320-9. [PMID: 26269111 DOI: 10.1021/acs.est.5b01901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Efficient postmining reclamation requires successful revegetation. By using RNA sequencing, we evaluated the growth response of two invasive plants, goutweed (Aegopodium podagraria L.) and mugwort (Artemisia vulgaris), grown in two Appalachian acid-mine soils (MS-I and -II, pH ∼ 4.6). Although deficient in macronutrients, both soils contained high levels of plant-available Al, Fe and Mn. Both plant types showed toxicity tolerance, but metal accumulation differed by plant and site. With MS-I, Al accumulation was greater for mugwort than goutweed (385 ± 47 vs 2151 ± 251 μg g-1). Al concentration was similar between mine sites, but its accumulation in mugwort was greater with MS-I than MS-II, with no difference in accumulation by site for goutweed. An in situ approach revealed deregulation of multiple factors such as transporters, transcription factors, and metal chelators for metal uptake or exclusion. The two plant systems showed common gene expression patterns for different pathways. Both plant systems appeared to have few common heavy-metal pathway regulators addressing mineral toxicity/deficiency in both mine sites, which implies adaptability of invasive plants for efficient growth at mine sites with toxic waste. Functional genomics can be used to screen for plant adaptability, especially for reclamation and phytoremediation of contaminated soils and waters.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Sridhar A Malkaram
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Dharmesh Patel
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Kaitlyn Taylor
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Amir Hass
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - David H Huber
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University , Institute, West Virginia 25112-1000, United States
| |
Collapse
|
288
|
Jeke NN, Zvomuya F, Cicek N, Ross L, Badiou P. Biomass, Nutrient, and Trace Element Accumulation and Partitioning in Cattail ( L.) during Wetland Phytoremediation of Municipal Biosolids. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1541-9. [PMID: 26436271 DOI: 10.2134/jeq2015.02.0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biomass and contaminant accumulation and partitioning in plants determine the harvest stage for optimum contaminant uptake during phytoremediation of municipal biosolids. This wetland microcosm bioassay characterized accumulation and partitioning of biomass, nutrients (N and P), and trace elements (Zn, Cu, Cr, and Cd) in cattail ( L.) in a growth room. Four cattail seedlings were transplanted into each 20-L plastic pail containing 3.9 kg (dry wt.) biosolids from an end-of-life municipal lagoon. A 10-cm-deep water column was maintained above the 12-cm-thick biosolids layer. Plants were harvested every 14 d over a period of 126 d for determination of aboveground biomass (AGB) and belowground biomass (BGB) yields, along with contaminant concentrations in these plant tissues. Logistic model fits to biomass yield data indicated no significant difference in asymptotic yield between AGB and BGB. Aboveground biomass accumulated significantly greater amounts of N and P and lower amounts of trace elements than BGB. Maximum N accumulation in AGB occurred 83 d after transplanting (DAT), and peak P uptake occurred at 86 DAT. Harvesting at maximum aboveground accumulation removed (percent of the initial element concentration in the biosolids) 4% N, 3% P, 0.05% Zn, 0.6% Cu, 0.1% Cd, and 0.2% Cr. Therefore, under the conditions of this study, phytoremediation would be most effective if cattail is harvested at 86 DAT. These results contribute toward the identification of the harvest stage that will optimize contaminant uptake and enhance in situ phytoremediation of biosolids using cattail.
Collapse
|
289
|
Simioni C, Schmidt ÉC, Rover T, dos Santos R, Filipin EP, Pereira DT, Costa GB, Oliveira ER, Chow F, Ramlov F, Ouriques L, Maraschin M, Bouzon ZL. Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes. PROTOPLASMA 2015; 252:1347-1359. [PMID: 25666304 DOI: 10.1007/s00709-015-0768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 μM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 μM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 μM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 μM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.
Collapse
Affiliation(s)
- Carmen Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, SC, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
de Andrade SAL, Domingues AP, Mazzafera P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. CHEMOSPHERE 2015; 134:141-9. [PMID: 25935603 DOI: 10.1016/j.chemosphere.2015.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 05/21/2023]
Abstract
The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (AsV) or arsenite (AsIII) and inoculated or not with Rhizophagus irregularis. Under AsV and AsIII exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of AsV and AsIII on the photosynthetic rates and PSII efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as AsV.
Collapse
Affiliation(s)
- Sara Adrian Lopez de Andrade
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Adilson Pereira Domingues
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
291
|
Wang H, Wang T, Ahmad I. Involvement of phosphate supplies in different transcriptional regulation pathway of Oryza sativa L.'s antioxidative system in response to arsenite and cadmium stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1259-1268. [PMID: 26070715 DOI: 10.1007/s10646-015-1496-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The roles of different concentrations of arsenite (As(III)) and cadmium (Cd) (0, 25 and 50 μM) in the absence and presence (1.7 mM) of phosphate (P) in tolerance and antioxidant genes expression in Oryza sativa L. were investigated. The growth parameters, metal accumulation, lipid peroxidation and soluble protein and 17 genes involved in metal accumulation and oxidative stress were measured. In our results, Lsi6 (OsNIP2;2) could play an important role in As(III) accumulation of shoots and roots in P supply (+P) and deficiency (-P) plant, while OsNRAMP5 was attributed to the part of As(III) uptake though roots under -P condition. Both of Lsi6 and OsNRAMP5 could involve Cd uptake of roots in +P plant. OsNRAMP1 was a main transporter for As(III) and Cd uptake in roots of -P plant. However, +P increased the soluble protein contents and reduced the lipid peroxidation under As(III) or Cd exposures. In As(III) exposed rice seedlings, SOD, CAT, POD, GPX, AsA-GSH cycle and GSH metabolism process were provoked to eliminate ROS induced by As(III), especially under -P condition. In Cd exposed rice seedlings, AsA-GSH cycle and GSH metabolism process played a main role in the detoxification process of plant cells, and +P could promote enzyme system activity. Furthermore, +P improve the tolerance ability of plants to tolerant 50 μM As(III) and Cd exposures compared to P deficiency.
Collapse
Affiliation(s)
- Haiou Wang
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China,
| | | | | |
Collapse
|
292
|
Degola F, Fattorini L, Bona E, Sprimuto CT, Argese E, Berta G, Sanità di Toppi L. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:11-8. [PMID: 25900420 DOI: 10.1016/j.plaphy.2015.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products.
Collapse
Affiliation(s)
- Francesca Degola
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Laura Fattorini
- Dipartimento di Biologia Ambientale, "Sapienza" Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Elisa Bona
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Christian Triscari Sprimuto
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Emanuele Argese
- Dipartimento di Scienze Molecolari e Nanosistemi, Università di Venezia "Ca' Foscari", Dorsoduro 2137, 30123 Venezia, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Luigi Sanità di Toppi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
293
|
Rai A, Bhardwaj A, Misra P, Bag SK, Adhikari B, Tripathi RD, Trivedi PK, Chakrabarty D. Comparative Transcriptional Profiling of Contrasting Rice Genotypes Shows Expression Differences during Arsenic Stress. THE PLANT GENOME 2015; 8:eplantgenome2014.09.0054. [PMID: 33228320 DOI: 10.3835/plantgenome2014.09.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/07/2015] [Indexed: 06/11/2023]
Abstract
Accumulation of arsenic (As) in rice (Oryza sativa L.) grain is a serious concern worldwide. Long-term exposure to As affects nutritional status in rice grain and is associated with higher rates of skin, bladder, and lung cancers, and heart disease. Genotypic variations in rice for As accumulation or tolerance are prevalent and are regulated by genetic and environmental factors. To understand molecular networks involved in As accumulation, genome-wide expression analysis was performed in roots of low- and high-As accumulating rice genotypes (LARGs and HARGs). Six rice genotypes with contrasting As accumulation potential and tolerance were used in this study. Genome-wide expression analysis suggested their differential response against As stress. This study suggests up- and downregulation of a number of unique genes involved in various pathways and biological processes in response to As stress in rice genotypes. A comparison of gene expression profiles, principal component analysis, and K-means clustering suggests that an independent pathway is operating during As stress tolerance or accumulation in contrasting genotypes. It was also observed that the differential behavior of aus genotype, Nayanmoni, from other LARGs might be due to its different genetic background. Cis-motif profiling of As-induced coexpressed genes in diverse rice genotypes led to the identification of unique cis-motifs present in differentially expressed genes. This study suggests that the genetic mechanism regulating the differential As accumulation in different genotypes may not be dependent on gene expression at the transcriptional level. However, many genes identified in this study can be analyzed and used for marker-trait associations related to As accumulation in diverse genotypes around the world.
Collapse
Affiliation(s)
- Arti Rai
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Archana Bhardwaj
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Prashant Misra
- CSIR-Indian Institute of Integrative Medicine (IIIM), Canal Road, Jammu, 180001, INDIA
| | - Sumit K Bag
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | | | - Rudra D Tripathi
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Prabodh K Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| |
Collapse
|
294
|
Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:313-23. [PMID: 26025544 DOI: 10.1016/j.plantsci.2015.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/04/2015] [Accepted: 04/20/2015] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a nonessential metallic trace element that poses potential chronic toxicity to living organisms. To date, little is known about the Cd-responsive regulatory network in root vegetable crops including radish. In this study, 31,015 unigenes representing 66,552 assembled unique transcripts were isolated from radish root under Cd stress based on de novo transcriptome assembly. In all, 1496 differentially expressed genes (DEGs) consisted of 3579 transcripts were identified from Cd-free (CK) and Cd-treated (Cd200) libraries. Gene Ontology and pathway enrichment analysis indicated that the up- and down-regulated DEGs were predominately involved in glucosinolate biosynthesis as well as cysteine and methionine-related pathways, respectively. RT-qPCR showed that the expression profiles of DEGs were in consistent with results from RNA-Seq analysis. Several candidate genes encoding phytochelatin synthase (PCS), metallothioneins (MTs), glutathione (GSH), zinc iron permease (ZIPs) and ABC transporter were responsible for Cd uptake, accumulation, translocation and detoxification in radish. The schematic model of DEGs and microRNAs-involved in Cd-responsive regulatory network was proposed. This study represents a first comprehensive transcriptome-based characterization of Cd-responsive DEGs in radish. These results could provide fundamental insight into complex Cd-responsive regulatory networks and facilitate further genetic manipulation of Cd accumulation in root vegetable crops.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Keyun Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
295
|
Strawn DG, Rigby AC, Baker LL, Coleman MD, Koch I. Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome (). JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1315-20. [PMID: 26437113 DOI: 10.2134/jeq2014.11.0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biochar is a renewable energy byproduct that shows promise for remediating contaminated mine sites. A common contaminant at mine sites is arsenic (As). In this study, the effects of biochar amendments to a mine-contaminated soil on As concentrations in mountain brome ( Nees ex Steud.) were investigated. In the biochar-amended soil, mountain brome had greater root biomass and decreased root and shoot As concentrations. X-ray absorption near-edge structure spectroscopy results showed that arsenate [As(V)] is the predominant species in both the nonamended and biochar-amended soils. Soil extraction tests that measure phosphate and arsenate availability to plants failed to accurately predict plant tissue As concentrations, suggesting the arsenate bioavailability behavior in the soils is distinct from phosphate. Results from this study indicate that biochar will be a beneficial amendment to As-contaminated mine sites for remediation.
Collapse
|
296
|
Zemanová V, Pavlík M, Kyjaková P, Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:27-34. [PMID: 25886397 DOI: 10.1016/j.jplph.2015.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 05/29/2023]
Abstract
Changes in the fatty acid (FAs) composition in response to the extent of Cd contamination of soils (0, 30, 60 and 90 mg Cd kg(-1)) differed between ecotypes of Noccaea caerulescens originating from France - Ganges, Slovenia - Mežica and Austria - Redlschlag. Mežica ecotype accumulated more Cd in aboveground biomass compared to Ganges and Redlschlag ecotypes. Hyperaccumulators contained saturated fatty acids (SFAs) rarely occurring in plants, as are cerotic (26:0), montanic (28:0), melissic (30:0) acids, and unusual unsaturated fatty acids (USFAs), as are 16:2, 16:3, 20:2 and 20:3. Typical USFAs occurring in the family Brassicaceae, such as erucic, oleic and arachidonic acids, were missing in tested plants. Our results clearly indicate a relationship between Cd accumulation and the FAs composition. The content of SFAs decreased and the content of USFAs increased in aboveground biomass of Ganges and Mežica ecotypes with increasing Cd concentration. Opposite trend of FAs content was determined in Redlschlag ecotype. Linoleic (18:2n-6), α-linolenic (18:3n-3) and palmitic (16:0) acids were found in all ecotypes. The results observed in N. caerulescens ecotypes, showed that mainly Mežica ecotype has an efficient defense strategies which can be related on changes in FAs composition, mainly in VLCFAs synthesis. The most significant effect of ecotype on FAs composition was confirmed using multivariate analysis of variance.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Pavlína Kyjaková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic.
| |
Collapse
|
297
|
Ayadi A, Chorriba A, Fourati A, Gargouri-Bouzid R. Investigation of the effect of phosphogypsum amendment on two Arabidopsis thaliana ecotype growth and development. ENVIRONMENTAL TECHNOLOGY 2015; 36:1547-1555. [PMID: 25495660 DOI: 10.1080/09593330.2014.997296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The production of phosphoric acid from natural phosphate rock leads to an industrial waste called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid produced. This acidic waste (pH 2.2) is mostly disposed of by dumping into large stockpiles close to fertilizer production units, where they occupy large land areas that can cause serious environmental damages. Several attempts were made to test PG valorization via soil amendment because of its phosphate, sulphate and calcium content. The aim of the this study was to evaluate the potential use of PG as phosphate amendment in soil using two wild-type Arabidopsis thaliana ecotypes (Wassilewskija and Colombia) as model plants. Plants were grown in a greenhouse for 30 days, on substrates containing various PG concentrations (0%, 15%, 25%, 40% and 50%). The growth rate and physiological parameters (fresh weight, phosphate and chlorophyll content) were determined. The data revealed that 15% PG did not alter plant survival and leaf's dry weight, and the inorganic phosphate (Pi) uptake by plant seemed to be efficient. However, some alterations in Chlorophyll a/Chlorophyll b ratio were noticed. Higher PG concentrations (40 and 50% PG) exhibited an enhanced negative effect on plant growth, survival and Pi uptake. These inhibitory effects of the substrates may be related to the acidity of the medium in addition to its Cd content.
Collapse
Affiliation(s)
- Amal Ayadi
- a Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures , Ecole Nationale d'Ingénieurs de Sfax , B.P 1173, Sfax 3038 , Tunisia
| | | | | | | |
Collapse
|
298
|
Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants--role of plant growth regulators. PROTOPLASMA 2015; 252:399-413. [PMID: 25303855 DOI: 10.1007/s00709-014-0710-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.
Collapse
Affiliation(s)
- Mohd Asgher
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | |
Collapse
|
299
|
Sheikh-Assadi M, Khandan-Mirkohi A, Alemardan A, Moreno-Jiménez E. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:556-562. [PMID: 25747242 DOI: 10.1080/15226514.2014.922928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heavy metals accumulation in soils poses a potential threat to ecosystems, which, in turn, threat human health through food chains. Therefore, remediating polluted sites is important to environment and humanity. In this investigation, statice (L. sinuatum) was exposed to Cd (0, 15, 30, 60 mg kg(-1) soil) or Pb (0, 100, 150, 300 mg kg(-1) soil) in a pot experiment to assess its tolerance to each metal and study its phytoaccumulation capability. The benefits of mycorrhization (mixture of Glomus mosseae and G. intraradices) were also studied simultaneously. Single exposure to Cd or Pb reduced the plant growth, but statice was still relatively tolerant to both metals. The plants accumulated both metals in their roots; little was translocated to the shoots. Total Pb and total Cd accumulated by the roots was approximately 2 and 3 times higher in mycorrhizal than non-mycorrhizal plants (49 versus 147 and 595 versus 956 μg plant(-1)) respectively; however, mycorrhization alleviated metal phytotoxicity. The results suggest that statice is a potential candidate to be used as an ornamental plant in lead and cadmium polluted sites, mainly inoculated with arbuscular mycorrhizae. Besides that, it would be useful as a Pb or Cd controlling agent by means of phytostabilization.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- a Department of Horticultural Sciences, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources , University of Tehran , Karaj , Iran
| | | | | | | |
Collapse
|
300
|
Guan MY, Fan SK, Fang XZ, Jin CW. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots. PLANT SIGNALING & BEHAVIOR 2015; 10:e990794. [PMID: 25830329 PMCID: PMC4622925 DOI: 10.4161/15592324.2014.990794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NRT1.1 is a dual-affinity nitrate (NO3(-)) transporter involved in both high- and low-affinity NO3(-) uptake in Arabidopsis plants. In a recent study, we showed that, under cadmium (Cd) exposure, blocking the NRT1.1-mediated NO3(-) uptake reduces Cd entry into roots, thus lowing Cd levels in plants and improving plant growth. In addition, we also found that the Cd levels in edible parts of 11 Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars correlated well with the NO3(-) uptake rates of their roots. These results suggested that the NO3(-) uptake of roots negatively regulate Cd uptake. Modification of NO3(-) uptake in crops by modulating NO3(-) uptake pathway might provide a biological engineering approach to reducing Cd accumulation in edible organs, thus improving food safety.
Collapse
Affiliation(s)
- Mei Yan Guan
- College of Natural Resources and Environmental Science; Zhejiang University; Hangzhou, China
| | - Shi Kai Fan
- College of Natural Resources and Environmental Science; Zhejiang University; Hangzhou, China
| | - Xian Zhi Fang
- College of Natural Resources and Environmental Science; Zhejiang University; Hangzhou, China
| | | |
Collapse
|