251
|
Cenciarini C, Courtois S, Raoult D, La Scola B. Influence of long time storage in mineral water on RNA stability of Pseudomonas aeruginosa and Escherichia coli after heat inactivation. PLoS One 2008; 3:e3443. [PMID: 18941615 PMCID: PMC2566809 DOI: 10.1371/journal.pone.0003443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/18/2008] [Indexed: 12/18/2022] Open
Abstract
Background Research of RNA viability markers was previously studied for many bacterial species. Few and different targets of each species have been checked and motley results can be found in literature. No research has been done about Pseudomonas aeruginosa in this way. Methodology/Principal Findings Disappearance of 48 transcripts was analyzed by two-steps reverse transcription and real time polymerase chain reaction (RT-PCR) after heat-killing of Pseudomonas aeruginosa previously stored in mineral water or not. Differential results were obtained for each target. 16S rRNA, 23S rRNA, groEL, and rpmE were showed as the most persistent transcripts and rplP, rplV, rplE and rpsD were showed as the most labile transcripts after P. aeruginosa death. However, the labile targets appeared more persistent in bacteria previously stored in mineral water than freshly cultivated (non stored). These nine transcripts were also analyzed in Escherichia coli after heat-killing and different to opposite results were obtained, notably for groEL which was the most labile transcript of E. coli. Moreover, opposite results were obtained between mineral water stored and freshly cultivated E. coli. Conclusions and Significance This study highlights four potential viability markers for P. aeruginosa and four highly persistent transcripts. In a near future, these targets could be associated to develop an efficient viability kit. The present study also suggests that it would be difficult to determine universal RNA viability markers for environmental bacteria, since opposite results were obtained depending on the bacterial species and the physiological conditions.
Collapse
Affiliation(s)
- Claire Cenciarini
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) – Suez Environnement, Le Pecq, France
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Sophie Courtois
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) – Suez Environnement, Le Pecq, France
| | - Didier Raoult
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Bernard La Scola
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
252
|
Vila-Sanjurjo A. Modification of the Ribosome and the Translational Machinery during Reduced Growth Due to Environmental Stress. EcoSal Plus 2008; 3. [PMID: 26443727 DOI: 10.1128/ecosalplus.2.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Indexed: 06/05/2023]
Abstract
Escherichia coli strains normally used under laboratory conditions have been selected for maximum growth rates and require maximum translation efficiency. Recent studies have shed light on the structural and functional changes undergone by the translational machinery in E. coli during heat and cold shock and upon entry into stationary phase. In these situations both the composition and the partitioning of this machinery into the different pools of cellular ribosomes are modified. As a result, the translational capacity of the cell is dramatically altered. This review provides a comprehensive account of these modifications, regardless of whether or not their underlying mechanisms and their effects on cellular physiology are known. Not only is the composition of the ribosome modified upon entry into stationary phase, but the modification of other components of the translational machinery, such as elongation factor Tu (EFTu) and tRNAs, has also been observed. Hibernation-promoting factor (HPF), paralog protein Y (PY), and ribosome modulation factor (RMF) may also be related to the general protection against environmental stress observed in stationary-phase E. coli cells, a role that would not be revealed necessarily by the viability assays. Even for the best-characterized ribosome-associated factors induced under stress (RMF, PY, and initiation factors), we are far from a complete understanding of their modes of action.
Collapse
|
253
|
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11. [PMID: 18394160 PMCID: PMC2322954 DOI: 10.1186/1475-2859-7-11] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022] Open
Abstract
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | | | - Ursula Rinas
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Dragosits
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Escarlata Rodríguez-Carmona
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Kristin Baumann
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Giuliani
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Ermenegilda Parrilli
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Paola Branduardi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Christine Lang
- Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany
| | - Danilo Porro
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Pau Ferrer
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Luisa Tutino
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Antonio Villaverde
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| |
Collapse
|
254
|
Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 2008; 190:3712-20. [PMID: 18359805 DOI: 10.1128/jb.01990-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43 degrees C versus 30 degrees C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43 degrees C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K(+) pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K(+) is the central osmoregulatory signal in Enterobacteriaceae.
Collapse
|
255
|
Zhang Q, Pi J, Woods CG, Jarabek AM, Clewell HJ, Andersen ME. Hormesis and adaptive cellular control systems. Dose Response 2008; 6:196-208. [PMID: 18648578 DOI: 10.2203/dose-response.07-028.zhang] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from stressful environments. These adaptive pathways extend the region of cellular homeostasis and are protective against ultimate cell, organ, and system toxicity. However, the activation of stress responses carries a significant energetic cost to the cell, leading to alterations of a variety of basal cellular functions in adapted or stressed cells. This tradeoff of resources between the unstressed and adapted states may lead to U-or inverted U-shaped dose response curves for some precursor endpoints. We examine this general hypothesis with chlorine, a prototype oxidative stressor, using a combination of cellular studies with gene expression analysis of response pathways and with computational modeling of activation of control networks. Discrete cellular states are expected as a function of exposure concentration and duration. These cellular states include normal functioning state, adaptive and stressed states at mild to intermediate exposures, and overt toxicity in the presence of an overwhelming concentration of stressors. These transitions can be used to refine default risk assessment practices that do not currently accommodate adaptive responses.
Collapse
Affiliation(s)
- Qiang Zhang
- Division of Computational Biology, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
256
|
Effects of SecE depletion on the inner and outer membrane proteomes of Escherichia coli. J Bacteriol 2008; 190:3505-25. [PMID: 18296516 DOI: 10.1128/jb.01631-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon is a protein-conducting channel that allows polypeptides to be transferred across or integrated into a membrane. Although protein translocation and insertion in Escherichia coli have been studied using only a small set of specific model substrates, it is generally assumed that most secretory proteins and inner membrane proteins use the Sec translocon. Therefore, we have studied the role of the Sec translocon using subproteome analysis of cells depleted of the essential translocon component SecE. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and extensive immunoblotting. The analysis showed that upon SecE depletion (i) secretory proteins aggregated in the cytoplasm and the cytoplasmic sigma(32) stress response was induced, (ii) the accumulation of outer membrane proteins was reduced, with the exception of OmpA, Pal, and FadL, and (iii) the accumulation of a surprisingly large number of inner membrane proteins appeared to be unaffected or increased. These proteins lacked large translocated domains and/or consisted of only one or two transmembrane segments. Our study suggests that several secretory and inner membrane proteins can use Sec translocon-independent pathways or have superior access to the remaining Sec translocons present in SecE-depleted cells.
Collapse
|
257
|
Mulrooney C, Kung L. Short Communication: The Effect of Water Temperature on the Viability of Silage Inoculants. J Dairy Sci 2008; 91:236-40. [DOI: 10.3168/jds.2007-0449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
258
|
Tuominen I, Pollari M, Aguirre von Wobeser E, Tyystjärvi E, Ibelings BW, Matthijs HCP, Tyystjärvi T. Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett 2007; 582:346-50. [PMID: 18166156 DOI: 10.1016/j.febslet.2007.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 11/28/2022]
Abstract
The role of the primary-like sigma factor SigC was studied in Synechocystis. Under high temperature stress (48 degrees C) the DeltasigC inactivation strain showed a lower survival rate than the control strain. The DeltasigC strain grew poorly at 43 degrees C in liquid cultures under normal air. However, change to 3% CO(2) enhanced growth of DeltasigC at 43 degrees C. Differences in expression of many genes related to the carbon concentrating mechanisms between the control and the DeltasigC strain were recorded with a genome-wide DNA microarray. We suggest that low solubility of CO2 at high temperature is one of the factors contributing to the poor thermotolerance of the DeltasigC strain.
Collapse
Affiliation(s)
- Ilona Tuominen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
In Pseudomonas aeruginosa, as in most bacterial species, the expression of genes is tightly controlled by a repertoire of transcriptional regulators, particularly the so-called sigma (sigma) factors. The basic understanding of these proteins in bacteria has initially been described in Escherichia coli where seven sigma factors are involved in core RNA polymerase interactions and promoter recognition. Now, 7 years have passed since the completion of the first genome sequence of the opportunistic pathogen P. aeruginosa. Information from the genome of P. aeruginosa PAO1 identified 550 transcriptional regulators and 24 putative sigma factors. Of the 24 sigma, 19 were of extracytoplasmic function (ECF). Here, basic knowledge of sigma and ECF proteins was reviewed with particular emphasis on their role in P. aeruginosa global gene regulation. Summarized data are obtained from in silico analysis of P. aeruginosasigma and ECF including rpoD (sigma(70)), RpoH (sigma(32)), RpoF (FliA or sigma(28)), RpoS (sigma(S) or sigma(38)), RpoN (NtrA, sigma(54) or sigma(N)), ECF including AlgU (RpoE or sigma(22)), PvdS, SigX and a collection of uncharacterized sigma ECF, some of which are implicated in iron transport. Coupled to systems biology, identification and functional genomics analysis of P. aeruginosasigma and ECF are expected to provide new means to prevent infection, new targets for antimicrobial therapy, as well as new insights into the infection process.
Collapse
Affiliation(s)
- Eric Potvin
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Faculté de Médecine, Pavillon Charles-Eugène Marchand, Université Laval, Sainte-Foy, Quebec, Canada
| | | | | |
Collapse
|
260
|
Environmental stimuli on the soluble expression of anti-human ovarian carcinoma×anti-human CD3 single-chain bispecific antibody in recombinant Escherichia coli. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
261
|
Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol 2007; 73:7803-13. [PMID: 17933920 DOI: 10.1128/aem.00698-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic cells the ATP-dependent proteases Lon and ClpP (Clp proteolytic subunit) are involved in the turnover of misfolded proteins and the degradation of regulatory proteins, and depending on the organism, these proteases contribute variably to stress tolerance. We constructed mutants in the lon and clpP genes of the food-borne human pathogen Campylobacter jejuni and found that the growth of both mutants was impaired at high temperature, a condition known to increase the level of misfolded protein. Moreover, the amounts of misfolded protein aggregates were increased when both proteases were absent, and we propose that both ClpP and Lon are involved in eliminating misfolded proteins in C. jejuni. In order to bind misfolded protein, ClpP has to associate with one of several Clp ATPases. Following inactivation of the ATPase genes clpA and clpX, only the clpX mutant displayed the same heat sensitivity as the clpP mutant, indicating that the ClpXP proteolytic complex is responsible for the degradation of heat-damaged proteins in C. jejuni. Notably, ClpP and ClpX are required for growth at 42 degrees C, which is the temperature of the intestinal tract of poultry, one of the primary carriers of C. jejuni. Thus, ClpP and ClpX may be suitable targets of new intervention strategies aimed at reducing C. jejuni in poultry production. Further characterization of the clpP and lon mutants revealed other altered phenotypes, such as reduced motility, less autoagglutination, and lower levels of invasion of INT407 epithelial cells, suggesting that the proteases may contribute to the virulence of C. jejuni.
Collapse
|
262
|
Van Derlinden E, Bernaerts K, Van Impe JF. Dynamics of Escherichia coli at elevated temperatures: effect of temperature history and medium. J Appl Microbiol 2007; 104:438-53. [PMID: 17931374 DOI: 10.1111/j.1365-2672.2007.03592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The dynamics of Escherichia coli near the maximum temperature for growth in a rich medium are analysed. The effects of temperature history, medium composition and physiological state of the inoculum are evaluated. METHODS AND RESULTS Kinetics of E. coli K12 MG1655 is studied in 'brain-heart infusion' broth in a temperature controlled environment. Based on viable counts, 'smooth' growth curves are observed at 40, 41, 42 and 43 degrees C. The exponential growth phase at 44 and 45 degrees C is interrupted. At 46 degrees C, a period of exponential growth is followed by inactivation. Neither the physiological state of the inoculum nor medium enrichment alters the dynamics, whilst temperature pre-adaptation or chemical chaperones restore regular cell growth and division ('smooth' exponential growth). CONCLUSIONS Atypical, nonexponential growth at 44, 45 and 46 degrees C seems related to protein destabilization and can (partly) be restored by an appropriate medium design (i.e. addition of chemical chaperones) or temperature history (i.e. selection of a more resistant subpopulation). SIGNIFICANCE AND IMPACT OF THE STUDY This study indicates that the maximum temperature for growth is dependent on the temperature history and the chemical environment. These observations and the nonexponential kinetics have important implications for the development of predictive models for food safety and quality.
Collapse
Affiliation(s)
- E Van Derlinden
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
263
|
Huang Y, Zhang B, Dong K, Zhang X, Hou L, Wang T, Chen N, Chen S. Up-regulation of yggG promotes the survival of Escherichia coli cells containing Era-1 mutant protein. FEMS Microbiol Lett 2007; 275:8-15. [PMID: 17651431 DOI: 10.1111/j.1574-6968.2007.00860.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Era is a highly conserved GTPase essential for bacterial growth. Using a digoxigenin-labeled Era protein to screen a phage expression library of Escherichia coli genomic DNA, yggG, a gene that encodes a putative zinc metalloprotease was isolated and characterized. The deduced amino acid sequence of YggG showed high degrees of similarity to some reported heat shock proteins. In this study, the direct interaction between Era and YggG was confirmed, and it was found that the yggG gene, encoding a 25 kDa heat shock protein, was up-regulated at the mRNA level in partially defective Era GTPase mutants (era-1) and in E. coli cells overproducing Era-1. The delta yggG strain displayed the same growth rate as wild-type strain under normal growth conditions and after heat shock. Overexpression of Era-1 in the delta yggG strain resulted in a stronger growth-inhibitory effect than that in the wild-type strain, while coexpression of YggG partially restored the bacterial growth rate. The results indicated that YggG expression is significantly increased in response to stress caused by the Era-1 mutant protein in E. coli, thus promoting the growth of E. coli.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Chou CP. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007; 76:521-32. [PMID: 17571257 DOI: 10.1007/s00253-007-1039-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell's productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.
Collapse
Affiliation(s)
- C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
265
|
Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ, de Gier JW. Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 2007; 6:1527-50. [PMID: 17446557 DOI: 10.1074/mcp.m600431-mcp200] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.
Collapse
Affiliation(s)
- Samuel Wagner
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Mann JE, Brashears MM. Contribution of humidity to the lethality of surface-attached heat-resistant Salmonella during the thermal processing of cooked ready-to-eat roast beef. J Food Prot 2007; 70:762-5. [PMID: 17388073 DOI: 10.4315/0362-028x-70.3.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To provide meat processors with data to assess the safety of cooked ready-to-eat roast beef production parameters, a study was conducted to determine the contribution of humidity to the lethality of salmonellae during thermal processing. Destruction of Salmonella during thermal processing at different levels of humidity and a constant cooking temperature of 82.2 degrees C was examined. Raw beef top round roasts purchased from a commercial supplier were inoculated with a seven-strain cocktail of heat-shocked Salmonella. Inoculated roasts were thermally processed to an internal temperature of 62.8 degrees C at 0 to 90% humidity. Salmonella counts were determined utilizing the thin agar layer method on xylose-lysine-desoxychlolate agar to facilitate the enumeration of injured cells. Significant differences (P < 0.05) in Salmonella counts were observed between roasts processed at 30% humidity and those processed at 15% humidity or lower. Salmonella reductions were less than the regulatory performance standard of 6.5 log units at a humidity of < 30%. These results indicate that cooked ready-to-eat roast beef can be safely processed under conditions outside of the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service "safe harbor" guidelines. However, the results also indicate that one of these current safe harbor guidelines for the production of cooked ready-to-eat roast beef (> or = 62.8 degrees C product internal temperature with humidity introduced for > or = 50% of the cooking cycle) could result in a finished product that does not meet USDA performance standards. This specific guideline should be clarified with a minimum relative humidity requirement to ensure the production of a safe product.
Collapse
Affiliation(s)
- J E Mann
- Department of Animal and Food Sciences, Texas Tech University, Box 42141, Lubbock, Texas 79409, USA
| | | |
Collapse
|
267
|
Janaszak A, Majczak W, Nadratowska B, Szalewska-Palasz A, Konopa G, Taylor A. A sigma54-dependent promoter in the regulatory region of the Escherichia coli rpoH gene. MICROBIOLOGY-SGM 2007; 153:111-23. [PMID: 17185540 DOI: 10.1099/mic.0.2006/000463-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Escherichia coli rpoH gene is transcribed from four known and differently regulated promoters: P1, P3, P4 and P5. This study demonstrates that the conserved consensus sequence of the sigma54 promoter in the regulatory region of the rpoH gene, described previously, is a functional promoter, P6. The evidence for this conclusion is: (i) the specific binding of the sigma54-RNAP holoenzyme to P6, (ii) the location of the transcription start site at the predicted position (C, 30 nt upstream of ATG) and (iii) the dependence of transcription on sigma54 and on an ATP-dependent activator. Nitrogen starvation, heat shock, ethanol and CCCP treatment did not activate transcription from P6 under the conditions examined. Two activators of sigma54 promoters, PspF and NtrC, were tested but neither of them acted specifically. Therefore, PspFDeltaHTH, a derivative of PspF, devoid of DNA binding capability but retaining its ATPase activity, was used for transcription in vitro, taking advantage of the relaxed specificity of ATP-dependent activators acting in solution. In experiments in vivo overexpression of PspFDeltaHTH from a plasmid was employed. Thus, the sigma54-dependent transcription capability of the P6 promoter was demonstrated both in vivo and in vitro, although the specific conditions inducing initiation of the transcription remain to be elucidated. The results clearly indicate that the closed sigma54-RNAP-promoter initiation complex was formed in vitro and in vivo and needed only an ATP-dependent activator to start transcription.
Collapse
Affiliation(s)
- Anna Janaszak
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
268
|
Hasenbein S, Merdanovic M, Ehrmann M. Determinants of regulated proteolysis in signal transduction. Genes Dev 2007; 21:6-10. [PMID: 17210784 DOI: 10.1101/gad.1507807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sonja Hasenbein
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | |
Collapse
|
269
|
Zhao B, Yeo CC, Tan CL, Poh CL. Proteome analysis of heat shock protein expression inPseudomonas alcaligenes NCIMB 9867 in response to gentisate exposure and elevated growth temperature. Biotechnol Bioeng 2007; 97:506-14. [PMID: 17149773 DOI: 10.1002/bit.21253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) degrades xylenols and cresols via the gentisate pathway. P25X expresses two isofunctional gentisate 1,2-dioxygenases (GDO I and GDO II). The expression of both GDOs was not detected when P25X cells were grown at 42 degrees C, even in the presence of gentisate. A total of 19 heat shock proteins (Hsps) belonging to the Hsp100, Hsp90, Hsp70, Hsp60, Hsp45, and small heat shock protein (sHsp) families were identified among the protein spots that were either newly detected or were expressed at levels of at least twofold higher when P25X cells were cultured at 32 or 42 degrees C in the presence and absence of gentisate. Among these, 16 Hsps were commonly expressed at 42 degrees C. Two additional Hsps (H5 and H13) from the Hsp90 and Hsp60 families, respectively, were expressed only when P25X cells were grown at 42 degrees C and in the presence of gentisate. A protein of the sHsp (H16) family was expressed only in the presence of gentisate at 32 degrees C but not at 42 degrees C. The GroEL chaperonins of the Hsp60 family comprised the largest group of Hsps identified and exhibited high level of expression at 42 degrees C following gentisate exposure.
Collapse
Affiliation(s)
- Bing Zhao
- Programme in Environmental Microbiology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore
| | | | | | | |
Collapse
|
270
|
Azizoglu RO, Drake M. Impact of antibiotic stress on acid and heat tolerance and virulence factor expression of Escherichia coli O157:H7. J Food Prot 2007; 70:194-9. [PMID: 17265880 DOI: 10.4315/0362-028x-70.1.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to determine the effect of antibiotic stress on the virulence factor expression, simulated gastric fluid (SGF; pH 1.5) survival, and heat tolerance (56 degrees C) of Escherichia coli O157:H7. The MIC for three antibiotics (trimethoprim, ampicillin, and ofloxacin) was determined for two E. coli O157:H7 strains (ATCC 43895 [raw hamburger isolate] and ATCC 43890 [fecal isolate]) by the dilution series method. Subsequently, cells were stressed at the MIC of each antibiotic for 4 h, and poststress tolerance and virulence factor production were evaluated. Heat tolerance (56 degrees C) was determined by the capillary tube method, and SGF (pH 1.5) survival was used to assess acid tolerance. Virulence factor expression (stx, hlyA, and eaeA) was evaluated by the creation of lacZ gene fusions and then use of the Miller assay (a beta-galactosidase assay). Stressed and control cells were evaluated in triplicate. The MIC for trimethoprim was 0.26 mg/liter for both strains; for ampicillin, it was 2.05 mg/liter for both strains; and for ofloxacin, it was 0.0256 and 0.045 mg/liter for each strain. Heat tolerance and SGF survival following antibiotic stress decreased when compared with control cells (P < 0.05). Exposure to ofloxacin increased stx and eaeA expression (P < 0.05). Exposure to ampicillin or trimethoprim increased eaeA expression (P < 0.05). hly expression increased following trimethoprim stress (P < 0.05). Antibiotics can increase E. coli O157:H7 virulence factor production, but they do not produce a cross-protective response to heat or decreased pH.
Collapse
Affiliation(s)
- Reha Onur Azizoglu
- Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
271
|
da Silva Neto JF, Koide T, Gomes SL, Marques MV. The single extracytoplasmic-function sigma factor of Xylella fastidiosa is involved in the heat shock response and presents an unusual regulatory mechanism. J Bacteriol 2006; 189:551-60. [PMID: 17098905 PMCID: PMC1797396 DOI: 10.1128/jb.00986-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genome sequence analysis of the bacterium Xylella fastidiosa revealed the presence of two genes, named rpoE and rseA, predicted to encode an extracytoplasmic function (ECF) sigma factor and an anti-sigma factor, respectively. In this work, an rpoE null mutant was constructed in the citrus strain J1a12 and shown to be sensitive to exposure to heat shock and ethanol. To identify the X. fastidiosa sigma(E) regulon, global gene expression profiles were obtained by DNA microarray analysis of bacterial cells under heat shock, identifying 21 sigma(E)-dependent genes. These genes encode proteins belonging to different functional categories, such as enzymes involved in protein folding and degradation, signal transduction, and DNA restriction modification and hypothetical proteins. Several putative sigma(E)-dependent promoters were mapped by primer extension, and alignment of the mapped promoters revealed a consensus sequence similar to those of ECF sigma factor promoters of other bacteria. Like other ECF sigma factors, rpoE and rseA were shown to comprise an operon in X. fastidiosa, together with a third open reading frame (XF2241). However, upon heat shock, rpoE expression was not induced, while rseA and XF2241 were highly induced at a newly identified sigma(E)-dependent promoter internal to the operon. Therefore, unlike many other ECF sigma factors, rpoE is not autoregulated but instead positively regulates the gene encoding its putative anti-sigma factor.
Collapse
|
272
|
Tangwatcharin P, Chanthachum S, Khopaibool P, Griffiths MW. Morphological and physiological responses of Campylobacter jejuni to stress. J Food Prot 2006; 69:2747-53. [PMID: 17133821 DOI: 10.4315/0362-028x-69.11.2747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under conditions of stress, cells of Campylobacter assume a coccoid shape that may be an evolutionary strategy evolved by the organism to enable survival between hosts. However, the physiology of Campylobacter as it devolves from spiral to coccoid-shaped morphology is poorly understood. In this study, conditions influencing the survival of Campylobacter jejuni ATCC 35921 in broth were determined. Cells in late log phase were resuspended in broth at 4 or 60 degrees C. The culturability of these cold- or heat-stressed cell suspensions was determined by spread plate counts and the activity of cells by the direct viable count technique and 5-cyano-2,3-ditolyltetrazolium chloride staining. C. jejuni changed form completely from culturable to viable but nonculturable cells (VBNC) within 25 days at 4 degrees C, and 15 min at 60 degrees C. Light microscopy of C. jejuni VBNC cells showed that the spiral-shaped cells became coccoid, and transmission electron microscopy of C. jejuni VBNC cells showed that the outer membrane was lost in aging cell suspensions. Furthermore, a limited proteomic study was carried out to compare C. jejuni proteins that exhibited increased or decreased synthesis on exposure to 60 degrees C.
Collapse
Affiliation(s)
- Pussadee Tangwatcharin
- Department of Food Science and Technology, Prince of Songkla University, Songkhla 90112, Thailand
| | | | | | | |
Collapse
|
273
|
Gunesekere IC, Kahler CM, Powell DR, Snyder LAS, Saunders NJ, Rood JI, Davies JK. Comparison of the RpoH-dependent regulon and general stress response in Neisseria gonorrhoeae. J Bacteriol 2006; 188:4769-76. [PMID: 16788186 PMCID: PMC1483004 DOI: 10.1128/jb.01807-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the gammaproteobacteria the RpoH regulon is often equated with the stress response, as the regulon contains many of the genes that encode what have been termed heat shock proteins that deal with the presence of damaged proteins. However, the betaproteobacteria primarily utilize the HrcA repressor protein to control genes involved in the stress response. We used genome-wide transcriptional profiling to compare the RpoH regulon and stress response of Neisseria gonorrhoeae, a member of the betaproteobacteria. To identify the members of the RpoH regulon, a plasmid-borne copy of the rpoH gene was overexpressed during exponential-phase growth at 37 degrees C. This resulted in increased expression of 12 genes, many of which encode proteins that are involved in the stress response in other species. The putative promoter regions of many of these up-regulated genes contain a consensus RpoH binding site similar to that of Escherichia coli. Thus, it appears that unlike other members of the betaproteobacteria, N. gonorrhoeae utilizes RpoH, and not an HrcA homolog, to regulate the stress response. In N. gonorrhoeae exposed to 42 degrees C for 10 min, we observed a much broader transcriptional response involving 37 differentially expressed genes. Genes that are apparently not part of the RpoH regulon showed increased transcription during heat shock. A total of 13 genes were also down-regulated. From these results we concluded that although RpoH acts as the major regulator of protein homeostasis, N. gonorrhoeae has additional means of responding to temperature stress.
Collapse
Affiliation(s)
- Ishara C Gunesekere
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, VIC 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
274
|
Costanzo A, Ades SE. Growth phase-dependent regulation of the extracytoplasmic stress factor, sigmaE, by guanosine 3',5'-bispyrophosphate (ppGpp). J Bacteriol 2006; 188:4627-34. [PMID: 16788171 PMCID: PMC1483008 DOI: 10.1128/jb.01981-05] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma subunit of procaryotic RNA polymerases is responsible for specific promoter recognition and transcription initiation. In addition to the major sigma factor, sigma 70, in Escherichia coli, which directs most of the transcription in the cell, bacteria possess multiple, alternative sigma factors that direct RNA polymerase to distinct sets of promoters in response to environmental signals. By activating an alternative sigma factor, gene expression can be rapidly reprogrammed to meet the needs of the cell as the environment changes. Sigma factors are subject to multiple levels of regulation that control their levels and activities. The alternative sigma factor sigmaE in Escherichia coli is induced in response to extracytoplasmic stress. Here we demonstrate that sigmaE can also respond to signals other than extracytoplasmic stress. sigmaE activity increases in a growth phase-dependent manner as a culture enters stationary phase. The signaling pathway that activates sigmaE during entry into stationary phase is dependent upon the alarmone guanosine 3',5'-bispyrophosphate (ppGpp) and is distinct from the pathway that signals extracytoplasmic stress. ppGpp is the first cytoplasmic factor shown to control sigmaE activity, demonstrating that sigmaE can respond to internal signals as well as signals originating in the cell envelope. ppGpp is a general signal of starvation stress and is also required for activation of the sigmaS and sigma 54 alternative sigma factors upon entry into stationary phase, suggesting that this is a key mechanism by which alternative sigma factors can be activated in concert to provide a coordinated response to nutritional stress.
Collapse
Affiliation(s)
- Alessandra Costanzo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
275
|
Klancnik A, Botteldoorn N, Herman L, Mozina SS. Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int J Food Microbiol 2006; 112:200-7. [PMID: 16782221 DOI: 10.1016/j.ijfoodmicro.2006.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
Although Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in humans worldwide, its potential to adapt to the stressful conditions and survive in extra-intestinal environment is still poorly understood. We tested the effect of heat shock (55 degrees C, 3 min) and oxidative stress (3 mM H2O2 for 10 min or prolonged incubation at atmosphere oxygen concentration) on non-starved and starved cells of Campylobacter jejuni from different growth phases. Viability as assessed with the Bacterial Viability Kit LIVE/DEAD BacLighttrade mark dying before fluorescent microscopy and culturability of the cells (CFU ml(-1)) from both growth phases showed that starvation increased heat but not oxidative resistance. High temperature and oxidative stress invoked quick transformation from culturable spiral shaped to nonculturable spiral and coccoid cells. Despite physiological changes of the cells we were not able to document clear differences in the expression of heat shock and starvation genes (dnaK, htpG, groEL), oxidative (ahpC, sodB), virulence (flaA) and housekeeping genes (16S rRNA, rpoD) after heat treatment (55 degrees C, 3 min) or oxidative stresses applied. When starving, no induction of expression of any of these genes was noticed, chloramphenicol had no influence on their gene expression. Quantitative real-time PCR analyses showed that at least 10-20 min of heat shock was necessary to evidently increase the amount of groEL and rpoD transcripts.
Collapse
Affiliation(s)
- Anja Klancnik
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
276
|
Valdramidis V, Geeraerd A, Bernaerts K, Van Impe J. Microbial dynamics versus mathematical model dynamics: The case of microbial heat resistance induction. INNOV FOOD SCI EMERG 2006. [DOI: 10.1016/j.ifset.2005.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
277
|
Du Y, Arvidson CG. RpoH mediates the expression of some, but not all, genes induced in Neisseria gonorrhoeae adherent to epithelial cells. Infect Immun 2006; 74:2767-76. [PMID: 16622214 PMCID: PMC1459707 DOI: 10.1128/iai.74.5.2767-2776.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (gonococcus [GC]), is highly adapted to the human host, the only known reservoir for gonococcal infection. However, since it is sexually transmitted, infection of a new host likely requires a regulatory response on the part of the gonococcus to respond to this significant change in environment. We previously showed that adherence of gonococci to epithelial cells results in changes of gene expression in the bacteria that presumably prepare them for subsequent steps in the infection process. Expression of the heat shock sigma factor gene, rpoH, was shown to be important for the invasion step, as gonococci depleted for rpoH were reduced in their ability to invade epithelial cells. Here, we show that of the genes induced in adherent gonococci, two are part of the gonococcal RpoH regulon. When RpoH is depleted, expression of these genes is no longer induced by host cell contact, indicating that RpoH is mediating the host cell induction response of these genes. One RpoH-dependent gene, NGO0376, is shown to be important for invasion of epithelial cells, consistent with earlier observations that RpoH is necessary for this step of infection. Two genes, NGO1684 and NGO0340, while greatly induced by host cell contact, were found to be RpoH independent, indicating that more than one regulator is involved in the response to host cell contact. Furthermore, NGO0340, but not NGO1684, was shown to be important for both adherence and invasion of epithelial cells, suggesting a complex regulatory network in the response of gonococci to contact with host cells.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | |
Collapse
|
278
|
Zhang W, Culley DE, Hogan M, Vitiritti L, Brockman FJ. Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie van Leeuwenhoek 2006; 90:41-55. [PMID: 16680520 DOI: 10.1007/s10482-006-9059-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
Sulfate-reducing bacteria such as Desulfovibrio vulgaris have developed a set of responses that allow them to survive in hostile environments. To obtain further knowledge of the protective mechanisms employed by D. vulgaris in response to oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes were responsive to heat-shock. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. The rubrerythrin gene (rbr) was up-regulated in response to oxidative stress, suggesting an important role for this protein in the oxidative damage resistance response in D. vulgaris. In addition, thioredoxin reductase (trxB) was also responsive to oxidative stress, suggesting that the thiol-specific redox system might also be involved in oxidative protection in this organism. In contrast, the expression of rubredoxin oxidoreductase (rbo), superoxide dismutase (sodB) and catalase (katA) genes were not regulated in response to oxidative stress. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental perturbations, implying that these genes might be part of the general stress response (GSR) network in D. vulgaris. This hypothesis was further supported by the identification of a conserved motif upstream of these stress-responsive genes.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
279
|
Díaz-Acosta A, Sandoval ML, Delgado-Olivares L, Membrillo-Hernández J. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12. Arch Microbiol 2006; 185:429-38. [PMID: 16775749 DOI: 10.1007/s00203-006-0113-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 02/28/2006] [Accepted: 04/03/2006] [Indexed: 11/29/2022]
Abstract
The natural living style of Escherichia coli occurs in the gastrointestinal tract, where most of its existence is spent under anaerobic conditions and in stationary phase of growth. Here we report on the heat shock response of E. coli K-12 cells growing in the presence or absence of oxygen. An rpoH mutant (impaired in the synthesis of the sigma(32) transcriptional factor) exhibited an increased sensitivity to heat shock but only in the exponential phase of aerobic growth, suggesting that in anaerobic growth conditions, and in aerobic stationary phase, sigma(32)-independent mechanisms are playing a prime role in protecting cells from heat stress. Our results demonstrated that sigma(S) is not involved in this protection system. Studies on the kinetics of synthesis of Heat shock proteins (Hsp) after an abrupt rise in temperature demonstrated that in the absence of oxygen, the synthesis of Hsp is triggered faster and is sustained for a longer period of time compared to aerobic growth conditions. Finally, the heated cells in the exponential phase of aerobic growth displayed a high concentration of oxidatively damaged proteins in the presence of 4 mM H(2)O(2), in sharp contrast to cultures of stationary phase or anaerobic growth.
Collapse
Affiliation(s)
- Alondra Díaz-Acosta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico.
| | | | | | | |
Collapse
|
280
|
Chhabra SR, He Q, Huang KH, Gaucher SP, Alm EJ, He Z, Hadi MZ, Hazen TC, Wall JD, Zhou J, Arkin AP, Singh AK. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol 2006; 188:1817-28. [PMID: 16484192 PMCID: PMC1426554 DOI: 10.1128/jb.188.5.1817-1828.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z >/= 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 degrees C from a growth temperature of 37 degrees C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors sigma(32) and sigma(54). While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters.
Collapse
Affiliation(s)
- S R Chhabra
- Biosystems Research Department, Mailstop 9292, Sandia National Laboratory, 7011 East Ave., Livermore, CA 94550, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ. Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 2006; 6:845-64. [PMID: 16400687 DOI: 10.1002/pmic.200500196] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteomic analysis of the heat shock response of wild type and a mutant of the histidine kinase 34 gene (Deltahik34), which shows increased thermal tolerance, has been performed in the cyanobacterium Synechocystis sp. PCC6803. In vivo radioactive labelling demonstrates that major proteomic changes occur within 1 h of heat shock. 2-D DIGE and MS have been used to quantify changes in specific proteins following heat shock in the wild type and the mutant. Over 100 spots, corresponding to 65 different proteins alter following heat shock. Changes occur not only in the classical heat shock proteins but also in the protein biosynthetic machinery, amino acid biosynthetic enzymes, components of the light and dark acts of photosynthesis and energy metabolism. The Deltahik34 cells have elevated levels of heat shock proteins under both non-heat shock and heat shock conditions, in comparison to the wild type, consistent with Hik34, or a down stream component, being a negative regulator of heat shock-responsive genes.
Collapse
Affiliation(s)
- Antoni R Slabas
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK.
| | | | | | | | | |
Collapse
|
282
|
Tuominen I, Pollari M, Tyystjärvi E, Tyystjärvi T. The SigBσfactor mediates high-temperature responses in the cyanobacteriumSynechocystissp. PCC6803. FEBS Lett 2005; 580:319-23. [PMID: 16376888 DOI: 10.1016/j.febslet.2005.11.082] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/25/2005] [Accepted: 11/29/2005] [Indexed: 11/28/2022]
Abstract
The sigma factors of RNA polymerase play central roles when bacteria adapt to different environmental conditions. We studied heat-shock responses in the cyanobacterium Synechocystis sp. PCC6803 using the sigma factor inactivation strains deltasigB, deltasigD and deltasigBD. The SigB factor was found to be important for short-term heat-shock responses and acquired thermotolerance. The normal high-temperature induction of the hspA gene depended on the SigB factor. The SigD sigma factor had a role in high-temperature responses as well, and the double inactivation strain deltasigBD grew more slowly at 43 degrees C than the deltasigB and deltasigD strains.
Collapse
Affiliation(s)
- Ilona Tuominen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | | | | | | |
Collapse
|
283
|
Yamauchi S, Okuyama H, Nishiyama Y, Hayashi H. The rpoH gene encoding heat shock sigma factor sigma32 of psychrophilic bacterium Colwellia maris. Extremophiles 2005; 10:149-58. [PMID: 16362517 DOI: 10.1007/s00792-005-0485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/20/2005] [Indexed: 01/25/2023]
Abstract
The rpoH gene encoding a heat shock sigma factor, sigma(32), was cloned from the psychrophilic bacterium Colwellia maris. The deduced amino acid sequence of sigma(32) from C. maris is more than 60% homologous to that of sigma(32) from mesophilic bacteria. The RpoH box, a 9-amino-acid sequence region (QRKLFFNLR) specific to sigma(32), and two downstream box sequences complementary to a part of 16S rRNA were identified. Primer extension analysis showed that the C. maris rpoH is expressed from only one sigma(70)-type promoter. Northern blot analysis showed that the level of rpoH mRNA was clearly increased at 20 degrees C, a temperature that induces heat shock in this organism. In the presence of an inhibitor of transcriptional initiation, the degradation of rpoH mRNA was much slower at 20 degrees C than at 10 degrees C. Thus, increased stability of the rpoH mRNA might be responsible for the rpoH mRNA accumulation. The predicted secondary structure of the 5'-region of C. maris rpoH mRNA was different from the conserved patterns reported for most mesophilic bacteria, and the base pairing of the downstream boxes appeared to be less stable than that of Escherichia coli rpoH mRNA. Thus, essential features that ensure the HSP expression at a relatively low temperature are embedded in the rpoH gene of psychrophiles.
Collapse
Affiliation(s)
- Seiji Yamauchi
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | | | | | | |
Collapse
|
284
|
Baars L, Ytterberg AJ, Drew D, Wagner S, Thilo C, van Wijk KJ, de Gier JW. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J Biol Chem 2005; 281:10024-34. [PMID: 16352602 DOI: 10.1074/jbc.m509929200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve understanding and identify novel substrates of the cytoplasmic chaperone SecB in Escherichia coli, we analyzed a secB null mutant using comparative proteomics. The secB null mutation did not affect cell growth but caused significant differences at the proteome level. In the absence of SecB, dynamic protein aggregates containing predominantly secretory proteins accumulated in the cytoplasm. Unprocessed secretory proteins were detected in radiolabeled whole cell lysates. Furthermore, the assembly of a large fraction of the outer membrane proteome was slowed down, whereas its steady state composition was hardly affected. In response to aggregation and delayed sorting of secretory proteins, cytoplasmic chaperones DnaK, GroEL/ES, ClpB, IbpA/B, and HslU were up-regulated severalfold, most likely to stabilize secretory proteins during their delayed translocation and/or rescue aggregated secretory proteins. The SecB/A dependence of 12 secretory proteins affected by the secB null mutation (DegP, FhuA, FkpA, OmpT, OmpX, OppA, TolB, TolC, YbgF, YcgK, YgiW, and YncE) was confirmed by "classical" pulse-labeling experiments. Our study more than triples the number of known SecB-dependent secretory proteins and shows that the primary role of SecB is to facilitate the targeting of secretory proteins to the Sec-translocase.
Collapse
Affiliation(s)
- Louise Baars
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
285
|
Vera A, Arís A, Carrió M, González-Montalbán N, Villaverde A. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 2005; 119:163-71. [PMID: 15967532 DOI: 10.1016/j.jbiotec.2005.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
Aggregated protein is solubilized by the combined activity of chaperones ClpB, DnaK and small heat-shock proteins, and this could account, at least partially, for the physiological disintegration of bacterial inclusion bodies. In vivo, the involvement of proteases in this process had been suspected but not investigated. By using an aggregation prone beta-galactosidase fusion protein produced in Escherichia coli, we show in this study that the main ATP-dependent proteases Lon and ClpP participate in the physiological disintegration of cytoplasmic inclusion bodies, their absence minimizing the protein removal up to 40%. However, the role of these proteases is clearly distinguishable especially regarding the fate of solubilized protein. While Lon appears as a minor contributor in the disintegration process, ClpP directs an important attack on the released or releasable protein even not being irreversibly misfolded. ClpP is then observed as a wide-spectrum, main processor of aggregation-prone proteins and also of polypeptides physiologically released from inclusion bodies, even when occurring as soluble versions with a conformation compatible with their enzymatic activity.
Collapse
Affiliation(s)
- Andrea Vera
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
286
|
Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 2005; 57:576-91. [PMID: 15978086 DOI: 10.1111/j.1365-2958.2005.04710.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the structural genes encoding the ATP-dependent proteases ClpCP and Lon in Corynebacterium glutamicum and Streptomyces lividans is activated by the transcriptional regulator ClgR in response to yet unknown environmental stimuli. As it was not known whether ClgR controls expression of additional genes we used DNA microarrays in order to comprehensively define the ClgR regulon in C. glutamicum. The mRNA levels of 16 genes decreased >/= 2-fold in a DeltaclgRDeltaclpC mutant (ClgR absent) compared with a DeltaclpC mutant (ClgR present). For five genes in four operons (NCgl0748, ptrB, hflX and NCgl0240-recR) regulation by ClgR could be independently verified by primer extension analyses and confirmation of binding of purified ClgR to the regulatory regions of these operons. ptrB encodes an endopeptidase, which is consistent with the proteolytic functions of the genes already known to be under ClgR control. However, RecR is unrelated to proteolysis but required for recombinational repair of UV-induced DNA damage. Possibly ClgR-dependent activation of gene expression is triggered by environmental stresses damaging both proteins and nucleic acids, although DNA damage induced by UV radiation and mitomycin C treatment did not result in ClgR-dependent transcriptional activation of any of the newly identified ClgR regulon members. In order to functionally analyse the NCgl0748 and hflX genes we have constructed C. glutamicum strains with deletions in these genes. The DeltaNCgl0748 mutant displayed reduced growth rates in minimal and rich media. The NCgl0748 protein was shown to be localized in the cytoplasm only, while the HflX pool is equally distributed between cytoplasm and plasma membrane. In order to study the proposed degradation of ClgR by ClpCP we have constructed a conditional clpP1P2 mutant. Depletion of ClpP1 and ClpP2 in that strain resulted in the accumulation of ClgR, indicating that ClgR is in fact a substrate of the ClpCP1 and/or ClpCP2 protease in C. glutamicum.
Collapse
Affiliation(s)
- Sabine Engels
- Institute of Biotechnology 1, Research Centre Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
287
|
Blackman IC, Park YW, Harrison MA. Effects of oxidative compounds on thermotolerance in escherichia coli O157:H7 strains EO139 and 380-94. J Food Prot 2005; 68:2443-6. [PMID: 16300086 DOI: 10.4315/0362-028x-68.11.2443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An oxidative complex composed of ferric iron chloride hexahydrate, ADP, and ascorbic acid can generate hydrogen peroxide and hydroxyl radicals in fibroblasts. These compounds are naturally found in meat and meat-based products and may elicit oxidative stress on Escherichia coli O157:H7, thus conferring thermotolerance to the bacterium due to the phenomenon of the global stress response. The effect of the levels of the oxidative complex on the thermotolerance of E. coli O157:H7 was investigated. Cultures of E. coli O157:H7 strains EO139 and 380-94 were mixed in three different concentrations (10:10: 40, 15:15:60, and 20:20:80 microM) of the oxidative complex (iron III chloride, ADP, and ascorbic acid, respectively). The samples were inserted into capillary tubes and heated in a circulating water bath at 59 and 60 degrees C for EO139 and 380-94, respectively. Tubes were removed at intervals of 5 min for up to 1 h and contents spirally plated on plate count agar that was incubated for 48 h at 37 degrees C. The thermotolerance of both E. coli O157:H7 strains EO139 and 380-94 was influenced by the concentrations of the oxidative complex. The ratio of 10:10:40 microM enhanced thermotolerance of EO139 and 390-94 at 59 and 60 degrees C, respectively. However, exposure to the ratios of 15:15:60 and 20:20:80 microM rendered the pathogen more sensitive to the lethal effect and did not enhance the thermotolerance of the cells. The significance of this study is twofold. This experiment proves that oxidative stress can enhance thermotolerance of bacterial cells induced by an oxidative complex if only in a specific ratio and concentration. It is possible to speculate that if the chemical compounds are present in this ratio in meats, they may enhance the thermal resistance of E. coli O157:H7 and make the bacteria more difficult to eliminate, thus increasing the risk of foodborne illness in consumers.
Collapse
Affiliation(s)
- Isabel C Blackman
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030-4313, USA.
| | | | | |
Collapse
|
288
|
González-Montalbán N, Carrió MM, Cuatrecasas S, Arís A, Villaverde A. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol 2005; 118:406-12. [PMID: 16024126 DOI: 10.1016/j.jbiotec.2005.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/06/2005] [Accepted: 05/12/2005] [Indexed: 11/22/2022]
Abstract
Cytotoxicity of cytoplasmic bacterial inclusion bodies has been explored in vivo in cells producing a model, misfolding-prone beta-galactosidase fusion protein. The formation of such aggregates does not result in detectable toxicity on Escherichia coli producing cells. However, a deficiency in the main chaperones DnaK or GroEL but not in other components of the heat shock system such as the chaperone ClpA or the protease Lon, promotes a dramatic inhibition of cell growth. The role of DnaK and GroEL in minimizing toxicity of in vivo protein aggregation is discussed in the context of the conformational stress and the protein quality control system.
Collapse
Affiliation(s)
- Nuria González-Montalbán
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
289
|
Melkani GC, Zardeneta G, Mendoza JA. On the chaperonin activity of GroEL at heat-shock temperature. Int J Biochem Cell Biol 2005; 37:1375-85. [PMID: 15833270 DOI: 10.1016/j.biocel.2005.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Chemistry and Biochemistry, California State University San Marcos, 333 S Twin Oaks Valley RD, San Marcos, CA 92096-0001, USA
| | | | | |
Collapse
|
290
|
Ward DE, Shockley KR, Chang LS, Levy RD, Michel JK, Conners SB, Kelly RM. Proteolysis in hyperthermophilic microorganisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:63-74. [PMID: 15803660 PMCID: PMC2685542 DOI: 10.1155/2002/503191] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.
Collapse
Affiliation(s)
- Donald E. Ward
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Keith R. Shockley
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Lara S. Chang
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ryan D. Levy
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Joshua K. Michel
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Shannon B. Conners
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M. Kelly
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
- Corresponding author ()
| |
Collapse
|
291
|
Shigapova N, Török Z, Balogh G, Goloubinoff P, Vígh L, Horváth I. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem Biophys Res Commun 2005; 328:1216-23. [PMID: 15708006 DOI: 10.1016/j.bbrc.2005.01.081] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.
Collapse
Affiliation(s)
- Natalia Shigapova
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
292
|
Hassani M, Mañas P, Raso J, Condón S, Pagán R. Predicting heat inactivation of Listeria monocytogenes under nonisothermal treatments. J Food Prot 2005; 68:736-43. [PMID: 15830664 DOI: 10.4315/0362-028x-68.4.736] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to find a model that accurately predicts the heat inactivation of Listeria monocytogenes (ATCC 15313) at constantly rising heating rates (0.5 to 9 degrees C/min) in media of different pH values (4.0 to 7.4). Survival curves of L. monocytogenes obtained under isothermal treatments at any temperature were nearly linear. Estimations of survival curves under nonisothermal treatments obtained from heat resistance parameters of isothermal treatments adequately fit experimental values obtained at pH 4.0. On the contrary, survivors were much higher than estimations at pH 5.5 and 7.4. The slower the heating rate and the longer the treatment time, the greater the differences between the experimental and estimated values. An equation based on the Weibullian-like distribution, log S(t) = (t/delta)p, accurately described survival curves of L. monocytogenes obtained under nonisothermal conditions within the range of heating rates investigated. A nonlinear relationship was observed between the scale parameter (delta) and the heating rate, which allowed the development of an equation capable of predicting the inactivation rate of L. monocytogenes under nonisothermal treatments at pH 5.5 and 7.4. The model predictions were a good fit to the measured data independent of the magnitude of the thermotolerance increase. This work might contribute to the increase in safety of those food products that require long heating lag phases during the pasteurization process.
Collapse
Affiliation(s)
- M Hassani
- Departamento Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
293
|
Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, Vasala A, Neubauer P. Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Fact 2005; 4:9. [PMID: 15804347 PMCID: PMC1087501 DOI: 10.1186/1475-2859-4-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/01/2005] [Indexed: 11/10/2022] Open
Abstract
SUMMARY: BACKGROUND: Escherichia coli induces the heat shock response to a temperature up-shift which is connected to the synthesis of a characteristic set of proteins, including ATP dependent chaperones and proteases. Therefore the balance of the nucleotide pool is important for the adaptation and continuous function of the cell. Whereas it has been observed in eukaryotic cells, that the ATP level immediately decreased after the temperature shift, no data are available for E. coli about the adenosine nucleotide levels during the narrow time range of minutes after a temperature up-shift. RESULTS: The current study shows that a temperature up-shift is followed by a very fast significant transient increase of the cellular ATP concentration within the first minutes. This increase is connected to a longer lasting elevation of the cellular respiration and glucose uptake. Also the mRNA level of typical heat shock genes increases within only one minute after the heat-shock. CONCLUSION: The presented data prove the very fast response of E. coli to a heat-shock and that the initial response includes the increase of the ATP pool which is important to fulfil the need of the cell for new syntheses, as well as for the function of chaperones and proteases.
Collapse
Affiliation(s)
- Jaakko Soini
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Christina Falschlehner
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Christina Mayer
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Daniela Böhm
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Stefan Weinel
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Johanna Panula
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Antti Vasala
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
| | - Peter Neubauer
- Bioprocess Engineering Laboratory and Biocenter Oulu, Department of Process and Environmental Engineering, University of Oulu, P.O.Box 4300, FI – 90014 Oulu, Finland
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| |
Collapse
|
294
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
295
|
Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N. DnaK from Vibrio proteolyticus: Complementation of a dnaK-null mutant of Escherichia coli and the role of its atpase domain. J Biosci Bioeng 2005; 99:136-42. [PMID: 16233770 DOI: 10.1263/jbb.99.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/15/2004] [Indexed: 11/17/2022]
Abstract
We cloned the 4.8-kbp DNA fragment containing the dnaK gene from the chromosomal DNA of Vibrio proteolyticus. It contained four genes arranged unidirectionally in the order of grpE, gltP, dnaK and dnaJ. The DnaK gene of V. proteolyticus (VprDnaK) allowed a dnaK-null mutant of Escherichia coli (DeltadnaK52) to propagate lambda phages but not to grow at 43 degrees C. However, a chimeric DnaK gene comprising the regions corresponding to the N-terminal ATPase domain of E. coli DnaK (EcoDnaK) and the C-terminal region of VprDnaK including the substrate-binding domain, enabled the mutant to grow at 43 degrees C. The temperature dependence for the ATPase activity of the chimeric DnaK was similar to that of EcoDnaK. Fluorometric analyses showed that the chimeric DnaK is much more thermostable than EcoDnaK and VprDnaK. These findings indicate that the thermal stability of the ATPase domain of DnaK is responsible for its chaperone action at high temperatures such as 43 degrees C.
Collapse
Affiliation(s)
- Kazuaki Yoshimune
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
296
|
Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 2005; 67:289-98. [PMID: 15635462 DOI: 10.1007/s00253-004-1814-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/22/2004] [Accepted: 10/23/2004] [Indexed: 11/24/2022]
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Production of these proteins has a remarkable demand in the market. Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically therapeutic proteins such as insulin and bovine growth hormone. These demands have driven the development of a variety of strategies for achieving high-level expression of protein, particularly involving several aspects such as expression vectors design, gene dosage, promoter strength (transcriptional regulation), mRNA stability, translation initiation and termination (translational regulation), host design considerations, codon usage, and fermentation factors available for manipulating the expression conditions, which are the major challenges is obtaining the high yield of protein at low cost.
Collapse
Affiliation(s)
- S Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
297
|
Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N. Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 2004; 9:145-50. [PMID: 15599780 DOI: 10.1007/s00792-004-0429-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/12/2004] [Indexed: 11/26/2022]
Abstract
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0 degrees C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24 degrees C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43 degrees C nor lambda phage propagation at an even lower temperature, 30 degrees C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15 degrees C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.
Collapse
Affiliation(s)
- Kazuaki Yoshimune
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
298
|
Guisbert E, Herman C, Lu CZ, Gross CA. A chaperone network controls the heat shock response in E. coli. Genes Dev 2004; 18:2812-21. [PMID: 15545634 PMCID: PMC528900 DOI: 10.1101/gad.1219204] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, sigma32. The DnaK chaperone machine regulates both the amount and activity of sigma32, thereby coupling sigma32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate sigma32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of sigma32. We show that increasing the level of GroEL/S leads to a decrease in sigma32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of sigma32 by increasing the level of sigma32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to sigma32 and decreases sigma32-dependent transcription in vitro, suggesting that this regulation is direct. We discuss why using a chaperone network to regulate sigma32 results in a more sensitive and accurate detection of the protein folding environment.
Collapse
Affiliation(s)
- Eric Guisbert
- Department of Biochemistry and Biophysics, Microbiology and Immunology, and Stomatology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
299
|
Abstract
Proteases can play key roles in regulation by controlling the levels of critical components of, for example, signal transduction pathways. Proteolytic processing can remove regulatory proteins when they are not needed, while transforming others from the dormant into the biologically active state. The latter mechanism often involves a subsequent change of cellular localization such as the movement from the membrane to the nucleus. The investigation of these processes has revealed a new type of proteolytic activity, regulated intramembrane proteolysis, and a reversible switch in activity occurring in the HtrA family of serine proteases. The bacterial RseA and the human amyloid precursor processing pathways are used as models to review these novel principles that are evolutionarily conserved and have wide biological implications.
Collapse
Affiliation(s)
- Michael Ehrmann
- Cardiff University, School of Biosciences, Cardiff CF10 3US, UK.
| | | |
Collapse
|
300
|
Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 2004; 52:285-302. [PMID: 15049827 DOI: 10.1111/j.1365-2958.2003.03979.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-dependent protease Clp plays important roles in the cell's protein quality control system and in the regulation of cellular processes. In Corynebacterium glutamicum, the levels of the proteolytic subunits ClpP1 and ClpP2 as well as of the corresponding mRNAs were drastically increased upon deletion of the clpC gene, coding for a Clp ATPase subunit. We identified a regulatory protein, designated ClgR, binding to a common palindromic sequence motif in front of clpP1P2 as well as of clpC. Deletion of clgR in the DeltaclpC background completely abolished the increased transcription of both operons, indicating that ClgR activates transcription of these genes. ClgR activity itself is probably controlled via ClpC-dependent regulation of its stability, as ClgR is only present in DeltaclpC and not in wild-type cells, whereas the levels of clgR mRNA are comparable in both strains. clpC, clpP1P2 and clgR expression is induced upon severe heat stress, however, independently of ClgR. Identification of the heat-responsive transcriptional start sites in front of these genes revealed the presence of sequence motifs typical for sigmaECF-dependent promoters. The ECF sigma factor sigmaH could be identified as being required for transcriptional activation of clpC, clpP1P2 and clgR in response to severe heat stress. A second heat-responsive but sigmaH-independent promoter in front of clgR could be identified that is subject to negative regulation by the transcriptional repressor HspR. Taken together, these results show that clpC and clpP1P2 expression in C. glutamicum is subject to complex regulation via both independent and hierarchically organized pathways, allowing for the integration of multiple environmental stimuli. Both the ClgR- and sigmaH-dependent regulation of clpC and clpP1P2 expression appears to be conserved in other actinomycetes.
Collapse
Affiliation(s)
- Sabine Engels
- Institute of Biotechnology 1, Research Centre Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|