251
|
Jung YJ, Kim HS, Jaygal G, Cho HR, Lee KB, Song IB, Kim JH, Kwak MS, Han KH, Bae MJ, Sung MH. Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation. J Microbiol Biotechnol 2022; 32:612-620. [PMID: 35283424 PMCID: PMC9628878 DOI: 10.4014/jmb.2111.11027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.
Collapse
Affiliation(s)
- Ye-Jin Jung
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hyun-Seok Kim
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Gunn Jaygal
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hye-Rin Cho
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea
| | - Kyung bae Lee
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea
| | - In-bong Song
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea,Osstem Implant Co., Ltd., Bio R&D Center, Seoul 07789, Republic of Korea
| | - Jong-Hoon Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Mi-Sun Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyung-Ho Han
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Min-Jung Bae
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea,
M.J. Bae Phone: +82- 63-720-0540 E-mail:
| | - Moon-Hee Sung
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea,Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea,Corresponding authors M.H. Sung Phone: +82-2-910-4808 Fax: +82-22-910-5739 E-mail:
| |
Collapse
|
252
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
253
|
Pesce M, Seguella L, Del Re A, Lu J, Palenca I, Corpetti C, Rurgo S, Sanseverino W, Sarnelli G, Esposito G. Next-Generation Probiotics for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23105466. [PMID: 35628274 PMCID: PMC9141965 DOI: 10.3390/ijms23105466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Correspondence: ; Tel.: +39-06-4991-2948
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Jie Lu
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China;
| | - Irene Palenca
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Chiara Corpetti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| |
Collapse
|
254
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
255
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
256
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
257
|
Post SE, Brito IL. Structural insight into protein-protein interactions between intestinal microbiome and host. Curr Opin Struct Biol 2022; 74:102354. [PMID: 35390637 DOI: 10.1016/j.sbi.2022.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
Protein-protein interactions between the microbiome and host organism play an important role in shaping host health. These host-modulating proteins have therapeutic potential in treating microbiome-linked disorders such as inflammatory bowel disease and obesity. Structural analysis of interacting proteins provides highly mechanistic insight into the domains driving these interactions and the resulting influence on host cell processes. Here, we briefly review recent publication of microbiome protein structures involved in host binding interactions, the effects of these interactions on host physiology, and the need for further study to increase the ability to detect proteins with therapeutic potential.
Collapse
Affiliation(s)
- Sarah E Post
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. https://twitter.com/@sarahpost140
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
258
|
Zitvogel L, Kroemer G. Cross-reactivity between microbial and tumor antigens. Curr Opin Immunol 2022; 75:102171. [DOI: 10.1016/j.coi.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
259
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
260
|
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, Zitvogel L. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J Immunother Cancer 2022; 10:jitc-2021-004191. [PMID: 35296557 PMCID: PMC8928383 DOI: 10.1136/jitc-2021-004191] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. Methods Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. Results In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. Conclusions These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.
Collapse
Affiliation(s)
- Safae Terrisse
- INSERM U1015, Gustave Roussy, Villejuif, France.,Medical Oncology, Hôpital Saint-Louis, Paris, France
| | | | - Kousuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | - Emmanuel Clave
- Institut de Recherche de Paris, INSERM UMRS-1160, Université de Paris, Paris, France
| | | | | | | | | | | | - Jean-Eudes Fahrner
- INSERM U1015, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Saint-Aubin, France
| | | | - Pierre Ly
- INSERM U1015, Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | - Romain Daillère
- Gustave Roussy, Villejuif, France.,EverImmune Gustave Roussy Cancer Center, Villejuif, France
| | - Lisa Derosa
- INSERM U1015, Gustave Roussy, Villejuif, France.,Center of Clinical Investistigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | | | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- Département de Médicine, CHUM, Montreal, Québec, Canada.,CRCHUM, Montreal, Québec, Canada
| | - Stéphane Culine
- Medical Oncology, Hôpital Saint-Louis, Paris, France.,Université de Paris, Paris, France
| | - Paule Opolon
- Department of Biology and Medical Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Antoine Toubert
- Institut de Recherche Saint Louis, INSERM U1160, Université de Paris, Paris, France.,Laboratoire d'immunologie et d'histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Douglas G McNeel
- Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Karim Fizazi
- Université Paris-Saclay, Saint-Aubin, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France .,Sorbonne Université INSERM U1138, Université de Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France .,Université Paris-Saclay Faculté de Médecine, Le Kremlin-Bicetre, France
| |
Collapse
|
261
|
Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022; 38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Social dominance is a ubiquitous phenomenon among social animals, including humans. To date, individual attributes leading to dominance (after a contest) remain largely elusive. Here, we report that socially dominant rats can be distinguished from subordinates based on their intestinal microbiota. When dysbiosis is induced, rats are predisposed to a subordinate state, while dysbiotic rats reclaim social dominance following microbiota transplantation. Winning hosts are characterized by core microbes, a majority of which are associated with butyrate production, and the sole colonization of Clostridium butyricum is sufficient to restore dominance. Regarding molecular aspects, a histone deacetylase, HDAC2, is responsive to microbial status and mediates competition outcome; however, this occurs only in a restricted population of cells in the medial prefrontal cortex (mPFC). Furthermore, HDAC2 acts by modulating synaptic activity in mPFC. Together, these findings uncover a link between commensals and host dominance, providing insight into the gut-brain mechanisms underlying dominance determination.
Collapse
Affiliation(s)
- Tian Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Jinchun Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Nanxi Bi
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| |
Collapse
|
262
|
Zhao Y, Li M, Wang Y, Geng R, Fang J, Liu Q, Kang SG, Zeng WC, Huang K, Tong T. Understanding the mechanism underlying the anti-diabetic effect of dietary component: a focus on gut microbiota. Crit Rev Food Sci Nutr 2022; 63:7378-7398. [PMID: 35243943 DOI: 10.1080/10408398.2022.2045895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes has become one of the biggest non-communicable diseases and threatens human health worldwide. The management of diabetes is a complex and multifaceted process including drug therapy and lifestyle interventions. Dietary components are essential for both diabetes management and health and survival of trillions of the gut microbiota (GM). Herein, we will discuss the relationship between diets and GM, the mechanism linking diabetes and gut dysbiosis, and the effects of dietary components (nutrients, phytochemicals, probiotics, food additives, etc.) on diabetes from the perspective of modulating GM. The GM of diabetic patients differs from that of health individuals and GM disorder contributes to the onset and maintenance of diabetes. Studies in humans and animal models consolidate that dietary component is a key regulator of diabetes and increasing evidence suggests that the alteration of GM plays a salient role in dietary interventions for diabetes. Given that diabetes is a major public health issue, especially that diabetes is linked with a high risk of mortality from COVID-19, this review provides compelling evidence for that targeting GM by dietary components is a promising strategy, and offers new insights into potential preventive or therapeutic approaches (dietary and pharmacological intervention) for the clinical management of diabetes.
Collapse
Affiliation(s)
- Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Wei Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
263
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
264
|
Abstract
The aim of this review is to provide an overview of how person-specific interactions between diet and the gut microbiota could play a role in affecting diet-induced weight loss responses. The highly person-specific gut microbiota, which is shaped by our diet, secretes digestive enzymes and molecules that affect digestion in the colon. Therefore, weight loss responses could in part depend on personal colonic fermentation responses, which affect energy extraction of food and production of microbial metabolites, such as short-chain fatty acids (SCFAs), which exert various effects on host metabolism. Colonic fermentation is the net result of the complex interplay between availability of dietary substrates, the functional capacity of the gut microbiome and environmental (abiotic) factors in the gut such as pH and transit time. While animal studies have demonstrated that the gut microbiota can causally affect obesity, causal and mechanistic evidence from human studies is still largely lacking. However, recent human studies have proposed that the baseline gut microbiota composition may predict diet-induced weight loss-responses. In particular, individuals characterised by high relative abundance of Prevotella have been found to lose more weight on diets rich in dietary fibre compared to individuals with low Prevotella abundance. Although harnessing of personal diet-microbiota interactions holds promise for more personalised nutrition and obesity management strategies to improve human health, there is currently insufficient evidence to unequivocally link the gut microbiota and weight loss in human subjects. To move the field forward, a greater understanding of the mechanistic underpinnings of personal diet-microbiota interactions is needed.
Collapse
|
265
|
Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms 2022; 10:microorganisms10020452. [PMID: 35208906 PMCID: PMC8877435 DOI: 10.3390/microorganisms10020452] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity, a worldwide health concern with a constantly rising prevalence, is a multifactorial chronic disease associated with a wide range of physiological disruptions, including energy imbalance, central appetite and food reward dysregulation, and hormonal alterations and gut dysbiosis. The gut microbiome is a well-recognized factor in the pathophysiology of obesity, and its influence on host physiology has been extensively investigated over the last decade. This review highlights the mechanisms by which gut dysbiosis can contribute to the pathophysiology of obesity. In particular, we discuss gut microbiota’s contribution to host energy homeostatic changes, low-grade inflammation, and regulation of fat deposition and bile acid metabolism via bacterial metabolites, such as short-chain fatty acids, and bacterial components, such as lipopolysaccharides, among others. Finally, therapeutic strategies based on next-generation probiotics aiming to re-shape the intestinal microbiota and reverse metabolic alterations associated with obesity are described.
Collapse
|
266
|
Panyod S, Wu WK, Chen PC, Chong KV, Yang YT, Chuang HL, Chen CC, Chen RA, Liu PY, Chung CH, Huang HS, Lin AYC, Shen TCD, Yang KC, Huang TF, Hsu CC, Ho CT, Kao HL, Orekhov AN, Wu MS, Sheen LY. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 2022; 8:4. [PMID: 35087050 PMCID: PMC8795425 DOI: 10.1038/s41522-022-00266-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Chen Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kent-Vui Chong
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tang Yang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Hsien-Li Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
267
|
Abstract
The increasing prevalence of metabolic diseases has become a severe public health problem. Gut microbiota play important roles in maintaining human health by modulating the host's metabolism. Recent evidences demonstrate that Akkermansia muciniphila is effective in improving metabolic disorders and is thus considered as a promising "next-generation beneficial microbe". In addition to the live A. muciniphila, similar or even stronger beneficial effects have been observed in pasteurized A. muciniphila and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and secreted protein P9. Hence, this paper presents a systemic review of recent progress in the effects and mechanisms of A. muciniphila and its components in the treatment of metabolic diseases, including obesity, type 2 diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, as well as perspectives on its future study.
Collapse
Affiliation(s)
- Juan Yan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Lili Sheng
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,CONTACT Houkai Li Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
268
|
De Filippis F, Esposito A, Ercolini D. Outlook on next-generation probiotics from the human gut. Cell Mol Life Sci 2022; 79:76. [PMID: 35043293 PMCID: PMC11073307 DOI: 10.1007/s00018-021-04080-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide employment.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
269
|
Wang X, Liu F, Cui Y, Yin Y, Li S, Li X. Apple Polyphenols Extracts Ameliorate High Carbohydrate Diet-Induced Body Weight Gain by Regulating the Gut Microbiota and Appetite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:196-210. [PMID: 34935369 DOI: 10.1021/acs.jafc.1c07258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the potential contribution of appetite regulation and modulation of gut microbiota to the ameliorated effects of apple polyphenols extracts (APE) on high carbohydrate diet (HCD)-induced body weight (BW) gain, we conducted this study. One hundred C57BL/6 male mice were randomly divided into seven groups and fed with the following diets for 12 weeks: chow diet (CON), HCD (HCD), high fructose and sucrose diet (HSCD), and HCD and HSCD with 125 or 500 mg/kg·day APE gavage. Compared to the CON group, the BW of mice in the HCD and HSCD groups increased significantly. HSCD induced a more significant weight gain in the white adipose tissue (WAT) and liver than HCD, accompanied by severe impairment of glucose tolerance and a larger diameter of adipocytes. On the other hand, by decreasing food intake, APE significantly reduced BW via mechanisms, including decreased weights of the WAT and liver, amelioration of glucose tolerance, and amplification of WAT browning by upregulating the mRNA levels of Ucp-1 and Cidea. Moreover, APE promoted transcription and secretion of GLP-1, with the increased expression of gut anorexigenic hormone peptides Ffar 2/3 in the colon and anorectic neuropeptide gene expression of Pomc, Cart, and Mc4r in the hypothalamus, causing increased satiety. Additionally, APE significantly increased Verrucomicrobia colonization and the relative abundance of Akkermansia. APE potentially ameliorates high simple carbohydrate diet-induced body weight gain by mechanisms related to gut microbiota regulation and appetite inhibition.
Collapse
Affiliation(s)
- Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yan Yin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Shilan Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
270
|
McMurdie PJ, Stoeva MK, Justice N, Nemchek M, Sieber CMK, Tyagi S, Gines J, Skennerton CT, Souza M, Kolterman O, Eid J. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol 2022; 22:19. [PMID: 34996347 PMCID: PMC8742391 DOI: 10.1186/s12866-021-02415-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation (‘WBF-011’) in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. Results Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation’s C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. Conclusion To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02415-8.
Collapse
Affiliation(s)
- Paul J McMurdie
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA.
| | - Magdalena K Stoeva
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Nicholas Justice
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Madeleine Nemchek
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Surabhi Tyagi
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Jessica Gines
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Michael Souza
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Orville Kolterman
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - John Eid
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| |
Collapse
|
271
|
Heras VL, Melgar S, MacSharry J, Gahan CG. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annu Rev Food Sci Technol 2022; 13:489-512. [DOI: 10.1146/annurev-food-052720-011032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Las Heras
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
272
|
Ning Y, Gong Y, Zheng T, Xie Y, Yuan S, Ding W. Lingguizhugan Decoction Targets Intestinal Microbiota and Metabolites to Reduce Insulin Resistance in High-Fat Diet Rats. Diabetes Metab Syndr Obes 2022; 15:2427-2442. [PMID: 35971521 PMCID: PMC9375570 DOI: 10.2147/dmso.s370492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The increasing incidence of obesity and its complications has become a global public health problem. Lingguizhugan decoction (LGZGD) is a representative compound of traditional Chinese medicine (TCM) for metabolic diseases, such as nonalcoholic fatty liver disease, but its role in insulin resistance (IR) treatment is still less known. This study aims to evaluate the therapeutic properties of LGZGD on obesity-induced IR and explore the potential mechanism of LGZGD on gut microbiota and its metabolites in the treatment of IR. METHODS In this study, we induced an IR model in the form of high-fat diet (HFD) rats gavaged with LGZGD (1.64 g/kg BW) for three weeks. The IR status was measured by biochemical assays and oral glucose tolerance tests. The degrees of damage to liver function and the intestinal barrier were observed by hematoxylin and eosin (H&E) staining and immunohistochemistry. Alterations in intestinal microbiota and metabolites were assessed by 16S rRNA and an untargeted metabolomics platform. RESULTS Our results showed that after LGZGD treatment, the body weight, plasma insulin concentration and blood lipids were significantly decreased, and glucose tolerance and hepatic steatosis were ameliorated. In addition, small intestinal villi were restored, and the expression of Occludin was upregulated. The relative abundance of Akkermansia, Faecalibacterium and Phascolarctobacterium in the HFD-LGZG group was upregulated. Obesity-related metabolic pathways, such as bile secretion, biosynthesis of amino acids, phenylalanine metabolism, serotonergic synapse, protein digestion and absorption, taurine and hypotaurine metabolism, and primary bile acid biosynthesis, were changed. After LGZGD intervention, metabolites developed toward the healthy control group. In addition, the expression of bile acid metabolism related genes was also regulated in IR rats. CONCLUSION We showed that LGZGD relieved IR, possibly by regulating the composition of the fecal microbiota and its metabolites. The above studies provide a basis for further study of LGZGD in the treatment of IR and its clinical application.
Collapse
Affiliation(s)
- Ying Ning
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Tianyan Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Ya Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Shiqing Yuan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Correspondence: Weijun Ding; Shiqing Yuan, Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu, 611137, People’s Republic of China, Tel + 86-28-61800219, Fax + 86-28-61800225, Email ;
| |
Collapse
|
273
|
Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022; 14:1997296. [PMID: 34978524 PMCID: PMC8741295 DOI: 10.1080/19490976.2021.1997296] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins. In turn, gut motility regulates the colonization within the microbial ecosystem. However, the underlying mechanisms of such regulation remain obscure. Deciphering the inter-regulatory mechanisms of the microbiota and bowel function is crucial for the prevention and treatment of gut dysmotility, a comorbidity associated with many diseases. In this review, we present an overview of the current knowledge on the impact of gut microbiota and its products on bowel motility. We discuss the currently available techniques employed to assess the changes in the intestinal motility. Further, we highlight the open challenges, and incorporate biophysical elements of microbes-motility interplay, in an attempt to lay the foundation for describing long-term impacts of microbial metabolite-induced changes in gut motility.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Agnese Codutti
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Physics Department and Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
274
|
Wallenborn JT, Vonaesch P. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac010. [PMID: 35419206 PMCID: PMC8996373 DOI: 10.1093/gastro/goac010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Campus UNIL-Sorge, Lausanne, Switzerland
- Corresponding author. Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland. Tel: +41-21-692-5600;
| |
Collapse
|
275
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
276
|
Jayanama K, Phuphuakrat A, Pongchaikul P, Prombutara P, Nimitphong H, Reutrakul S, Sungkanuparph S. Association between gut microbiota and prediabetes in people living with HIV. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100143. [PMID: 35909623 PMCID: PMC9325897 DOI: 10.1016/j.crmicr.2022.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota are known to be associated with various metabolic syndromes. Diversity of gut microbiota decreases in PLWH with prediabetes. Streptococcus and Anaerostignum are more abundant in the prediabetes group. Further study of alteration in gut microbiota on glucose metabolism is warranted.
The prevalence of prediabetes is rapidly increasing in general population and in people living with HIV (PLWH). Gut microbiota play an important role in human health, and dysbiosis is associated with metabolic disorders and HIV infection. Here, we aimed to evaluate the association between gut microbiota and prediabetes in PLWH. A cross-sectional study enrolled 40 PLWH who were receiving antiretroviral therapy and had an undetectable plasma viral load. Twenty participants had prediabetes, and 20 were normoglycemic. Fecal samples were collected from all participants. The gut microbiome profiles were analyzed using 16S rRNA sequencing. Alpha-diversity was significantly lower in PLWH with prediabetes than in those with normoglycemia (p<0.05). A significant difference in beta-diversity was observed between PLWH with prediabetes and PLWH with normoglycemia (p<0.05). Relative abundances of two genera in Firmicutes (Streptococcus and Anaerostignum) were significantly higher in the prediabetes group. In contrast, relative abundances of 13 genera (e.g., Akkermansia spp., Christensenellaceae R7 group) were significantly higher in the normoglycemic group. In conclusion, the diversity of gut microbiota composition decreased in PLWH with prediabetes. The abundances of 15 bacterial taxa in the genus level differed between PLWH with prediabetes and those with normoglycemia. Further studies on the effect of these taxa on glucose metabolism are warranted.
Collapse
|
277
|
Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 2022; 13:958218. [PMID: 36034447 PMCID: PMC9402911 DOI: 10.3389/fendo.2022.958218] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the fastest growing metabolic diseases, has been characterized by metabolic disorders including hyperglycemia, hyperlipidemia and insulin resistance (IR). In recent years, T2DM has become the fastest growing metabolic disease in the world. Studies have indicated that patients with T2DM are often associated with intestinal flora disorders and dysfunction involving multiple organs. Metabolites of the intestinal flora, such as bile acids (BAs), short-chain fatty acids (SCFAs) and amino acids (AAs)may influence to some extent the decreased insulin sensitivity associated with T2DM dysfunction and regulate metabolic as well as immune homeostasis. In this paper, we review the changes in the gut flora in T2DM and the mechanisms by which the gut microbiota modulates metabolites affecting T2DM, which may provide a basis for the early identification of T2DM-susceptible individuals and guide targeted interventions. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to inform the improvement of T2DM progression.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| |
Collapse
|
278
|
OUP accepted manuscript. Glycobiology 2022; 32:712-719. [DOI: 10.1093/glycob/cwac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
|
279
|
Liu C, Liu Y, Xin Y, Wang Y. Circadian secretion rhythm of GLP-1 and its influencing factors. Front Endocrinol (Lausanne) 2022; 13:991397. [PMID: 36531506 PMCID: PMC9755352 DOI: 10.3389/fendo.2022.991397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian rhythm is an inherent endogenous biological rhythm in living organisms. However, with the improvement of modern living standards, many factors such as prolonged artificial lighting, sedentarism, short sleep duration, intestinal flora and high-calorie food intake have disturbed circadian rhythm regulation on various metabolic processes, including GLP-1 secretion, which plays an essential role in the development of various metabolic diseases. Herein, we focused on GLP-1 and its circadian rhythm to explore the factors affecting GLP-1 circadian rhythm and its potential mechanisms and propose some feasible suggestions to improve GLP-1 secretion.
Collapse
|
280
|
Dang JT, Mocanu V, Park H, Laffin M, Tran C, Hotte N, Karmali S, Birch DW, Madsen K. Ileal microbial shifts after Roux-en-Y gastric bypass orchestrate changes in glucose metabolism through modulation of bile acids and L-cell adaptation. Sci Rep 2021; 11:23813. [PMID: 34893681 PMCID: PMC8664817 DOI: 10.1038/s41598-021-03396-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Roux-en-Y gastric bypass (RYGB)-induced glycemic improvement is associated with increases in glucagon-like-peptide-1 (GLP-1) secreted from ileal L-cells. We analyzed changes in ileal bile acids and ileal microbial composition in diet-induced-obesity rats after RYGB or sham surgery to elucidate the early and late effects on L-cells and glucose homeostasis. In early cohorts, there were no significant changes in L-cell density, GLP-1 or glucose tolerance. In late cohorts, RYGB demonstrated less weight regain, improved glucose tolerance, increased L-cell density, and increased villi height. No difference in the expression of GLP-1 genes was observed. There were lower concentrations of ileal bile acids in the late RYGB cohort. Microbial analysis demonstrated decreased alpha diversity in early RYGB cohorts which normalized in the late group. The early RYGB cohorts had higher abundances of Escherichia-Shigella but lower abundances of Lactobacillus, Adlercreutzia, and Proteus while the late cohorts demonstrated higher abundances of Escherichia-Shigella and lower abundances of Lactobacillus. Shifts in Lactobacillus and Escherichia-Shigella correlated with decreases in multiple conjugated bile acids. In conclusion, RYGB caused a late and substantial increase in L-cell quantity with associated changes in bile acids which correlated to shifts in Escherichia-Shigella and Lactobacillus. This proliferation of L-cells contributed to improved glucose homeostasis.
Collapse
Affiliation(s)
- Jerry T Dang
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada.
| | - Valentin Mocanu
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York City, NY, USA
| | - Michael Laffin
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Caroline Tran
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Shahzeer Karmali
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Daniel W Birch
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Karen Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
281
|
Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal Barrier in Human Health and Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312836. [PMID: 34886561 PMCID: PMC8657205 DOI: 10.3390/ijerph182312836] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of ‘leaky gut syndrome’ and ‘gut dysbiosis’, which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
| | - Antonio Gasbarrini
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-3471227242
| |
Collapse
|
282
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
283
|
Pontifex MG, Mushtaq A, Le Gall G, Rodriguez-Ramiro I, Blokker BA, Hoogteijling MEM, Ricci M, Pellizzon M, Vauzour D, Müller M. Differential Influence of Soluble Dietary Fibres on Intestinal and Hepatic Carbohydrate Response. Nutrients 2021; 13:nu13124278. [PMID: 34959832 PMCID: PMC8706546 DOI: 10.3390/nu13124278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Refined foods are commonly depleted in certain bioactive components that are abundant in 'natural' (plant) foods. Identification and addition of these 'missing' bioactives in the diet is, therefore, necessary to counteract the deleterious impact of convenience food. In this study, multiomics approaches were employed to assess the addition of the popular supplementary soluble dietary fibers inulin and psyllium, both in isolation and in combination with a refined animal feed. A 16S rRNA sequencing and 1H NMR metabolomic investigation revealed that, whilst inulin mediated an increase in Bifidobacteria, psyllium elicited a broader microbial shift, with Parasutterella and Akkermansia being increased and Enterorhabdus and Odoribacter decreased. Interestingly, the combination diet benefited from both inulin and psyllium related microbial changes. Psyllium mediated microbial changes correlated with a reduction of glucose (R -0.67, -0.73, respectively, p < 0.05) and type 2 diabetes associated metabolites: 3-methyl-2-oxovaleric acid (R -0.72, -0.78, respectively, p < 0.05), and citrulline (R -0.77, -0.71, respectively, p < 0.05). This was in line with intestinal and hepatic carbohydrate response (e.g., Slc2a2, Slc2a5, Khk and Fbp1) and hepatic lipogenesis (e.g., Srebf1 and Fasn), which were significantly reduced under psyllium addition. Although established in the liver, the intestinal response associated with psyllium was absent in the combination diet, placing greater significance upon the established microbial, and subsequent metabolomic, shift. Our results therefore highlight the heterogeneity that exists between distinct dietary fibers in the context of carbohydrate uptake and metabolism, and supports psyllium containing combination diets, for their ability to negate the impact of a refined diet.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Aleena Mushtaq
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Gwenaëlle Le Gall
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Ildefonso Rodriguez-Ramiro
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Britt Anne Blokker
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Mara E. M. Hoogteijling
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Matthew Ricci
- Research Diets, Inc., New Brunswick, NJ 08901, USA; (M.R.); (M.P.)
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
- Correspondence: ; Tel.: +44-160-359-3047
| |
Collapse
|
284
|
Duggan BM, Tamrakar AK, Barra NG, Anhê FF, Paniccia G, Wallace JG, Stacey HD, Surette MG, Miller MS, Sloboda DM, Schertzer JD. Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Mol Metab 2021; 55:101404. [PMID: 34839023 PMCID: PMC8693341 DOI: 10.1016/j.molmet.2021.101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Obesity and diabetes increase circulating levels of microbial components derived from the gut microbiota. Individual bacterial factors (i.e., postbiotics) can have opposing effects on blood glucose. Methods We tested the net effect of gut bacterial extracts on blood glucose in mice using a microbiota-based vaccination strategy. Results Male and female mice had improved glucose and insulin tolerance five weeks after a single subcutaneous injection of a specific dose of a bacterial extract obtained from the luminal contents of the upper small intestine (SI), lower SI, or cecum. Injection of mice with intestinal extracts from germ-free mice revealed that bacteria were required for a microbiota-based vaccination to improve blood glucose control. Vaccination of Nod1−/−, Nod2−/−, and Ripk2−/− mice showed that each of these innate immune proteins was required for bacterial extract injection to improve blood glucose control. A microbiota-based vaccination promoted an immunoglobulin-G (IgG) response directed against bacterial extract antigens, where subcutaneous injection of mice with the luminal contents of the lower SI elicited a bacterial extract-specific IgG response that is compartmentalized to the lower SI of vaccinated mice. A microbiota-based vaccination was associated with an altered microbiota composition in the lower SI and colon of mice. Lean mice only required a single injection of small intestinal-derived bacterial extract, but high fat diet (HFD)-fed, obese mice required prime-boost bacterial extract injections for improvements in blood glucose control. Conclusions Subversion of the gut barrier by vaccination with a microbiota-based extract engages innate immunity to promote long-lasting improvements in blood glucose control in a dose-dependent manner. Subcutaneous injection of gut bacterial extracts improved blood glucose control in mice. Microbiota-based vaccination engaged NOD1-NOD2-RIPK2 to alter blood glucose. Microbiota-based vaccination promoted a proximal gut IgG response. Microbiota-based vaccination altered the composition of the gut microbiome. Obese mice required prime-boost injections to improve blood glucose control.
Collapse
Affiliation(s)
- Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Gabriella Paniccia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hannah D Stacey
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada.
| |
Collapse
|
285
|
Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021; 10:foods10112697. [PMID: 34828975 PMCID: PMC8619225 DOI: 10.3390/foods10112697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and β-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1β expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and β-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.
Collapse
|
286
|
Zhang FL, Yang YL, Zhang Z, Yao YY, Xia R, Gao CC, Du DD, Hu J, Ran C, Liu Z, Zhou ZG. Surface-Displayed Amuc_1100 From Akkermansia muciniphila on Lactococcus lactis ZHY1 Improves Hepatic Steatosis and Intestinal Health in High-Fat-Fed Zebrafish. Front Nutr 2021; 8:726108. [PMID: 34722607 PMCID: PMC8548614 DOI: 10.3389/fnut.2021.726108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Fatty liver and intestinal barrier damage were widespread in most farmed fish, which severely restrict the development of aquaculture. Therefore, there was an urgent need to develop green feed additives to maintain host liver and intestinal health. In this study, a probiotic pili-like protein, Amuc_1100 (AM protein), was anchored to the surface of Lactococcus lactis ZHY1, and the effects of the recombinant bacteria AM-ZHY1 on liver fat accumulation and intestinal health were evaluated. Zebrafish were fed a basal diet, high-fat diet, and high-fat diet with AM-ZHY1 (108 cfu/g) or control bacteria ZHY1 for 4 weeks. Treatment with AM-ZHY1 significantly reduced hepatic steatosis in zebrafish. Quantitative PCR (qPCR) detection showed that the expression of the lipogenesis [peroxisome-proliferator-activated receptors (PPARγ), sterol regulatory element-binding proteins-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1)] and lipid transport genes (CD36 and FABP6) in the liver were significantly downregulated (p < 0.05), indicating that AM-ZHY1 could reduce liver fat accumulation by inhibiting lipid synthesis and absorption. Moreover, supplementing AM-ZHY1 to a high-fat diet could significantly reduce serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating that liver injury caused by high-fat diets was improved. The expression of tumor necrosis factor (TNF)-a and interleukin (IL)-6 in the liver decreased significantly (p < 0.05), while IL-1β and IL-10 did not change significantly in the AM-ZHY1 group. Compared to the high-fat diet-fed group, the AM-ZHY1 group, but not the ZHY1 group, significantly increased the expression of intestinal tight junction (TJ) proteins (TJP1a, claudina, claudin7, claudin7b, claudin11a, claudin12, and claudin15a; p < 0.05). Compared to the high-fat diet group, the Proteobacteria and Fusobacteria were significantly reduced and increased in the AM-ZHY1 group, respectively. In conclusion, the recombinant bacteria AM-ZHY1 has the capacity to maintain intestinal health by protecting intestinal integrity and improving intestinal flora structure and improving fatty liver disease by inhibiting lipid synthesis and absorption. This study will lay a foundation for the application of AM protein in improving abnormal fat deposition and restoring the intestinal barrier in fish.
Collapse
Affiliation(s)
- Feng-Li Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-Yuan Yao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Xia
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen-Chen Gao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong-Dong Du
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Hu
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhi-Gang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
287
|
Piccolo BD, Graham JL, Kang P, Randolph CE, Shankar K, Yeruva L, Fox R, Robeson MS, Moody B, LeRoith T, Stanhope KL, Adams SH, Havel PJ. Progression of diabetes is associated with changes in the ileal transcriptome and ileal-colon morphology in the UC Davis Type 2 Diabetes Mellitus rat. Physiol Rep 2021; 9:e15102. [PMID: 34806320 PMCID: PMC8606862 DOI: 10.14814/phy2.15102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Deterioration in glucose homeostasis has been associated with intestinal dysbiosis, but it is not known how metabolic dysregulation alters the gastrointestinal environment. We investigated how the progression of diabetes alters ileal and colonic epithelial mucosal structure, microbial abundance, and transcript expression in the University of California Davis Type 2 Diabetes Mellitus (UCD-T2DM) rat model. Male UCD-T2DM rats (age ~170 days) were included if <1-month (n = 6, D1M) or 3-month (n = 6, D3M) post-onset of diabetes. Younger nondiabetic UCD-T2DM rats were included as a nondiabetic comparison (n = 6, ND, age ~70 days). Ileum villi height/crypt depths and colon crypt depths were assessed by histology. Microbial abundance of colon content was measured with 16S rRNA sequencing. Ileum and colon transcriptional abundances were analyzed using RNA sequencing. Ileum villi height and crypt depth were greater in D3M rats compared to ND. Colon crypt depth was greatest in D3M rats compared to both ND and D1M rats. Colon abundances of Akkermansia and Muribaculaceae were lower in D3M rats relative to D1M, while Oscillospirales, Phascolarctobacterium, and an unidentified genus of Lachnospiraceae were higher. Only two transcripts were altered by diabetes advancement within the colon; however, 2039 ileal transcripts were altered. Only colonic abundances of Sptlc3, Enpp7, Slc7a15, and Kctd14 had more than twofold changes between D1M and D3M rats. The advancement of diabetes in the UCD-T2DM rat results in a trophic effect on the mucosal epithelia and was associated with regulation of gastrointestinal tract RNA expression, which appears more pronounced in the ileum relative to the colon.
Collapse
Affiliation(s)
- Brian D. Piccolo
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - James L. Graham
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Ping Kang
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Christopher E. Randolph
- Center for Translational Pediatric ResearchArkansas Children's Research InstituteLittle RockArkansasUSA
| | - Kartik Shankar
- Department of PediatricsSection of NutritionUniversity of Colorado School of MedicineAnschutz Medical CampusAuroraColoradoUSA
| | - Laxmi Yeruva
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Research InstituteLittle RockArkansasUSA
| | - Renee Fox
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Michael S. Robeson
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Becky Moody
- USDA‐ARS Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Tanya LeRoith
- Department of Biomedical Science and PathobiologyVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Kimber L. Stanhope
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Sean H. Adams
- Department of SurgeryUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
- Center for Alimentary and Metabolic ScienceUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Peter J. Havel
- Department of Molecular BiosciencesSchool of Veterinary MedicineUniversity of California DavisDavisCaliforniaUSA
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
288
|
Gu ZY, Pei WL, Zhang Y, Zhu J, Li L, Zhang Z. Akkermansia muciniphila in inflammatory bowel disease and colorectal cancer. Chin Med J (Engl) 2021; 134:2841-2843. [PMID: 34711719 PMCID: PMC8667969 DOI: 10.1097/cm9.0000000000001829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhen-Yang Gu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | | | | | | | | | | |
Collapse
|
289
|
Morrow NM, Hanson AA, Mulvihill EE. Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:703966. [PMID: 34660576 PMCID: PMC8511495 DOI: 10.3389/fcell.2021.703966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen with distant hormonal responses and nutrient disposal via the production and secretion of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect control of post-prandial nutrient uptake and demonstrated translational relevance for the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there is significant interest in the locally engaged circuits mediating these metabolic effects. Although several specific populations of cells in the intestine have been identified to express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization and co-expression, particularly in regards to the Gipr remain elusive. Here we review the current state of the literature and evaluate the identity of Glp1r, Glp2r, and Gipr expressing cells within preclinical and clinical models. Further elaboration of our understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged locally within the intestine and how they become altered with high-fat diet feeding can offer insight into the dysregulation observed in obesity and diabetes.
Collapse
Affiliation(s)
- Nadya M Morrow
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio A Hanson
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Montreal Diabetes Research Center CRCHUM-Pavillion R, Montreal, QC, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
290
|
Lee JY, Jin HS, Kim KS, Baek JH, Kim BS, Lee DW. Nutrient-specific proteomic analysis of the mucin degrading bacterium Akkermansia muciniphila. Proteomics 2021; 22:e2100125. [PMID: 34596327 DOI: 10.1002/pmic.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023]
Abstract
Akkermansia muciniphila is a prominent mucin-degrading bacterium that acts as a keystone species in regulating the human gut microbiota. Despite recently increasing research into this bacterium and its relevance to human health, a high-resolution database of its functional proteins remains scarce. Here, we provide a proteomic overview of A. muciniphila grown in different nutrient conditions ranging from defined to complex. Of 2318 protein-coding genes in the genome, we identified 841 (40%) that were expressed at the protein level. Overall, proteins involved in energy production and carbohydrate metabolism indicate that A. muciniphila relies mainly on the Embden-Meyerhof-Parnas pathway, and produces short-chain fatty acids through anaerobic fermentation in a nutrient-specific manner. Moreover, this bacterium possesses a broad repertoire of glycosyl hydrolases, together with putative peptidases and sulfatases, to cleave O-glycosylated mucin. Of them, putative mucin-degrading enzymes (Amuc_1220, Amuc_1120, Amuc_0052, Amuc_0480, and Amuc_0060) are highly abundant in the mucin-supplemented media. Furthermore, A. muciniphila uses mucin-derived monosaccharides as sources of energy and cell wall biogenesis. Our dataset provides nutrient-dependent global proteomes of A. muciniphila ATCC BAA-835 to offer insights into its metabolic functions that shape the composition of the human gut microbiota via mucin degradation.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyeon-Su Jin
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, South Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
291
|
Ashrafian F, Keshavarz Azizi Raftar S, Shahryari A, Behrouzi A, Yaghoubfar R, Lari A, Moradi HR, Khatami S, Omrani MD, Vaziri F, Masotti A, Siadat SD. Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice. Sci Rep 2021; 11:17898. [PMID: 34504116 PMCID: PMC8429653 DOI: 10.1038/s41598-021-95738-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, Akkermansia muciniphila an anaerobic member of the gut microbiota, has been proposed as a next-generation probiotic. The aim of this study was evaluation of the effect of alive and pasteurized A. muciniphila on health status, intestinal integrity, immune response, lipid metabolism, and gut microbial composition in normal-diet fed mice as well as direct effects of the bacterium on Caco-2 cell line. A total of 30 mice were distributed into three different groups, control, alive, and pasteurized A. muciniphila-treated group. After acclimation, control and treatment groups were administrated with PBS and 109 CFU/200µL of bacterial suspension for 5 weeks, respectively. Besides, Caco-2 separately exposed to alive, pasteurized A. muciniphila and PBS for 24 h. The results showed that administration of A. muciniphila leads to reduction in body, liver, and white adipose weight. Histology data revealed both treatments had no adverse effects in colon, liver, and adipose tissues as well as induced better gut structure. Moreover, biochemical parameters and inflammatory biomarkers in plasma demonstrated that pasteurized A. muciniphila had more pronounce effect. Furthermore, alive A. muciniphia had better effects on the modulation of gene expression related to fatty acid synthesis, energy homeostasis, and immune response in the liver; meanwhile, these effects in the adipose was more in the pasteurized A. muciniphila administration. More importantly, the improvement of gut health by enhancing strengthen intestinal integrity and maintaining immune homeostasis was seen in both treatments; notably, pasteurized A. muciniphila had more effective. Similarly, treatment with the pasteurized form more effectively upregulated tight junction and regulated immune response-related genes in Caco-2 cell line. Both treatments triggered the improvement of microbiota communities, particularly the alive form. Therefore, both forms of A. muciniphila could modulate lipid and immune homeostasis, improved some gut microbiota, and promoted the overall health, while all these effects were dominantly observed in pasteurized form. In conclusion, pasteurized A. muciniphila can be considered as new medical supplement to maintain health state and prevent diseases in normal mice through different mechanisms.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arefeh Shahryari
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Rezvan Yaghoubfar
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- grid.420169.80000 0000 9562 2611Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- grid.412573.60000 0001 0745 1259Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shohreh Khatami
- grid.420169.80000 0000 9562 2611Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- grid.411600.2Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- grid.414125.70000 0001 0727 6809Research Laboratories, Children’s Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Seyed Davar Siadat
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
292
|
Fan W, Zhang S, Wu Y, Lu T, Liu J, Cao X, Liu S, Yan L, Shi X, Liu G, Huang C, Song S. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40249-40266. [PMID: 34424682 DOI: 10.1021/acsami.1c09215] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated β-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor β (ERβ), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.
Collapse
Affiliation(s)
- Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiuyun Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xizhi Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
293
|
Panyod S, Wu WK, Chen CC, Wu MS, Ho CT, Sheen LY. Modulation of gut microbiota by foods and herbs to prevent cardiovascular diseases. J Tradit Complement Med 2021; 13:107-118. [PMID: 36970453 PMCID: PMC10037074 DOI: 10.1016/j.jtcme.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary nutrients are associated with the development of cardiovascular disease (CVD) both through traditional pathways (inducing hyperlipidemia and chronic inflammation) and through the emergence of a metaorganism-pathogenesis pathway (through the gut microbiota, its metabolites, and host). Several molecules from food play an important role as CVD risk-factor precursors either themselves or through the metabolism of the gut microbiome. Animal-based dietary proteins are the primary source of CVD risk-factor precursors; however, some plants also possess these precursors, though at relatively low levels compared with animal-source food products. Various medications have been developed to treat CVD through the gut-microbiota-circulation axis, and they exhibit potent effects in CVD treatment. Nevertheless, such medicines are still being improved, and there are many research gaps that need to be addressed. Furthermore, some medications have unpleasant or adverse effects. Numerous foods and herbs impart beneficial effects upon health and disease. In the past decade, many studies have focused on treating and preventing CVD by modulating the gut microbiota and their metabolites. This review provides an overview of the available information, summarizes current research related to the gut-microbiota-heart axis, enumerates the foods and herbs that are CVD-risk precursors, and illustrates how metabolites become CVD risk factors through the metabolism of gut microbiota. Moreover, we present perspectives on the application of foods and herbs-including prebiotics, probiotics, synbiotics, postbiotics, and antibiotic-like substances-as CVD prevention agents to modulate gut microbiota by inhibiting gut-derived CVD risk factors. Taxonomy classification by EVISE Cardiovascular disease, gut microbiota, herbal medicine, preventive medicine, dietary therapy, nutrition supplements.
Collapse
|
294
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
295
|
Yin J, Song Y, Hu Y, Wang Y, Zhang B, Wang J, Ji X, Wang S. Dose-Dependent Beneficial Effects of Tryptophan and Its Derived Metabolites on Akkermansia In Vitro: A Preliminary Prospective Study. Microorganisms 2021; 9:microorganisms9071511. [PMID: 34361945 PMCID: PMC8305782 DOI: 10.3390/microorganisms9071511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Akkermansia muciniphila, a potential probiotic, has been proven to lessen the effects of several diseases. As established, the relative abundance of Akkermansia is positively correlated with tryptophan metabolism. However, the reciprocal interaction between tryptophan and Akkemansia is still unclear. Herein, for the first time, the possible effects of tryptophan and its derived metabolites on A. muciniphila were preliminarily investigated, including growth, physiological function, and metabolism. Obtained results suggested that 0.4 g/L of tryptophan treatment could significantly promote the growth of A. muciniphila. Notably, when grown in BHI with 0.8 g/L of tryptophan, the hydrophobicity and adhesion of A. muciniphila were significantly improved, potentially due to the increase in the rate of cell division. Furthermore, A. muciniphila metabolized tryptophan to indole, indole-3-acetic acid, indole-3-carboxaldehyde, and indole-3-lactic acid. Indoles produced by gut microbiota could significantly promote the growth of A. muciniphila. These results could provide a valuable reference for future research on the relationship between tryptophan metabolism and A. muciniphila.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuo Wang
- Correspondence: ; Tel.: +86-22-85358445
| |
Collapse
|
296
|
Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods 2021; 10:foods10071590. [PMID: 34359462 PMCID: PMC8306164 DOI: 10.3390/foods10071590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the gastrointestinal microbiota has been recognised as being essential for health. Indeed, several publications have documented the suitability of probiotics, prebiotics, and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in laboratory techniques have allowed the identification and characterisation of new biologically active molecules, referred to as “postbiotics”. Postbiotics are defined as functional bioactive compounds obtained from food-grade microorganisms that confer health benefits when administered in adequate amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and may exhibit some advantages over traditional “biotics” such as probiotics and prebiotics. Owing to the growing incidence of DM worldwide and the implications of the microbiota in the disease progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present review, we summarise the current knowledge about postbiotic compounds and their potential application in diabetes management. Additionally, we envision future perspectives on this topic. In summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy for DM.
Collapse
|
297
|
Lindquist P, Madsen JS, Bräuner-Osborne H, Rosenkilde MM, Hauser AS. Mutational Landscape of the Proglucagon-Derived Peptides. Front Endocrinol (Lausanne) 2021; 12:698511. [PMID: 34220721 PMCID: PMC8248487 DOI: 10.3389/fendo.2021.698511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.
Collapse
Affiliation(s)
- Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S. Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
298
|
Abstract
Akkermansia muciniphila is a gut commensal known to improve host metabolism. The outer membrane protein Amuc_1100 has been shown to partially replicate these beneficial effects. Here, Yoon et al. (2021) have identified a novel protein (P9) secreted by A. muciniphila that stimulates GLP-1 secretion, thereby adding new insight to the biomolecule era to treat metabolic diseases.
Collapse
Affiliation(s)
- Patrice D Cani
- UCLouvain, Université Catholique de Louvain, WELBIO Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium; International Research Project (IRP), European Lab "NeuroMicrobiota", Brussels/Toulouse, France and Belgium.
| | - Claude Knauf
- International Research Project (IRP), European Lab "NeuroMicrobiota", Brussels/Toulouse, France and Belgium; Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| |
Collapse
|
299
|
Yin J, Zhang B, Yu Z, Hu Y, Lv H, Ji X, Wang J, Peng B, Wang S. Ameliorative Effect of Dietary Tryptophan on Neurodegeneration and Inflammation in d-Galactose-Induced Aging Mice with the Potential Mechanism Relying on AMPK/SIRT1/PGC-1α Pathway and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4732-4744. [PMID: 33872003 DOI: 10.1021/acs.jafc.1c00706] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary tryptophan affects intestinal homeostasis and neurogenesis, whereas the underlying mechanism and the reciprocal interaction between tryptophan and gut microbiota in aging are unclear. This investigation was performed to determine the effect and mechanism of tryptophan on intestinal- and neuro- health in aging. In present study, the 0.4% tryptophan diet significantly ameliorated the oxidative stress and inflammation in the aging mice, potentially through the regulation of 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor κB (NF-κB) pathways. The 0.4% tryptophan diet increased the levels of indoles in colon contents, which indicated the potential contribution of tryptophan metabolites. Microbiome analysis revealed that the 0.4% tryptophan diet raised the relative abundance of Akkermansia in aging. The ameliorated effect of 0.4% tryptophan on neurodegeneration and neuroinflammation was summarized to potentially rely on the brain-derived neurotrophic factor- (BDNF) and NF-κB-related pathways. These findings provide the research evidence for the beneficial effect of tryptophan on aging.
Collapse
Affiliation(s)
- Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhenting Yu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
300
|
York A. A. muciniphila boosts metabolic health. Nat Rev Microbiol 2021; 19:343. [PMID: 33828289 DOI: 10.1038/s41579-021-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|