251
|
Patarakul K, Lo M, Adler B. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol 2010; 10:31. [PMID: 20113507 PMCID: PMC2841595 DOI: 10.1186/1471-2180-10-31] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 01/29/2010] [Indexed: 01/08/2023] Open
Abstract
Background Leptospirosis is a zoonosis of worldwide distribution caused by infection with pathogenic serovars of Leptospira spp. The most common species, L. interrogans, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. Transmission of pathogenic Leptospira to humans mostly occurs through abraded skin or mucosal surfaces after direct or indirect contact with infected animals or contaminated soil or water. The spirochete then spreads hematogenously, resulting in multi-organ failure and death in severe cases. Previous DNA microarray studies have identified differentially expressed genes required for adaptation to temperature and osmolarity conditions inside the host compared to those of the environment. Results In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium. One hundred and sixty-eight genes were found to be differentially expressed, of which 55 were up-regulated and 113 were down-regulated. Genes of known or predicted function accounted for 54.5 and 45.1% of up- and down-regulated genes, respectively. Most of the differentially expressed genes were predicted to be involved in transcriptional regulation, translational process, two-component signal transduction systems, cell or membrane biogenesis, and metabolic pathways. Conclusions Our study showed global transcriptional changes of pathogenic Leptospira upon exposure to serum, representing a specific host environmental cue present in the bloodstream. The presence of serum led to a distinct pattern of gene expression in comparison to those of previous single-stimulus microarray studies on the effect of temperature and osmolarity upshift. The results provide insights into the pathogenesis of leptospirosis during the early bacteremic phase of infection.
Collapse
Affiliation(s)
- Kanitha Patarakul
- Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
252
|
Zhou Z, Wang MJ, Zhao ST, Hu JJ, Lu MZ. Changes in freezing tolerance in hybrid poplar caused by up- and down-regulation of PtFAD2 gene expression. Transgenic Res 2009; 19:647-54. [PMID: 20012191 DOI: 10.1007/s11248-009-9349-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 11/28/2009] [Indexed: 11/25/2022]
Abstract
In plant species, the level of polyunsaturated fatty acids (PUFAs) is essential for cold acclimation. To test whether changes in PUFA levels can lead to the alteration of freezing tolerance in poplar trees, we up- and down-regulated a Populus tomentosa Delta-12 fatty acid desaturase gene (PtFAD2) in the hybrid poplar (P. alba x P. glandulosa) clone 84 K. Real-time PCR results demonstrated that compared to untransformed control lines, the transcriptional level of PtFAD2 increased by up to 90% in over-expressing poplar lines (line OE-1) and decreased in down-regulated RNAi lines by up to 64% (line DR-1). As a result, the content of linoleic (C18:2) and linolenic (C18:3) unsaturated fatty acids (FAs) in total FAs increased by 7.5 and 3.9%, respectively, in the OE-1 line and decreased by 14.4 and 5.4% in the DR-2 line when compared to non-transgenic lines. After freezing treatment at -4 degrees C for 3 h without pre-cold acclimation, the survival rates of the PtFAD2-over-expressing cuttings were significantly higher (60% for OE-1) than those of non-transgenic plants (36.7%) and down-regulated lines (10% for DR-2). These results clearly demonstrate that the expression level of PUFAs substantially affected the freezing tolerance of hybrid poplar cuttings and could thus be utilized as an effective strategy to improve poplar anti-freezing traits through genetic engineering biotechnology.
Collapse
Affiliation(s)
- Zhou Zhou
- Lab of Biotechnology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | | | | | | | | |
Collapse
|
253
|
Cao Y, Xian M, Yang J, Xu X, Liu W, Li L. Heterologous expression of stearoyl-acyl carrier protein desaturase (S-ACP-DES) from Arabidopsis thaliana in Escherichia coli. Protein Expr Purif 2009; 69:209-14. [PMID: 19716420 DOI: 10.1016/j.pep.2009.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/16/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a and heterologously expressed this fatty acid desaturase in Escherichia coli BL21 (DE3). After being induced with IPTG, the fusion protein was efficiently expressed in a soluble form. The SSI2 desaturase was purified by nickel ion affinity chromatography and the product obtained showed a single band by SDS-PAGE analysis. The expression of ssi2 modified the fatty acid composition of the recombinant strain. The ratio of palmitic acid (16:0) decreased from 45.2% (the control strain) to 35.2% while palmitoleate (16:1Delta9) and cis-vaccenate (18:1Delta11) levels were enhanced to some extent. The desaturase enzymatic activity was measured in vivo when the enzyme substrate stearic acid was provided in the culture medium. A new fatty acid, oleic acid (18:1Delta9) was found in the recombinant strain which did not exist in wild-type E. coli. These results demonstrated that the cofactors of the host system can complement the requirement of the SSI2 desaturase.
Collapse
Affiliation(s)
- Yujin Cao
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | | | | | | | | | | |
Collapse
|
254
|
Zhang D, Pirtle IL, Park SJ, Nampaisansuk M, Neogi P, Wanjie SW, Pirtle RM, Chapman KD. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:462-71. [PMID: 19217793 DOI: 10.1016/j.plaphy.2008.12.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 05/24/2023]
Abstract
A cotton (Gossypium hirsutum L.) genomic clone encompassing a 17.9-kb DNA fragment was found to contain a delta-12 fatty acid desaturase gene (designated FAD2-4). The FAD2-4 open reading frame has 1,155bp and is uninterrupted, encoding a conceptual FAD2-4 polypeptide of 384 amino acids that has 98% identity with the cotton FAD2-3 polypeptide. The FAD2-4 gene has a single intron of 2,780 bp in its 5'-untranslated region (5'-UTR). The 3'-flanking regions and 5'-UTR introns in the FAD2-4 and FAD2-3 genes are quite different, indicating that the genes might be paralogs in the cotton genome. Reverse transcriptase (RT)-PCR analysis indicated that the FAD2-4 and FAD2-3 genes were expressed in all tissues examined, including seeds, seedling tissues, young and mature leaves, roots, stems, developing flower buds, and ovule fibers. These constitutive patterns of expression were notably different from that of the FAD2-1 gene, which was restricted to seeds and developing flower buds, or to the expression of a newly-identified FAD2-2 gene isoform, which was barely detectable in roots, hypocotyls, stems, and fibers, but was expressed in all other tissues. The FAD2-4 coding region was expressed in yeast and shown to encode a functional delta-12 desaturase, converting oleic acid (C18:1) to linoleic acid (C18:2) in recombinant yeast cells. In addition, both the FAD2-4 and the FAD2-3 genes were transferred into the Arabidopsis thaliana fad2-1 mutant background where they effectively restored wild type fatty acid composition and growth characteristics. Finally, the cotton FAD2-4 green fluorescent protein (GFP) fusion polypeptide appeared to be localized in the endomembrane system of transgenic Arabidopsis plants in the complemented fad2-1 mutant background, supporting a functional ER location for the cotton FAD2-4 polypeptide in this heterologous plant system. Thus, a new functional member of the FAD2 gene family in cotton has been characterized, indicating a complex regulation of membrane lipid desaturation in this important fiber/oilseed crop.
Collapse
Affiliation(s)
- Daiyuan Zhang
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203-5217, USA
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M. Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. Strain mh0186. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:368-74. [PMID: 18941836 DOI: 10.1007/s10126-008-9151-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 09/25/2008] [Indexed: 05/11/2023]
Abstract
The growth, lipid content, and fatty acid composition of Aurantiochytrium sp. strain mh0186 at different temperatures were investigated. Strain mh0186 grew well at 15-30 degrees C, but weakly at 10 degrees C. The biomass at 15-30 degrees C was significantly higher than at 10 and 35 degrees C, and the total lipid at 15-35 degrees C was significantly higher than that at 10 degrees C. The amount of DHA in the total fatty acid was highest at 10 degrees C and decreased in response to temperature increase. The content of DHA (mg/g-dry cell weight) at 15-30 degrees C were significantly higher than those at 35 degrees C and those at 15-25 degrees C were significantly higher than those at 10 and 35 degrees C. The DHA yield at 15-35 degrees C was significantly higher than those at 10 and 35 degrees C. Unsaturation of fatty acid was regulated by temperature and was enhanced in response to temperature decrease. The ratio of DHA to DPA varied at different temperatures.
Collapse
Affiliation(s)
- Yousuke Taoka
- Laboratory of Marine Bioscience, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
256
|
Yin D, Cui D, Jia B. Construction of a high-efficient expression vector of Delta12 fatty acid desaturase in peanut and its prokaryotical expression. J Genet Genomics 2009; 34:81-8. [PMID: 17469780 DOI: 10.1016/s1673-8527(07)60009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/15/2006] [Indexed: 11/24/2022]
Abstract
A full-length sequence coding for Delta(12) fatty acid desaturase gene from peanut (Arachis hypogaea L.) was cloned into the expression vector, pRSETB, to generate recombinant plasmid pRSET/HO-A, which was subsequently transformed into expression Escherichia coli BL21(DE3)pLysS. The Delta(12) fatty acid desaturase was highly expressed in E. coli BL21(DE3)pLysS in the presence of isopropyl-D-thiogalactopyranoside (IPTG). The fusion protein was purified and used to form a reaction system in vitro by adding oleic acid as substrate and incubating it at 20 degrees C for 6 h. Total fatty acids was extracted and methlesterified and then analyzed with gas chromatography. A novel peak corresponding to linoleic acid methyl ester standards was detected with the same retention time. GC-MS (gas chromatogram and gas chromatogram-mass spectrometry) analysis showed that the novel peak was linoleic acid methyl ester. These results exhibited Delta(12) fatty acid desaturase activity, which could convert oleic acid to linoleic acid specifically.
Collapse
Affiliation(s)
- Dongmei Yin
- Department of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | | | | |
Collapse
|
257
|
Niu B, Guo L, Zhao M, Luo T, Zhang R, Zhang F, Hou P, Zhang Y, Xu Y, Wang S, Chen F. Molecular cloning, characterization, and expression of an omega-3 fatty acid desaturase gene from Sapium sebiferum. J Biosci Bioeng 2009; 106:375-80. [PMID: 19000614 DOI: 10.1263/jbb.106.375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 07/03/2008] [Indexed: 11/17/2022]
Abstract
A full-length cDNA (SsFAD3) for an omega-3 fatty acid desaturase (omega-3 FAD) was cloned from Sapium sebiferum (L.) Roxb. using rapid amplification of cDNA ends and reverse transcription polymerase chain reaction methods. SsFAD3 contained a 1119-bp open reading frame encoding a 372-amino acid polypeptide. The genomic sequence region of the SsFAD3 ORF was composed of 8 exons and 7 introns, similar to other omega-3 FADs found in most plants. The amino acid sequence showed a higher identity with microsomal omega-3 FADs than plastidial omega-3 FADs. Southern blot analysis of SsFAD3 suggested the existence of a small gene family composed of several copies or closely linked genes. SsFAD3 transcripts were detected in shoots, roots, leaves, stems, and seeds, but were most abundant in shoots. The function of SsFAD3 was confirmed by the accumulation of alpha-linolenic acid (alpha-18:3) in Saccharomyces cerevisiae transformants.
Collapse
Affiliation(s)
- Bei Niu
- College of Life Science, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnol Lett 2009; 31:1089-101. [PMID: 19277477 DOI: 10.1007/s10529-009-9956-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Two full-length cDNA clones of PoleFAD2 and one full-length cDNA clone of PoleFAD6, encoding omega-6 fatty acid desaturases, the key enzymes for the conversion of oleic into linoleic acid, were isolated from purslane (Portulaca oleracea L.) leaves and seeds. The deduced amino acid sequence of both isoforms of PoleFAD2 showed higher similarities to other microsomal omega-6 desaturases then to PoleFAD6 or other plastidial orthologues, and vice versa. Expression analysis by RT-PCR showed that all genes are expressed in all tissues of purslane tested, but higher levels of mRNA accumulation were detected in reproductive organs and cells that proliferate rapidly or store lipids. Wounding affected the levels of mRNA accumulation of both, FAD2 and FAD6 genes in purslane leaves, while chilling stress affected only FAD2 transcript level. The expression patterns observed reflect the discrete roles of these genes in membrane synthesis for cell division, thylakoid development, and lipid storage or in the biosynthetic pathway for the production of signaling molecules that influence plant development or defense.
Collapse
|
259
|
Park WJ, Kothapalli KSD, Lawrence P, Tyburczy C, Brenna JT. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res 2009; 50:1195-202. [PMID: 19202133 DOI: 10.1194/jlr.m800630-jlr200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Delta6-desaturase coded by fatty acid desaturase 2 (FADS2; HSA11q12-q13.1) catalyzes the first and rate-limiting step for the biosynthesis of long-chain polyunsaturated fatty acids. FADS2 is known to act on at least five substrates, and we hypothesized that the FADS2 gene product would have Delta8-desaturase activity. Saccharomyces cerevisiae transformed with a FADS2 construct from baboon neonate liver cDNA gained the function to desaturate 11,14-eicosadienoic acid (20:2n-6) and 11,14,17-eicosatrienoic acid (20:3n-3) to yield 20:3n-6 and 20:4n-3, respectively. Competition experiments indicate that Delta8-desaturation favors activity toward 20:3n-3 over 20:2n-6 by 3-fold. Similar experiments show that Delta6-desaturase activity is favored over Delta8-desaturase activity by 7-fold and 23-fold for n-6 (18:2n-6 vs 20:2n-6) and n-3 (18:3n-3 vs 20:3n-3), respectively. In mammals, 20:3n-6 is the immediate precursor of prostaglandin E1 and thromboxane B1. 20:3n-6 and 20:4n-3 are also immediate precursors of long-chain polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid, respectively. These findings provide unequivocal molecular evidence for a novel alternative biosynthetic route to long-chain polyunsaturated fatty acids in mammals from substrates previously considered to be dead-end products.
Collapse
Affiliation(s)
- Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
260
|
Li Y, Xu X, Dietrich M, Urlacher VB, Schmid RD, Ouyang P, He B. Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
261
|
|
262
|
|
263
|
Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids. LIPIDS IN PHOTOSYNTHESIS 2009. [DOI: 10.1007/978-90-481-2863-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
264
|
Yee JC, Gerdtzen ZP, Hu WS. Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng 2009; 102:246-63. [DOI: 10.1002/bit.22039] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
265
|
de Virville JD, Cochet F, Tasseva G, Moreau F, Zachowski A. Changes in electron transport pathways in endoplasmic reticulum of rapeseed in response to cold. PLANTA 2008; 228:875-882. [PMID: 18663470 DOI: 10.1007/s00425-008-0793-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
We studied changes induced by cold on electron transfer pathways (linked to NADH or NADPH oxidation) in endoplasmic reticulum of rapeseed hypocotyls (Brassica napus L.) from a freezing-sensitive variety (ISL) and freezing-tolerant variety (Tradition). Plantlets were grown at 22 degrees C then submitted to a cold shock of 13 or 35 days at 4 degrees C. We measured the content in NADH, NADPH, NAD and NADP of the hypocotyls and the redox power was estimated by the reduced versus oxidized nucleotide ratio. The contents in cytochromes b (5) and P-450, electron acceptors of NADH and NADPH respectively, were determined by differential spectrophotometry. Finally, activity of both NADH-cytochrome b (5) reductase (E.C.1.6.2.2) and NADPH cytochrome P-450 reductase (E.C.1.6.2.4) was determined by reduction of exogenous cytochrome c. Results show that during cold shock, along with an increase of linolenic acid content, there was a general activation of the NADPH pathway which was observed more quickly in Tradition plantlets than in ISL ones. Due to transfer of electrons that can occur between NADPH reductase and cytochrome b (5), this could favor fatty acid desaturation in Tradition, explaining why linolenic acid accumulation was more pronounced in this variety. Besides, more cytochrome P-450 accumulated in ISL that could compete for electrons needed by the FAD3 desaturase, resulting in a relative slower enrichment in 18:3 fatty acid in these plantlets.
Collapse
Affiliation(s)
- Jacques Davy de Virville
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie, UMR CNRS 7180, case 154, 3 rue Galilée, Ivry-sur-Seine, 94200, Paris, France.
| | | | | | | | | |
Collapse
|
266
|
Galbis-Martínez L, Galbis-Martínez M, Murillo FJ, Fontes M. An anti-antisigma factor in the response of the bacterium Myxococcus xanthus to blue light. MICROBIOLOGY-SGM 2008; 154:895-904. [PMID: 18310035 DOI: 10.1099/mic.0.2007/013359-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cells of the Gram-negative bacterium Myxococcus xanthus respond to blue light by producing carotenoids, pigments that play a protective role against the oxidative effects of light. Blue light triggers a network of regulatory actions that lead to the transcriptional activation of the structural genes for carotenoid synthesis. The product of carF, similar to a family of proteins of unknown function called Kua, is an early regulator of this process. Previous genetic data indicate that CarF participates in the light-dependent inactivation of the antisigma factor CarR. In the dark, CarR sequesters the ECF-sigma factor CarQ to the membrane, thereby preventing the activation of the structural genes for carotenoid synthesis. Using a bacterial two-hybrid system, we show here that both CarF and CarQ physically interact with CarR. These results, together with the finding that CarF is located at the membrane, support the hypothesis that CarF acts as an anti-antisigma factor. Comparison of CarF with other Kua proteins shows a remarkable conservation of a number of histidine residues. The effects on CarF function of several histidine to alanine substitutions and of the truncation of specific CarF domains are also reported here.
Collapse
Affiliation(s)
- Lilian Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco J Murillo
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
267
|
Identification and Functional Expression of a Δ9-Fatty Acid Desaturase from Psychrobacter urativorans in Escherichia coli. Lipids 2008; 43:207-13. [DOI: 10.1007/s11745-007-3150-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
|
268
|
Gostincar C, Turk M, Trbuha T, Vaupotic T, Plemenitas A, Gunde-Cimerman N. Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 2008; 61:51-9. [PMID: 19287526 PMCID: PMC2610307 DOI: 10.3114/sim.2008.61.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Delta(9)-desaturase and Delta(12)-desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution.
Collapse
Affiliation(s)
- C Gostincar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
269
|
Bronzini de Caraffa V, Gambotti C, Giannettini J, Maury J, Berti L, Gandemer G. Using lipid profiles and genotypes for the characterization of Corsican olive oils. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
270
|
Nejad MS, Niroomand A. Study on lipid changes of leaves and fruits olive adapted to high temperature condition Inkhuzestan. Pak J Biol Sci 2007; 10:4535-4538. [PMID: 19093527 DOI: 10.3923/pjbs.2007.4535.4538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The present study investigated the quantitative changes of olive leaves and fruits lipid during fruit ripening in olive cv. Manzanillo and cv. Dezful. Total lipids were measured and analyzed fatty acids by gas chromatography (GC) in on and off years. Present results showed that; Major fatty acids of leaves and fruits were palmitic, oleic and linoleic acid. In spite of fruit, means total lipid of leave were significantly difference between on and off years; although total lipids and fatty acids increase during ripening but there are negative regression between palmitic and oleic acid content of leaves and fruits. Oleic and palmitic acid ratio to total fatty acid gradually increased in fruit and leave respectively. Fruit size of Dezful cv. smaller than Manzanillo cv. But its lipid amount was more than Manzanillo cv. Oleic content was equal in both fruit cultivar. Comparisons of these results with our previous results on Olive cv. zard from Guilan show those climate dose not have important effect on lipid accumulative and alternate bearing. But regard to saturated fatty acid of two mentioned cultivar in this research the result showed that it is higher than considerably in the Dezful and Manzanillo cv. The great amount of saturated fatty acids is a suitable character for plant grown in high temperature conditions.
Collapse
|
271
|
Kayukawa T, Chen B, Hoshizaki S, Ishikawa Y. Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1160-1167. [PMID: 17916502 DOI: 10.1016/j.ibmb.2007.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 05/25/2023]
Abstract
Cold-acclimated non-diapause pupae, and summer- and winter-diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae), show marked cold hardiness as compared with intact non-diapause pupae. Homeoviscous adaptation of cellular membranes is crucial to enhance the cold hardiness of organisms, and Delta9-acyl-CoA desaturases have been assumed, albeit without experimental evidence in insects, to play a key role in the adaptation. We cloned the cDNA of a desaturase gene (Dadesat) from D. antiqua, which is most likely to encode Delta9-acyl-CoA desaturase. Expression of Dadesat mRNA in the brain, midgut, and Malpighian tubules of cold-acclimated and diapause pupae was upregulated 2-10 fold, correlating well with the increase in cold hardiness. In the pupae with enhanced cold hardiness, palmitoleic and oleic acids, the presumed products of Dadesat, in the phospholipids were significantly increased. These findings suggest that the increase in the expression of Dadesat contributes to enhanced cold hardiness in D. antiqua through the production of these unsaturated fatty acids.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
272
|
Li L, Wang X, Gai J, Yu D. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1516-26. [PMID: 17141918 DOI: 10.1016/j.jplph.2006.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/25/2006] [Accepted: 08/25/2006] [Indexed: 05/12/2023]
Abstract
In plants, the endoplasmic reticulum (ER)-associated oleate desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in non-photosynthetic tissues. In soybean three FAD2-like genes have been reported including two seed-specific genes, FAD2-1A and FAD2-1B, and a house-keeping gene FAD2-2. In this study, we isolated a novel gene encoding FAD2 isoform, designated as FAD2-3. The deduced amino acid sequences of the FAD2-3 displayed the typical three histidine boxes characteristic of all membrane-bound desaturases, and possessed a C-terminal signal for ER retention. Phylogenetic analysis showed that FAD2-3 is grouped within plant house-keeping FAD2 sequences. Yeast cells transformed with a plasmid construct containing the FAD2-3 coding region accumulated a considerable amount of linoleic acid (18:2), normally not present in wild-type yeast cells, suggesting that the isolated gene encodes a functional FAD2 enzyme. Semi-quantitative RT-PCR and in silico analysis showed that FAD2-3 gene is constitutively expressed in both vegetative tissues and developing seeds. In soybean leaves, the level of linolenic acid (18:3) increases with the decrease of linoleic aicd (18:2) under cold treatment. However, no significant change of transcript levels of FAD2-2 and FAD2-3 genes was detected. These results indicated that the altered polyunsaturated fatty acid levels in leaves treated with cold stress have no direct correlation with the expression of these two microsomal oleate desaturase genes.
Collapse
Affiliation(s)
- Lingyong Li
- Nanjing Agricultural University, National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|
273
|
Lu JZ, Muench SP, Allary M, Campbell S, Roberts CW, Mui E, McLeod RL, Rice DW, Prigge ST. Type I and type II fatty acid biosynthesis in Eimeria tenella: enoyl reductase activity and structure. Parasitology 2007; 134:1949-62. [PMID: 17697396 PMCID: PMC2801558 DOI: 10.1017/s0031182007003319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apicomplexan parasites of the genus Eimeria are the major causative agent of avian coccidiosis, leading to high economic losses in the poultry industry. Recent results show that Eimeria tenella harbours an apicoplast organelle, and that a key biosynthetic enzyme, enoyl reductase, is located in this organelle. In related parasites, enoyl reductase is one component of a type II fatty acid synthase (FAS) and has proven to be an attractive target for antimicrobial compounds. We cloned and expressed the mature form of E. tenella enoyl reductase (EtENR) for biochemical and structural studies. Recombinant EtENR exhibits NADH-dependent enoyl reductase activity and is inhibited by triclosan with an IC50 value of 60 nm. The crystal structure of EtENR reveals overall similarity with other ENR enzymes; however, the active site of EtENR is unoccupied, a state rarely observed in other ENR structures. Furthermore, the position of the central beta-sheet appears to block NADH binding and would require significant movement to allow NADH binding, a feature not previously seen in the ENR family. We analysed the E. tenella genomic database for orthologues of well-characterized bacterial and apicomplexan FAS enzymes and identified 6 additional genes, suggesting that E. tenella contains a type II FAS capable of synthesizing saturated, but not unsaturated, fatty acids. Interestingly, we also identified sequences that appear to encode multifunctional type I FAS enzymes, a feature also observed in Toxoplasma gondii, highlighting the similarity between these apicomplexan parasites.
Collapse
Affiliation(s)
- J. Z. Lu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - S. P. Muench
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - M. Allary
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - S. Campbell
- Strathclyde Institute of Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - C. W. Roberts
- Strathclyde Institute of Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - E. Mui
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA
| | - R. L. McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), and Pathology and Committees on Genetics, Molecular Medicine and Immunology and the College, University of Chicago, Chicago, IL 60637, USA
| | - D. W. Rice
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - S. T. Prigge
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Corresponding author: Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA. Tel: +1 443 287 4822. Fax: +1 410 955 0105.
| |
Collapse
|
274
|
Khang NTK, Jennen DGJ, Tholen E, Tesfaye D, Mennicken L, Hoelker M, Schellander K, Ponsuksili S, Murani E, Wimmers K. Association of the FADS2 Gene withω-6 andω-3 PUFA Concentration in the Egg Yolk of Japanese Quail. Anim Biotechnol 2007; 18:189-201. [PMID: 17612842 DOI: 10.1080/10495390701201390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study focused on the association of polymorphisms of the FADS2 gene with fatty acid profiles in egg yolk of eight Japanese quail lines selected for high and low omega-6:omega-3 PUFA ratio (h2 = 0.36-0.38). For the identification of polymorphisms within the FADS2 gene 1350 bp of cDNA sequence were obtained encoding 404 amino acids. Five synonymous SNPs were found by comparative sequencing of animals of the high and low lines. These SNPs were genotyped by single base extension on 160 Japanese quail. The association analysis, comprising analysis of variance and family based association test (FBAT), revealed significant effects of SNP3 and SNP4 genotypes on the egg yolk fatty acid profiles, especially the omega-6 and omega-3 PUFAs (P < 0.05). No effects of the other SNPs were found - indicating that these are not in linkage disequilibrium with the causal polymorphism. The results of this study promote FADS2 as a functional candidate gene for traits related to omega-6 and omega-3 PUFA concentration in the egg yolk.
Collapse
|
275
|
Meesapyodsuk D, Reed DW, Covello PS, Qiu X. Primary Structure, Regioselectivity, and Evolution of the Membrane-bound Fatty Acid Desaturases of Claviceps purpurea. J Biol Chem 2007; 282:20191-9. [PMID: 17510052 DOI: 10.1074/jbc.m702196200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs with sequence similarity to fatty acid desaturase genes were isolated from the phytopathogenic fungus, Claviceps purpurea. The predicted amino acid sequences of the corresponding genes, named CpDes12 and CpDesX, share 87% identity. Phylogenetic analysis indicates that CpDes12 and CpDesX arose by gene duplication of an ancestral Delta(12)-desaturase gene after the divergence of Nectriaceae and Clavicipitaceae. Functional expression of CpDes12 and CpDesX in yeast (Saccharomyces cerevisiae) indicated that CpDes12 is primarily a "Delta(12)"-desaturase, whereas CpDesX is a novel desaturase catalyzing "Delta(12)," "Delta(15)," and "omega(3)" types of desaturation with omega(3) activity predominating. CpDesX sequentially desaturates both 16:1-9c and 18:1-9c to give 16:3-9c,12c,15c and 18:3-9c,12c,15c, respectively. In addition, it could also act as an omega(3)-desaturase converting omega(6)-polyunsaturates 18:3-6c,9c,12c, 20:3-8c,11c,14c, and 20:4-5c,8c,11c,14c to their omega(3) counterparts 18:4-6c,9c,12c,15c, 20:4-8c,11c,14c,17c, and 20:5-5c,8c,11c,14c,17c, respectively. By using reciprocal site-directed mutagenesis, we demonstrated that two residues (isoleucine at 152 and alanine at 206) are critical in defining the catalytic specificity of these enzymes and the C-terminal amino acid sequence (residues 302-477) was also found to be important. These data provide insights into the nature of regioselectivity in membrane-bound fatty acid desaturases and the relevant structural determinants. The authors suggest that the regios-electivity of such enzymes may be best understood by considering the relative importance of more than one regioselective preference. In this view, CpDesX is designated as anu + 3(omega(3)) desaturase, which primarily references an existing double bond (nu + 3 regioselectivity) and secondarily shows preference for omega(3) desaturation.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
276
|
Pedneault K, Angers P, Avis TJ, Gosselin A, Tweddell RJ. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. 'citrino-pileatus' grown at different temperatures. ACTA ACUST UNITED AC 2007; 111:1228-34. [PMID: 17988848 DOI: 10.1016/j.mycres.2007.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/22/2007] [Accepted: 06/20/2007] [Indexed: 01/21/2023]
Abstract
The application of fatty acid (FA) composition data has now extended to studies of physiology, chemotaxonomy, and intrageneric differentiation, as well as to studies of human nutrition. Environmental factors such as nutritional components, oxygen, and temperature are known to affect lipid content and composition in living organisms, including fungi. In the present study, the polar and non-polar lipid content of Pleurotus ostreatus and P. cornucopiae var. citrino-pileatus fruiting bodies produced at temperatures ranging from 12-27 degrees C and from 17-27 degrees C, respectively, were analysed to evaluate the effect of temperature on lipid composition in these mushrooms. Results showed that lowering the growth temperature below 17 degrees C generally provided an expected increase in FA unsaturation in polar and non-polar lipids of P. ostreatus. Although raising the temperature above 17 degrees C did not show any clear-cut tendency in FA unsaturation, it did reveal that growth temperature had a differential effect on the FA profiles in fruiting bodies of P. ostreatus and P. cornucopiae. This study suggests that care should be taken when using FA content and unsaturation data for physiological, chemotaxonomic, and intrageneric differentiation studies, and that it may be possible to manipulate lipid unsaturation in Pleurotus spp. through modified growth temperatures.
Collapse
Affiliation(s)
- Karine Pedneault
- Centre de recherche en horticulture, Pavillon de l'Envirotron, Université Laval, Québec, QC, G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
277
|
Lounds C, Eagles J, Carter AT, MacKenzie DA, Archer DB. Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol 2007; 188:299-305. [PMID: 17492269 DOI: 10.1007/s00203-007-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/19/2007] [Accepted: 04/10/2007] [Indexed: 11/30/2022]
Abstract
Mortierella alpina is an oleaginous filamentous fungus whose vegetative mycelium is known to accumulate triglyceride oil containing large amounts of arachidonic acid (ARA 20:4, n - 6). We report that the spores of Mortierella alpina also contain a large proportion of ARA, comprising 50% of total fatty acid. Fatty acid desaturase genes were not expressed in dormant spores but were induced during germination, following a significant drop in the level of ARA (down from 50% of total fatty acid to 12%) prior to germ-tube emergence. We propose that ARA serves as a reserve supply of carbon and energy that is utilised during the early stages of spore germination in Mortierella alpina.
Collapse
Affiliation(s)
- C Lounds
- School of Biology, University of Nottingham, University Park, Nottingham, UK
| | | | | | | | | |
Collapse
|
278
|
Tang S, Guan R, Zhang H, Huang J. Cloning and expression analysis of three cDNAs encoding omega-3 fatty acid desaturases from Descurainia sophia. Biotechnol Lett 2007; 29:1417-24. [PMID: 17479217 DOI: 10.1007/s10529-007-9391-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Three cDNAs of DsFAD3, DsFAD7 and DsFAD8, encoding omega-3 fatty acid desaturases, which are the key enzymes for the conversion of linoleic to alpha-linolenic acid (18:3n-3), were isolated from Descurainia sophia using RACE-PCR. Tissue-specific expression analysis revealed that DsFAD3 and DsFAD7 genes were expressed in all tissues and at a high level in stems, leaves and young siliques, whereas DsFAD8 was moderately expressed in photosynthetic tissues including stems, leaves and young siliques. All three genes were significantly induced by wounding stress and DsFAD3 and DsFAD7 transcript levels were down-regulated by cold, whereas DsFAD8 was increased upon cold stress.
Collapse
Affiliation(s)
- Sanyuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, 210095, P. R. China
| | | | | | | |
Collapse
|
279
|
Maali R, Schimschilaschvili HR, Pchelkin VP, Tsydendambaev VD, Nosov AM, Los DA, Goldenkova-Pavlova IV. Comparative expression in Escherichia coli of the native and hybrid genes for acyl-lipid Δ9 desaturase. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
280
|
Hayward SAL, Murray PA, Gracey AY, Cossins AR. Beyond the lipid hypothesis: mechanisms underlying phenotypic plasticity in inducible cold tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:132-42. [PMID: 17205681 DOI: 10.1007/978-0-387-39975-1_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The physiological adjustment of organisms in response to temperature variation is a crucial part of coping with environmental stress. An important component of the cold response is the increase in membrane lipid unsaturation, and this has been linked to an enhanced resistance to the debilitating or lethal effects of cold. Underpinning the lipid response is the upregulation of fatty acid desaturases (des), particularly those introducing double bonds at the 9-10 position of saturated fatty acids. For plants and microbes there is good genetic evidence that regulation of des genes, and the consequent changes in lipid saturation, are causally linked to generation of a cold-tolerant phenotype. In animals, however, supporting evidence is almost entirely limited to correlations of saturation with cold conditions. We describe our recent attempts to provide a direct test of this relationship by genetic manipulation of the nematode Caenorhabditis elegans. We show that this species displays a strong cold tolerant phenotype induced by prior conditioning to cold, and that this is directly linked to upregulated des activity. However, whilst genetic disruption of des activity and lipid unsaturation significantly reduced cold tolerance, animals retained a substantial component of their stress tolerant phenotype produced by cold conditioning. This indicates that mechanisms other than lipid unsaturation play an important role in cold adaptation.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biological Sciences, Liverpool University, The Biosciences Building, Crown St., Liverpool, L69 7ZB, UK
| | | | | | | |
Collapse
|
281
|
Tyson T, Reardon W, Browne JA, Burnell AM. Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants. Int J Parasitol 2007; 37:763-76. [PMID: 17306805 DOI: 10.1016/j.ijpara.2006.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/13/2006] [Accepted: 12/17/2006] [Indexed: 01/03/2023]
Abstract
The dauer juvenile (DJ) stage of the insect parasitic nematode Steinernema carpocapsae is the only stage in the life cycle which is capable of surviving outside its host and it is adapted for tolerating environmental stresses and for host finding. We have isolated 45 unique expressed sequence tags (ESTs) that are up-regulated in response to desiccation in S. carpocapsae DJs. The majority of these ESTs were co-expressed in response to desiccation and osmotic stress and were generally not induced in response to heat and cold stress. Thirty-two ESTs showed similarity to known sequences. Among these were sequences which encode putative signalling molecules or transcription factors, sequences which detoxify reactive oxygen species, two C-type lectin sequences, ESTs which encode membrane-associated proteins and seven distinct late embryogenic abundant (LEA) sequences. We also isolated 13 novel ESTs. These data show that the molecular response to desiccation stress in entomopathogenic nematode DJs is complex and parallels many of the adaptive changes which occur in drought tolerant plants during exposure to desiccation and osmotic stress. A notable feature of the desiccation response of plants is the number and diversity of hydrophilic LEA proteins synthesised in response to desiccation. All of the LEA sequences detected in animals to date, including those reported in this study, belong to LEA3 group. We show that S. carpocapsae expresses several novel sequences which encode putative hydrophilic and natively unfolded proteins. It is likely that these novel and putative proteins play an important role in desiccation tolerance, possibly by carrying out analogous roles in nematodes to those carried out by the other LEA protein classes in plants.
Collapse
Affiliation(s)
- Trevor Tyson
- Institute of Bioengineering and Agroecology, Biology Department, National University of Ireland Maynooth, Maynooth Co, Kildare, Ireland
| | | | | | | |
Collapse
|
282
|
Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 2007; 73:110-6. [PMID: 17071783 PMCID: PMC1797130 DOI: 10.1128/aem.01360-06] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022] Open
Abstract
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.
Collapse
Affiliation(s)
- Sonia Rodríguez-Vargas
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
283
|
Maldonado RA, Kuniyoshi RK, Linss JG, Almeida IC. Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parasitol 2006; 92:1064-74. [PMID: 17152952 DOI: 10.1645/ge-845r.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.
Collapse
Affiliation(s)
- Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, USA.
| | | | | | | |
Collapse
|
284
|
Pan Z, Rimando AM, Baerson SR, Fishbein M, Duke SO. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Delta(9,12,150) fatty acid isolated from Sorghum bicolor root hairs. J Biol Chem 2006; 282:4326-4335. [PMID: 17178719 DOI: 10.1074/jbc.m606343200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorgoleone, produced in root hair cells of sorghum (Sorghum bicolor), is likely responsible for much of the allelopathic properties of sorghum root exudates against broadleaf and grass weeds. Previous studies suggest that the biosynthetic pathway of this compound initiates with the synthesis of an unusual 16:3 fatty acid possessing a terminal double bond. The corresponding fatty acyl-CoA serves as a starter unit for polyketide synthases, resulting in the formation of 5-pentadecatrienyl resorcinol. This resorcinolic intermediate is then methylated by an S-adenosylmethionine-dependent O-methyltransferase and subsequently dihydroxylated, yielding the reduced (hydroquinone) form of sorgoleone. To characterize the corresponding enzymes responsible for the biosynthesis of the 16:3 fatty acyl-CoA precursor, we identified and cloned three putative fatty acid desaturases, designated SbDES1, SbDES2, and SbDES3, from an expressed sequence tag (EST) data base prepared from isolated root hairs. Quantitative real-time RT-PCR analyses revealed that these three genes were preferentially expressed in sorghum root hairs where the 16:2 and 16:3 fatty acids were exclusively localized. Heterologous expression of the cDNAs in Saccharomyces cerevisiae revealed that recombinant SbDES2 converted palmitoleic acid (16:1Delta(9)) to hexadecadienoic acid (16:2Delta(9,12)), and that recombinant SbDES3 was capable of converting hexadecadienoic acid into hexadecatrienoic acid (16:3Delta(9,12,15)). Unlike other desaturases reported to date, the double bond introduced by SbDES3 occurred between carbons 15 and 16 resulting in a terminal double bond aliphatic chain. Collectively, the present results strongly suggest that these fatty acid desaturases represent key enzymes involved in the biosynthesis of the allelochemical sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the.
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| | - Scott R Baerson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| | - Mark Fishbein
- Department of Biology, Portland State University, Portland, Oregon 97207
| | - Stephen O Duke
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| |
Collapse
|
285
|
Murayama SY, Negishi Y, Umeyama T, Kaneko A, Oura T, Niimi M, Ubukata K, Kajiwara S. Construction and functional analysis of fatty acid desaturase gene disruptants in Candida albicans. MICROBIOLOGY-SGM 2006; 152:1551-1558. [PMID: 16622072 DOI: 10.1099/mic.0.28751-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), including linoleic acid (C18 : 2) and alpha-linolenic acid (C18 : 3), are major components of membranes. PUFAs are produced from monounsaturated fatty acids by several fatty acid desaturases (FADs) in many fungi, but Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans do not have these enzymes. Although the fungal pathogen Candida albicans produces C18 : 2 and C18 : 3, the enzymes that synthesize them have not yet been investigated. In this report, two ORFs, CaFAD2 and CaFAD3, were identified based on their homology to other yeast FADs, and CaFAD2 and CaFAD3 gene disruptants were constructed. Cafad2Delta and Cafad3Delta lost their ability to produce C18 : 2 and C18 : 3, respectively. Furthermore, S. cerevisiae cells expressing CaFad2p converted palmitoleic acid (C16 : 1) and C18 : 1 to hexadecadienoic acid (C16 : 2) and C18 : 2, respectively, and CaFad3p-expressing cells converted C18 : 2 to C18 : 3. These results strongly supported that CaFAD2 encodes the Delta12 FAD and that CaFAD3 encodes the omega3 FAD. However, phenotypic analysis demonstrated that the presence of these PUFAs did not affect the virulence to mice, or morphogenesis in the culture media used to induce morphological change of C. albicans.
Collapse
Affiliation(s)
- Somay Yamagata Murayama
- Laboratory of Infectious Agents Surveillance, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yumiko Negishi
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Laboratory of Infectious Agents Surveillance, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Umeyama
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Aki Kaneko
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takahiro Oura
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masakazu Niimi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kimiko Ubukata
- Laboratory of Infectious Agents Surveillance, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Susumu Kajiwara
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
286
|
Kurdrid P, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Tanticharoen M. Functional expression of Spirulina-Delta6 desaturase gene in yeast, Saccharomyces cerevisiae. Mol Biol Rep 2006; 32:215-26. [PMID: 16328883 DOI: 10.1007/s11033-005-0416-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
Spirulina-acyl-lipid desaturases are membrane-bound enzymes found in thylakoid and plasma membranes. These enzymes carry out the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. In this study, Spirulina-Delta(6) desaturase encoded by the desD gene was heterologously expressed and characterized in Saccharomyces cerevisiae. We then conducted site-directed mutagenesis of the histidine residues in the three histidine boxes to determine the role of these amino acid residues in the enzyme function. Our results showed that while four mutants showed complete loss of Delta(6)-desaturase activity and two mutants showed only trace of the activity, the enzyme activity could be partially restored by chemical rescue using exogenously provided imidazole. This study reveals that the histidine residues (which have imidazole as their functional group) in the conserved clusters play a critical role in Delta(6)-desaturase activity, possibly by providing a di-iron catalytic center. In our previous study, this enzyme was expressed in Escherichia coli. The results reveal that the enzyme can function only in the presence of an exogenous cofactor, ferredoxin, provided in vitro. This evidence suggests that baker's yeast has a cofactor that can complement ferredoxin, thought to act as an electron donor for the Delta(6) desaturation in cyanobacteria, including Spirulina. The electron donor of the Spirulina-Delta(6) desaturation in yeast is more likely to be cytochrome b(5), which is absent in E. coli. This means that the enzyme expressed in S. cerevisiae can catalyze the biosynthesis of the product, GLA, in vivo.
Collapse
Affiliation(s)
- Pavinee Kurdrid
- Pilot Plant Training and Development Institute, King Mongkut's University of Technology-Thonburi, 83 Moo8, Thakham, Bangkhuntien, Bangkok 10150, Thailand
| | | | | | | | | |
Collapse
|
287
|
Chintalapati S, Prakash J, Gupta P, Ohtani S, Suzuki I, Sakamoto T, Murata N, Shivaji S. A novel Delta9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem J 2006; 398:207-14. [PMID: 16689682 PMCID: PMC1550309 DOI: 10.1042/bj20060039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acyl-lipid desaturases are enzymes that convert a C-C single bond into a C=C double bond in fatty acids that are esterified to membrane-bound glycerolipids. Four types of acyl-lipid desaturase, namely DesA, DesB, DesC, and DesD, acting at the Delta12, Delta15, Delta9, and Delta6 positions of fatty acids respectively, have been characterized in cyanobacteria. These enzymes are specific for fatty acids bound to the sn-1 position of glycerolipids. In the present study, we have cloned two putative genes for a Delta9 desaturase, designated desC1 and desC2, from Nostoc species. The desC1 gene is highly similar to the desC gene that encodes a Delta9 desaturase that acts on C18 fatty acids at the sn-1 position. Homologues of desC2 are found in genomes of cyanobacterial species in which Delta9-desaturated fatty acids are esterified to the sn-2 position. Heterologous expression of the desC2 gene in Synechocystis sp. PCC 6803, in which a saturated fatty acid is found at the sn-2 position, revealed that DesC2 could desaturate this fatty acid at the sn-2 position. These results suggest that the desC2 gene is a novel gene for a Delta9 acyl-lipid desaturase that acts on fatty acids esterified to the sn-2 position of glycerolipids.
Collapse
Affiliation(s)
- Suresh Chintalapati
- *Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- †National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Jogadhenu Shyam Sunder Prakash
- *Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- †National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Pratima Gupta
- *Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shuji Ohtani
- ‡Department of Biology, Faculty of Education, Shimane University, Nishikawatsu, Matsue 690, Japan
| | - Iwane Suzuki
- †National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
- ∥Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Toshio Sakamoto
- ¶Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Norio Murata
- †National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Sisinthy Shivaji
- *Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
288
|
Hemery G, Chevalier S, Bellon-Fontaine MN, Haras D, Orange N. Growth temperature and OprF porin affect cell surface physicochemical properties and adhesive capacities of Pseudomonas fluorescens MF37. J Ind Microbiol Biotechnol 2006; 34:49-54. [PMID: 16932888 DOI: 10.1007/s10295-006-0160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Pseudomonads adapt to various ecological niches by forming biofilms, which first requires bacterial adhesion on surfaces. We studied the influence of growth temperature on surface physicochemical properties of Pseudomonas fluorescens MF37 and on its adhesive capacities onto inert surfaces. It presented a global hydrophilic character, measured by microbial adhesion to solvent (MATS), and showed a cell surface more hydrophilic at 8 and 28 degrees C than at 17 degrees C. Moreover, P. fluorescens MF37 was more adhesive at 17 degrees C. This critical temperature thus should be carefully taken into account in food safety. Adhesion onto inert surfaces is thus influenced by the growth temperature, which modifies the bacteria cell wall properties through changes in the outer membrane components. Therefore, we studied the effect of the loss of OprF, the major outer membrane protein, known to act as an adhesin (root, and endothelial cells). The OprF-deficient mutant was able to adhere to surfaces, but showed the same physicochemical and adhesion properties on abiotic surfaces whatever the growth temperature. OprF is thus not essential in this adhesion process. However, we suggest that OprF is involved in the bacterial environmental temperature sensing by P. fluorescens.
Collapse
Affiliation(s)
- Gaëlle Hemery
- Laboratoire de Microbiologie Du Froid, EA 2123, Université de Rouen, 55 rue St Germain, 27000, Evreux, France
| | | | | | | | | |
Collapse
|
289
|
Zhu K, Choi KH, Schweizer HP, Rock CO, Zhang YM. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol 2006; 60:260-73. [PMID: 16573679 DOI: 10.1111/j.1365-2958.2006.05088.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double bond in anaerobic unsaturated fatty acid (UFA) biosynthesis is introduced by the FabA dehydratase/isomerase of the bacterial type II fatty acid biosynthetic pathway. A DeltafabA mutant of Pseudomonas aeruginosa grew aerobically, but required a UFA supplement for anaerobic growth. Wild-type cells produced 18:1Delta11 as the principal UFA, whereas the DeltafabA strain produced only 16:1Delta9. The double bond in the 16:1Delta9 was introduced after phospholipid formation and was localized in the sn-2 position. Two predicted membrane proteins, DesA and DesB, possessed the conserved histidine clusters characteristic of fatty acid desaturases. The DeltafabADeltadesA double mutant required exogenous fatty acids for growth but the DeltafabAdesB double mutant did not. Exogenous stearate was converted to 18:1Delta9 and supported the growth of DeltafabADeltadesA double mutant. A DeltafabADeltadesAdesB triple mutant was unable to desaturate exogenous stearate and was an UFA auxotroph. We detected a 2.5-fold increase in desA expression in DeltafabA mutants, whereas desB expression was derepressed by the deletion of the gene encoding a transcriptional repressor DesT. These data add two aerobic desaturases to the enzymes used for fatty acid metabolism in proteobacteria: DesA, a 2-position phospholipid Delta9-desaturase that supplements the anaerobic FabA pathway, and DesB, an inducible acyl-CoA Delta9-desaturase whose expression is repressed by DesT.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Infectious Diseases, Protein Science Division, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
290
|
Fukuzawa M, Fu X, Tatsuki S, Ishikawa Y. cDNA cloning and in situ hybridization of Delta11-desaturase, a key enzyme of pheromone biosynthesis in Ostrinia scapulalis (Lepidoptera: Crambidae). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:430-5. [PMID: 16360168 DOI: 10.1016/j.jinsphys.2005.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 05/05/2023]
Abstract
Female sex pheromones are considered to be produced in a "pheromone gland" located in the terminal abdominal segments (8th-10th, TAS) of a moth; however, in many moth species, the cells that produce pheromones have not actually been specified. We investigated cells in the TAS that synthesize pheromones in the adzuki bean borer Ostrinia scapulalis, by locating pheromones and their precursors, and mRNA for Delta11-desaturase, a key enzyme in pheromone biosynthesis. We demonstrated that the pheromone components, (E)-11- and (Z)-11-tetradecenyl acetates, and their fatty acyl precursors were specifically contained in the dorsal part of the TAS. A cDNA (OscaZ/E11) that encodes a Delta11-desaturase was cloned from the TAS. RT-PCR and in situ hybridization unequivocally showed that OscaZ/E11 is specifically expressed in the modified epidermal cells located at the dorsal end of the 8th-9th intersegmental membrane.
Collapse
Affiliation(s)
- Mai Fukuzawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
291
|
Hongsthong A, Subudhi S, Sirijuntarut M, Kurdrid P, Cheevadhanarak S, Tanticharoen M. Revealing the complementation of ferredoxin by cytochrome b (5) in the Spirulina- (6)-desaturation reaction by N-terminal fusion and co-expression of the fungal-cytochrome b (5) domain and Spirulina- (6)-acyl-lipid desaturase. Appl Microbiol Biotechnol 2006; 72:1192-201. [PMID: 16575563 DOI: 10.1007/s00253-006-0407-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/01/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Spirulina-acyl-lipid desaturases are integral membrane proteins found in thylakoid and plasma membranes. These enzymes catalyze the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. It has been reported that the cyanobacterial desaturases use ferredoxin as an electron donor, whereas the acyl-lipid desaturase in plant cytoplasm and the acyl-CoA desaturase of animals and fungi use cytochrome b (5). The low level of ferredoxin present in Escherichia coli cells leads to an inability to synthesize GLA when the cells are transformed with the Spirulina-(6) desaturase, desD, and grown in the presence of the reaction substrate, linoleic acid. In this study, Spirulina-(6) desaturase, encoded by the desD gene, was N-terminally fused and co-expressed with the cytochrome b (5) domain from Mucor rouxii. The product, GLA, made heterologously in E. coli and Saccharomyces cerevisiae, was then detected and analyzed. The results revealed the production of GLA by Spirulina-(6) desaturase fused or co-expressed with cytochrome b (5) in E. coli cells, in which GLA production by this gene cannot occur in the absence of cytochrome b (5). Moreover, the GLA production ability in the E. coli host cells was lost after the single substitution mutation was introduced to H52 in the HPGG motif of the cytochrome b (5) domain. These results revealed the complementation of the ferredoxin requirement by the fusion or co-expression of the fungal-cytochrome b (5) domain in the desaturation process of Spirulina-(6) desaturase. Furthermore, the free form of cytochrome b (5) domain can also enhance GLA production by the Spirulina-desD gene in yeast cells.
Collapse
Affiliation(s)
- Apiradee Hongsthong
- National Center for Genetic Engineering and Biotechnology, 83 Moo8, Thakham, Bangkhuntien, Bangkok, 10150, Thailand.
| | | | | | | | | | | |
Collapse
|
292
|
Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 2006; 70:222-52. [PMID: 16524924 PMCID: PMC1393254 DOI: 10.1128/mmbr.70.1.222-252.2006] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.
Collapse
Affiliation(s)
- Rachael M Morgan-Kiss
- Graduate College of Marine Studies and Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| | | | | | | | | |
Collapse
|
293
|
Kainou K, Kamisaka Y, Kimura K, Uemura H. Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeastKluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids inSaccharomyces cerevisiae. Yeast 2006; 23:605-12. [PMID: 16823888 DOI: 10.1002/yea.1378] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Two clones with homology to known fatty acid desaturase genes were isolated from the yeast Kluyveromyces lactis. The first gene, which we designate KlFAD2, consists of 411 amino acids with an overall identity of 73.0% to FAD2 from Saccharomyces kluyveri. It exhibited Delta12 fatty acid desaturase activity when expressed in S. cerevisiae under the control of ADH1 promoter and produced endogenous linoleic acid. The second clone, which we designate KlFAD3, consists of 415 amino acids with an overall identity of 79.3% to FAD3 from S. kluyveri. It exhibited omega3 fatty acid desaturase activity in S. cerevisiae when expressed under the control of ADH1 promoter in the presence of the exogenous substrate linoleic acid and produced alpha-linolenic acid. Co-expression of KlFAD2 and KlFAD3 resulted in the endogenous production of both linoleic and alpha-linolenic acids. The yield of alpha-linolenic acid reached 0.8% of total fatty acids and its production was not increased by adding exogenous oleic acid; alpha-linolenic acid reached 8.7% when exogenous linoleic acid was available.
Collapse
Affiliation(s)
- Kumiko Kainou
- National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
294
|
Martz F, Kiviniemi S, Palva TE, Sutinen ML. Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:897-909. [PMID: 16473891 DOI: 10.1093/jxb/erj075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Temperate and boreal tree species respond to low positive temperatures (LT) or a shortening of the photoperiod (SD) by inducing cold acclimation. One of the metabolic consequences of cold acclimation is an increase in fatty acid (FA) desaturation in membrane lipids, which allows functional membrane fluidity to be maintained at LT. The molecular mechanisms of FA desaturation were investigated in leaves of birch seedlings (Betula pendula) during cold acclimation. Four genes involved in FA biosynthesis were isolated: a 3-ketoacyl-ACP synthase II gene (BpKASII) involved in the elongation of palmitoyl-ACP to stearoyl-ACP, and three omega-3 FA desaturase genes (BpFAD3, BpFAD7, and BpFAD8) involved in the desaturation of linoleic acid (18:2) to alpha-linolenic acid (18:3). BpFAD7 was the main omega-3 FAD gene expressed in birch leaves, and it was down-regulated by LT under SD conditions. LT induced the expression of BpFAD3 and BpFAD8 and a synchronous increase in 18:3 occurred in glycerolipids. Changes in the photoperiod did not affect the LT-induced increase in 18:3 in chloroplast lipids (MGDG, DGDG, PG), but it modulated the LT response detected in extra-chloroplastic lipids (PC, PE, PI, PS). A decrease in the proportion of the 16-carbon FAs in lipids occurred at LT, possibly in relation to the regulation of BpKASII expression at LT. These results suggest that LT affects the whole FA biosynthesis pathway. They support a co-ordinated action of microsomal (BpFAD3) and chloroplast enzymes (BpFAD7, BpFAD8) in determining the level of 18:3 in extra-chloroplastic membranes, and they highlight the importance of dynamic lipid trafficking.
Collapse
Affiliation(s)
- Françoise Martz
- Finnish Forest Research Institute, Rovaniemi Research Station, PO Box 16, FIN-96301 Rovaniemi, Finland.
| | | | | | | |
Collapse
|
295
|
Bonamore A, Macone A, Colotti G, Matarese RM, Boffi A. The desaturase from Bacillus subtilis, a promising tool for the selective olefination of phospholipids. J Biotechnol 2006; 121:49-53. [PMID: 16105701 DOI: 10.1016/j.jbiotec.2005.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/21/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
The Delta5-desaturase from Bacillus subtilis has been cloned in Escherichia coli BL21 cells and its enzyme activity has been investigated as a function of temperature and oxygenation by analyzing methyl ester adducts from the total lipid extract in GC-MS measurements. The present data bring out that the activity of recombinant Delta5-desaturase, at 20-22 degrees C and 20% oxygen, is surprisingly high yielding 22% of C16:1,Delta5 (5-cis-palmitoleic acid) and 13% C18:2, Delta5 Delta11 (efedrenic acid). Lower amounts of other mono- and doubly-Delta5-unsaturated fatty acids were also detected. These findings demonstrate that Delta5-desaturase can accept a multiplicity of substrates and is endowed with an unprecedented activity among other acyl-lipid desaturases thus representing a unique tool for the production of rare Delta5 unsaturated fatty acid derivatives.
Collapse
Affiliation(s)
- Alessandra Bonamore
- Department of Biochemical Sciences, University "La Sapienza", Piazza Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
296
|
Dahlman I, Linder K, Arvidsson Nordström E, Andersson I, Lidén J, Verdich C, Sørensen TIA, Arner P. Changes in adipose tissue gene expression with energy-restricted diets in obese women. Am J Clin Nutr 2005; 81:1275-85. [PMID: 15941876 DOI: 10.1093/ajcn/81.6.1275] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The effect of energy restriction and macronutrient composition on gene expression in adipose tissue is not well defined. OBJECTIVE The aim of the study was to investigate the effect of different low-energy diets on gene expression in human adipose tissue. DESIGN Forty obese women were randomly assigned to a moderate-fat, moderate-carbohydrate diet or a low-fat, high-carbohydrate hypoenergetic (-600 kcal/d) diet for 10 wk. Subcutaneous adipose tissue samples were obtained before and after the diet period. High-quality RNA samples were obtained from 23 women at both time points, and these samples were hybridized to microarrays containing the 8500 most extensively described human genes. The results were confirmed by separate messenger RNA measurements. RESULTS Both diets resulted in weight losses of approximately 7.5% of baseline body weight. A total of 52 genes were significantly up-regulated and 44 were down-regulated as a result of the intervention, and no diet-specific effect was observed. No major effect on lipid-specific transcription factors or genes regulating signal transduction, lipolysis, or synthesis of acylglycerols was observed. Most changes were modest (<25% of baseline), but all genes regulating the formation of polyunsaturated fatty acids from acetyl-CoA and malonyl-CoA were markedly down-regulated (35-60% decrease). CONCLUSIONS Macronutrients have a secondary role in changes in adipocyte gene expression after energy-restricted diets. The most striking alteration after energy restriction is a coordinated reduction in the expression of genes regulating the production of polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Hernández ML, Mancha M, Martínez-Rivas JM. Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. PHYTOCHEMISTRY 2005; 66:1417-26. [PMID: 15896817 DOI: 10.1016/j.phytochem.2005.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
Two different cDNA sequences, designated OepFAD2-1 and OepFAD2-2, encoding two microsomal oleate desaturases (FAD2) have been isolated from olive (Olea europaea cv. Picual) using a PCR approach. Both deduced amino acid sequences showed the three histidine boxes characteristic of all membrane-bound desaturases, and possess a C-terminal endoplasmic reticulum retention signal. Phylogenetic analysis shows that OepFAD2-1 and OepFAD2-2 are grouped with other plant FAD2 sequences. Functional expression of the corresponding FAD2 cDNAs in yeast confirmed that they encode microsomal oleate desaturases. Genomic Southern blot analysis is consistent with the presence of at least two copies of each OepFAD2 gene in the olive genome. OepFAD2-1 transcript was strongly detected in very young seeds and in leaves, showing low levels in mesocarps, while the transcript of the OepFAD2-2 gene was moderately expressed in developing seeds, ripening mesocarp and leaves. These expression data suggest differential functions for the two olive microsomal oleate desaturase genes, with FAD2-1 possibly responsible for the desaturation of reserve lipids in the young seed, while FAD2-2 may be mainly involved in storage lipid desaturation in the mature seeds and the mesocarp.
Collapse
Affiliation(s)
- M Luisa Hernández
- Instituto de la Grasa (CSIC), Apartado 1078, E- 41080 Sevilla, Spain
| | | | | |
Collapse
|
298
|
Bordoni A, Angeloni C, Leoncini E, Danesi F, Maranesi M, Biagi PL, Hrelia S. Hypoxia/reoxygenation alters essential fatty acids metabolism in cultured rat cardiomyocytes: protection by antioxidants. Nutr Metab Cardiovasc Dis 2005; 15:166-173. [PMID: 15955464 DOI: 10.1016/j.numecd.2004.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 04/20/2004] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Peroxidation of membrane lipids, altering cell integrity and function, plays an important part in the onset and development of cardiac damage following ischemia and reperfusion. Cells maintain their membrane lipid homeostasis by substituting peroxidized lipids with new polyunsaturated fatty acids. The microsomal enzymatic system converting essential fatty acids to highly unsaturated fatty acids (HUFAs) contributes to this repairing mechanism. The membrane of the endoplasmic reticulum could be one of the potential targets of free radicals generated in ischemia/reperfusion, thus causing a reduced efficacy of the system required for HUFA biosynthesis. To verify this hypothesis, and the consequent modification in fatty acid composition, we exposed cultured rat cardiomyocytes to different periods of hypoxia (H), eventually followed by reoxygenation (R). Furthermore, the effectiveness of antioxidants like alpha-tocopherol and a green tea extract in counteracting H/R damage towards HUFA biosynthesis was tested. METHODS AND RESULTS Linoleic (LA) and alpha-linolenic acid (ALA) conversion was measured by pre-labelling cells with [1-14C]LA or [1-14C]ALA for 1 h; total lipid fatty acid composition was determined by gas chromatographic analysis. H profoundly affected HUFA biosynthesis, and this effect was much more evident on LA than on ALA. Conversion of both substrates was partially restored during R due to the readmission of the final acceptor of the desaturating complex. Fatty acid composition data were in agreement with the modifications observed in essential fatty acid conversion. Antioxidant protection appeared to be related to the duration of H, and to be more effective during H than during R. CONCLUSION This study points out the importance of possessing good antioxidant defenses not only after, but mainly prior to the onset of H.
Collapse
Affiliation(s)
- Alessandra Bordoni
- Centro Ricerche sulla Nutrizione, Dipartimento di Biochimica, G. Moruzzi, Alma Mater Studiorum, via Irnerio, 48, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
299
|
McDonough VM, Roth TM. Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe. Antonie van Leeuwenhoek 2005; 86:349-54. [PMID: 15702387 DOI: 10.1007/s10482-004-0515-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The incorporation of exogenously supplied fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid, was examined in the yeast Schizosaccharomyces pombe at two growth temperatures, 20 degrees C and 30 degrees C. Fatty acids supplied to S. pombe in the growth medium were found to be preferentially incorporated into the cells, becoming a dominant species. The relative increase in exogenous fatty acids in cells came at the expense of endogenous oleic acid as a proportion of total fatty acids. Lowering the temperature at which the yeast were grown resulted in decreased levels of incorporation of the fatty acids palmitic acid, palmitoleic acid and linoleic acid compared to cells supplemented at 30 degrees C. In addition, the relative amount of the endogenously produced unsaturated fatty acid oleic acid, while greatly reduced compared to unsupplemented cells, was increased in cells supplemented with fatty acids at 20 degrees C compared to supplemented cells at 30 degrees C. The differential production of oleic acid in S. pombe cells indicates that regulation of unsaturated fatty acid levels, possibly by control of the stearoyl-CoA desaturase, is an important control point in membrane composition in response to temperature and diet in this species.
Collapse
|
300
|
Billault I, Duan JR, Guiet S, Robins RJ. Quantitative deuterium isotopic profiling at natural abundance indicates mechanistic differences for delta 12-epoxidase and delta 12-desaturase in Vernonia galamensis. J Biol Chem 2005; 280:17645-51. [PMID: 15722338 DOI: 10.1074/jbc.m500909200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative (2)H NMR spectroscopy can determine the natural abundance ((2)H/(1)H) ratio at each site of a molecule. In natural products, variation in these values is related to the reaction mechanisms in the pertinent biosynthetic pathway. For the first time, this novel approach has been exploited to probe for mechanistic differences in the introduction of different functionalities into a long-chain fatty acid. Vernolic acid, a major component of the seed oil of Vernonia galamensis, contains both an epoxide and a desaturation. The site-specific isotopic distribution ((2)H/(1)H)(i) has been determined for both vernolic acid and linoleic acid isolated from the same V. galamensis oil. It is found that the ((2)H/(1)H) ratio of vernolic acid shows a pattern along the entire length of the chain, consistent with linoleic acid being its immediate precursor. Notably, the C13 relates to the C13 of linoleic acid but not to the C13 of oleic acid. Furthermore, the C12 and C13 positions in vernolic acid are less depleted, consistent with a change in hybridization state from sp(2) to sp(3). However, the C11 position shows a marked relative enrichment in the vernolic acid, implying that it plays a role in the epoxidase but not the desaturase mechanism. Thus, although it can be concluded that the catalytic mechanisms for the epoxidase and desaturase activities are similar, marked differences in the residual ((2)H/(1)H) patterns indicate that the reaction mechanisms are not identical.
Collapse
Affiliation(s)
- Isabelle Billault
- Groupe de Fractionnement Isotopique de Métabolismes, Laboratoire d'Analyse Isotopique et Electrochimique de Métabolismes, CNRS UMR6006, Université de Nantes, BP 99208, F-44322 Nantes, France.
| | | | | | | |
Collapse
|