251
|
Abstract
Much recent research on c-Myc has focused on how it drives apoptosis. c-Myc is widely known as a crucial regulator of cell proliferation in normal and neoplastic cells, but until relatively recently its apoptotic properties, which appear to be intrinsic, were not fully appreciated. Its death-dealing aspects have gained wide attention in part because of their potential therapeutic utility in advanced malignancy, where c-Myc is frequently deregulated and where novel modalities are badly needed. Although its exact function remains obscure, c-Myc is a transcription factor and advances have been made in characterizing target genes which may mediate its apoptotic properties. Candidate regulators and effectors are also emerging. Among recent findings are connections to the CD95/Fas and TNF pathways and roles for the tumor suppressor p19ARF and the c-Myc-interacting adaptor protein Binl in mediating cell death. In this review I summarize the data establishing a role for c-Myc in apoptosis in diverse settings and present a modified dual signal model for c-Myc function. It is proposed that c-Myc induces apoptosis through separate 'death priming' and 'death triggering' mechanisms in which 'death priming' and mitogenic signals are coordinated. Investigation of the mechanisms that underlie the triggering steps may offer new therapeutic opportunities.
Collapse
|
252
|
Abstract
v-myc is the viral homolog of c-myc transduced by several acute transforming retroviruses, many of which encode this gene as a Gag-Myc fusion protein. The v-myc oncogene can transform several lineages of mammalian and avian cells either alone or in cooperation with other oncogenes. While the Gag portion of the Gag-Myc fusion protein and the nuclear localization signal each appear to be dispensable for transformation, the N- and C-termini of the Myc sequence have been found to be essential for transformation. All v-myc genes contain point mutations which seem to confer a greater potency to v-myc in the process of transformation, proliferation, and apoptosis. In v-myc-transformed myelomonocytic cells, secondary events occur, such as the expression of colony stimulating factor-1 (CSF-1) which play a critical role in immortalization and subsequent tumor progression. Inhibition of the autocrine loop of CSF-1 was found to induce apoptosis in the immortalized cells. While overexpression of v-Myc blocks terminal differentiation of hematopoietic cells, this is not sufficient to block the differentiation of certain neural and skeletal muscle cells. Recent developments on the effects of v-myc on cell growth, transformation, differentiation and apoptosis are discussed in this review.
Collapse
Affiliation(s)
- C M Lee
- Fels Institute for Cancer Research and Molecular Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
253
|
Abstract
Myc is an important regulator of many cellular processes, including growth promotion, differentiation, and apoptosis. The mechanisms underlying Myc biological activity, however, remain elusive. For many years, research in the field has focused on the idea of Myc as a transactivator of gene expression. More recently, alternative mechanisms of Myc function have been proposed, including gene repression. In this review we present several lines of evidence to support a connection between Myc-mediated transformation and transcriptional repression.
Collapse
Affiliation(s)
- G F Claassen
- Department of Cell Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
254
|
Abstract
c-myc, N-myc and L-myc are the three members of the myc oncoprotein family whose role in the pathogenesis of many human neoplastic diseases has received wide empirical support. In this review, we first summarize data, derived mainly from non-clinical studies, indicating that these oncoproteins actually serve quite different roles in vivo. This concept necessarily lies at the heart of the basis for the observation that the deregulated expression of each MYC gene is reproducibly associated with only certain naturally occurring malignancies in humans and that these genes are not interchangeable with respect to their aberrant functional consequences. We also review evidence implicating each of the above MYC genes in specific neoplastic diseases and have attempted to identify unresolved questions which deserve further basic or clinical investigation. We have made every attempt to review those diseases for which significant and confirmatory evidence, based on studies with primary tumor material, exists to implicate MYC members in their causation and/or progression.
Collapse
Affiliation(s)
- C E Nesbit
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
255
|
Abstract
Despite its intensive investigation for almost two decades, c-Myc remains a fascinating and enigmatic subject. A large and compelling body of evidence indicates that c-Myc is a transcription factor with central roles in the regulation of cell proliferation, differentiation, and apoptosis, but its exact function has remained elusive. In this review we survey recent advances in the identification and analysis of c-Myc-binding proteins, which suggest insights into the transcriptional roles of c-Myc but which also extend the existing functional paradigms. The C-terminal domain (CTD) of c-Myc mediates interaction with Max and physiological recognition of DNA target sequences, events needed for all biological actions. Recently described interactions between the CTD and other cellular proteins, including YY-1, AP-2, BRCA-1, TFII-I, and Miz-1, suggest levels of regulatory complexity beyond Max in controlling DNA recognition by c-Myc. The N-terminal domain (NTD), which includes the evolutionarily conserved and functionally crucial Myc Box sequences (MB1 and MB2), contains the transcription activation domain (TAD) of c-Myc as well as regions required for transcriptional repression, cell cycle regulation, transformation, and apoptosis. In addition to interaction with the retinoblastoma family protein p107, the NTD has been shown to interact with alpha-tubulin and the novel adaptor proteins Binl, MM-1, Pam, TRRAP, and AMY-1. The structure of these proteins and their effects on c-Myc actions suggest links to the transcriptional regulatory machinery as well as to cell cycle regulation, chromatin modeling, and apoptosis. Investigations of this emerging NTD-based network may reveal how c-Myc is regulated and how it affects cell fate, as well as providing tools to distinguish the physiological roles of various Myc target genes.
Collapse
Affiliation(s)
- D Sakamuro
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|
256
|
Obaya AJ, Mateyak MK, Sedivy JM. Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 1999; 18:2934-41. [PMID: 10378690 DOI: 10.1038/sj.onc.1202749] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A large body of physiological evidence shows that either upregulation or downregulation of intracellular c-Myc activity has profound consequences on cell cycle progression. Recent work suggests that c-Myc may stimulate the activity of cyclin E/cyclin-dependent kinase 2 (Cdk2) complexes and antagonize the action of the Cdk inhibitor p27KIP1. Cyclin D/Cdk4/6 complexes have also been implicated as targets of c-Myc activity. However, in spite of considerable effort, the mechanisms by which c-Myc interacts with the intrinsic cyclin/Cdk cell cycle machinery remain undefined.
Collapse
Affiliation(s)
- A J Obaya
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
257
|
Izadnegahdar MF, Rathanaswami P, Shah RM. Effects of EGF and TGFbeta1 on c-myc gene expression and DNA synthesis in embryonic hamster palate mesenchymal cells. Anat Rec (Hoboken) 1999; 254:453-64. [PMID: 10203253 DOI: 10.1002/(sici)1097-0185(19990401)254:4<453::aid-ar1>3.0.co;2-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous work has shown that cell proliferation is a major contributor to the early palate morphogenesis in mammals. The present study was undertaken to examine the effect of EGF, TGFbeta1 and their combination on proliferation (measured by DNA synthesis) and on the expression of a growth related proto-oncogene, c-myc, in embryonic hamster palate mesenchymal cells (HPMC). Vertically developing hamster palatal shelves were dissected on day 11 of gestation, and trypsinized, and primary cultures were grown in DMEM + 10% serum at 37 degrees C and 5% CO2. Following appropriate growth factor treatment of HPMC, DNA synthesis was measured by scintillation counting and extracted RNA was subjected to Northern blot analysis. In serum-starved, pre-confuent cultures treated with EGF (20 ng/ml), DNA synthesis was stimulated in the presence of 2.5% serum. In contrast, treatment of HPMC with TGFbeta1 (10 ng/ml) in the presence or absence of EGF/serum for 24 hr, or HPMC pre-treatment with TGFbeta1 (30 min) followed by EGF/serum (24 hr), resulted in an arrest of DNA synthesis. Northern blot analysis of RNA extracted from HPMC showed that as serum-starved, growth-arrested cells progressed through G0 to G1 phase of the cell cycle, following EGF treatment, c-myc was expressed by 1 hr and declined thereafter. In contrast, TGFbeta1 did not support expression of c-myc. Following pre- or co-treatment with TGFbeta1, the EGF +/- serum-induced expression of c-myc was seen between 1 and 6 hr. It appears that EGF-induced expression of c-myc may be involved in advancing the HPMC in G1, and thus may contribute to the onset of DNA synthesis in HPMC. Since co- or pre-treatment with TGFbeta1 did not inhibit EGF/serum induced expression of c-myc, it is possible that growth arresting effect of TGFbeta1 may not be exerted directly through inhibition or blockage of c-myc expression.
Collapse
Affiliation(s)
- M F Izadnegahdar
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
258
|
Affiliation(s)
- Y L Wallis
- Regional Genetics Laboratory, Birmingham Women's Hospital, UK
| | | |
Collapse
|
259
|
Ghosh AK, Steele R, Ray RB. Functional domains of c-myc promoter binding protein 1 involved in transcriptional repression and cell growth regulation. Mol Cell Biol 1999; 19:2880-6. [PMID: 10082554 PMCID: PMC84081 DOI: 10.1128/mcb.19.4.2880] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We initially identified c-myc promoter binding protein 1 (MBP-1), which negatively regulates c-myc promoter activity, from a human cervical carcinoma cell expression library. Subsequent studies on the biological role of MBP-1 demonstrated induction of cell death in fibroblasts and loss of anchorage-independent growth, reduced invasive ability, and tumorigenicity of human breast carcinoma cells. To investigate the potential role of MBP-1 as a transcriptional regulator, a chimeric protein containing MBP-1 fused to the DNA binding domain of the yeast transactivator factor GAL4 was constructed. This fusion protein exhibited repressor activity on the herpes simplex virus thymidine kinase promoter via upstream GAL4 DNA binding sites. Structure-function analysis of mutant MBP-1 in the context of the GAL4 DNA binding domain revealed that MBP-1 transcriptional repressor domains are located in the N terminus (amino acids 1 to 47) and C terminus (amino acids 232 to 338), whereas the activation domain lies in the middle (amino acids 140 to 244). The N-terminal domain exhibited stronger transcriptional repressor activity than the C-terminal region. When the N-terminal repressor domain was transferred to a potent activator, transcription was strongly inhibited. Both of the repressor domains contained hydrophobic regions and had an LXVXL motif in common. Site-directed mutagenesis in the repressor domains indicated that the leucine residues in the LXVXL motif are required for transcriptional repression. Mutation of the leucine residues in the common motif of MBP-1 also abrogated the repressor activity on the c-myc promoter. In addition, the leucine mutant forms of MBP-1 failed to suppress cell growth in fibroblasts like wild-type MBP-1. Taken together, our results indicate that MBP-1 is a complex cellular factor containing multiple transcriptional regulatory domains that play an important role in cell growth regulation.
Collapse
Affiliation(s)
- A K Ghosh
- Department of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
260
|
Pan Q, Simpson RU. c-myc intron element-binding proteins are required for 1, 25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4. J Biol Chem 1999; 274:8437-44. [PMID: 10085075 DOI: 10.1074/jbc.274.13.8437] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) suppresses c-myc expression during differentiation of HL-60 cells along the monocytic pathway by blocking transcriptional elongation at the first exon/intron border of the c-myc gene. In the present study, the physiological relevance of three putative regulatory protein binding sites found within a 280-base pair region in intron 1 of the c-myc gene was explored. HL-60 promyelocytic leukemia cells were transiently transfected with three different c-myc promoter constructs cloned upstream of a chloramphenicol acetyltransferase (CAT) reporter gene. With the wild-type c-myc promoter construct (pMPCAT), which contains MIE1, MIE2, and MIE3 binding sites, 1,25-(OH)2D3 was able to decrease CAT activity by 45.4 +/- 7.9% (mean +/- S.E., n = 8). The ability of 1, 25-(OH)2D3 to inhibit CAT activity was significantly decreased to 18. 5 +/- 4.3% (59.3% reversal, p < 0.02) when examined with a MIE1 deletion construct (pMPCAT-MIE1). Moreover, 1,25-(OH)2D3 was completely ineffective at suppressing CAT activity in cells transfected with pMPCAT-287, a construct without MIE1, MIE2, and MIE3 binding sites (-6.5 +/- 10.9%, p < 0.002). MIE1- and MIE2-binding proteins induced by 1,25-(OH)2D3 had similar gel shift mobilities, while MIE3-binding proteins migrated differently. Furthermore, chelerythrine chloride, a selective protein kinase C (PKC) inhibitor, and a PKCbeta antisense oligonucleotide completely blocked the binding of nuclear proteins induced by 1,25-(OH)2D3 to MIE1, MIE2, and MIE3. A 1,25-(OH)2D3-inducible MIE1-binding protein was identified to be HOXB4. HOXB4 levels were significantly increased in response to 1,25-(OH)2D3. Taken together, these results indicate that HOXB4 is one of the nuclear phosphoproteins involved in c-myc transcription elongation block during HL-60 cell differentiation by 1,25-(OH)2D3.
Collapse
Affiliation(s)
- Q Pan
- Department of Pharmacology, University of Michigan, School of Medicine, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
261
|
Abstract
Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.
Collapse
Affiliation(s)
- R Sears
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
262
|
Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18:717-26. [PMID: 9927431 PMCID: PMC1171164 DOI: 10.1093/emboj/18.3.717] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human proto-oncogene c-myc encodes a highly unstable transcription factor that promotes cell proliferation. Although the extreme instability of Myc plays an important role in preventing its accumulation in normal cells, little is known about how Myc is targeted for rapid destruction. Here, we have investigated mechanisms regulating the stability of Myc. We show that Myc is destroyed by ubiquitin-mediated proteolysis, and define two elements in Myc that oppositely regulate its stability: a transcriptional activation domain that promotes Myc destruction, and a region required for association with the POZ domain protein Miz-1 that stabilizes Myc. We also show that Myc is stabilized by cancer-associated and transforming mutations within its transcriptional activation domain. Our data reveal a complex network of interactions regulating Myc destruction, and imply that enhanced protein stability contributes to oncogenic transformation by mutant Myc proteins.
Collapse
Affiliation(s)
- S E Salghetti
- Cold Spring Harbor Laboratory, 1 Bungtown Road, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
263
|
Inoue M, Shiramizu K. Immunohistochemical detection of p53 and c-myc proteins in canine mammary tumours. J Comp Pathol 1999; 120:169-75. [PMID: 10087490 DOI: 10.1053/jcpa.1998.0268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objectives of this study were to detect by immunohistochemical means, nuclear accumulations of p53 and c-myc proteins in mammary tumours of dogs. Moderate or intense p53 protein nuclear labelling was shown by each of five osteosarcomas. In contrast, focal immunoreactivity was shown by three of five adenocarcinomas and two of three malignant myoepitheliomas. Six benign mixed tumours and three myoepitheliomas showed no detectable immunoreactivity. On the other hand, three patterns of c-myc protein nuclear reactivity were observed in these tumours. Osteosarcomas, adenocarcinomas, malignant myoepitheliomas and myoepitheliomas showed intense or moderate reactivity. In benign mixed tumours, the epithelial component showed moderate or intense reactivity, and the myoepithelial component showed focal or moderate reactivity. These results demonstrated that p53 protein was expressed only in the osteosarcomas, but that c-myc expression was detectable in both the epithelial and myoepithelial components.
Collapse
Affiliation(s)
- M Inoue
- Department of Veterinary Pathology, Faculty of Agriculture, Yamaguchi University, Japan
| | | |
Collapse
|
264
|
Donzelli M, Bernardi R, Negri C, Prosperi E, Padovan L, Lavialle C, Brison O, Scovassi AI. Apoptosis-prone phenotype of human colon carcinoma cells with a high level amplification of the c-myc gene. Oncogene 1999; 18:439-48. [PMID: 9927200 DOI: 10.1038/sj.onc.1202309] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although apoptosis can be induced by the enforced expression of exogenously introduced c-myc genes, it is not clear whether overexpression resulting from the amplification of the resident c-myc gene in tumor cells is sufficient to induce apoptosis. We have investigated the relationship between c-myc gene amplification and the propensity of tumor cells to undergo apoptosis, using the SW613-12A1 and SW613-B3 cell lines, which are representatives, respectively, of tumorigenic and non-tumorigenic clones isolated from the SW613-S human colon carcinoma cell line. Tumorigenic clones are characterized by a high level of amplification and expression of the c-myc gene, whereas cells of non-tumorigenic clones have a small number of copies and a lower level of expression of this gene. Analysis of c-myc mRNA level in cells cultured under low serum conditions indicated that the expression of the gene is tightly regulated by serum growth factors in non-tumorigenic B3 cells, whereas it is poorly regulated in tumorigenic 12A1 cells, the level of mRNAs remaining relatively high in serum-starved 12A1 cells. Under these conditions, 12A1 cells showed clear evidence of apoptosis, whereas B3 cells were completely refractory to the induction of apoptosis. Moreover, the study of cell lines derived from non-tumorigenic apoptosis-resistant clones following the introduction by transfection of exogenous c-myc gene copies showed that they have acquired an apoptosisprone phenotype. Altogether, our results strongly suggest that deregulated c-myc expression due to high-level amplification confers an apoptosis-prone phenotype to tumor cells. The possible consequences of these observations for cancer therapy are discussed.
Collapse
Affiliation(s)
- M Donzelli
- Istituto di Genetica Biochimica ed Evoluzionistica CNR, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Lee TC, Ziff EB. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF. J Biol Chem 1999; 274:595-606. [PMID: 9872993 DOI: 10.1074/jbc.274.2.595] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.
Collapse
Affiliation(s)
- T C Lee
- Howard Hughes Medical Institute, Department of Biochemistry and Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
266
|
O'Connell J, Bennett MW, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: cancer as a site of immune privilege. IMMUNOLOGY TODAY 1999; 20:46-52. [PMID: 10081230 DOI: 10.1016/s0167-5699(98)01382-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J O'Connell
- Dept of Medicine, Cork University Hospital, Ireland.
| | | | | | | | | |
Collapse
|
267
|
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
268
|
Okabe-Kado J, Kasukabe T, Honma Y. Differentiation inhibitory factor Nm23 as a prognostic factor for acute myeloid leukemia. Leuk Lymphoma 1998; 32:19-28. [PMID: 10036998 DOI: 10.3109/10428199809059243] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The differentiation inhibitory factor nm23 inhibits the differentiation of murine and human myeloid leukemia cells. The inhibition of differentiation may be associated with the aggressive behavior of leukemia. To clarify the role of nm23 in human myeloid leukemia, we investigated the relative levels of nm23-H1, nm23-H2 and c-myc transcripts in bone marrow and blood samples from 110 patients with acute myeloid leukemia (AML) using the reverse transcriptase polymerase chain reaction. The expression levels of nm23-H1 and nm23-H2 in these AML samples were significantly higher than in normal blood cells, and a higher level of nm23-H1 expression was correlated with poor prognosis for AML patients. Analysis of the correlation between nm23 expression and clinical parameters demonstrated that increased nm23-H1 mRNA levels were associated with resistance to initial chemotherapy and reduced overall survival. Multivariate analysis of putative prognostic factors revealed that elevated nm23-H1 mRNA levels significantly influenced the prognosis of patients with AML, particularly in AML-M5.
Collapse
Affiliation(s)
- J Okabe-Kado
- Department of Chemotherapy, Saitama Cancer Center Research Institute, Ina, Japan.
| | | | | |
Collapse
|
269
|
Doyle GA, Betz NA, Leeds PF, Fleisig AJ, Prokipcak RD, Ross J. The c-myc coding region determinant-binding protein: a member of a family of KH domain RNA-binding proteins. Nucleic Acids Res 1998; 26:5036-44. [PMID: 9801297 PMCID: PMC147974 DOI: 10.1093/nar/26.22.5036] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The half-life of c- myc mRNA is regulated when cells change their growth rates or differentiate. Two regions within c- myc mRNA determine its short half-life. One is in the 3'-untranslated region, the other is in the coding region. A cytoplasmic protein, the coding region determinant-binding protein (CRD-BP), binds in vitro to the c- myc coding region instability determinant. We have proposed that the CRD-BP, when bound to the mRNA, shields the mRNA from endonucleolytic attack and thereby prolongs the mRNA half-life. Here we report the cloning and further characterization of the mouse CRD-BP, a 577 amino acid protein containing four hnRNP K-homology domains, two RNP domains, an RGG RNA-binding domain and nuclear import and export signals. The CRD-BP is closely related to the chicken beta-actin zipcode-binding protein and is similar to three other proteins, one of which is overexpressed in some human cancers. Recombinant mouse CRD-BP binds specifically to c- myc CRD RNA in vitro and reacts with antibody against human CRD-BP. Most of the CRD-BP in the cell is cytoplasmic and co-sediments with ribosomal subunits.
Collapse
Affiliation(s)
- G A Doyle
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison,WI 53706, USA
| | | | | | | | | | | |
Collapse
|
270
|
Madisen L, Krumm A, Hebbes TR, Groudine M. The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol 1998; 18:6281-92. [PMID: 9774645 PMCID: PMC109215 DOI: 10.1128/mcb.18.11.6281] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chromosome translocations characteristic of Burkitt lymphomas (BL) and murine plasmacytomas, c-myc genes become juxtaposed to immunoglobulin heavy-chain (IgH) sequences, resulting in aberrant c-myc transcription. Translocated c-myc alleles that retain the first exon exhibit increased transcription from the normally minor c-myc promoter, P1, and increased transcriptional elongation through inherent pause sites proximal to the major c-myc promoter, P2. We recently demonstrated that a cassette derived from four DNase I-hypersensitive sites (HS1234) in the 3'Calpha region of the IgH locus functions as an enhancer-locus control region (LCR) and directs a similar pattern of deregulated expression of linked c-myc genes in BL and plasmacytoma cell lines. Here, we report that the HS1234 enhancer-LCR mediates a widespread increase in histone acetylation along linked c-myc genes in Raji BL cells. Significantly, the increase in acetylation was not restricted to nucleosomes within the promoter region but also was apparent upstream and downstream of the transcription start sites as well as along vector sequences. Histone hyperacetylation of control c-myc genes, which was induced by the deacetylase inhibitor trichostatin A, mimics the effect of the HS1234 enhancer on expression from the c-myc P2 promoter, but not that from the P1 promoter. These results suggest that the HS1234 enhancer stimulates transcription of c-myc by a combination of mechanisms. Whereas HS1234 activates expression from the P2 promoter through a mechanism that includes increased histone acetylation, a general increase in histone acetylation is not sufficient to explain the HS1234-mediated activation of transcription from P1.
Collapse
Affiliation(s)
- L Madisen
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | |
Collapse
|
271
|
Abstract
Studies of the biology of the IL-2 receptor have played a major part in establishing several of the fundamental principles that govern our current understanding of immunology. Chief among these is the contribution made by lymphokines to regulation of the interactions among vast numbers of lymphocytes, comprising a number of functionally distinct lineages. These soluble mediators likely act locally, within the context of the microanatomic organization of the primary and secondary lymphoid organs, where, in combination with signals generated by direct membrane-membrane interactions, a wide spectrum of cell fate decisions is influenced. The properties of IL-2 as a T-cell growth factor spawned the view that IL-2 worked in vivo to promote clonal T-cell expansion during immune responses. Over time, this singular view has suffered from increasing appreciation that the biologic effects of IL-2R signals are much more complex than simply mediating T-cell growth: depending on the set of conditions, IL-2R signals may also promote cell survival, effector function, and apoptosis. These sometimes contradictory effects underscore the fact that a diversity of intracellular signaling pathways are potentially activated by IL-2R. Furthermore, cell fate decisions are based on the integration of multiple signals received by a lymphocyte from the environment; IL-2R signals can thus be regarded as one input to this integration process. In part because IL-2 was first identified as a T-cell growth factor, the major focus of investigation in IL-R2 signaling has been on the mechanism of mitogenic effects in cultured cell lines. Three critical events have been identified in the generation of the IL-2R signal for cell cycle progression, including heterodimerization of the cytoplasmic domains of the IL-2R beta and gamma(c) chains, activation of the tyrosine kinase Jak3, and phosphorylation of tyrosine residues on the IL-2R beta chain. These proximal events led to the creation of an activated receptor complex, to which various cytoplasmic signaling molecules are recruited and become substrates for regulatory enzymes (especially tyrosine kinases) that are associated with the receptor. One intriguing outcome of the IL-2R signaling studies performed in cell lines is the apparent functional redundancy of the A and H regions of IL-2R beta, and their corresponding downstream pathways, with respect to the proliferative response. Why should the receptor complex induce cell proliferation through more than one mechanism or pathway? One possibility is that this redundancy is an unusual property of cultured cell lines and that primary lymphocytes require signals from both the A and the H regions of IL-2R beta for optimal proliferative responses in vivo. An alternative possibility is that the A and H regions of IL-2R beta are only redundant with respect to proliferation and that each region plays a unique and essential role in regulating other aspects of lymphocyte physiology. As examples, the A or H region could prove to be important for regulating the sensitivity of lymphocytes to AICD or for promoting the development of NK cells. These issues may be resolved by reconstituting IL-2R beta-/-mice with A-and H-deleted forms of the receptor chain and analyzing the effect on lymphocyte development and function in vivo. In addition to the redundant nature of the A and H regions, there remains a large number of biochemical activities mediated by the IL-2R for which no clear physiological role has been identified. Therefore, the circumstances are ripe for discovering new connections between molecular signaling events activated by the IL-2R and the regulation of immune physiology. Translating biochemical studies of Il-2R function into an understanding of how these signals regulate the immune system has been facilitated by the identification of natural mutations in IL-2R components in humans with immunodeficiency and by the generation of mice with targeted mutations in these gen
Collapse
Affiliation(s)
- B H Nelson
- Virginia Mason Research Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
272
|
Yamada H, Horiguchi-Yamada J, Nagai M, Takahara S, Sekikawa T, Kawano T, Itoh K, Fukumi S, Iwase S. Biological effects of a relatively low concentration of 1-beta-D-arabinofuranosylcytosine in K562 cells: alterations of the cell cycle, erythroid-differentiation, and apoptosis. Mol Cell Biochem 1998; 187:211-20. [PMID: 9788759 DOI: 10.1023/a:1006874931249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Therapeutic strategies for leukemia are directed to induction of differentiation and apoptosis as well as growth inhibition. One of the key antileukemic agents, 1-beta-D-arabinofuranosylcytosine (ara C), is clinically applied according to these therapeutic aims. However, the molecular effects of 0.1 microg/ml of ara C, a concentration that corresponds to the serum level in leukemic patients on a conventional dose of ara C, have not been well disclosed. Here, we addressed these issues using K562 cells which derived from a blastic crisis of chronic myeloid leukemia. DNA synthesis of treated cells was suppressed from 1-6 h. But, it recovered at 12 h and no further inhibition was observed. The number of cells was not decreased but DNA fragmentation was observed at 72 h. The number of erythroid-differentiated cells also increased to 30% at 72 h. Along with treatment, no marked alteration of mRNAs for cell cycle-regulating genes was found and the retinoblastoma gene product remained hyperphosphorylated throughout treatment. The expression of mRNAs for apoptosis-regulating genes also remained unchanged, except for slight down-regulation of Bax. c-myc protein was not found later than 48 h, and Max mRNA was downregulated. c-jun was immediately induced, followed by the fluctuated expression level along with treatment. These findings suggest that the 0.1 microg/ml ara C changed the proliferation, differentiation and death of K562 cells in a biphasic manner. In the early phase, DNA synthesis was inhibited without altering the expression of cell cycle regulating-genes. In the latter phase, cell death and erythroid- differentiation occurred in accordance with the down-regulation of c-myc.
Collapse
Affiliation(s)
- H Yamada
- Department of Internal Medicine (IV), Aoto Hospital, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Andreou ER, Prokipcak RD. Analysis of human CYP7A1 mRNA decay in HepG2 cells by reverse transcription-polymerase chain reaction. Arch Biochem Biophys 1998; 357:137-46. [PMID: 9721193 DOI: 10.1006/abbi.1998.0792] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conversion of cholesterol to bile acids is the major pathway through which cholesterol is removed from the body. The initial and rate-limiting step in this catabolic pathway is catalyzed by the liver-specific enzyme cholesterol 7alpha-hydroxylase (CYP7A1). The HepG2 cell line has been used as a model to study human CYP7A1. The levels of CYP7A1 mRNA, however, are quite low in this cell line and require the use of poly(A)+ mRNA for detection using standard Northern analysis. As an alternative, we established a reverse transcription-polymerase chain reaction (RT-PCR) assay that can be used to study CYP7A1 mRNA in HepG2 cells. Using RT-PCR, we analyzed the influence of cell culture conditions on CYP7A1 mRNA levels. We observed an increase in CYP7A1 mRNA levels as the density of the cell culture increased. This rise in CYP7A1 was accompanied by a reciprocal drop in the levels of the proto-oncogene c-myc. Since c-myc expression is strongly associated with cell growth status, this inverse relationship suggests that conditions that favor reduced cell proliferation result in higher levels of CYP7A1 expression. We also established the validity of using RT-PCR for the measurement of mRNA decay rates using c-myc and glyceraldehyde-3-phosphate dehydrogenase mRNAs as a model: The same half-life value was obtained for the c-myc mRNA using either Northern analysis or RT-PCR. Using our RT-PCR method we determined that human CYP7A1 mRNA decays with a half-life of 4.6 +/- 0.9 h (n = 8) in HepG2 cells. We show that the protein synthesis inhibitor cycloheximide prolonged the CYP7A1 mRNA half-life, suggesting that translation is required for mRNA decay. Dexamethasone treatment, however, did not alter CYP7A1 mRNA decay rate but it increased CYP7A1 steady-state mRNA levels, suggesting that the effect of this glucocorticoid in HepG2 cells may be transcriptional.
Collapse
Affiliation(s)
- E R Andreou
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
274
|
Song J, Murakami H, Tsutsui H, Tang X, Matsumura M, Itakura K, Kanazawa I, Sun K, Yokoyama KK. Genomic organization and expression of a human gene for Myc-associated zinc finger protein (MAZ). J Biol Chem 1998; 273:20603-14. [PMID: 9685418 DOI: 10.1074/jbc.273.32.20603] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized the genomic structure of the human gene for Myc-associated zinc finger protein (MAZ), which is located on chromosome 16p11.2. This gene is transcribed as an mRNA of 2.7 kilobases (kb) that encodes a 60-kDa MAZ protein. A 40-kb cosmid clone was isolated that includes the promoter, five exons, four introns, and one 3'-untranslated region. All exon-intron junction sequences conform to the GT/AG rule. The promoter region has features typical of a housekeeping gene: a high G + C content (88. 4%); a high frequency of CpG dinucleotides, in particular within the region 0.5 kb upstream of the site of initiation of translation; and the absence of canonical TATA and CAAT boxes. An S1 nuclease protection assay demonstrated the presence of multiple sites for initiation of transcription around a site 174 nucleotides (nt) upstream of the ATG codon and such expression was reflected by the promoter activity of a MAZ promoter/CAT (chloramphenicol acetyltransferase) reporter gene. Cis-acting positive and negative elements controlling basal transcription of the human MAZ gene were found from nucleotides (nt) -383 to -248 and nt -2500 to -948. Moreover, positive and negative autoregulatory elements were also identified in the regions from nt -248 to -189 and from nt -383 to -248 after co-transfection of HeLa cells with plasmids that carried the MAZ promoter/CAT construct and the MAZ-expression vector. Our results indicate that the 5'-end flanking sequences are responsible for the promoter activities of the MAZ gene.
Collapse
Affiliation(s)
- J Song
- Tsukuba Life Science Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
López-Otín C, Diamandis EP. Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr Rev 1998; 19:365-96. [PMID: 9715372 DOI: 10.1210/edrv.19.4.0337] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- C López-Otín
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Oviedo, Spain
| | | |
Collapse
|
276
|
Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A 1998; 95:8058-63. [PMID: 9653139 PMCID: PMC20928 DOI: 10.1073/pnas.95.14.8058] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have previously shown that the degradation of c-myc and N-myc in vitro is mediated by the ubiquitin system. However, the role of the system in targeting the myc proteins in vivo and the identity of the conjugating enzymes and possible ancillary proteins involved has remained obscure. Here we report that the degradation of the myc proteins in cells is inhibited by lactacystin and MG132, two inhibitors of the 20S proteasome. Inhibition is accompanied by accumulation of myc-ubiquitin conjugates. Dissection of the ancillary proteins involved revealed that the high-risk human papillomavirus oncoprotein E6-16 stimulates conjugation and subsequent degradation of the myc proteins in vitro. Expression of E6-16 in cells results in significant shortening of the t1/2 of the myc proteins with subsequent decrease in their cellular level. Analysis of the conjugating enzymes revealed that under basal conditions the proteins can be conjugated by two pairs of E2s and E3s-E2-14 kDa and E3alpha involved in the "N-end rule" pathway, and E2-F1 (UbcH7) and E3-Fos involved also in conjugation of c-Fos. In the presence of E6-16, a third pair, E2-F1 and E6-AP mediate conjugation of myc by means of a mechanism that appears to be similar to that involved in the targeting of p53, formation of a myc. E6.E6-AP targeting complex. It is possible that in certain cells E6-mediated targeting of myc prevents myc-induced apoptosis and thus ensures maintenance of viral infection.
Collapse
Affiliation(s)
- S Gross-Mesilaty
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
277
|
Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 1998; 18:3735-43. [PMID: 9632756 PMCID: PMC108956 DOI: 10.1128/mcb.18.7.3735] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Accepted: 03/27/1998] [Indexed: 02/07/2023] Open
Abstract
Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer, and tumors that express mutant p53 may be more aggressive and have a worse prognosis than p53-null cancers. Mutant p53 enhances tumorigenicity in the absence of a transdominant negative mechanism, and this tumor-promoting activity correlates with its ability to transactivate reporter genes in transient transfection assays. However, the mechanism by which mutant p53 functions in transactivation and its endogenous cellular targets that promote tumorigenicity are unknown. Here we report that (i) mutant p53 can regulate the expression of the endogenous c-myc gene and is a potent activator of the c-myc promoter; (ii) the region of mutant p53 responsiveness in the c-myc gene has been mapped to the 3' end of exon 1; (iii) the mutant p53 response region is position and orientation dependent and therefore does not function as an enhancer; and (iv) transactivation by mutant p53 requires the C terminus, which is not essential for wild-type p53 transactivation. These data suggest that it may be possible to selectively inhibit mutant p53 gain of function and consequently reduce the tumorigenic potential of cancer cells. A possible mechanism for transactivation of the c-myc gene by mutant p53 is proposed.
Collapse
Affiliation(s)
- M W Frazier
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
278
|
Ohki R, Hirota M, Oishi M, Kiyama R. Conservation and continuity of periodic bent DNA in genomic rearrangements between the c-myc and immunoglobulin heavy chain mu loci. Nucleic Acids Res 1998; 26:3026-33. [PMID: 9611251 PMCID: PMC147631 DOI: 10.1093/nar/26.12.3026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodic bent DNA was mapped in the human c- myc and immunoglobulin heavy chain mu (Ig mu) loci. A total of 12 DNA bend sites in the c- myc gene and 11 sites in the Ig mu locus were aligned at average intervals of 694.2 +/- 281.4 and 654.5 +/- 222.7 bp respectively. Although some of the bend sites retained the distance of 700 bp, their periodicity was disturbed at several locations, including the exons of the c- myc gene and the enhancer element present in the Ig mu locus. Analysis of rearrangements that resulted in tumorigenesis of lymphocytes showed that the continuity of DNA bend sites was conserved in three lymphoma cell lines, Manca, BL22 and Ramos, suggesting that the genomic rearrangements gain stability by retaining their periodicity. This adds further evidence that the periodic bent DNA plays a crucial role in genomic structure.
Collapse
Affiliation(s)
- R Ohki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
279
|
Clifford SC, Czapla K, Richards FM, O'Donoghue DJ, Maher ER. Hepatocyte growth factor-stimulated renal tubular mitogenesis: effects on expression of c-myc, c-fos, c-met, VEGF and the VHL tumour-suppressor and related genes. Br J Cancer 1998; 77:1420-8. [PMID: 9652757 PMCID: PMC2150185 DOI: 10.1038/bjc.1998.235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocyte growth factor (HGF/SF) is a potent renal proximal tubular cell (PTEC) mitogen involved in renal development. HGF/SF is the functional ligand for the c-met proto-oncogene, and germline c-met mutations are associated with familial papillary renal cell carcinoma. Somatic von Hippel-Lindau disease tumour-suppressor gene (VHL) mutations are frequently detected in sporadic clear cell renal cell carcinomas (RCC), and germline VHL mutations are the commonest cause of familial clear cell RCC. pVHL binds to the positive regulatory components of the trimeric elongin (SIII) complex (elongins B and C) and has been observed to deregulate expression of the vascular endothelial growth factor (VEGF) gene. HGF/SF has similarly been reported to up-regulate expression of the VEGF gene in non-renal experimental systems. To investigate the mechanism of HGF/SF action in PTECs and, specifically, to examine potential interactions between the HGF/c-met and the VHL-mediated pathways for renal tubular growth control, we have isolated untransformed PTECs from normal kidneys, developed conditions for their culture in vitro and used these cells to investigate changes in mRNA levels of the VHL, elongin A, B and C, VEGF, c-myc, c-fos and c-met genes after HGF/SF exposure. Significant elevations in the mRNA levels of VEGF, c-myc, c-fos, c-met and elongins A, B and C, but not VHL, were detected after HGF/SF stimulation of human PTECs (P < 0.02), with a consistent order of peak levels observed over successive replicates (c-fos at 1 h, VEGF at 2-4 h, c-myc, at 4 h, followed by c-met and all three elongin subunits at 8 h). This study highlights the spectrum of changes in gene expression observed in PTECs after HGF/SF stimulation and has identified possible candidate mediators of the HGF/SF-induced mitogenic response. Our evidence would suggest that the changes in PTEC VEGF expression induced by HGF/SF are mediated by a VHL-independent pathway.
Collapse
Affiliation(s)
- S C Clifford
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
280
|
Abstract
The proto-oncogene c-myc encodes a transcription factor c-Myc, which is of great importance in controlling cell growth and vitality. The quantity of c-Myc is carefully controlled by many mechanisms, and its actions to induce and repress genes are modulated by interactions with other regulatory proteins. Understanding the kinetic and quantitative relationships that determine how and what genes c-Myc regulates is essential to understanding how Myc is involved in apoptosis. Reduction of c-myc expression and its inappropriate expression can be associated with cellular apoptosis. This review outlines the nature and regulation of the c-myc gene and of c-Myc and presents the systems and conditions in which Myc-related apoptotic events occur. Hypotheses of the mechanisms by which expression and repression of c-myc lead to apoptosis are discussed.
Collapse
Affiliation(s)
- E B Thompson
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0645, USA.
| |
Collapse
|
281
|
Khaira P, James CD, Leffak M. Amplification of the translocated c-myc genes in three Burkitt lymphoma cell lines. Gene 1998; 211:101-8. [PMID: 9643977 DOI: 10.1016/s0378-1119(98)00104-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translocations of the coding exons of the human c-myc gene are consistent features of human Burkitt lymphomas (BL). In the BL cell lines CA46, JD40, and ST486, the second and third c-myc exons have been translocated into the immunoglobulin heavy chain locus. In addition to this rearrangement, in all three cell lines, we have found that the translocated c-myc exons show low-level amplification relative to restriction fragments from the germ-line c-myc gene. The patterns of hybridization of an IgM switch region probe suggest that immunoglobulin heavy chain sequences have been co-amplified with the translocated c-myc sequences. Differential sedimentation was used to determine whether the amplified sequences reside in high-molecular-weight chromosomes or low-molecular-weight extrachromosomal DNA. In JD40 and ST486 cells, the amplified c-myc sequences were found on high-molecular-weight chromosomes ST486 cells also contained translocated C-myc sequences in low-molecular-weight, extrachromosomal DNA, as did CA46 cells. These conclusions were corroborated by fluorescence in-situ hybridization (FISH) of HeLa, CA46, ST486 and JD40 metaphase chromosomes. These results suggest that there is ongoing selection for cells containing amplified copies of the expressed c-myc sequences. and that there is continuous generation of extrachromosomal copies of the translocated c-myc sequences in ST486 and CA46 cells.
Collapse
Affiliation(s)
- P Khaira
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
282
|
Lee R, Gillet G, Neiman P. Molecular events in avian neoplasia: Regulators of cell death in development of B‐cell lymphomas in the chicken bursa of Fabricius. Avian Pathol 1998. [DOI: 10.1080/03079459808419288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
283
|
Park IC, Park MJ, Lee SH, Choe TB, Jang JJ, Hong SI. Increased susceptibility of the c-Myc overexpressing cell line, SNU-16, to TNF-alpha. Cancer Lett 1998; 125:17-23. [PMID: 9566690 DOI: 10.1016/s0304-3835(97)00450-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a macrophage-derived multifunctional cytokine that acts as a cytostatic or cytotoxic agent in many tumor cells. However, the molecular mechanisms by which tumor cells become sensitive to the cytotoxic action of TNF-alpha are not clear. In this study we demonstrated that the cytotoxicity of TNF-alpha markedly increased in c-Myc overexpressing tumor cells. The stomach cancer cell line, SNU-16, in which c-Myc expression is high due to gene amplification, showed programmed cell death detected by DNA fragmentation and morphological changes. An antisense c-myc S-oligonucleotide specifically inhibited the TNF-alpha-induced apoptosis of SNU-16 cells, provided that the oligonucleotide was added 4 h prior to TNF-alpha treatment. Western immunoblot analysis of p53 and Bax showed that in this cell line, TNF-alpha increased the level of these proteins in a time-dependent manner and that this effect lasted for 12 h. Taken together these data indicate that the deregulation of c-Myc plays an important role in sensitizing tumor cells to TNF-alpha. Furthermore, TNF-alpha-induced apoptosis in the SNU-16 cell line showed increased expression of p53 and Bax protein levels following TNF-alpha treatment. Therefore, we suggest that TNF-alpha-induced apoptosis, which is cytotoxic to tumor cells, is coupled with a p53 and Bax apoptotic pathway.
Collapse
Affiliation(s)
- I C Park
- Laboratory of Cell Biology, Korea Cancer Center Hospital, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
284
|
Walker TL, DeCruz EE, Dass CR, Burton MA. A method for intratumoral continuous infusion of antisense oligodeoxynucleotides. J Pharm Sci 1998; 87:387-9. [PMID: 9523994 DOI: 10.1021/js970339s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T L Walker
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga NSW, Australia
| | | | | | | |
Collapse
|
285
|
Kim HG, Reddoch JF, Mayfield C, Ebbinghaus S, Vigneswaran N, Thomas S, Jones DE, Miller DM. Inhibition of transcription of the human c-myc protooncogene by intermolecular triplex. Biochemistry 1998; 37:2299-304. [PMID: 9485376 DOI: 10.1021/bi9718191] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triplex-forming oligonucleotides (TFOs) have been shown to inhibit both transcription in vitro and the expression of target genes in cell culture by binding to polypurine/polypyrimidine sequences in several human gene promoters. The c-myc protooncogene is overexpressed in a variety of human cancers and appears to play an important role in the proliferation of these cells. In an attempt to assay the ability of triplex-forming oligonucleotides to inhibit expression of a target gene in vivo, we have developed a cellular system involving transfection of a c-myc promoter-driven luciferase reporter plasmid with triplex-forming oligonucleotides targeted to the human c-myc protooncogene. To increase the stability of the TFO, we have used modified phosphorothioate oligonucleotides. Triplex formation with a modified phosphorothioate oligonucleotide occurs with approximately equal binding affinity as that seen using a phosphodiester oligonucleotide. Phosphorothioate-modified TFOs targeted to c-myc inhibit transcription of the c-myc promoter in HeLa cells as demonstrated by a decrease in luciferase expression from a luciferase reporter gene construct. These results suggests that triplex formation may represent a gene-specific means of inhibiting specific protooncogene expression.
Collapse
Affiliation(s)
- H G Kim
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Xu G, Gai Q, James CB. Protein kinase C inhibits transcription from the RNA polymerase III promoter of the human c-myc gene. Cancer Lett 1998; 123:199-205. [PMID: 9489489 DOI: 10.1016/s0304-3835(97)00425-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The c-myc promoter has a unique characteristic showing both RNA polymerase II (pol II) and RNA polymerase III (pol III) activities. Previous studies demonstrated that activating PKC results in upregulation of c-myc expression from its pol II promoter. However, how PKC activation affects expression from the pol III promoter of the c-myc gene is not well understood. This study examines the effect of PKC on the pol III transcription from the c-myc gene by using an in vitro system. We report the inhibition of the c-myc pol III transcript by activating PKC. Further, either a phosphocellulose fraction of HeLa whole cell extract (WCE) enriched for transcription factor TF IIIB, or recombinant TATA-box binding protein could restore the inhibited c-myc pol III transcription under conditions that activate PKC. A role has been proposed for the c-myc pol III transcript in the regulation of c-myc gene expression. Therefore, this report discusses the significance of the downregulation of c-myc expression from its pol III promoter and the possible interplay between the pol II and pol III promoters of this gene.
Collapse
Affiliation(s)
- G Xu
- Department of Biological Sciences, Program in Molecular and Cellular Biology, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|
287
|
Affiliation(s)
- L H Augenlicht
- Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10467-2490
| |
Collapse
|
288
|
Balaji KC, Koul H, Mitra S, Maramag C, Reddy P, Menon M, Malhotra RK, Laxmanan S. Antiproliferative effects of c-myc antisense oligonucleotide in prostate cancer cells: a novel therapy in prostate cancer. Urology 1997; 50:1007-15. [PMID: 9426742 DOI: 10.1016/s0090-4295(97)00390-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the possibility of using antisense oligonucleotide therapy for prostate cancer, we investigated the effect of c-myc-antisense-oligonucleotide (c-myc-As-ODN) in human prostate cancer cell lines such as LNCaP, PC3, and DU145. METHODS LNCaP, PC3, and DU145 cells were incubated in the presence of c-myc-As-ODN. Dose (0 to 10 microM) and time dependent (1 to 6 days) effects on proliferation and viability were examined by [3H]thymidine incorporation and MTT assay, respectively. Flow cytometry analysis was carried out to analyze cell cycle status by determining the DNA content in LNCaP cells. Control cultures received either c-myc-sense-ODN or scrambled (nonsense) nucleotides. RESULTS Time- and dose-dependent decreases in DNA synthesis and cell viability were noted for all three prostate cancer cell lines after c-myc-As-ODN treatment. Further studies using LNCaP cells indicated that these changes were accompanied by an increase in the percentage of cells with less than 2N DNA content after c-myc-As-ODN treatment. The results suggest that c-myc-As-ODN induces cell death. Comparison of a c-myc-As-ODN-treated group with a group subjected to isoleucine deprivation revealed that thymidine incorporation was almost the same in c-myc-As-ODN-treated LNCaP cells and in LNCaP cells at early S phase. CONCLUSIONS These results suggest that c-myc-As-ODN inhibits prostate cancer cell growth and proliferation mainly by decreasing cell viability.
Collapse
Affiliation(s)
- K C Balaji
- Department of Surgery, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Lee TC, Li L, Philipson L, Ziff EB. Myc represses transcription of the growth arrest gene gas1. Proc Natl Acad Sci U S A 1997; 94:12886-91. [PMID: 9371770 PMCID: PMC24233 DOI: 10.1073/pnas.94.24.12886] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/1997] [Indexed: 02/05/2023] Open
Abstract
Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.
Collapse
Affiliation(s)
- T C Lee
- Howard Hughes Medical Institute, Department of Biochemistry, New York University Medical Center, NY 10016, USA
| | | | | | | |
Collapse
|
290
|
Hueber AO, Zörnig M, Lyon D, Suda T, Nagata S, Evan GI. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 1997; 278:1305-9. [PMID: 9360929 DOI: 10.1126/science.278.5341.1305] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induction of apoptosis by oncogenes like c-myc may be important in restraining the emergence of neoplasia. However, the mechanism by which c-myc induces apoptosis is unknown. CD95 (also termed Fas or APO-1) is a cell surface transmembrane receptor of the tumor necrosis factor receptor family that activates an intrinsic apoptotic suicide program in cells upon binding either its ligand CD95L or antibody. c-myc-induced apoptosis was shown to require interaction on the cell surface between CD95 and its ligand. c-Myc acts downstream of the CD95 receptor by sensitizing cells to the CD95 death signal. Moreover, IGF-I signaling and Bcl-2 suppress c-myc-induced apoptosis by also acting downstream of CD95. These findings link two apoptotic pathways previously thought to be independent and establish the dependency of Myc on CD95 signaling for its killing activity.
Collapse
Affiliation(s)
- A O Hueber
- Imperial Cancer Research Fund (ICRF) Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
291
|
Loennechen T, Moens U, Kildalsen H, Andersen A, Rekvig OP, Aarbakke J. Effects of 3-deazaadenosine on apoptosis-related gene transcripts in HL-60 cells. PHARMACOLOGY & TOXICOLOGY 1997; 81:199-204. [PMID: 9396083 DOI: 10.1111/j.1600-0773.1997.tb00046.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the transmethylation inhibitor 3-deazaadenosine on transcription levels of genes associated with apoptosis was investigated in HL-60 cells. After incubation of HL-60 cells with 100 microM 3-deazaadenosine for 45 min., a schedule known to perturb transmethylation metabolites and initiate apoptosis in these cells, a 50% decrease in c-myc and a 50% increase in bcl-2 RNA steady-state levels compared to control cells were observed. Transcription levels of c-myc continued to decrease after extended exposure to 3-deazaadenosine, while bcl-2 mRNA levels dropped to 25% and 30% below those in control cells after 1.5 hr and 3 hr, respectively. The expression levels of the bcl-2 related bax gene, showed a similar pattern as bcl-2; a 60% increase was initially measured, but after 1.5 and 3 hr, bax transcripts were 80% and 70% respectively, of those found in untreated cells. Another bcl-2 related gene, bcl-x, was previously reported to generate two transcripts in human cells. The long variant bcl-x1 acts as bcl-2, while the short form bcl-xs induces apoptosis. We were unable to detect bcl-xs transcripts in untreated and 3-deazaadenosine treated cells by the highly sensitive reverse transcriptase polymerase chain reaction method. This suggests that this gene product may not be involved in 3-deazaadenosine induced apoptosis in HL-60 cells. Bcl-x1 mRNA levels, however, slowly decreased with about 50% after 1.5 or 3 hr 3-deazaadenosine treatment. It is concluded that 3-deazaadenosine initiated apoptosis affects c-myc, bcl-2, bax and bcl-x1 mRNA levels.
Collapse
Affiliation(s)
- T Loennechen
- Department of Pharmacy, University of Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
292
|
Abstract
Recent advances in molecular biology have allowed us to understand that it is the accumulation of genetic alterations which leads to each step of tumorigenesis. What the specific alterations may be, however, often varies with each neoplasm. Prostate cancer is somewhat unique in its presentation to the pathologist of a bewildering array of histologies difficult to assign to diagnostic categories and contributing to misinterpretations of underlying molecular events. As with any malignancy, it is of utmost importance to thoroughly analyze and record the genetic aberrations found in prostate cancer with the objective of correlation to the pathology and natural history of the disease. Multiple oncogenes and tumor suppressor genes have been investigated in both clinical and latent cancer using conventional mutational analyses. To probe deeper into these genes and to uncover novel molecular events, genomic tumor DNA were examined using restriction landmark genomic scanning (RLGS), a method which allows the identification and comparison of specific genetic alterations within large segments and multiple samples of DNA at a time. This article reviews what has been identified based on numerous molecular studies, focusing on the genetic alterations peculiar to human prostate cancer.
Collapse
Affiliation(s)
- N Konishi
- Second Department of Pathology, Nara Medical University, Japan.
| | | | | | | |
Collapse
|
293
|
Marcu KB, Patel AJ, Yang Y. Differential regulation of the c-MYC P1 and P2 promoters in the absence of functional tumor suppressors: implications for mechanisms of deregulated MYC transcription. Curr Top Microbiol Immunol 1997; 224:47-56. [PMID: 9308227 DOI: 10.1007/978-3-642-60801-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K B Marcu
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794, USA
| | | | | |
Collapse
|
294
|
Potter M, Marcu KB. The c-myc story: where we've been, where we seem to be going. Curr Top Microbiol Immunol 1997; 224:1-17. [PMID: 9308224 DOI: 10.1007/978-3-642-60801-8_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M Potter
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
295
|
Levens D, Duncan RC, Tomonaga T, Michelotti GA, Collins I, Davis-Smyth T, Zheng T, Michelotti EF. DNA conformation, topology, and the regulation of c-myc expression. Curr Top Microbiol Immunol 1997; 224:33-46. [PMID: 9308226 DOI: 10.1007/978-3-642-60801-8_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Alexandrov I, Shlyakhova L, Vartanian A, Zajac-Kaye M, Alexandrova N. c-Raf kinase binds to N-terminal domain of c-Myc. FEBS Lett 1997; 414:465-70. [PMID: 9315742 DOI: 10.1016/s0014-5793(97)00992-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have demonstrated that the 50 N-terminal amino acids of c-Myc bind a kinase activity, which phosphorylates Myc in vitro predominantly on Thr8. We also have shown that c-Raf, a widely known Ser/Thr kinase, involved in the Ras signaling pathway, binds to the same portion of c-Myc in vitro. In addition we were able to precipitate native c-Myc/Raf complex from various cell lysates. Physical interaction of Myc and Raf may potentially be a part of their well-known functional cooperation.
Collapse
Affiliation(s)
- I Alexandrov
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | |
Collapse
|
297
|
Cayre M, Strambi C, Charpin P, Augier R, Strambi A. Specific requirement of putrescine for the mitogenic action of juvenile hormone on adult insect neuroblasts. Proc Natl Acad Sci U S A 1997; 94:8238-42. [PMID: 9223345 PMCID: PMC21587 DOI: 10.1073/pnas.94.15.8238] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Persistent neurogenesis in an adult insect brain was recently shown to be stimulated by juvenile hormone (JH). This morphogenetic hormone was also shown to act on polyamine biosynthesis. To analyze the possible involvement of polyamines in the neurogenic action of JH, two series of experiments were carried out with adult female crickets, Acheta domesticus: (i) inhibition of the first key enzyme in polyamine biosynthesis, ornithine decarboxylase, with alpha-difluoromethylornithine (alpha-DFMO), and examination of the effects of this treatment on the neuroblast proliferation response to JH; and (ii) examination of the effects of putrescine supplementation on the mitotic index of JH-deprived and alpha-DFMO-treated females. In control females, alpha-DFMO treatment, as well as JH deprivation, greatly reduced neuroblast proliferation. Putrescine supplementation in alpha-DFMO-treated insects overcame the effects of alpha-DFMO, and allowed for detection of putrescine in the neural tissue and stimulation of brain neurogenesis. In JH-deprived females, alpha-DFMO treatment completely prevented the stimulatory action of JH on neuroblast proliferation and on brain putrescine levels. By contrast, putrescine feeding of JH-deprived animals was able to mimic the stimulatory effect of JH: brain putrescine levels increased and neuroblast proliferation was restored. To our knowledge, this report demonstrates for the first time that in vivo administration of putrescine can mimic the effects of a morphogenetic hormone on adult neuroblast proliferation, and shows the importance of polyamines, especially putrescine, in the transduction of JH message in neural tissue.
Collapse
Affiliation(s)
- M Cayre
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
298
|
Ryan KM, Birnie GD. Analysis of E-box DNA binding during myeloid differentiation reveals complexes that contain Mad but not Max. Biochem J 1997; 325 ( Pt 1):79-85. [PMID: 9224632 PMCID: PMC1218531 DOI: 10.1042/bj3250079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been shown that during myeloid differentiation the levels of mad1 mRNA are induced before the loss of c-Myc protein. This suggests that inactivation of the differentiation-blocking activity of c-Myc might not occur primarily through the loss of Myc protein, but through an increase in the levels of its antagonist, Mad1. To investigate this question we have analysed the levels of mad1 mRNA during differentiation of myeloid leukaemic HL60 cells. Although levels of mad1 mRNA were moderately increased after induction with phorbol ester, we also found that differentiation could be achieved with other inducers without any concomitant up-regulation of mad1 mRNA. In addition, analysis of E-box DNA binding revealed that, although Myc-Max complexes were lost rapidly after differentiation induction, formation of Mad1-containing complexes only occurred during the later stages of the differentiation programme. Further analysis of these Mad-containing complexes revealed that they were also unlikely to have the capacity to antagonize c-Myc function, as they did not contain Max. Therefore these data suggest that an increase in the levels of mad1 mRNA or the formation of a Mad-Max complex are unlikely to be essential or determining events for myeloid differentiation. In addition, the discovery of DNA-binding complexes that contain Mad1, but not Max, opens up this transcription factor network to include other Max-like proteins or proteins of an unrelated nature.
Collapse
Affiliation(s)
- K M Ryan
- Beatson Institute for Cancer Research, Cancer Research Campaign Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland, U.K
| | | |
Collapse
|
299
|
Pusch O, Soucek T, Hengstschläger-Ottnad E, Bernaschek G, Hengstschläger M. Cellular targets for activation by c-Myc include the DNA metabolism enzyme thymidine kinase. DNA Cell Biol 1997; 16:737-47. [PMID: 9212167 DOI: 10.1089/dna.1997.16.737] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although a remarkable number of genes has been identified that are either activated or repressed via c-Myc, only few of them obviously contribute to Myc's biological effect--the induction of proliferation. We found that in logarithmically growing cells overexpression of Myc specifically induces thymidine kinase (TK) mRNA expression and enzyme activity, whereas loss of one allele of Myc causes downregulation of this enzyme. We show that activation of Myc triggers high levels of this normally strictly S-phase-regulated DNA metabolism enzyme in serum arrested G0 cells and causes high and constant levels of TK expression throughout the entire ongoing cell cycle. Induction of TK by Myc requires an intact transcriptional activation domain. Myc-induced deregulation of this enzyme is paralleled by alterations of protein binding at the E2F-site of the TK promoter. We further show that cell growth arrest by the cyclin-dependent kinase inhibitor p16 is abrogated by overexpression of Myc and that co-overexpression of p16 cannot inhibit the Myc-induced up-regulation of TK expression. Our data demonstrate TK to be a cellular target of Myc independently of the status of cell proliferation and provide evidence that the transcription factor E2F might be involved in this process.
Collapse
Affiliation(s)
- O Pusch
- Obstetrics and Gynecology, University of Vienna, Department of Prenatal Diagnosis and Therapy, Austria
| | | | | | | | | |
Collapse
|
300
|
Shayo C, Davio C, Brodsky A, Mladovan AG, Legnazzi BL, Rivera E, Baldi A. Histamine modulates the expression of c-fos through cyclic AMP production via the H2 receptor in the human promonocytic cell line U937. Mol Pharmacol 1997; 51:983-90. [PMID: 9187264 DOI: 10.1124/mol.51.6.983] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examined the effects of histamine and its agonists on the expression of the c-fos and c-myc proto-oncogenes at the transcriptional and translational levels in the human promonocytic U937 cell line. Histamine transiently increased cAMP and c-fos expression through H2 receptors. Dibutyryl cAMP also increased c-fos mRNA and protein, and levels remained elevated even after 12 hr of treatment. Dose-dependence studies using histamine and dimaprit showed that the EC50 values for cAMP production and c-fos increase were similar, suggesting that cAMP might be involved in c-fos induction via H2 receptors. Furthermore, studies carried out using H7, a protein kinase A/protein kinase C inhibitor, blocked c-fos induction, whereas no effect was observed with bisindolylmaleimide, a specific protein kinase C inhibitor. No modification of c-myc expression could be detected on treatment with histamine or its analogues. Nevertheless, dibutyryl cAMP induced a down-regulation of the levels of this proto-oncogene. In addition, dibutyryl cAMP inhibited cell growth in a dose-dependent manner, whereas histamine failed to affect proliferation and differentiation of U937 cells. Cells pretreated with dimaprit showed a decrease in the cAMP response to subsequent addition of H2 agonists, whereas the cAMP response to prostaglandin E2 remained unaltered. This homologous mechanism of H2 receptor desensitization was time dependent. These results indicate that histamine activates several mechanisms involved in the induction of differentiation, such as cAMP and c-fos production, but fails to promote differentiation of U937 cells, apparently due to the rapid desensitization of H2 receptors.
Collapse
Affiliation(s)
- C Shayo
- Institute of Biology and Experimental Medicine, National Research Council of Argentina, Buenos Aires
| | | | | | | | | | | | | |
Collapse
|