251
|
Collura A, Blaisonneau J, Baldacci G, Francesconi S. The fission yeast Crb2/Chk1 pathway coordinates the DNA damage and spindle checkpoint in response to replication stress induced by topoisomerase I inhibitor. Mol Cell Biol 2005; 25:7889-99. [PMID: 16107732 PMCID: PMC1190313 DOI: 10.1128/mcb.25.17.7889-7899.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/25/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022] Open
Abstract
Living organisms experience constant threats that challenge their genome stability. The DNA damage checkpoint pathway coordinates cell cycle progression with DNA repair when DNA is damaged, thus ensuring faithful transmission of the genome. The spindle assembly checkpoint inhibits chromosome segregation until all chromosomes are properly attached to the spindle, ensuring accurate partition of the genetic material. Both the DNA damage and spindle checkpoint pathways participate in genome integrity. However, no clear connection between these two pathways has been described. Here, we analyze mutants in the BRCT domains of fission yeast Crb2, which mediates Chk1 activation, and provide evidence for a novel function of the Chk1 pathway. When the Crb2 mutants experience damaged replication forks upon inhibition of the religation activity of topoisomerase I, the Chk1 DNA damage pathway induces sustained activation of the spindle checkpoint, which in turn delays metaphase-to-anaphase transition in a Mad2-dependent fashion. This new pathway enhances cell survival and genome stability when cells undergo replicative stress in the absence of a proficient G(2)/M DNA damage checkpoint.
Collapse
Affiliation(s)
- Ada Collura
- CNRS UMR 2027--Institut Curie, Bātiment 110, Centre Universitaire d'Orsay, France
| | | | | | | |
Collapse
|
252
|
Bagherieh-Najjar MB, de Vries OMH, Hille J, Dijkwel PP. Arabidopsis RecQI4A suppresses homologous recombination and modulates DNA damage responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:789-98. [PMID: 16146519 DOI: 10.1111/j.1365-313x.2005.02501.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecQ is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in Arabidopsis. Here we report on the functional analysis of the Arabidopsis RecQl4A gene. Ectopic expression of Arabidopsis RecQl4A in yeast RecQ-deficient cells suppressed their hypersensitivity to the DNA-damaging drug methyl methanesulfonate (MMS) and enhanced their rate of homologous recombination (HR). Analysis of three recQl4A mutant alleles revealed no obvious developmental defects or telomere deregulation in plants grown under standard growth conditions. Compared with wild-type Arabidopsis, the recQl4A mutant seedlings were found to be hypersensitive to UV light and MMS, and more resistant to mitomycin C. The average frequency of intrachromosomal HR in recQl4A mutant plants was increased 7.5-fold over that observed in wild-type plants. The data reveal roles for Arabidopsis RecQl4A in maintenance of genome stability by modulation of the DNA damage response and suppression of HR.
Collapse
Affiliation(s)
- Mohammad B Bagherieh-Najjar
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
253
|
Rugo RE, Almeida KH, Hendricks CA, Jonnalagadda VS, Engelward BP. A single acute exposure to a chemotherapeutic agent induces hyper-recombination in distantly descendant cells and in their neighbors. Oncogene 2005; 24:5016-25. [PMID: 15856014 DOI: 10.1038/sj.onc.1208690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homologous recombination can induce tumorigenic sequence rearrangements. Here, we show that persistent hyper-recombination can be induced following exposure to a bifunctional alkylating agent, mitomycin C (MMC), and that the progeny of exposed cells induce a hyper-recombination phenotype in unexposed neighboring cells. Residual damage cannot be the cause of delayed recombination events, since recombination is observed after drug and template damage are diluted over a million-fold. Furthermore, not only do progeny of MMC-exposed cells induce recombination in unexposed cells (bystanders), but these bystanders can in turn induce recombination in their unexposed neighbors. Thus, a signal to induce homologous recombination can be passed from cell to cell. Although the underlying molecular mechanism is not yet known, these studies reveal that cells suffer consequences of damage long after exposure, and that can signal unexposed neighboring cells to respond similarly. Thus, a single acute exposure to a chemotherapeutic agent can cause long-term changes in genomic stability. If the results of these studies of mouse embryonic stem (ES) cells are generally applicable to many cell types, these results suggest that a relatively small number of cells could potentially induce a tissue-wide increase in the risk of de novo homologous recombination events.
Collapse
Affiliation(s)
- Rebecca E Rugo
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
254
|
Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 2005; 57:97-110. [PMID: 15948952 DOI: 10.1111/j.1365-2958.2005.04677.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rapidly dividing bacterial cells, the machinery for repair of DNA double-strand breaks has to contend not only with the forces driving replication and transmission of the DNA but also its transcription. By exploiting I-SceI homing endonuclease to break the Escherichia coli chromosome at one or more defined locations, we have been able to investigate how these processes are co-ordinated and repair is accomplished. When breaks are induced at a single site, the SOS-inducible RecN protein and the transcription factor DksA combine to promote efficient repair. When induced at two or more, distantly located sites, RecN becomes almost indispensable. Many cells that do survive have extensive deletions of sequences flanking the break, with end points often coinciding with imperfect repeat elements. These findings herald a much greater complexity for chromosome repair than suggested by current mechanistic models and reveal a role for RecN in protecting the chromosome from break-induced chromosome rearrangements.
Collapse
Affiliation(s)
- Tom R Meddows
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
255
|
Ulrich HD. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 2005; 15:525-32. [PMID: 16125934 DOI: 10.1016/j.tcb.2005.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/21/2005] [Accepted: 08/11/2005] [Indexed: 01/08/2023]
Abstract
Posttranslational modification by ubiquitin and SUMO is recognized as an effective means of controlling the stability, localization or activity of intracellular proteins, thereby contributing to the regulation of many biological processes. Over the past few years, it has become apparent that the two modification systems often communicate and jointly affect the properties of common substrate proteins, in some cases by being targeted to the same site. However, although SUMO and ubiquitin might have very different effects on a given target, their actions can rarely be explained by simple competition. This article gives an overview of target proteins that can serve as substrates for both SUMO and ubiquitin to highlight the diversity of regulatory strategies that result from the crosstalk between the two modification systems.
Collapse
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts, UK.
| |
Collapse
|
256
|
Kline KA, Seifert HS. Mutation of the priA gene of Neisseria gonorrhoeae affects DNA transformation and DNA repair. J Bacteriol 2005; 187:5347-55. [PMID: 16030229 PMCID: PMC1196015 DOI: 10.1128/jb.187.15.5347-5355.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, PriA is central to the restart of chromosomal replication when replication fork progression is disrupted and is also involved in homologous recombination and DNA repair. To investigate the role of PriA in recombination and repair in Neisseria gonorrhoeae, we identified, cloned, and insertionally inactivated the gonococcal priA homologue. The priA mutant showed a growth deficiency and decreased DNA repair capability and was completely for deficient in DNA transformation compared to the isogenic parental strain. The priA mutant was also more sensitive to the oxidative damaging agents H2O2 and cumene hydroperoxide compared to the parental strain. These phenotypes were complemented by supplying a functional copy of priA elsewhere in the chromosome. The N. gonorrhoeae priA mutant showed no alteration in the frequency of pilin antigenic variation. We conclude that PriA participates in DNA repair and DNA transformation processes but not in pilin antigenic variation.
Collapse
Affiliation(s)
- Kimberly A Kline
- Department of Microbiology-Immunology, Northwestern University Feinberg University School of Medicine, 303 East Chicago Avenue, Searle 6-458, Chicago, IL 60611, USA
| | | |
Collapse
|
257
|
Kiziltepe T, Yan A, Dong M, Jonnalagadda VS, Dedon PC, Engelward BP. Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells. ACTA ACUST UNITED AC 2005; 12:357-69. [PMID: 15797220 DOI: 10.1016/j.chembiol.2004.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/28/2022]
Abstract
Inflammation is an important risk factor for cancer. During inflammation, macrophages secrete nitric oxide (NO*), which reacts with superoxide or oxygen to create ONOO- or N2O3, respectively. Although homologous recombination causes DNA sequence rearrangements that promote cancer, little was known about the ability of ONOO- and N2O3 to induce recombination in mammalian cells. Here, we show that ONOO- is a potent inducer of homologous recombination at an integrated direct repeat substrate, whereas N2O3 is relatively weakly recombinogenic. Furthermore, on a per lesion basis, ONOO(-)-induced oxidative base lesions and single-strand breaks are significantly more recombinogenic than N2O3-induced base deamination products, which did not induce detectable recombination between plasmids. Similar results were observed in mammalian cells from two different species. These results suggest that ONOO(-)-induced recombination may be an important mechanism underlying inflammation-induced cancer.
Collapse
Affiliation(s)
- Tanyel Kiziltepe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
258
|
Jonnalagadda VS, Matsuguchi T, Engelward BP. Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions. DNA Repair (Amst) 2005; 4:594-605. [PMID: 15811631 DOI: 10.1016/j.dnarep.2005.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Homology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs. We describe the creation of two fluorescence-based direct repeat recombination substrates that have been targeted to the ROSA26 locus of embryonic stem cells, and that detect the major pathways of homologous recombination events, e.g., gene conversions with or without crossing over, repair of broken replication forks, and single strand annealing (SSA). SSA can be distinguished from other pathways by application of a matched pair of site-specifically integrated substrates, one of which allows detection of SSA, and one that does not. We show that SSA is responsible for a significant proportion of spontaneous homologous recombination events at these substrates, suggesting that two-ended DSBs are a common spontaneous recombinogenic lesion. Interestingly, exposure to mitomycin C (an agent that induces ICLs) increases the proportion of HDR events associated with deletions and insertions. Given that many chemotherapeutics induce ICLs, these results have important implications in terms of the risk of chemotherapy-induced deleterious sequence rearrangements that could potentially contribute to secondary tumors.
Collapse
Affiliation(s)
- Vidya S Jonnalagadda
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Ave., 56-631, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
259
|
Sanchez H, Kidane D, Reed P, Curtis FA, Cozar MC, Graumann PL, Sharples GJ, Alonso JC. The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 2005; 171:873-83. [PMID: 16020779 PMCID: PMC1456856 DOI: 10.1534/genetics.105.045906] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In models of Escherichia coli recombination and DNA repair, the RuvABC complex directs the branch migration and resolution of Holliday junction DNA. To probe the validity of the E. coli paradigm, we examined the impact of mutations in DeltaruvAB and DeltarecU (a ruvC functional analog) on DNA repair. Under standard transformation conditions we failed to construct DeltaruvAB DeltarecG, DeltarecU DeltaruvAB, DeltarecU DeltarecG, or DeltarecU DeltarecJ strains. However, DeltaruvAB could be combined with addAB (recBCD), recF, recH, DeltarecS, DeltarecQ, and DeltarecJ mutations. The DeltaruvAB and DeltarecU mutations rendered cells extremely sensitive to DNA-damaging agents, although less sensitive than a DeltarecA strain. When damaged cells were analyzed, we found that RecU was recruited to defined double-stranded DNA breaks (DSBs) and colocalized with RecN. RecU localized to these centers at a later time point during DSB repair, and formation was dependent on RuvAB. In addition, expression of RecU in an E. coli ruvC mutant restored full resistance to UV light only when the ruvAB genes were present. The results demonstrate that, as with E. coli RuvABC, RuvAB targets RecU to recombination intermediates and that all three proteins are required for repair of DSBs arising from lesions in chromosomal DNA.
Collapse
Affiliation(s)
- Humberto Sanchez
- Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Stockton-on-Tees TS17 6BH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH. Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst) 2005; 4:782-92. [PMID: 15951249 DOI: 10.1016/j.dnarep.2005.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 11/17/2022]
Abstract
Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed approximately 90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk(cs) mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position.
Collapse
Affiliation(s)
- John M Hinz
- Biosciences Directorate, L441 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | | | |
Collapse
|
261
|
Guy CP, Bolt EL. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 2005; 33:3678-90. [PMID: 15994460 PMCID: PMC1168952 DOI: 10.1093/nar/gki685] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in mammalian and Drosophila Hel308 and PolQ paralogues cause genome instability but their helicase functions are mysterious. By in vivo and in vitro analysis, we show that Hel308 from archaea (Hel308a) may act at stalled replication forks. Introducing hel308a into Escherichia coli dnaE strains that conditionally accumulate stalled forks caused synthetic lethality, an effect indistinguishable from E.coli RecQ. Further analysis in vivo indicated that the effect of hel308a is exerted independently of homologous recombination. The minimal biochemical properties of Hel308a protein were the same as human Hel308. We describe how helicase actions of Hel308a at fork structures lead specifically to displacement of lagging strands. The invading strand of D-loops is also targeted. Using archaeal Hel308, we propose models of action for the helicase domain of PolQ, promoting loading of the translesion polymerase domain. We speculate that removal of lagging strands at stalled forks by Hel308 promotes the formation of initiation zones, priming restart of lagging strand synthesis.
Collapse
Affiliation(s)
| | - Edward L. Bolt
- To whom correspondence should be addressed. Tel: +44 0115 9709404; Fax: +44 0115 9709906;
| |
Collapse
|
262
|
Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier. Cell 2005; 121:689-702. [PMID: 15935756 DOI: 10.1016/j.cell.2005.03.022] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/25/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Genomic rearrangements linked to aberrant recombination are associated with cancer and human genetic diseases. Such recombination has indirectly been linked to replication fork stalling. Using fission yeast, we have developed a genetic system to block replication forks at nonhistone/DNA complexes located at a specific euchromatic site. We demonstrate that stalled replication forks lead to elevated intrachromosomal and ectopic recombination promoting site-specific gross chromosomal rearrangements. We show that recombination is required to promote cell viability when forks are stalled, that recombination proteins associate with sites of fork stalling, and that recombination participates in deleterious site-specific chromosomal rearrangements. Thus, recombination is a "double-edged sword," preventing cell death when the replisome disassembles at the expense of genetic stability.
Collapse
Affiliation(s)
- Sarah Lambert
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
263
|
Yamada K, Ariyoshi M, Morikawa K. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 2005; 14:130-7. [PMID: 15093826 DOI: 10.1016/j.sbi.2004.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The processing of the Holliday junction by various proteins is a major event in DNA homologous recombination and is crucial to the maintenance of genome stability and biological diversity. The proteins RuvA, RuvB and RuvC play central roles in the late stage of recombination in prokaryotes. Recent atomic views of these proteins, including protein-protein and protein-junction DNA complexes, provide new insights into branch migration mechanisms: RuvA is likely to be responsible for base-pair rearrangements, whereas RuvB, classified as a member of the AAA(+) family, functions as a pump to pull DNA duplex arms without segmental unwinding. The mechanism of junction resolution by RuvC in the RuvABC resolvasome remains to be elucidated.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
264
|
Ahn JS, Osman F, Whitby MC. Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 2005; 24:2011-23. [PMID: 15889146 PMCID: PMC1142605 DOI: 10.1038/sj.emboj.7600670] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/12/2005] [Indexed: 11/09/2022] Open
Abstract
Homologous recombination is believed to play important roles in processing stalled/blocked replication forks in eukaryotes. In accordance with this, recombination is induced by replication fork barriers (RFBs) within the rDNA locus. However, the rDNA locus is a specialised region of the genome, and therefore the action of recombinases at its RFBs may be atypical. We show here for the first time that direct repeat recombination, dependent on Rad22 and Rhp51, is induced by replication fork blockage at a site-specific RFB (RTS1) within a 'typical' genomic locus in fission yeast. Importantly, when the RFB is positioned between the direct repeat, conservative gene conversion events predominate over deletion events. This is consistent with recombination occurring without breakage of the blocked fork. In the absence of the RecQ family DNA helicase Rqh1, deletion events increase dramatically, which correlates with the detection of one-sided DNA double-strand breaks at or near RTS1. These data indicate that Rqh1 acts to prevent blocked replication forks from collapsing and thereby inducing deletion events.
Collapse
Affiliation(s)
- Jong Sook Ahn
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Tel.: +44 1865 275192; Fax: +44 1865 275297; E-mail:
| |
Collapse
|
265
|
Hendricks CA, Engelward BP. "Recombomice": the past, present, and future of recombination-detection in mice. DNA Repair (Amst) 2005; 3:1255-61. [PMID: 15336621 DOI: 10.1016/j.dnarep.2004.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Homology directed repair (HDR) provides an efficient strategy for repairing and tolerating many types of DNA lesions, such as strand breaks, base damage, and crosslinks. Recombinational repair and lesion avoidance pathways that involve homology searching are integral to normal DNA replication. Indeed, it is estimated that at least ten HDR events take place each time a mammalian cell divides. HDR is associated with the transfer and exchange of DNA sequences. Usually, homologous sequences are aligned perfectly and flanking sequences are not exchanged. However, those sequence misalignments and exchanges that do occur can lead to rearrangements that contribute to cancer (e.g. deletions, inversions, translocations or loss of heterozygosity (LOH)). In order to reveal genetic and environmental factors that modulate HDR in mammals, several approaches have been used to detect recombination events in vivo. Here, we briefly review three methods for detecting homologous recombination in mice, namely: sister chromatid exchange (SCE), LOH, and recombination at tandem repeats. We conclude with a more detailed description of the recently developed "Fluorescent Yellow Direct Repeat" (FYDR) mouse model, which exploits enhanced yellow fluorescent protein (EYFP) for detecting mitotic homologous recombination in vivo. Applications of the FYDR mice are described, as well as the broader potential for using fluorescent proteins to detect recombination in various tissues/cell types in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
266
|
Barber LJ, Ward TA, Hartley JA, McHugh PJ. DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol 2005; 25:2297-309. [PMID: 15743825 PMCID: PMC1061624 DOI: 10.1128/mcb.25.6.2297-2309.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pso2/Snm1 is a member of the beta-CASP metallo-beta-lactamase family of proteins that include the V(D)J recombination factor Artemis. Saccharomyces cerevisiae pso2 mutants are specifically sensitive to agents that induce DNA interstrand cross-links (ICLs). Here we establish a novel overlapping function for PSO2 with MutS mismatch repair factors and the 5'-3' exonuclease Exo1 in the repair of DNA ICLs, which is confined to S phase. Our data demonstrate a requirement for NER and Pso2, or Exo1 and MutS factors, in the processing of ICLs, and this is required prior to the repair of ICL-induced DNA double-strand breaks (DSBs) that form during replication. Using a chromosomally integrated inverted-repeat substrate, we also show that loss of both pso2 and exo1/msh2 reduces spontaneous homologous recombination rates. Therefore, PSO2, EXO1, and MSH2 also appear to have overlapping roles in the processing of some forms of endogenous DNA damage that occur at an irreversibly collapsed replication fork. Significantly, our analysis of ICL repair in cells synchronized for each cell cycle phase has revealed that homologous recombination does not play a major role in the direct repair of ICLs, even in G2, when a suitable template is readily available. Rather, we propose that recombination is primarily involved in the repair of DSBs that arise from the collapse of replication forks at ICLs. These findings have led to considerable clarification of the complex genetic relationship between various ICL repair pathways.
Collapse
Affiliation(s)
- Louise J Barber
- Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London
| | | | | | | |
Collapse
|
267
|
Park HK, Suh D, Hyun M, Koo HS, Ahn B. A DNA repair gene of Caenorhabditis elegans: a homolog of human XPF. DNA Repair (Amst) 2005; 3:1375-83. [PMID: 15336632 DOI: 10.1016/j.dnarep.2004.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/17/2022]
Abstract
The xeroderma pigmentosum complementation group F (XPF) protein is a structure-specific endonuclease in a complex with ERCC1 and is essential for nucleotide excision repair (NER). We report a single cDNA of Caenorhabditis elegans (C. elegans) encoding highly similar protein to human XPF and other XPF members. We propose to name the corresponding C. elegans gene xpf. Messenger RNA for C. elegans xpf is 5'-tagged with a SL2 splice leader, suggesting an operon-like expression for xpf. Using RNAi, we showed that loss of C. elegans xpf function caused hypersensitivity to ultra-violet (UV) irradiation, as observed in enhanced germ cell apoptosis and increased embryonic lethality. This study suggests that C. elegans xpf is conserved in evolution and plays a role in the repair of UV-damaged DNA in C. elegans.
Collapse
Affiliation(s)
- Hye Kyung Park
- Department of Microbiology and Genetic Engineering, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | |
Collapse
|
268
|
Wen Q, Mahdi AA, Briggs GS, Sharples GJ, Lloyd RG. Conservation of RecG activity from pathogens to hyperthermophiles. DNA Repair (Amst) 2005; 4:23-31. [PMID: 15533834 DOI: 10.1016/j.dnarep.2004.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 07/13/2004] [Indexed: 11/24/2022]
Abstract
Maintaining the integrity of the genome is essential for the survival of all organisms. RecG helicase plays an important part in this process in Escherichia coli, promoting recombination and DNA repair, and providing ways to rescue stalled replication forks by way of a Holliday junction intermediate. We purified RecG proteins from three other species: two Gram-positive mesophiles, Bacillus subtilis and Streptococcus pneumoniae, and one extreme thermophile, Aquifex aeolicus. All three proteins bind and unwind replication fork and Holliday junction DNA molecules with efficiencies similar to the E. coli protein. Proteins from the Gram-positive species promote DNA repair in E. coli, indicating either that RecG acts alone or that any necessary protein-protein interactions are conserved. The S. pneumoniae RecG reduces plasmid copy number when expressed in E. coli, indicating that like the E. coli protein it unwinds plasmid R loop structures used to prime replication. This effect is not seen with B. subtilis RecG; the protein either lacks R loop unwinding activity or is compromised by having insufficient ATP. The A. aeolicus protein unwinds DNA well at 60 degrees C but is less efficient at 37 degrees C, explaining its inability to function in E. coli at this temperature. The N-terminal extension present in this protein was investigated and found to be dispensable for activity and thermo-stability. The results presented suggest that the role of RecG in DNA replication and repair is likely to be conserved throughout all bacteria, which underlines the importance of this protein in genome duplication and cell survival.
Collapse
Affiliation(s)
- Qin Wen
- Queens Medical Centre, Institute of Genetics, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
269
|
Bi X, Slater DM, Ohmori H, Vaziri C. DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 2005; 280:22343-55. [PMID: 15817457 DOI: 10.1074/jbc.m501562200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously we identified an intra-S-phase cell cycle checkpoint elicited by the DNA-damaging carcinogen benzo[a]pyrene-dihydrodiol epoxide (BPDE). Here we have investigated the roles of lesion bypass DNA polymerases polkappa and poleta in the BPDE-induced S-phase checkpoint. BPDE treatment induced the re-localization of an ectopically expressed green fluorescent protein-polkappa fusion protein to nuclear foci containing sites of active DNA synthesis in human lung carcinoma H1299 cells. In contrast, a similarly expressed yellow fluorescent protein-poleta fusion protein showed a constitutive nuclear focal distribution at replication forks (in the same cells) that was unchanged in response to BPDE. BPDE-induced formation of green fluorescent protein-polkappa nuclear foci was temporally coincident with checkpoint-mediated S-phase arrest. Unlike "wild-type" cells, Polk(-/-) mouse embryonic fibroblasts (MEFs) failed to recover from BPDE-induced S-phase arrest, while exhibiting normal recovery from S-phase arrest induced by ionizing radiation and hydroxyurea. XPV fibroblasts lacking poleta showed a normal S-phase checkpoint response to BPDE (but failed to recover from the UV light-induced S-phase checkpoint), in sharp contrast to Polk(-/-) MEFs. The persistent S-phase arrest in BPDE-treated Polk(-/-) cells was associated with increased levels of histone gammaH2AX (a marker of DNA double-strand breaks (DSBs)) and activation of the DSB-responsive kinases ATM and Chk2. These data suggest that in the absence of polkappa, replication forks stall at sites of damage and collapse and generate DSBs. Therefore, we conclude that the trans-lesion synthesis enzyme polkappa is specifically required for normal recovery from the BPDE-induced S-phase checkpoint.
Collapse
Affiliation(s)
- Xiaohui Bi
- Department of Genetics and Genomics, Boston University School of Medicine, 80 E. Concord Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
270
|
Kai M, Boddy MN, Russell P, Wang TSF. Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 2005; 19:919-32. [PMID: 15805465 PMCID: PMC1080131 DOI: 10.1101/gad.1304305] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The replication checkpoint kinase Cds1 preserves genome integrity by stabilizing stalled replication forks. Cds1 targets substrates through its FHA domain. The Cds1 FHA domain interacts with Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease. We report here that Mus81 and Rhp51 are required for generating deletion mutations in fission yeast replication mutants that experience replication stress. A mutation in the Mus81 FHA-binding motif eliminates its Cds1-binding and Cds1-dependent phosphorylation. Furthermore, this mutation exacerbates the deletion mutator phenotype of a replication mutant, and induces a hyper-recombination phenotype in hydroxyurea-treated cells. In unperturbed cells, Mus81 associates with chromatin throughout S phase. In replication mutants grown at semipermissive temperature, Mus81 undergoes minor Cds1-dependent phosphorylation, remains chromatin-associated, generates deletion mutations, and maintains cell growth. Upon S-phase arrest by acute hydroxyurea treatment, Mus81 is not required for cell viability but is essential for recovery from replication fork collapse. Moreover, Mus81 undergoes extensive Cds1-dependent phosphorylation and dissociates from chromatin in hydroxyurea-arrested cells, thereby preventing it from cleaving stalled replication forks that could lead to fork breakage and chromosomal rearrangement. These results provide novel insights into how Cds1 regulates Mus81 accordingly when cells experience different replication stress to preserve genome integrity.
Collapse
Affiliation(s)
- Mihoko Kai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | |
Collapse
|
271
|
Hope JC, Maftahi M, Freyer GA. A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe. Genetics 2005; 170:519-31. [PMID: 15802523 PMCID: PMC1450410 DOI: 10.1534/genetics.104.037598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Following replication arrest, multiple cellular responses are triggered to maintain genomic integrity. In fission yeast, the RecQ helicase, Rqh1, plays a critical role in this process. This is demonstrated in Deltarqh1 cells that, following treatment with hydroxyurea (HU), undergo an aberrant mitosis leading to cell death. Previous data suggest that Rqh1 functions with homologous recombination (HR) in recovery from replication arrest. We have found that loss of the HR genes rhp55(+) or rhp57(+), but not rhp51(+) or rhp54(+), suppresses the HU sensitivity of Deltarqh1 cells. Much of this suppression requires Rhp51 and Rhp54. In addition, this suppression is partially dependent on swi5(+). In budding yeast, overexpressing Rad51 (the Rhp51 homolog) minimized the need for Rad55/57 (Rhp55/57) in nucleoprotein filament formation. We overexpressed Rhp51 in Schizosaccharomyces pombe and found that it greatly reduced the requirement for Rhp55/57 in recovery from DNA damage. However, overexpressing Rhp51 did not change the Deltarhp55 suppression of the HU sensitivity of Deltarqh1, supporting an Rhp55/57 function during HR independent of nucleoprotein filament formation. These results are consistent with Rqh1 playing a role late in HR following replication arrest and provide evidence for a postsynaptic function for Rhp55/57.
Collapse
Affiliation(s)
- Justin C Hope
- Graduate Program in Anatomy and Cell Biology, Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
272
|
Heller RC, Marians KJ. The Disposition of Nascent Strands at Stalled Replication Forks Dictates the Pathway of Replisome Loading during Restart. Mol Cell 2005; 17:733-43. [PMID: 15749022 DOI: 10.1016/j.molcel.2005.01.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/31/2004] [Accepted: 01/25/2005] [Indexed: 11/26/2022]
Abstract
Rescue of arrested and collapsed replication forks is essential for maintenance of genomic integrity. One system for origin of replication-independent loading of the DnaB replicative helicase and subsequent replisome reassembly requires the structure-specific recognition factor PriA and the assembly factors PriB and DnaT. Here, we provide biochemical evidence for an alternate system for DnaB loading that requires only PriC. Furthermore, the choice of which system is utilized during restart is dictated by the nature of the structure of the stalled replication fork. PriA-dependent reactions are most robust on fork structures with no gaps in the leading strand, such as is found at the junction of a D loop, while the PriC-dependent system preferentially utilizes fork structures with large gaps in the leading strand. These observations suggest that the type of initial damage on the DNA template and how the inactivated fork is processed ultimately influence the choice of enzymatic restart pathway.
Collapse
Affiliation(s)
- Ryan C Heller
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
273
|
Nohmi T, Masumura KI. Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:150-161. [PMID: 15668939 DOI: 10.1002/em.20110] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellular DNA is exposed to a variety of exogenous and endogenous mutagens. A complete understanding of the importance of different types of DNA damage requires knowledge of the specific molecular alterations induced by different types of agents in specific target tissues in vivo. The gpt delta transgenic mouse model provides the opportunity to characterize tissue-specific DNA alterations because small and large deletions as well as base substitutions can be analyzed. Here, we summarize the characteristics of intrachromosomal deletions and base substitutions induced by ionizing radiation in liver and spleen, ultraviolet B (UVB) radiation in epidermis, mitomycin C (MMC) in bone marrow, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in colon, and aminophenylnorharman (APNH) in liver of gpt delta mice. Carbon-ion radiation, UVB, and MMC induced large deletions of more than 1 kb. About half of the large deletions occurred between short direct-repeat sequences and the remainder had flush ends, suggesting the involvement of nonhomologous end joining of double-stranded breaks (DSBs) in DNA. UV photoproducts and interstrand crosslinks by MMC may block DNA replication, thereby inducing DSBs. In contrast, PhIP and APNH mainly generated 1 bp deletions in runs of guanine bases. As for base substitutions, UVB and MMC induced G:C-->A:T transitions at dipyrimidine sites and tandem base substitutions at GG sites, respectively. PhIP and APNH induced G:C-->T:A transversions. Translesion DNA synthesis across the lesions, i.e., UV photoproducts, intrastrand crosslinks by MMC, and guanine adducts by the heterocyclic amines, may be involved in the induction of base substitutions. These results indicate the importance of sequence information to elucidate the mechanisms underlying deletions and base substitutions induced in vivo by environmental mutagens.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan.
| | | |
Collapse
|
274
|
Henry T, García-Del Portillo F, Gorvel JP. Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Mol Microbiol 2005; 56:252-67. [PMID: 15773994 DOI: 10.1111/j.1365-2958.2005.04540.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.
Collapse
Affiliation(s)
- T Henry
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
275
|
Briggs GS, Mahdi AA, Wen Q, Lloyd RG. DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem 2005; 280:13921-7. [PMID: 15695524 DOI: 10.1074/jbc.m412054200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecG differs from most helicases acting on branched DNA in that it is thought to catalyze unwinding via translocation of a monomer on dsDNA, with a wedge domain facilitating strand separation. Conserved phenylalanines in the wedge are shown to be critical for DNA binding. When detached from the helicase domains, the wedge bound a Holliday junction with high affinity but failed to bind a replication fork structure. Further stabilizing contacts are identified in full-length RecG, which may explain fork binding. Detached from the wedge, the helicase region unwound junctions but had extremely low substrate affinity, arguing against the "classical inchworm" mode of translocation. We propose that the processivity of RecG on branched DNA substrates is dependent on the ability of the wedge to establish strong binding at the branch point. This keeps the helicase motor in contact with the substrate, enabling it to drive dsDNA translocation with high efficiency.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
276
|
Cox JM, Tsodikov OV, Cox MM. Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 2005; 3:e52. [PMID: 15719060 PMCID: PMC546331 DOI: 10.1371/journal.pbio.0030052] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
The RecA protein forms nucleoprotein filaments on DNA, and individual monomers within the filaments hydrolyze ATP. Assembly and disassembly of filaments are both unidirectional, occurring on opposite filament ends, with disassembly requiring ATP hydrolysis. When filaments form on duplex DNA, RecA protein exhibits a functional state comparable to the state observed during active DNA strand exchange. RecA filament state was monitored with a coupled spectrophotometric assay for ATP hydrolysis, with changes fit to a mathematical model for filament disassembly. At 37 degrees C, monomers within the RecA-double-stranded DNA (dsDNA) filaments hydrolyze ATP with an observed k(cat) of 20.8 +/- 1.5 min(-1). Under the same conditions, the rate of end-dependent filament disassembly (k(off)) is 123 +/- 16 monomers per minute per filament end. This rate of disassembly requires a tight coupling of the ATP hydrolytic cycles of adjacent RecA monomers. The relationship of k(cat) to k(off) infers a filament state in which waves of ATP hydrolysis move unidirectionally through RecA filaments on dsDNA, with successive waves occurring at intervals of approximately six monomers. The waves move nearly synchronously, each one transiting from one monomer to the next every 0.5 s. The results reflect an organization of the ATPase activity that is unique in filamentous systems, and could be linked to a RecA motor function.
Collapse
Affiliation(s)
- Julia M Cox
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| | - Oleg V Tsodikov
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| | - Michael M Cox
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| |
Collapse
|
277
|
Shioi S, Ose T, Maenaka K, Shiroishi M, Abe Y, Kohda D, Katayama T, Ueda T. Crystal structure of a biologically functional form of PriB from Escherichia coli reveals a potential single-stranded DNA-binding site. Biochem Biophys Res Commun 2005; 326:766-76. [PMID: 15607735 DOI: 10.1016/j.bbrc.2004.11.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Indexed: 01/16/2023]
Abstract
PriB is not only an essential protein necessary for the replication restart on the collapsed and disintegrated replication fork, but also an important protein for assembling of primosome onto PhiX174 genomic DNA during replication initiation. Here we report a 2.0-A-resolution X-ray structure of a biologically functional form of PriB from Escherichia coli. The crystal structure revealed that despite a low level of primary sequence identity, the PriB monomer, as well as the dimeric form, are structurally identical to the N-terminal DNA-binding domain of the single-stranded DNA-binding protein (SSB) from Escherichia coli, which possesses an oligonucleotides-binding-fold. The oligonucleotide-PriB complex model based on the oligonucleotides-SSB complex structure suggested that PriB had a DNA-binding pocket conserved in SSB from Escherichia coli and might bind to single-stranded DNA in the manner of SSB. Furthermore, surface plasmon resonance analysis and fluorescence measurements demonstrated that PriB binds single-stranded DNA with high affinity, by involving tryptophan residue. The significance of these results with respect to the functional role of PriB in the assembly of primosome is discussed.
Collapse
Affiliation(s)
- Seijiro Shioi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M. Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells. Mol Cell 2005; 17:153-9. [PMID: 15629726 DOI: 10.1016/j.molcel.2004.11.032] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/29/2004] [Accepted: 11/04/2004] [Indexed: 11/27/2022]
Abstract
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.
Collapse
|
279
|
Sale JE. Immunoglobulin diversification in DT40: a model for vertebrate DNA damage tolerance. DNA Repair (Amst) 2004; 3:693-702. [PMID: 15177178 DOI: 10.1016/j.dnarep.2004.03.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2004] [Indexed: 12/23/2022]
Abstract
Studies of recombination in vertebrates have rather lagged behind those in yeast and bacteria in large part due to the relative genetic intractability of vertebrate model systems. Immunoglobulin diversification in the chicken cell line DT40 provides a powerful combination of a physiological recombination process coupled with facile genetic modification. The immunoglobulin variable regions of DT40 constitutively diversify by a combination of gene conversion, in which sequence changes are templated from one of a number of upstream pseudogenes or by non-templated point mutation. Both of these events are initiated by abasic sites in the variable region DNA generated following the targeted deamination of cytidine by activation induced deaminase. Recent work has shown that the two outcomes, gene conversion and somatic mutation, are likely to reflect alternate pathways for the processing of these abasic sites. In this review I will discuss the current data on avian Ig gene diversification and examine how the immunoglobulin loci of DT40 may provide a useful model system for studying the mechanisms and interactions of vertebrate recombination and pathways of DNA damage tolerance.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
280
|
Roberts JA, White MF. An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81. J Biol Chem 2004; 280:5924-8. [PMID: 15591065 DOI: 10.1074/jbc.m412766200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-specific nucleases of the XPF/Mus81 family function in several DNA recombination and repair pathways in eukaryotes, cleaving a variety of flap and branched DNA substrates. Mus81 and XPF are clearly related evolutionarily but differ markedly in their substrate specificity and protein partners. We demonstrate that the XPF endonuclease from Sulfolobus solfataricus, which is dependent on the sliding clamp proliferating cell nuclear antigen for activity, represents an ancestral form of the XPF/Mus81 family, with key properties in common with both enzymes. The archaeal XPF has a domain organization and sequence preference very similar to eukaryal XPF-ERCC1. However, the archaeal enzyme has a pronounced preference for Mus81-type substrates such as D loops, nicked four-way junctions, and 3' flaps. These all have in common a 5'-DNA end next to the cleavage site. The availability of the sliding clamp proliferating cell nuclear antigen may dictate the activity of Sulfolobus XPF in vivo.
Collapse
Affiliation(s)
- Jennifer A Roberts
- Centre for Biomolecular Sciences, University of St. Andrews, KY16 9ST, Scotland, UK
| | | |
Collapse
|
281
|
Abstract
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB-PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein-protein interactions involving SSB may coordinate replication fork reloading from start to finish.
Collapse
Affiliation(s)
- Chris J Cadman
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
282
|
Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1. Mol Cell Biol 2004; 24:10126-44. [PMID: 15542824 PMCID: PMC529042 DOI: 10.1128/mcb.24.23.10126-10144.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 08/10/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.
Collapse
Affiliation(s)
- Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P. zza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
283
|
Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Khajav M, Ashizawa T, Sinden RR. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004; 32:6334-46. [PMID: 15576360 PMCID: PMC535684 DOI: 10.1093/nar/gkh976] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a (CTG).(CAG) repeat in the DMPK gene on chromosome 19q13.3. At least 17 neurological diseases have similar genetic mutations, the expansion of DNA repeats. In most of these disorders, the disease severity is related to the length of the repeat expansion, and in DM1 the expanded repeat undergoes further elongation in somatic and germline tissues. At present, in this class of diseases, no therapeutic approach exists to prevent or slow the repeat expansion and thereby reduce disease severity or delay disease onset. We present initial results testing the hypothesis that repeat deletion may be mediated by various chemotherapeutic agents. Three lymphoblast cell lines derived from two DM1 patients treated with either ethylmethanesulfonate (EMS), mitomycin C, mitoxantrone or doxorubicin, at therapeutic concentrations, accumulated deletions following treatment. Treatment with EMS frequently prevented the repeat expansion observed during growth in culture. A significant reduction of CTG repeat length by 100-350 (CTG).(CAG) repeats often occurred in the cell population following treatment with these drugs. Potential mechanisms of drug-induced deletion are presented.
Collapse
Affiliation(s)
- Vera I Hashem
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Harinarayanan R, Gowrishankar J. A dnaC mutation in Escherichia coli that affects copy number of ColE1-like plasmids and the PriA-PriB (but not Rep-PriC) pathway of chromosomal replication restart. Genetics 2004; 166:1165-76. [PMID: 15082538 PMCID: PMC1470795 DOI: 10.1534/genetics.166.3.1165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli nusG and rho mutants, which are defective in transcription termination, are killed following transformation with several ColE1-like plasmids that lack the plasmid-encoded copy-number regulator gene rom because of uncontrolled plasmid replication within the cells. In this study, a mutation [dnaC1331(A84T)] in the dnaC gene encoding the replicative helicase-loading protein was characterized as a suppressor of this plasmid-mediated lethality phenotype. The mutation also reduced the copy number of the plasmids in otherwise wild-type strains. In comparison with the isogenic dnaC(+) strain, the dnaC mutant was largely unaffected for (i) growth on rich or minimal medium, (ii) tolerance to UV irradiation, or (iii) survival in the absence of the PriA, RecA, or RecB proteins. However, it was moderately SOS-induced and was absolutely dependent on both the Rep helicase and the PriC protein for its viability. A dnaC1331(A84T) dam mutant, but not its mutH derivative, exhibited sensitivity to growth on rich medium, suggestive of a reduced capacity in the dnaC1331(A84T) strains to survive chromosomal double-strand breaks. We propose that DnaC-A84T is proficient in the assembly of replication forks for both initiation of chromosome replication (at oriC) and replication restart via the Rep-PriC pathway, but that it is specifically defective for replication restart via the PriA-PriB pathway (and consequently also for replication of the Rom(-) ColE1-like plasmids).
Collapse
Affiliation(s)
- R Harinarayanan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
285
|
Johansson F, Lagerqvist A, Erixon K, Jenssen D. A method to monitor replication fork progression in mammalian cells: nucleotide excision repair enhances and homologous recombination delays elongation along damaged DNA. Nucleic Acids Res 2004; 32:e157. [PMID: 15537835 PMCID: PMC534636 DOI: 10.1093/nar/gnh154] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 12/28/2022] Open
Abstract
The capacity to rescue stalled replication forks (RFs) is important for the maintenance of cell viability and genome integrity. Here, we have developed a novel method for monitoring RF progression and the influence of DNA lesions on this process. The method is based on the principle that each RF is expected to be associated with a pair of single-stranded ends, which can be analyzed by employing strand separation in alkali. This method was applied to examine the rate of RF progression in Chinese hamster cell lines deficient in ERCC1, which is involved in nucleotide excision repair (NER), or in XRCC3, which participates in homologous recombination repair, following irradiation with ultraviolet (UV) light or exposure to benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE). The endpoints observed were cell survival, NER activity, formation of double-strand breaks and the rate of RF progression. Subsequently, we attempted to explain our observation that cells deficient in XRCC3 (irs1SF) exhibit enhanced sensitivity to UV radiation and BPDE. irs1SF cells demonstrated a capacity for NER that was comparable with wild-type AA8 cells, but the rate of RF progression was even higher than that for the wild-type AA8 cells. As expected, cells deficient in ERCC1 (UV4) showed no NER activity and were hypersensitive to both UV radiation and BPDE. The observation that cells deficient in NER displayed a pronounced delay in RF progression indicates that NER plays an important role in maintaining fork progression along damaged DNA. The elevated rate of RF progression in XRCC3-deficient cells indicates that this protein is involved in a time-consuming process which resolves stalled RFs.
Collapse
Affiliation(s)
- Fredrik Johansson
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
286
|
Hashem VI, Rosche WA, Sinden RR. Genetic recombination destabilizes (CTG)n.(CAG)n repeats in E. coli. Mutat Res 2004; 554:95-109. [PMID: 15450408 DOI: 10.1016/j.mrfmmm.2004.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/16/2004] [Accepted: 03/28/2004] [Indexed: 11/26/2022]
Abstract
The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, 2121 West Holcombe Blvd., Houston 77030-3303, USA
| | | | | |
Collapse
|
287
|
Noguchi E, Noguchi C, McDonald WH, Yates JR, Russell P. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 2004; 24:8342-55. [PMID: 15367656 PMCID: PMC516732 DOI: 10.1128/mcb.24.19.8342-8355.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
288
|
Novel antibiotics: second generation macrocyclic peptides designed to trap Holliday junctions. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.09.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
289
|
Abstract
Recombination plays a crucial role in underpinning genome duplication, ensuring that replication blocks are removed or bypassed, and that the replication machinery is subsequently reloaded back onto the DNA. Recent studies have identified a surprising variety of ways in which damaged replication forks are repaired and have shown that the mechanism used depends on the nature of the original blocking lesion. Indeed, an emerging theme is that a single recombination enzyme or complex can perform highly varied tasks, depending on the context of the recombination reaction.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
290
|
Doe CL, Osman F, Dixon J, Whitby MC. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Res 2004; 32:5570-81. [PMID: 15486206 PMCID: PMC524275 DOI: 10.1093/nar/gkh853] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In budding yeast most Rad51-dependent and -independent recombination depends on Rad52. In contrast, its homologue in fission yeast, Rad22, was assumed to play a less critical role possibly due to functional redundancy with another Rad52-like protein Rti1. We show here that this is not the case. Rad22 like Rad52 plays a central role in recombination being required for both Rhp51-dependent and -independent events. Having established this we proceed to investigate the involvement of the Mus81-Eme1 endonuclease in these pathways. Mus81 plays a relatively minor role in the Rhp51-dependent repair of DNA damage induced by ultraviolet light. In contrast Mus81 has a key role in the Rad22-dependent (Rhp51-independent) repair of damage induced by camptothecin, hydroxyurea and methyl-methanesulfonate. Furthermore, spontaneous intrachromosomal recombination that gives rise to deletion recombinants is impaired in a mus81 mutant. From these data we propose that a Rad22-Mus81-dependent (Rhp51-independent) pathway is an important mechanism for the repair of DNA damage in fission yeast. Consistent with this we show that in vitro Rad22 can promote strand invasion to form a D-loop that can be cleaved by Mus81.
Collapse
Affiliation(s)
- Claudette L Doe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
291
|
Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. J Biol Chem 2004; 279:53175-85. [PMID: 15485882 DOI: 10.1074/jbc.m409243200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.
Collapse
Affiliation(s)
- Kayoko Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
292
|
Kovalchuk O, Hendricks CA, Cassie S, Engelward AJ, Engelward BP. In vivo Recombination After Chronic Damage Exposure Falls to Below Spontaneous Levels in “Recombomice”. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.567.2.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
All forms of cancer are initiated by heritable changes in gene expression. Although point mutations have been studied extensively, much less is known about homologous recombination events, despite its role in causing sequence rearrangements that contribute to tumorigenesis. Although transgenic mice that permit detection of point mutations have provided a fundamental tool for studying point mutations in vivo, until recently, transgenic mice designed specifically to detect homologous recombination events in somatic tissues in vivo did not exist. We therefore created fluorescent yellow direct repeat mice, enabling automated detection of recombinant cells in vivo for the first time. Here, we show that an acute dose of ionizing radiation induces recombination in fluorescent yellow direct repeat mice, providing some of the first direct evidence that ionizing radiation induces homologous recombination in cutaneous tissues in vivo. In contrast, the same total dose of radiation given under chronic exposure conditions suppresses recombination to levels that are significantly below those of unexposed animals. In addition, global methylation is suppressed and key DNA repair proteins are induced in tissues from chronically irradiated animals (specifically AP endonuclease, polymerase β, and Ku70). Thus, increased clearance of recombinogenic lesions may contribute to suppression of homologous recombination. Taken together, these studies show that fluorescent yellow direct repeat mice provide a rapid and powerful assay for studying the recombinogenic effects of both short-term and long-term exposure to DNA damage in vivo and reveal for the first time that exposure to ionizing radiation can have opposite effects on genomic stability depending on the duration of exposure.
Collapse
Affiliation(s)
- Olga Kovalchuk
- 1Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Carrie A. Hendricks
- 2Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Scott Cassie
- 1Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Bevin P. Engelward
- 2Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| |
Collapse
|
293
|
|
294
|
Krings G, Bastia D. swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 2004; 101:14085-90. [PMID: 15371597 PMCID: PMC521093 DOI: 10.1073/pnas.0406037101] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication forks are arrested at specific sequences to facilitate a variety of DNA transactions. Forks also stall at sites of DNA damage, and the regression of stalled forks without rescue can cause genetic instability. Therefore, unraveling the mechanisms of fork arrest and of rescue of stalled forks is of considerable general interest. In Schizosaccharomyces pombe, products of two mating-type switching genes, swi1 and swi3, participate in fork arrest at the mating-type switch locus. Here, we show that these proteins also act at three termini (Ter) also called replication fork barriers in the spacer regions of rDNA but not at a fourth site, RFP4, which is nonfunctional when present in a plasmid. Two of the Swi1p- and Swi3p-dependent sites were also dependent on the transcription terminator Reb1p. Furthermore, hydroxyurea-induced replication stress mimicked the effect of swi1 or swi3 mutations at these sites. A swi1 mutant that failed to arrest forks at the mating-type fork barrier RTS1 was functional at the rDNA Ter sites, suggesting some specificity of action. Both WT and mutant forms of Swi1p were physically localized at the Ter sites in vivo. The results support the notion that Swi1p and Swi3p act at several different protein-DNA complexes in the rDNA spacer regions to arrest replication but that not all fork barriers required their activity to arrest forks.
Collapse
Affiliation(s)
- Gregor Krings
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
295
|
Carrasco B, Cozar MC, Lurz R, Alonso JC, Ayora S. Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation. J Bacteriol 2004; 186:5557-66. [PMID: 15317759 PMCID: PMC516813 DOI: 10.1128/jb.186.17.5557-5566.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 05/21/2004] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis mutants classified within the epsilon (ruvA, DeltaruvB, DeltarecU, and recD) and eta (DeltarecG) epistatic groups, in an otherwise rec+ background, render cells impaired in chromosomal segregation. A less-pronounced segregation defect in DeltarecA and Deltasms (DeltaradA) cells was observed. The repair deficiency of addAB, DeltarecO, DeltarecR, recH, DeltarecS, and DeltasubA cells did not correlate with a chromosomal segregation defect. The sensitivity of epsilon epistatic group mutants to DNA-damaging agents correlates with ongoing DNA replication at the time of exposure to the agents. The Deltasms (DeltaradA) and DeltasubA mutations partially suppress the DNA repair defect in ruvA and recD cells and the segregation defect in ruvA and DeltarecG cells. The Deltasms (DeltaradA) and DeltasubA mutations partially suppress the DNA repair defect of DeltarecU cells but do not suppress the segregation defect in these cells. The DeltarecA mutation suppresses the segregation defect but does not suppress the DNA repair defect in DeltarecU cells. These results result suggest that (i) the RuvAB and RecG branch migrating DNA helicases, the RecU Holliday junction (HJ) resolvase, and RecD bias HJ resolution towards noncrossovers and that (ii) Sms (RadA) and SubA proteins might play a role in the stabilization and or processing of HJ intermediates.
Collapse
Affiliation(s)
- Begoña Carrasco
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
296
|
Abstract
Cells induce the expression of DNA-repair enzymes, activate cell-cycle checkpoints and, under some circumstances, undergo apoptosis in response to DNA-damaging agents. The mechanisms by which these cellular responses are triggered are not well understood, but there is recent evidence that the transcription machinery might be used in DNA-damage surveillance and in triggering DNA-damage responses to suppress mutagenesis. Transcription might also act as a DNA-damage dosimeter where the severity of blockage determines whether or not to induce cell death. Could transcription therefore be a potential therapeutic target for anticancer strategies?
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan 48109-0936, USA.
| | | |
Collapse
|
297
|
Michel B, Grompone G, Florès MJ, Bidnenko V. Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 2004; 101:12783-8. [PMID: 15328417 PMCID: PMC516472 DOI: 10.1073/pnas.0401586101] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impairment of replication fork progression is a serious threat to living organisms and a potential source of genome instability. Studies in prokaryotes have provided evidence that inactivated replication forks can restart by the reassembly of the replication machinery. Several strategies for the processing of inactivated replication forks before replisome reassembly have been described. Most of these require the action of recombination proteins, with different proteins being implicated, depending on the cause of fork arrest. The action of recombination proteins at blocked forks is not necessarily accompanied by a strand-exchange reaction and may prevent rather than repair fork breakage. These various restart pathways may reflect different structures at stalled forks. We review here the different strategies of fork processing elicited by different kinds of replication impairments in prokaryotes and the variety of roles played by recombination proteins in these processes.
Collapse
Affiliation(s)
- Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | |
Collapse
|
298
|
Abstract
Double-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair relies on the RecBCD and RecA proteins, the combined ability of which to initiate recombination and form joint-molecule intermediates is well understood. To shed light on subsequent events, we exploited the I-SceI homing endonuclease of yeast to make breaks at I-SceI cleavage sites engineered into the chromosome. We show that survival depends on RecA and RecBCD, and that subsequent events can proceed via either of two pathways, one dependent on the RuvABC Holliday junction resolvase and the other on RecG helicase. Both pathways rely on PriA, presumably to facilitate DNA replication. We discuss the possibility that classical Holliday junctions may not be essential intermediates in repair and consider alternative pathways for RecG-dependent separation of joint molecules formed by RecA.
Collapse
Affiliation(s)
- Tom R Meddows
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
299
|
Nowosielska A, Calmann MA, Zdraveski Z, Essigmann JM, Marinus MG. Spontaneous and cisplatin-induced recombination in Escherichia coli. DNA Repair (Amst) 2004; 3:719-28. [PMID: 15177181 DOI: 10.1016/j.dnarep.2004.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2004] [Indexed: 12/11/2022]
Abstract
To measure cisplatin (cis-diaminodichloroplatinum(II))-induced recombination, we have used a qualitative intrachromosomal assay utilizing duplicate inactive lac operons containing non-overlapping deletions and selection for Lac+ recombinants. The two operons are separated by one Mb and conversion of one of them yields the Lac+ phenotype. Lac+ formation for both spontaneous and cisplatin-induced recombination requires the products of the recA, recBC, ruvA, ruvB, ruvC, priA and polA genes. Inactivation of the recF, recO, recR and recJ genes decreased cisplatin-induced, but not spontaneous, recombination. The dependence on PriA and RecBC suggests that recombination is induced following stalling or collapse of replication forks at DNA lesions to form double strand breaks. The lack of recombination induction by trans-DDP suggests that the recombinogenic lesions for cisplatin are purine-purine intrastrand crosslinks.
Collapse
Affiliation(s)
- Anetta Nowosielska
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, LRB823 Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
300
|
Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NGJ, Beverloo HB, Hoeijmakers JHJ, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24:5776-87. [PMID: 15199134 PMCID: PMC480908 DOI: 10.1128/mcb.24.13.5776-5787.2004] [Citation(s) in RCA: 391] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 01/07/2004] [Accepted: 04/06/2004] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|