251
|
Schweikl H, Hiller KA, Eckhardt A, Bolay C, Spagnuolo G, Stempfl T, Schmalz G. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 2008; 29:1377-87. [DOI: 10.1016/j.biomaterials.2007.11.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/26/2007] [Indexed: 12/31/2022]
|
252
|
Koida N, Ozaki T, Yamamoto H, Ono S, Koda T, Ando K, Okoshi R, Kamijo T, Omura K, Nakagawara A. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. J Biol Chem 2008; 283:8555-63. [PMID: 18174154 PMCID: PMC2417181 DOI: 10.1074/jbc.m710608200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Indexed: 11/06/2022] Open
Abstract
In response to DNA damage, p73 plays a critical role in cell fate determination. In this study, we have found that Plk1 (polo-like kinase 1) associates with p73, phosphorylates p73 at Thr-27, and thereby inhibits its pro-apoptotic activity. During cisplatin-mediated apoptosis in COS7 cells in which the endogenous p53 is inactivated by SV40 large T antigen, p73 was induced to accumulate in association with a significant down-regulation of Plk1. Consistent with these observations, Plk1 reduced the stability of the endogenous p73. Immunoprecipitation and in vitro pulldown assay demonstrated that p73 binds to the kinase domain of Plk1 through its NH(2)-terminal region. Luciferase reporter assay and reverse transcription-PCR analysis revealed that Plk1 is able to block the p73-mediated transcriptional activation. Of note, kinase-deficient Plk1 mutant (Plk1(K82M)) retained an ability to interact with p73; however, it failed to inactivate the p73-mediated transcriptional activation, suggesting that kinase activity of Plk1 is required for the inhibition of p73. Indeed, in vitro kinase assay indicated that p73 is phosphorylated at Thr-27 by Plk1. Furthermore, small interference RNA-mediated knockdown of the endogenous Plk1 in p53-deficient H1299 cells resulted in a significant increase in the number of cells with sub-G(1) DNA content accompanied by the up-regulation of p73 and pro-apoptotic p53(AIP1) as well as the proteolytic cleavage of poly(ADP-ribose) polymerase. Thus, our present results suggest that Plk1-mediated dysfunction of p73 is one of the novel molecular mechanisms to inhibit the p53-independent apoptosis, and the inhibition of Plk1 might provide an attractive therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Nami Koida
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
|
254
|
Li H, Wang Y, Liu X. Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem 2008; 283:6209-21. [PMID: 18171681 DOI: 10.1074/jbc.m709007200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plk1 (Polo-like kinase 1) has been documented as a critical regulator of many mitotic events. However, increasing evidence supports the notion that Plk1 might also have functions outside of mitosis. Using biochemical fractionation and RNA interference approaches, we found that Plk1 was required for both G(1)/S and G(2)/M phases and that DNA topoisomerase IIalpha (topoIIalpha) was a potential target for Plk1 in both interphase and mitosis. Plk1 phosphorylates Ser(1337) and Ser(1524) of topoIIalpha. Overexpression of an unphosphorylatable topoIIalpha mutant led to S phase arrest, suggesting that Plk1-associated phosphorylation first occurs in S phase. Moreover, overexpression of the unphosphorylatable topoIIalpha mutant activated the ATM/R-dependent DNA damage checkpoint, probably due to reduced catalytic activity of topoIIalpha, and resulted in accumulation of catenated DNA. Finally, we showed that wild type topoIIalpha, but not the unphosphorylatable mutant, was able to rescue topoIIalpha depletion-induced defects in sister chromatid segregation, indicating that Plk1-associated phosphorylation is essential for the functions of topoIIalpha in mitosis.
Collapse
Affiliation(s)
- Hongchang Li
- Department of Biochemistry and the Cancer Center, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
255
|
Abstract
AIM The present study was designed to investigate the expression of Polo-like kinase 1 (PLK1) and survivin in non-Hodgkinos lymphoma (NHL). METHODS The expression of PLK1 and survivin were detected with immunohistochemical techniques. RESULTS The expression rate of PLK1 and survivin were 63.6% (56/88) and 79.5% (70/88) in NHL, respectively. PLK1 expression correlated with systemic symptoms, lactate dehydrogenase levels, and international prognostic index scores in B-NHL and T-NHL, while survivin did not. CONCLUSION PLK1 and survivin are both overexpressed in NHL. There is a significant relationship between the overexpression of PLK1 and clinical features.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | |
Collapse
|
256
|
Nishi Y, Rogers E, Robertson SM, Lin R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 2008; 135:687-97. [PMID: 18199581 DOI: 10.1242/dev.013425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Polo kinases are known key regulators of cell divisions. Here we report a novel, non-cell division function for polo kinases in embryonic polarity of newly fertilized Caenorhabditis elegans embryos. We show that polo kinases, via their polo box domains, bind to and regulate the activity of two key polarity proteins, MEX-5 and MEX-6. These polo kinases are asymmetrically localized along the anteroposterior axis of newly fertilized C. elegans embryos in a pattern identical to that of MEX-5 and MEX-6. This asymmetric localization of polo kinases depends on MEX-5 and MEX-6, as well as genes regulating MEX-5 and MEX-6 asymmetry. We identify an amino acid of MEX-5, T(186), essential for polo binding and show that T(186) is important for MEX-5 function in vivo. We also show that MBK-2, a developmentally regulated DYRK2 kinase activated at meiosis II, primes T(186) for subsequent polo kinase-dependent phosphorylation. Prior phosphorylation of MEX-5 at T(186) greatly enhances phosphorylation of MEX-5 by polo kinases in vitro. Our results provide a mechanism by which MEX-5 and MEX-6 function is temporally regulated during the crucial oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
257
|
Salaün P, Rannou Y, Prigent C. Cdk1, Plks, Auroras, and Neks: the mitotic bodyguards. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:41-56. [PMID: 18497029 PMCID: PMC2533106 DOI: 10.1007/978-0-387-69080-3_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Patrick Salaün
- GD, Génétique et développement
CNRS : UMR6061Université Rennes IIFR140FR
| | - Yves Rannou
- GD, Génétique et développement
CNRS : UMR6061Université Rennes IIFR140FR
| | - Claude Prigent
- GD, Génétique et développement
CNRS : UMR6061Université Rennes IIFR140FR
| |
Collapse
|
258
|
Kang T, Wei Y, Chiang YC, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 2008; 13:36-47. [PMID: 18167338 PMCID: PMC2276649 DOI: 10.1016/j.ccr.2007.12.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
Abstract
The Cdc25A phosphatase positively regulates cell-cycle transitions, is degraded by the proteosome throughout interphase and in response to stress, and is overproduced in human cancers. The kinases targeting Cdc25A for proteolysis during early cell-cycle phases have not been identified, and mechanistic insight into the cause of Cdc25A overproduction in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Cdc25A to promote its proteolysis in early cell-cycle phases. Phosphorylation by GSK-3beta requires priming of Cdc25A, and this can be catalyzed by polo-like kinase 3 (Plk-3). Importantly, a strong correlation between Cdc25A overproduction and GSK-3beta inactivation was observed in human tumor tissues, indicating that GSK-3beta inactivation may account for Cdc25A overproduction in a subset of human tumors.
Collapse
Affiliation(s)
- Tiebang Kang
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Yu-Chi Chiang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiroshi Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Helen Piwnica-Worms
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
259
|
Abstract
Polo-like kinase 1 (PLK1) has important functions in maintaining genome stability via its role in mitosis. Because PLK1 is up-regulated in many invasive carcinomas, we asked whether it may also play a role in acquisition of invasiveness, a crucial step in transition to malignancy. In a model of metaplastic basal-like breast carcinoma progression, we found that PLK1 expression is necessary but not sufficient to induce invasiveness through laminin-rich extracellular matrix. PLK1 mediates invasion via vimentin and beta1 integrin, both of which are necessary. We observed that PLK1 phosphorylates vimentin on Ser82, which in turn regulates cell surface levels of beta1 integrin. We found PLK1 to be also highly expressed in preinvasive in situ carcinomas of the breast. These results support a role for the involvement of PLK1 in the invasion process and point to this pathway as a potential therapeutic target for preinvasive and invasive breast carcinoma treatment.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Blotting, Western
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/enzymology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Collagen
- Drug Combinations
- Extracellular Matrix/enzymology
- Female
- Humans
- In Situ Nick-End Labeling
- Integrin beta1/metabolism
- Laminin/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Phosphorylation
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteoglycans
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/pharmacology
- Vimentin/metabolism
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Aylin Rizki
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | | | |
Collapse
|
260
|
Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G, Gishizky ML, Draetta GF, Di Fiore PP. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res 2007; 66:8147-54. [PMID: 16912193 DOI: 10.1158/0008-5472.can-05-3489] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases constitute a large family of regulatory enzymes involved in the homeostasis of virtually every cellular process. Subversion of protein kinases has been frequently implicated in malignant transformation. Within the family, serine/threonine kinases (STK) have received comparatively lesser attention, vis-a-vis tyrosine kinases, in terms of their involvement in human cancers. Here, we report a large-scale screening of 125 STK, selected to represent all major subgroups within the subfamily, on nine different types of tumors ( approximately 200 patients), by using in situ hybridization on tissue microarrays. Twenty-one STK displayed altered levels of transcripts in tumors, frequently with a clear tumor type-specific dimension. We identified three patterns of alterations in tumors: (a) overexpression in the absence of expression in the normal tissues (10 kinases), (b) overexpression in the presence of expression by normal tissues (8 kinases), and (c) underexpression (3 kinases). Selected members of the three classes were subjected to in-depth analysis on larger case collections and showed significant correlations between their altered expression and biological and/or clinical variables. Our findings suggest that alteration in the expression of STK is a relatively frequent occurrence in human tumors. Among the overexpressed kinases, 10 were undetectable in normal controls and are therefore ideal candidates for further validation as potential targets of molecular cancer therapy.
Collapse
Affiliation(s)
- Maria Capra
- Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Abstract
Polo-like kinase 1 (PLK1) belongs to a conservative family of serine/threonine kinase and plays an important role in the process of cell cycle. Survivin is a member of inhibitor of apoptosis protein (IAP) family. We investigated the expression of PLK1 and survivin with immunohistochemical techniques in diffuse large B-cell lymphoma (DLBCL) and assessed their significance as a potent new tumor marker. The expression rate of PLK1 and survivin were 66.7% (26/39) and 82.1% (32/39), respectively. PLK1 expression correlated with systemic symptom, LDH level, IPI scores and therapeutic effect in DLBCL, while survivin did not. PLK1 expression correlated with shortened event-free survival (EFS) using the Log-rank test in DLBCL, but survivin did not. Cox regression analysis identified the independent prognostic significance for PLK1. The results suggest that there is a significant relationship between over expression of PLK1, the clinical features and survival time. Compared with survivin, PLK1 seems to be a better independent prognostic factor for DLBCL.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | |
Collapse
|
262
|
Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D, Prechtl S, Schulze V, Siemeister G, Wortmann L, Barr FA, Nigg EA. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007; 18:4024-36. [PMID: 17671160 PMCID: PMC1995727 DOI: 10.1091/mbc.e07-05-0517] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 02/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.
Collapse
Affiliation(s)
| | - Rüdiger Neef
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | - Uwe Eberspächer
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Knut Eis
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Manfred Husemann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Dominik Mumberg
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Stefan Prechtl
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Volker Schulze
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | | | - Lars Wortmann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Francis A. Barr
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | | |
Collapse
|
263
|
Hammarton TC, Kramer S, Tetley L, Boshart M, Mottram JC. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol Microbiol 2007; 65:1229-48. [PMID: 17662039 PMCID: PMC2169650 DOI: 10.1111/j.1365-2958.2007.05866.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Polo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, resulted in the accumulation of cells that had divided their nucleus but not their kinetoplast (2N1K cells). Analysis of basal bodies and flagella in these cells suggested the defect in kinetoplast division arose because of an inhibition of basal body duplication, which occurred when PLK expression levels were altered. Additionally, a defect in kDNA replication was observed in the 2N1K cells. However, the 2N1K cells obtained by each approach were not equivalent. Following PLK depletion, the single kinetoplast was predominantly located between the two divided nuclei, while in cells overexpressing PLKty, the kinetoplast was mainly found at the posterior end of the cell, suggesting a role for PLK kinase activity in basal body and kinetoplast migration. PLK RNAi in bloodstream trypanosomes also delayed kinetoplast division, and was further observed to inhibit furrow ingression during cytokinesis. Notably, no additional roles were detected for trypanosome PLK in mitosis, setting this protein kinase apart from its counterparts in other eukaryotes.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Infection and Immunity, Wellcome Centre for Molecular Parasitology, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
264
|
Spänkuch B, Kurunci-Csacsko E, Kaufmann M, Strebhardt K. Rational combinations of siRNAs targeting Plk1 with breast cancer drugs. Oncogene 2007; 26:5793-807. [PMID: 17369857 DOI: 10.1038/sj.onc.1210355] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/09/2007] [Accepted: 01/24/2007] [Indexed: 12/18/2022]
Abstract
Commonly used drugs for the treatment of breast cancer patients like paclitaxel and Herceptin often show severe side effects or induce resistance in clinical settings. Thus, we analysed a combination of Plk1 (polo-like kinase 1)-specific small interfering RNAs (siRNAs), a powerful tool to induce 'mitotic catastrophe' in cancer cells, together with these drugs to identify conditions for enhanced drug sensitivity. After transfection, the antineoplastic agents were added and cell proliferation, apoptosis and cell cycle distribution in breast cancer cells (MCF-7, SK-BR-3, MDA-MB-435 and BT-474) and in primary human mammary epithelial cells were determined. Downregulation of cellular Plk1 levels led to an elevated percentage of cells in G(2)/M phase. The percentage of apoptotic nuclei in MCF-7, MDA-MB-435, SK-BR-3 and BT-474 cells was clearly increased after incubation with Plk1-specific siRNAs and paclitaxel. Interestingly, the caspase pathway was activated after treatment with Plk1-specific siRNAs and paclitaxel or Herceptin. Treatment of breast cancer cells with siRNAs targeting Plk1 improved the sensitivity toward paclitaxel and Herceptin in a synergistic manner. In all experiments, very low concentrations across a wide range of clinically relevant concentrations were sufficient to induce an antiproliferative effect. The combination of Plk1-specific siRNAs with modern breast cancer drugs seems to represent rational combinations to be tested in preclinical trials.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Cell Cycle/drug effects
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Down-Regulation
- Drug Screening Assays, Antitumor
- Drug Therapy, Combination
- Female
- Humans
- Paclitaxel/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/therapeutic use
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Transfection
- Trastuzumab
- Tumor Cells, Cultured
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- B Spänkuch
- Department of Obstetrics and Gynecology, Medical School, JW Goethe-University, Frankfurt, Germany.
| | | | | | | |
Collapse
|
265
|
Morozov A, Lee SJ, Zhang ZK, Cimica V, Zagzag D, Kalpana GV. INI1 induces interferon signaling and spindle checkpoint in rhabdoid tumors. Clin Cancer Res 2007; 13:4721-30. [PMID: 17699849 DOI: 10.1158/1078-0432.ccr-07-0054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdoid tumors are rare but aggressive pediatric malignancies characterized by biallelic loss of INI1/hSNF5. Reintroduction of INI1 causes cell arrest and senescence in rhabdoid cells. Our purpose was to identify INI1-downstream genes and to determine their functional and therapeutic significance for rhabdoid tumors. EXPERIMENTAL DESIGN INI1 downstream targets in rhabdoid cells were identified using a cDNA microarray analysis and the expression of selected INI1 targets was confirmed by quantitative reverse transcription-PCR, Western analysis, and/or immunohistochemical analysis of rhabdoid cells and primary rhabdoid tumors. To determine the functional significance of downstream targets, activated targets of INI1 were induced and repressed targets of INI1 were knocked down (by using RNA interference) in rhabdoid cells, in the absence of INI1. Consequence of altered expression of INI1 downstream targets for rhabdoid cell survival, cell cycle, and apoptosis was assessed. RESULTS Microarray studies indicated that INI1 activated IFN-stimulated genes at early time points and senescence markers at late time points and repressed mitotic genes such as Polo like kinase 1 (PLK1), selectively in rhabdoid cells. Treatment of rhabdoid cells with recombinant IFNs resulted in induction of IFN-stimulated genes, G1 arrest, and flat cell formation. PLK1 was overexpressed in primary human and mouse rhabdoid tumors. RNA interference-mediated knock down of PLK1 in rhabdoid cells resulted in mitotic arrest, aberrant nuclear division, decreased survival, and induction of apoptosis. CONCLUSIONS Targeting downstream effectors of INI1 such as IFN pathway and mitotic genes leads to antiproliferative effects in rhabdoid cells. IFN treatment and down-modulation of PLK1 constitute potential novel therapeutic strategies for rhabdoid tumors.
Collapse
Affiliation(s)
- Alexei Morozov
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
266
|
Park YY, Kim SH, Kim YJ, Kim SY, Lee TH, Lee IK, Park SB, Choi HS. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERRgamma). Biochem Biophys Res Commun 2007; 362:107-113. [PMID: 17706602 DOI: 10.1016/j.bbrc.2007.07.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/30/2007] [Indexed: 02/07/2023]
Abstract
Estrogen receptor-related receptor gamma (ERRgamma) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERRgamma are not well understood. In the current study, we identify that Plk2 is a novel target of ERRgamma. Northern blot analysis showed that overexpression of ERRgamma induced Plk2 expression in cancer cell lines. ERRgamma activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERRgamma-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERRgamma binds directly to the Plk2 promoter. Overexpression of ERRgamma in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERRgamma, and suggest that this interaction is crucial for cancer cell proliferation.
Collapse
Affiliation(s)
- Yun-Yong Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seok-Ho Kim
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Joo Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | - Sun Yee Kim
- Section of Endocrinology, Department of Internal Medicine, Kyungpook National University, Taegu 700-721, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - In-Kyu Lee
- Section of Endocrinology, Department of Internal Medicine, Kyungpook National University, Taegu 700-721, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | - Hueng-Sik Choi
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
267
|
Sivaprasad U, Machida YJ, Dutta A. APC/C--the master controller of origin licensing? Cell Div 2007; 2:8. [PMID: 17319958 PMCID: PMC1810247 DOI: 10.1186/1747-1028-2-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 02/23/2007] [Indexed: 11/15/2022] Open
Abstract
DNA replication must be tightly controlled to prevent initiation of a second round of replication until mitosis is complete. So far, components of the pre-replicative complex (Cdt1, Cdc6 and geminin) were considered key players in this regulation. In a new study, Machida and Dutta have shown that depletion of Emi1 caused cells to replicate their DNA more than once per cell cycle 1. This effect was dependent on the ability of Emi1 to inhibit the APC/C. In addition to its role in regulating entry into mitosis, oscillation of APC/C activity regulates pre-RC formation: high APC/C activity in late M/G1 allows pre-RC formation and low APC/C activity in S/G2 prevents pre-RC formation for a second time thereby preventing rereplication. Each redundant pathway to prevent rereplication is dependent on regulating one of the pre-RC components, and all of the pathways are co-regulated by Emi1 through the APC/C. In this commentary we discuss how this new role of Emi1 adds to our understanding of the regulation of replication initiation. We also review the literature to analyze whether APC/C has a role in regulating endoreduplication (a normal state of polyploidy in some differentiated cells). Similarly a role of premature APC/C activation in genomic instability of tumors is discussed.
Collapse
Affiliation(s)
- Umasundari Sivaprasad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
268
|
Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007; 7:107-17. [PMID: 17251917 DOI: 10.1038/nrc2049] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of molecularly targeted drug discovery has facilitated the identification of a new generation of anti-mitotic therapies that target proteins with specific functions in mitosis. The exquisite selectivity for mitosis and the distinct ways in which these new agents interfere with mitosis provides the potential to not only overcome certain limitations of current tubulin-targeted anti-mitotic drugs, but to expand the scope of clinical efficacy that those drugs have established. The development of these new anti-mitotic drugs as targeted therapies faces significant challenges; nevertheless, these potential therapies also serve as unique tools to dissect the molecular mechanisms of the mitotic-checkpoint response.
Collapse
Affiliation(s)
- Jeffrey R Jackson
- GlaxoSmithKline, Oncology Center of Excellence in Drug Discovery, Department of Biology, Collegeville, Pennsylvania, USA.
| | | | | | | |
Collapse
|
269
|
Heterogeneity of mammary lesions represent molecular differences. BMC Cancer 2006; 6:275. [PMID: 17147824 PMCID: PMC1762020 DOI: 10.1186/1471-2407-6-275] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 12/05/2006] [Indexed: 11/26/2022] Open
Abstract
Background Human breast cancer is a heterogeneous disease, histopathologically, molecularly and phenotypically. The molecular basis of this heterogeneity is not well understood. We have used a mouse model of DCIS that consists of unique lines of mammary intraepithelial neoplasia (MIN) outgrowths, the premalignant lesion in the mouse that progress to invasive carcinoma, to understand the molecular changes that are characteristic to certain phenotypes. Each MIN-O line has distinguishable morphologies, metastatic potentials and estrogen dependencies. Methods We utilized oligonucleotide expression arrays and high resolution array comparative genomic hybridization (aCGH) to investigate whole genome expression patterns and whole genome aberrations in both the MIN-O and tumor from four different MIN-O lines that each have different phenotypes. From the whole genome analysis at 35 kb resolution, we found that chromosome 1, 2, 10, and 11 were frequently associated with whole chromosome gains in the MIN-Os. In particular, two MIN-O lines had the majority of the chromosome gains. Although we did not find any whole chromosome loss, we identified 3 recurring chromosome losses (2F1-2, 3E4, 17E2) and two chromosome copy number gains on chromosome 11. These interstitial deletions and duplications were verified with a custom made array designed to interrogate the specific regions at approximately 550 bp resolution. Results We demonstrated that expression and genomic changes are present in the early premalignant lesions and that these molecular profiles can be correlated to phenotype (metastasis and estrogen responsiveness). We also identified expression changes associated with genomic instability. Progression to invasive carcinoma was associated with few additional changes in gene expression and genomic organization. Therefore, in the MIN-O mice, early premalignant lesions have the major molecular and genetic changes required and these changes have important phenotypic significance. In contrast, the changes that occur in the transition to invasive carcinoma are subtle, with few consistent changes and no association with phenotype. Conclusion We propose that the early lesions carry the important genetic changes that reflect the major phenotypic information, while additional genetic changes that accumulate in the invasive carcinoma are less associated with the overall phenotype.
Collapse
|
270
|
Abstract
A new centromeric protein termed PBIP1 was identified that recruits Plk1 to the kinetochores. In the November 3 issue of Molecular Cell, show that Plk1 phosphorylates PBIP1 on threonine 78, creating its own high-affinity docking site for the polo-box domain (PBD).
Collapse
Affiliation(s)
- Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | |
Collapse
|
271
|
Knock E, Deng L, Wu Q, Leclerc D, Wang XL, Rozen R. Low dietary folate initiates intestinal tumors in mice, with altered expression of G2-M checkpoint regulators polo-like kinase 1 and cell division cycle 25c. Cancer Res 2006; 66:10349-56. [PMID: 17079455 DOI: 10.1158/0008-5472.can-06-2477] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical reports have suggested that low dietary folate increases risk for colorectal cancer. Animal studies for investigation of folate and tumorigenesis have used carcinogen induction or mice with germ-line mutations. We have developed a new spontaneous tumor model in which mice, with or without a null allele in a key folate-metabolizing enzyme, methylenetetrahydrofolate reductase (Mthfr), develop intestinal tumors due to low dietary folate alone. On folate-deficient diets, 12.5% of Mthfr(+/+) mice and 28.1% of Mthfr(+/-) mice developed tumors; mice on control diets were negative. Dietary and genotype effects on tumor development were significant. To investigate mechanisms of folate-dependent tumorigenesis, we examined levels of DNA damage and gene expression of two genes involved in DNA damage response and G(2)-M checkpoint regulation, polo-like kinase 1 (Plk1) and cell division cycle 25c (Cdc25c). Folate deficiency increased DNA damage and decreased expression of both genes (assessed by quantitative reverse transcription-PCR and immunofluorescence) in normal intestine compared with levels in mice on control diets. An immunofluorescence assay for CDC25c activity (phosphorylated CDC2) also found CDC25c activity to be decreased in folate-deficient normal intestine. In tumors, however, Plk1 and Cdc25c mRNA were found to be higher (11- and 3-fold, respectively) compared with normal intestine from folate-deficient mice; immunofluorescence studies of PLK1, CDC25c, and phosphorylated CDC2 supported these findings. Our data suggest that folate deficiency can initiate tumor development, that Mthfr mutation can enhance this phenomenon, and that altered expression of Plk1 and Cdc25c may contribute to folate-dependent intestinal tumorigenesis.
Collapse
Affiliation(s)
- Erin Knock
- Department of Human Genetics, McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
272
|
Miglarese MR, Carlson RO. Development of new cancer therapeutic agents targeting mitosis. Expert Opin Investig Drugs 2006; 15:1411-25. [PMID: 17040200 DOI: 10.1517/13543784.15.11.1411] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Targeting cellular proliferation persists as a mainstay of cancer therapeutic strategy. Although microtubule-targeting drugs (such as taxanes and vinca alkaloids) have been used successfully in the clinic to treat a variety of cancers, they carry substantial liabilities that have spurred drug companies to aggressively pursue new tubulin-targeting drug candidates with improved efficacy and toxicity profiles. The recent discoveries of new mitotic targets for cancer therapy (such as kinesin spindle protein, Aurora kinases and Polo-like kinase-1) have also stimulated intense work focused on identifying novel antimitotic drugs directed at these new targets. A number of novel antimitotic drugs have demonstrated encouraging activity in preclinical models and have progressed into clinical development. This review focuses on selected new antimitotic drugs under evaluation in clinical trials.
Collapse
Affiliation(s)
- Mark R Miglarese
- Array BioPharma, Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
| | | |
Collapse
|
273
|
Li JJ, Li SA. Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 2006; 111:974-84. [PMID: 16603252 DOI: 10.1016/j.pharmthera.2006.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 12/13/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are commonly observed in the vast majority of human solid tumors and in many hematological malignancies. These features are considered defining characteristics of human breast, bladder and kidney cancers since they markedly exceed a 50% aneuploidy frequency. The detection of persistent mitotic kinase over-expression, particularly the Aurora family, and centrosome amplification in precursor/pre-malignant stages, strongly implicate these molecular changes in precipitating the aneuploidy seen in many human neoplasms. Mitotic spindle checkpoint defects may also lead to aneuploid tumors. However, the sustained over-expression and activity of various members of the mitotic kinase families, including Aurora (Aur) (A, B, C), Polo-like (Plk1-4), and Nek (NIMA1-11) in diverse human tumors strongly indicate that these entities are intimately involved in the development of errors in centrosome duplication, chromosome segregation, and cytokinesis. Mitotic kinases have also been implicated in regulating the centrosome cycle, spindle checkpoint and microtubule-kinetochore attachment, spindle assembly, and chromosome condensation. These mitotic kinases are modulated by de-novo synthesis, stability factors, phosphorylation, and ubiquitin-dependent proteolysis. They, in turn, phosphorylate a myriad of centrosomal/mitotic protein substrates, and have the ability to behave as oncogenes (i.e. Aur-A, Plk-1), providing a compelling link between errors in mitosis and oncogenic processes. The recent development of selective small molecule inhibitors of Aurora kinases, in particular, will provide useful tools to ascertain more precisely their role in cancer development. Potent inhibitors of mitotic kinases, when fully developed, have the promise to be effective agents against tumor growth, and possibly, tumor prevention as well.
Collapse
Affiliation(s)
- Jonathan J Li
- Hormonal Carcinogenesis Laboratory, Department of Pharmacology, Toxicology and Therapeutics, Mail Stop 1018, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | |
Collapse
|
274
|
Kappel S, Matthess Y, Zimmer B, Kaufmann M, Strebhardt K. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res 2006; 34:4527-36. [PMID: 16945954 PMCID: PMC1636372 DOI: 10.1093/nar/gkl628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/10/2006] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool to induce loss-of-function phenotypes by post-transcriptional silencing of gene expression. In this study we wondered whether inducible RNAi-cassettes integrated into cellular DNA possess the power to trigger neoplastic growth. For this purpose inducible RNAi vectors containing tetracycline (Tet)-responsive derivatives of the H1 promoter for the conditional expression of short hairpin RNA (shRNA) were used to target human polo-like kinase 1 (Plk1), which is overexpressed in a broad spectrum of human tumors. In the absence of doxycycline (Dox) HeLa clones expressing TetR, that carry the RNAi-cassette stably integrated, exhibited no significant alteration in Plk1 expression levels. In contrast, exposure to Dox led to marked downregulation of Plk1 mRNA to 3% and Plk1 protein to 14% in cell culture compared to mismatch shRNA/Plk1-expressing cells. As a result of Plk1 depletion cell proliferation decreased to 17%. Furthermore, for harnessing RNAi for silencing disease-related genes in vivo we transplanted inducible RNAi-HeLa cells onto nude mice. After administration of Dox knockdown of Plk1 expression was observed correlating to a significant inhibition of tumor growth. Taken together, our data revealed that genomically integrated RNAi-elements are suitable to hamper tumor growth by conditional expression of shRNA.
Collapse
Affiliation(s)
- Sven Kappel
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Manfred Kaufmann
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
275
|
Eckerdt F, Strebhardt K. Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer Res 2006; 66:6895-8. [PMID: 16849530 DOI: 10.1158/0008-5472.can-06-0358] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of progression through mitosis. Although Plk1 seems to be dispensable for entry into mitosis, its role in spindle formation and exit from mitosis is crucial. Recent evidence suggests that a major role of Plk1 in exit from mitosis is the regulation of inhibitors of the anaphase-promoting complex/cyclosome (APC/C), such as the early mitotic inhibitor 1 (Emi1) and spindle checkpoint proteins. Thus, Plk1 and the APC/C control mitotic regulators by both phosphorylation and targeted ubiquitylation to ensure the fidelity of chromosome separation at the metaphase to anaphase transition. The mechanisms underlying the control of genomic stability by Plk1 are discussed in this review.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| | | |
Collapse
|
276
|
Yamamoto Y, Matsuyama H, Kawauchi S, Matsumoto H, Nagao K, Ohmi C, Sakano S, Furuya T, Oga A, Naito K, Sasaki K. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 2006; 70:231-7. [PMID: 16837776 DOI: 10.1159/000094416] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 05/17/2006] [Indexed: 11/19/2022]
Abstract
Polo-like kinase 1 (PLK1) participates in bipolar spindle formation and entry into mitosis. Chromosomal instability (CIN) is caused by abnormalities in spindle formation and chromosome segregation. In this study, we investigated the relationship of PLK1 overexpression to CIN, and compared the PLK1 status with clinicopathological parameters in 101 human urothelial carcinomas of the urinary bladder. Expression of PLK1 and the number of centrosomes were assessed by immunohistochemistry. Numerical aberrations of chromosomes 7, 9 and 17 spots that allowed estimation of CIN were evaluated by fluorescence in situ hybridization, and DNA ploidy was assessed by laser scanning cytometry. Cancers with a large intercellular variation in centromere copy number were defined as CIN cancers. Tumors with PLK1 overexpression were associated more frequently with CIN (p < 0.0001), DNA aneuploidy (p = 0.0007) and centrosome amplification (p = 0.0013) than those without. Overexpression of PLK1 was significantly related to higher pathological grade (p = 0.0024), multiple tumors (p = 0.0241) and positive urine cytology (p = 0.0192). These data suggest that a high level expression of PLK1 confers tumor progression advantages to urothelial cancer cells, although other factors are also involved.
Collapse
Affiliation(s)
- Yoshiaki Yamamoto
- Department of Urology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Abstract
The World Health Organization has included different types of lymphoma under the aggressive category. In the US, diffuse large B-cell lymphoma is the most common aggressive lymphoma and accounts for > 30% of the 55,000 new cases diagnosed annually. Recent advances in the knowledge of the molecular biology have provided an increased understanding of the heterogeneity of non-Hodgkin's lymphoma. New treatments, especially those with the use of monoclonal antibodies, are improving both the survival and the response rate.
Collapse
Affiliation(s)
- Luis Fayad
- Department of Lymphoma/Myeloma, University of Texas, MD Anderson Cancer Center, Box # 429, Houston, TX 77030, USA
| | | |
Collapse
|
278
|
McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006; 24:1005-15. [PMID: 16823371 DOI: 10.1038/nbt1223] [Citation(s) in RCA: 758] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/23/2006] [Indexed: 02/07/2023]
Abstract
Technologies that mediate targeted delivery of small interfering RNAs (siRNAs) are needed to improve their therapeutic efficacy and safety. Therefore, we have developed aptamer-siRNA chimeric RNAs capable of cell type-specific binding and delivery of functional siRNAs into cells. The aptamer portion of the chimeras mediates binding to PSMA, a cell-surface receptor overexpressed in prostate cancer cells and tumor vascular endothelium, whereas the siRNA portion targets the expression of survival genes. When applied to cells expressing PSMA, these RNAs are internalized and processed by Dicer, resulting in depletion of the siRNA target proteins and cell death. In contrast, the chimeras do not bind to or function in cells that do not express PSMA. These reagents also specifically inhibit tumor growth and mediate tumor regression in a xenograft model of prostate cancer. These studies demonstrate an approach for targeted delivery of siRNAs with numerous potential applications, including cancer therapeutics.
Collapse
Affiliation(s)
- James O McNamara
- Duke Center for Translational Research, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Spänkuch B, Heim S, Kurunci-Csacsko E, Lindenau C, Yuan J, Kaufmann M, Strebhardt K. Down-regulation of Polo-like kinase 1 elevates drug sensitivity of breast cancer cells in vitro and in vivo. Cancer Res 2006; 66:5836-46. [PMID: 16740723 DOI: 10.1158/0008-5472.can-06-0343] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human polo-like kinase 1 (Plk1) is a key player in different stages of mitosis and modulates the spindle checkpoint at the metaphase-anaphase transition. Overexpression of Plk1 is observed in various human tumors and it is a negative prognostic factor in patients suffering from diverse cancers. We used phosphorothioate antisense oligonucleotides (ASO) targeted against Plk1, together with paclitaxel, carboplatin, and Herceptin, for the treatment of breast cancer cells to identify conditions for enhanced drug sensitivity. After transfection of the breast cancer cell lines BT-474, MCF-7, and MDA-MB-435 with Plk1-specific ASOs, paclitaxel, carboplatin, or Herceptin was added and cell proliferation, cell cycle distribution, and apoptosis were measured. Whereas the dual treatment of breast cancer cells with Plk1-specific ASOs with carboplatin or Herceptin caused only a limited antiproliferative effect in breast cancer cells, we observed synergistic effects after combination of low doses of Plk1-specific ASOs with paclitaxel, which is used in a variety of clinical anticancer regimens. Plk1-specific ASOs also acted synergistically with paclitaxel in the arrest of the cell cycle at the G(2)-M phase and in the induction of apoptosis. Interestingly, in a human xenograft experiment using MDA-MB-435 cells, the combination of Plk1 ASOs with paclitaxel led to synergistic reduction of tumor growth after 3 weeks of treatment compared with either agent alone. This study suggests that antisense inhibitors against Plk1 at well-tolerated doses may be considered as highly efficient promoters for the antineoplastic potential of taxanes, such as paclitaxel, causing synergistic effects in breast cancer cells.
Collapse
Affiliation(s)
- Birgit Spänkuch
- Department of Obstetrics and Gynecology, Medical School, J.W. Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
280
|
Yuan J, Krämer A, Matthess Y, Yan R, Spänkuch B, Gätje R, Knecht R, Kaufmann M, Strebhardt K. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene 2006; 25:1753-62. [PMID: 16278675 DOI: 10.1038/sj.onc.1209202] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclin B1 is the regulatory subunit of cyclin-dependent kinase 1 (Cdk1) and is critical for the initiation of mitosis. Accumulating data indicate that the deregulation of cyclin B1 is tightly linked to neoplastic transformation. To study the phenotype and the potential preclinical relevance, we generated HeLa cell lines stably transfected with the plasmids encompassing short hairpin RNA (shRNA) targeting cyclin B1. We demonstrate that the reduction of cyclin B1 caused inhibition of proliferation by arresting cells in G2 phase and by inducing apoptosis. Cells, entering mitosis, were impaired in chromosome condensation and alignment. Importantly, HeLa cells with reduced cyclin B1 were more susceptible to the treatment of small interfering RNA targeting Polo-like kinase 1 (Plk1) and to the administration of the chemotherapeutic agent taxol. Finally, HeLa cells with reduced cyclin B1 showed inhibited tumor growth in nude mice compared to that of control cells. In summary, our data indicate that cyclin B1 is an essential molecule for tumor cell survival and aggressive proliferation, suggesting that the downregulation of cyclin B1, especially in combination with other molecular targets, might become an interesting strategy for antitumor intervention.
Collapse
Affiliation(s)
- J Yuan
- Department of Gynecology and Obstetrics, School of Medicine, JW Goethe-University, 60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Jiang N, Wang X, Jhanwar-Uniyal M, Darzynkiewicz Z, Dai W. Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem 2006; 281:10577-82. [PMID: 16478733 DOI: 10.1074/jbc.m513156200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase 3 (Plk3), an immediate early response gene product, plays an important role in the regulation of mitosis, DNA damage checkpoint activation, and Golgi dynamics. Similar to other members of the Plk family, Plk3 has a conserved kinase domain at the N terminus and a Polo box domain consisting of two Polo boxes at the C terminus. In this study, we demonstrate that the Polo box domain of Plk3 is sufficient for subcellular localization of this kinase to the centrosomes, the spindle poles, and the midbody when ectopically expressed in HeLa and U2OS cells. Both Polo boxes are required for the subcellular localization. Overexpression of the Polo box domain, not the kinase domain, of Plk3 causes significant cell cycle arrest and cytokinesis defects, eventually leading to mitotic catastrophe/apoptosis. Interestingly, the Polo box domain of Plk3 is more potent in inhibiting cell proliferation and inducing apoptosis than that of Plk1, suggesting that this domain can provide an additional structural basis for discovery of new anticancer drugs given the current emphasis on Plk1 as a therapeutic target.
Collapse
Affiliation(s)
- Ning Jiang
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Basic Science Building, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
282
|
Weichert W, Ullrich A, Schmidt M, Gekeler V, Noske A, Niesporek S, Buckendahl AC, Dietel M, Denkert C. Expression patterns of polo-like kinase 1 in human gastric cancer. Cancer Sci 2006; 97:271-6. [PMID: 16630118 PMCID: PMC11159179 DOI: 10.1111/j.1349-7006.2006.00170.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is centrally involved in the regulation of mitosis in normal and malignant cells. It is known that inhibition of PLK1 expression in vitro and in vivo leads to mitotic arrest, induction of apoptosis and suppression of tumor growth. In the present study, expression of PLK1 was investigated in paraffin tissue of 135 cases of gastric adenocarcinoma and in 46 corresponding lymph node metastases by immunohistochemistry. Expression data were correlated with clinicopathological parameters and patient survival. Seventy-three (54.1%) of 135 carcinomas showed an overexpression of PLK1 compared to normal gastric mucosa. Overexpression of PLK1 correlated positively with tumor stage, nodal status and diffuse growth pattern. PLK1 expression in the primary tumor did not differ from PLK1 expression in the corresponding lymph node metastases. PLK1 expression was a significant prognostic factor in univariate but not in multivariate survival analysis. As a conclusion, upregulated PLK1 expression in gastric cancer correlates with a malignant tumor phenotype and has impact on patient prognosis. These data underscore the importance of PLK1 in gastric carcinogenesis and present a translational link for functional data into potential clinical use by defining PLK1 as an attractive protein for novel targeted chemotherapeutic approaches in gastric cancer.
Collapse
Affiliation(s)
- Wilko Weichert
- Institut für Pathologie, Charité Universitätsmedizin, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
Human polo-like kinase 1 (PLK1) is essential during mitosis and in the maintenance of genomic stability. PLK1 is overexpressed in human tumours and has prognostic potential in cancer, indicating its involvement in carcinogenesis and its potential as a therapeutic target. The use of different PLK1 inhibitors has increased our knowledge of mitotic regulation and allowed us to assess their ability to suppress tumour growth in vivo. We address the structural features of the kinase domain and the unique polo-box domain of PLK1 that are most suited for drug development and discuss our current understanding of the therapeutic potential of PLK1.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodore-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
284
|
Liu X, Lei M, Erikson RL. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 2006; 26:2093-108. [PMID: 16507989 PMCID: PMC1430287 DOI: 10.1128/mcb.26.6.2093-2108.2006] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 10/18/2005] [Accepted: 12/22/2005] [Indexed: 11/20/2022] Open
Abstract
We previously reported the phenotype of depletion of polo-like kinase 1 (Plk1) using RNA interference (RNAi) and showed that p53 is stabilized in Plk1-depleted cancer cells. In this study, we further analyzed the Plk1 depletion-induced phenotype in both cancer cells and primary cells. The vector-based RNAi approach was used to evaluate the role of the p53 pathway in Plk1 depletion-induced apoptosis in cancer cells with different p53 backgrounds. Although DNA damage and cell death can occur independently of p53, p53-deficient cancer cells were much more sensitive to Plk1 depletion than cancer cells with functional p53. Next, the lentivirus-based RNAi approach was used to generate a series of Plk1 hypomorphs. In HeLa cells, two weak hypomorphs showed only slight G2/M arrest, a medium hypomorph arrested with 4N DNA content, followed later by apoptosis, and a strong Plk1 hypomorph underwent serious mitotic catastrophe. In well-synchronized HeLa cells, a medium level of Plk1 depletion caused a 2-h delay of mitotic progression, and a high degree of Plk1 depletion significantly delayed mitotic entry and completely blocked cells at mitosis. In striking contrast, normal hTERT-RPE1 and MCF10A cells were much less sensitive to Plk1 depletion than HeLa cells; no apparent cell proliferation defect or cell cycle arrest was observed after Plk1 depletion in these cells. Therefore, these data further support suggestions that Plk1 may be a feasible cancer therapy target.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
285
|
Abstract
Protein phosphorylation plays key roles in many physiological processes and is often deregulated in pathological conditions. Our current understanding of how protein kinases and phosphatases orchestrate the phosphorylation changes that control cellular functions has made these enzymes potential drug targets for the treatment of many diseases. The success of the tyrosine kinase inhibitor Gleevec in the treatment of some cancers has further invigorated the development of kinase inhibitors as anti-cancer drugs. A large number of these compounds are currently undergoing clinical trials and there is much expectation on the therapeutic potential of these molecules, as more specific and less toxic drugs than currently used generic chemotherapeutic agents. In this manuscript, we review the current status of more than 30 protein kinase inhibitors with proven or potential therapeutic value for cancer treatment. These include inhibitors of receptor and cytosolic tyrosine kinases as well as compounds that target different families of serine/threonine kinases involved in signalling and cell cycle regulation. We also briefly touch on the prospects of phosphatase inhibitors. The combination of kinase inhibitors to target different components of signalling pathways that are found deregulated in tumours is also emerging as an interesting approach for cancer therapy.
Collapse
|
286
|
Hanisch A, Wehner A, Nigg EA, Silljé HHW. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol Biol Cell 2006; 17:448-59. [PMID: 16267267 PMCID: PMC1345681 DOI: 10.1091/mbc.e05-08-0801] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/14/2005] [Accepted: 10/24/2005] [Indexed: 12/11/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has multiple important functions during M-phase progression. In addition to a catalytic domain, Plk1 possesses a phosphopeptide-binding motif, the polo-box domain (PBD), which is required for proper localization. Here, we have explored the importance of correct Plk1 subcellular targeting for its mitotic functions. We either displaced endogenous Plk1 through overexpression of the PBD or introduced the catalytic domain of Plk1, lacking the PBD, into Plk1-depleted cells. Both treatments resulted in remarkably similar phenotypes, which were distinct from the Plk1 depletion phenotype. Cells depleted of Plk1 mostly arrested with monoastral spindles, because of inhibition of centrosome maturation and separation. In contrast, these functions were not impaired in cells with mislocalized Plk1. Instead, these latter cells showed a checkpoint-dependent mitotic arrest characterized by impaired chromosome congression. Thus, whereas chromosome congression requires localized Plk1 activity, other investigated Plk1 functions are less dependent on correct PBD-mediated targeting. This opens the possibility that PBD-directed drugs might be developed to selectively interfere with a subset of Plk1 functions.
Collapse
Affiliation(s)
- Anja Hanisch
- Department of Cell Biology, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
287
|
Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C, Kramer A, Naumann S, Daum S, Fischer G, Dikic I, Kaufmann M, Strebhardt K. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem 2005; 280:36575-83. [PMID: 16118204 DOI: 10.1074/jbc.m504548200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Theodor-Stern-Kai 7, Frankfurt D-60590, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Abstract
Prostate cancer (PCa) is the most commonly occurring cancer in American men, next to skin cancer. Existing treatment options and surgical intervention are unable to effectively manage this cancer. Therefore, continuing efforts are ongoing to establish novel mechanism-based targets and strategies for its management. The serine/threonine kinases Polo-like kinase (Plk) 1 plays a key role in mitotic entry of proliferating cells and regulates many aspects of mitosis which are necessary for successful cytokinesis. Plk1 is over-expressed in many tumor types with aberrant elevation frequently constituting a prognostic indicator of poor disease outcome. This review discusses the studies which indicate that Plk1 could be an excellent target for the treatment as well as chemoprevention of prostate cancer.
Collapse
|
289
|
Hayward DG, Fry AM. Nek2 kinase in chromosome instability and cancer. Cancer Lett 2005; 237:155-66. [PMID: 16084011 DOI: 10.1016/j.canlet.2005.06.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 01/07/2023]
Abstract
Aneuploidy and chromosome instability are two of the most common abnormalities in cancer cells. They arise through defects in cell division and, specifically, in the unequal segregation of chromosomes between daughter cells during mitosis. A number of cell cycle dependent protein kinases have been identified that control mitotic progression and chromosome segregation. Some of these localize to the centrosome and regulate mitotic spindle formation. One such protein is Nek2, a member of the NIMA-related serine/threonine kinase family. Data are emerging that Nek2 is abnormally expressed in a wide variety of human cancers. In this review, we summarize current knowledge on the expression, regulation and function of Nek2, consider how Nek2 may contribute to chromosome instability, and ask whether it might make an attractive target for chemotherapeutic intervention in human cancer.
Collapse
Affiliation(s)
- Daniel G Hayward
- Department of Biochemistry, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| | | |
Collapse
|
290
|
Zhang Q, Liu NZ, Hong W, Ni Z, Li XM. Expression of Polo-like kinase 1 and its significance in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2005; 13:1499-1502. [DOI: 10.11569/wcjd.v13.i13.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Polo-like kinase 1 (PLK1) and its relationship with clinicopathological characteristics, anti-oncogene and tumor proliferation in human gastric carcinoma, and to explore the role of PLK1 in the carcinogenesis and progression of tumor and its clinical significance.
METHODS: The expression of PLK1, P53 and Ki67 was detected in tissues of gastric carcinoma (n = 54), atypical hyperplasia (n = 10)and normal gastric mucosa (n = 15) by immunohistochemical method.
RESULTS: PLK1 was negatively expressed in normal mucosa. Weakly positive staining for PLK1 was observed in 4 out of 11 Atypical hyperplasia tissues. The expression of PLK1 was elevated in 88.9%(48/54) of the gastric carcinoma. There were no significant associations between PLK1 and clinicopathological characteristics such as histological differentiation, distant metastasis and lymph node metastasis (P>0.05). PLK1 expression was significantly related to the depth of invasion (χ2 = 6.775, P<0.01) and TMN staging (χ2 = 9.009, P<0.01). In gastric cancer, positive staining for P53 was detected in 38 of 54 cases (70.4%). P53 expression was significantly associated with PLK1 (χ2 = 6.664, P<0.05). The mean value of Ki67 labelling index (Ki67 LI) was 34.7±13.4%, with a range of 10.3-60.1%. PLK1 expression was positively associated with Ki67 level (r = 0.720, P<0.01).
CONCLUSION: PLK1 is over-expressed in gastric cancer, and associated with tumor proliferation and anti-oncogene. PLK1 plays an important role in the carcinogenesis and development of gastric carcinoma.
Collapse
|