251
|
Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454256. [PMID: 25667921 PMCID: PMC4312578 DOI: 10.1155/2015/454256] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
This study was designed to identify and validate potential new biomarkers for prostate cancer and to distinguish patients with and without biochemical relapse. Prostate tissue samples analyzed by 2D-DIGE (two-dimensional difference in gel electrophoresis) and mass spectrometry (MS) revealed downregulation of secernin-1 (P < 0.044) in prostate cancer, while vinculin showed significant upregulation (P < 0.001). Secernin-1 overexpression in prostate tissue was validated using Western blot and immunohistochemistry while vinculin expression was validated using immunohistochemistry. These findings indicate that secernin-1 and vinculin are potential new tissue biomarkers for prostate cancer diagnosis and prognosis, respectively. For validation, protein levels in urine were also examined by Western blot analysis. Urinary vinculin levels in prostate cancer patients were significantly higher than in urine from nontumor patients (P = 0.006). Using multiple reaction monitoring-MS (MRM-MS) analysis, prostatic acid phosphatase (PAP) showed significant higher levels in the urine of prostate cancer patients compared to controls (P = 0.012), while galectin-3 showed significant lower levels in the urine of prostate cancer patients with biochemical relapse, compared to those without relapse (P = 0.017). Three proteins were successfully differentiated between patients with and without prostate cancer and patients with and without relapse by using MRM. Thus, this technique shows promise for implementation as a noninvasive clinical diagnostic technique.
Collapse
|
252
|
Abstract
Many preclinical studies in critical care medicine and related disciplines rely on hypothesis-driven research in mice. The underlying premise posits that mice sufficiently emulate numerous pathophysiologic alterations produced by trauma/sepsis and can serve as an experimental platform for answering clinically relevant questions. Recently, the lay press severely criticized the translational relevance of mouse models in critical care medicine. A series of provocative editorials were elicited by a highly publicized research report in the Proceedings of the National Academy of Sciences (PNAS; February 2013), which identified an unrecognized gene expression profile mismatch between human and murine leukocytes following burn/trauma/endotoxemia. Based on their data, the authors concluded that mouse models of trauma/inflammation are unsuitable for studying corresponding human conditions. We believe this conclusion was not justified. In conjunction with resulting negative commentary in the popular press, it can seriously jeopardize future basic research in critical care medicine. We will address some limitations of that PNAS report to provide a framework for discussing its conclusions and attempt to present a balanced summary of strengths/weaknesses of use of mouse models. While many investigators agree that animal research is a central component for improved patient outcomes, it is important to acknowledge known limitations in clinical translation from mouse to man. The scientific community is responsible to discuss valid limitations without overinterpretation. Hopefully, a balanced view of the strengths/weaknesses of using animals for trauma/endotoxemia/critical care research will not result in hasty discount of the clear need for using animals to advance treatment of critically ill patients.
Collapse
|
253
|
Rashydov NM, Hajduch M. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26217350 PMCID: PMC4492160 DOI: 10.3389/fpls.2015.00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.
Collapse
Affiliation(s)
- Namik M. Rashydov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, KievUkraine
| | - Martin Hajduch
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, NitraSlovakia
- *Correspondence: Martin Hajduch, Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39A, Nitra, Slovakia,
| |
Collapse
|
254
|
Kinomic profiling of electromagnetic navigational bronchoscopy specimens: a new approach for personalized medicine. PLoS One 2014; 9:e116388. [PMID: 25549342 PMCID: PMC4280210 DOI: 10.1371/journal.pone.0116388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/07/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, current molecular testing of tumors at the genomic or transcriptomic level are very indirect measures of biological response to a drug, particularly for small molecule inhibitors that target kinases. Kinase activity profiling is therefore theorized to be more reflective of invivo biology than many current molecular analysis techniques. As a result, this study seeks to prove the feasibility of combining a novel minimally invasive biopsy technique that expands the number of lesions amenable for biopsy with subsequent exvivo kinase activity analysis. Methods Eight patients with lung lesions of varying location and size were biopsied using the novel electromagnetic navigational bronchoscopy (ENB) technique. Basal kinase activity (kinomic) profiles and exvivo interrogation of samples in combination with tyrosine kinase inhibitors erlotinib, crizotinib, and lapatinib were performed by PamStation 12 microarray analysis. Results Kinomic profiling qualitatively identified patient specific kinase activity profiles as well as patient and drug specific changes in kinase activity profiles following exposure to inhibitor. Thus, the study has verified the feasibility of ENB as a method for obtaining tissue in adequate quantities for kinomic analysis and has demonstrated the possible use of this tissue acquisition and analysis technique as a method for future study of lung cancer biomarkers. Conclusions We demonstrate the feasibility of using ENB-derived biopsies to perform kinase activity assessment in lung cancer patients.
Collapse
|
255
|
The use of a rapid MS-based method for the quantification of the CYP 3A4 protein directly from hepatocyte cell lysate for CYP induction studies. Bioanalysis 2014; 6:3271-82. [DOI: 10.4155/bio.14.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Most P450 protein quantitation methods involved the time-consuming preparation of microsomes and therefore are not amenable for high-throughput analysis. We here report a new method to measure P450 CYP3A4 protein levels directly from cell lysates. Results: A direct sample preparation method from hepatocyte cell lysate has been developed for the quantification of CYP3A4 protein levels by combining a modified semi-automated precipitation with a filter-aided sample preparation. This novel LC–MS/MS-based method provides simple, subfemtomole sensitivity and rapid quantitation of CYP3A4 protein levels directly from hepatocyte lysate without the need for microsome preparation. Conclusion: A rapid, accurate and sensitive method has been developed and implemented to quantify CYP3A4 protein in hepatocytes down to 0.05 million cells in CYP induction studies. The number of cells required for quantitation was well below the typical 0.25 million cells used in a CYP induction study.
Collapse
|
256
|
Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, Taylor P, Ignatchenko V, Ignatchenko A, Zhang W, Wang D, Yanagawa N, Li M, Pintilie M, Liu G, Muthuswamy L, Shepherd FA, Tsao MS, Kislinger T, Moran MF. Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun 2014; 5:5469. [DOI: 10.1038/ncomms6469] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022] Open
|
257
|
Sethi G, Kwon Y, Burkhalter RJ, Pathak HB, Madan R, McHugh S, Atay S, Murthy S, Tawfik OW, Godwin AK. PTN signaling: Components and mechanistic insights in human ovarian cancer. Mol Carcinog 2014; 54:1772-85. [PMID: 25418856 DOI: 10.1002/mc.22249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian tumors.
Collapse
Affiliation(s)
- Geetika Sethi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Youngjoo Kwon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Rebecca J Burkhalter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarah McHugh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Smruthi Murthy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ossama W Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
258
|
Laser Assisted Microdissection, an Efficient Technique to Understand Tissue Specific Gene Expression Patterns and Functional Genomics in Plants. Mol Biotechnol 2014; 57:299-308. [DOI: 10.1007/s12033-014-9824-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
259
|
Prediction of individual response to anticancer therapy: historical and future perspectives. Cell Mol Life Sci 2014; 72:729-57. [PMID: 25387856 PMCID: PMC4309902 DOI: 10.1007/s00018-014-1772-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
Since the introduction of chemotherapy for cancer treatment in the early 20th century considerable efforts have been made to maximize drug efficiency and at the same time minimize side effects. As there is a great interpatient variability in response to chemotherapy, the development of predictive biomarkers is an ambitious aim for the rapidly growing research area of personalized molecular medicine. The individual prediction of response will improve treatment and thus increase survival and life quality of patients. In the past, cell cultures were used as in vitro models to predict in vivo response to chemotherapy. Several in vitro chemosensitivity assays served as tools to measure miscellaneous endpoints such as DNA damage, apoptosis and cytotoxicity or growth inhibition. Twenty years ago, the development of high-throughput technologies, e.g. cDNA microarrays enabled a more detailed analysis of drug responses. Thousands of genes were screened and expression levels were correlated to drug responses. In addition, mutation analysis became more and more important for the prediction of therapeutic success. Today, as research enters the area of -omics technologies, identification of signaling pathways is a tool to understand molecular mechanism underlying drug resistance. Combining new tissue models, e.g. 3D organoid cultures with modern technologies for biomarker discovery will offer new opportunities to identify new drug targets and in parallel predict individual responses to anticancer therapy. In this review, we present different currently used chemosensitivity assays including 2D and 3D cell culture models and several -omics approaches for the discovery of predictive biomarkers. Furthermore, we discuss the potential of these assays and biomarkers to predict the clinical outcome of individual patients and future perspectives.
Collapse
|
260
|
Zhang W, Wei Y, Ignatchenko V, Li L, Sakashita S, Pham NA, Taylor P, Tsao MS, Kislinger T, Moran MF. Proteomic profiles of human lung adeno and squamous cell carcinoma using super-SILAC and label-free quantification approaches. Proteomics 2014; 14:795-803. [PMID: 24453208 DOI: 10.1002/pmic.201300382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/29/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is subdivided into two major histological subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). There is an unmet need to further subdivide NSCLC according to distinctive molecular features that may be associated with responsiveness to therapies. Four primary tumor-derived xenograft proteomes (two-each ADC and SCC) were quantitatively compared by using a super-SILAC labeling approach together with ultrahigh-resolution MS. Proteins highly differentially expressed in the two subtypes were identified, including 30 that were validated in an independent cohort of 12 NSCLC primary tumor-derived xenograft tumors whose proteomes were quantified by an alternative, label-free shotgun MS methodology. The 30-protein signature contains metabolism enzymes including phosphoglycerate dehydrogenase, which is more highly expressed in SCC, as well as a comprehensive set of cytokeratins and other components of the epithelial barrier, which is therefore distinctly different between ADC and SCC. These results demonstrate the utility of the super-SILAC method for the characterization of primary tissues, and compatibility with datasets derived from different MS-based platforms. The validation of proteome signatures of NSCLC subtypes supports the further development and application of MS-based quantitative proteomics as a basis for precision classifications and treatments of tumors. All MS data have been deposited in the ProteomeXchange with identifier PXD000438 (http://proteomecentral.proteomexchange.org/dataset/PXD000438).
Collapse
Affiliation(s)
- Wen Zhang
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Suarez E, Syed F, Alonso-Rasgado T, Bayat A. Identification of biomarkers involved in differential profiling of hypertrophic and keloid scars versus normal skin. Arch Dermatol Res 2014; 307:115-33. [PMID: 25322916 DOI: 10.1007/s00403-014-1512-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
Among raised dermal scar types, keloid (KS) and hypertrophic scars (HS) are considered to present clinical similarities, but there are no known specific biomarkers that allow both scar types to be easily distinguished. Development and progression of raised dermal scars comprises the activation of several molecular pathways and cell defence mechanisms leading to elevated extracellular matrix component synthesis, delayed apoptosis, altered migration and differentiation. Therefore, the aim here was to identify biomarkers that may differentiate between KS and HS compared to normal skin (NS). To achieve this aim, NS (n = 14), KS (n = 14) and HS (n = 14) biopsies were evaluated using histology by H&E staining. Tissue biopsies and primary fibroblasts (passages 0-4) were employed to assess the gene expression levels of 21 biomarkers selected from our previous microarray studies using qRT-PCR. Finally, protein expression was evaluated using In-Cell Western Blotting in primary fibroblasts (p 0-4). Our results demonstrated that out of the 21 biomarkers screened at mRNA and protein levels, α2β1-integrin, Hsp27, PAI-2, MMP-19 and CGRP showed significantly higher expression (p < 0.05) in KS compared to NS and HS. Additionally, these five key biomarkers were found to be significantly higher (p < 0.05) at mRNA level in KS taken from the sternum, a region known to be subjected to high mechanical forces in the body during the performance of daily movements. In conclusion, our findings offer potential molecular targets in raised dermal scars differentiation. Future targeted research may allow provision of diagnostic and prognostic markers in keloid versus hypertrophic scars.
Collapse
Affiliation(s)
- Edna Suarez
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess Road, Manchester, M1 7ND, UK
| | | | | | | |
Collapse
|
262
|
Sui L, An L, Tan K, Wang Z, Wang S, Miao K, Ren L, Tao L, He S, Yu Y, Nie J, Liu Q, Xing L, Wu Z, Hou Z, Tian J. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol Reprod 2014; 91:155. [PMID: 25320150 DOI: 10.1095/biolreprod.114.124248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.
Collapse
Affiliation(s)
- Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shumin Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shuzhi He
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Yong Yu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jinzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Qian Liu
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Lei Xing
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuocheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
263
|
Neapolitan R, Jiang X. Inferring Aberrant Signal Transduction Pathways in Ovarian Cancer from TCGA Data. Cancer Inform 2014; 13:29-36. [PMID: 25392681 PMCID: PMC4216062 DOI: 10.4137/cin.s13881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
This paper concerns a new method for identifying aberrant signal transduction pathways (STPs) in cancer using case/control gene expression-level datasets, and applying that method and an existing method to an ovarian carcinoma dataset. Both methods identify STPs that are plausibly linked to all cancers based on current knowledge. Thus, the paper is most appropriate for the cancer informatics community. Our hypothesis is that STPs that are altered in tumorous tissue can be identified by applying a new Bayesian network (BN)-based method (causal analysis of STP aberration (CASA)) and an existing method (signaling pathway impact analysis (SPIA)) to the cancer genome atlas (TCGA) gene expression-level datasets. To test this hypothesis, we analyzed 20 cancer-related STPs and 6 randomly chosen STPs using the 591 cases in the TCGA ovarian carcinoma dataset, and the 102 controls in all 5 TCGA cancer datasets. We identified all the genes related to each of the 26 pathways, and developed separate gene expression datasets for each pathway. The results of the two methods were highly correlated. Furthermore, many of the STPs that ranked highest according to both methods are plausibly linked to all cancers based on current knowledge. Finally, CASA ranked the cancer-related STPs over the randomly selected STPs at a significance level below 0.05 (P = 0.047), but SPIA did not (P = 0.083).
Collapse
Affiliation(s)
- Richard Neapolitan
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Xia Jiang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
264
|
Heinen RB, Bienert GP, Cohen D, Chevalier AS, Uehlein N, Hachez C, Kaldenhoff R, Le Thiec D, Chaumont F. Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. PLANT MOLECULAR BIOLOGY 2014; 86:335-50. [PMID: 25082269 DOI: 10.1007/s11103-014-0232-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 05/20/2023]
Abstract
Stomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells. To re-establish the perturbed osmotic equilibrium, water follows the solutes into the cells, leading to their swelling. Numerous studies have contributed to the understanding of the mechanism and regulation of stomatal movements. However, despite the importance of transmembrane water flow during this process, only a few studies have provided evidence for the involvement of water channels, called aquaporins. Here, we microdissected Zea mays stomatal complexes and showed that members of the aquaporin plasma membrane intrinsic protein (PIP) subfamily are expressed in these complexes and that their mRNA expression generally follows a diurnal pattern. The substrate specificity of two of the expressed ZmPIPs, ZmPIP1;5 and ZmPIP1;6, was investigated by heterologous expression in Xenopus oocytes and yeast cells. Our data show that both isoforms facilitate transmembrane water diffusion in the presence of the ZmPIP2;1 isoform. In addition, both display CO2 permeability comparable to that of the CO2 diffusion facilitator NtAQP1. These data indicate that ZmPIPs may have various physiological roles in stomatal complexes.
Collapse
Affiliation(s)
- Robert B Heinen
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Meyer NJ. Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 2014; 35:673-84. [PMID: 25453417 DOI: 10.1016/j.ccm.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article summarizes the contributions of high-throughput genomic, proteomic, metabolomic, and gene expression investigations to the understanding of inherited or acquired risk for acute respiratory distress syndrome (ARDS). Although not yet widely applied to a complex trait like ARDS, these techniques are now routinely used to study a variety of disease states. Omic applications hold great promise for identifying novel factors that may contribute to ARDS pathophysiology or may be appropriate for further development as biomarkers or surrogates in clinical studies. Opportunities and challenges of different techniques are discussed, and examples of successful applications in non-ARDS fields are used to illustrate the potential use of each technique.
Collapse
Affiliation(s)
- Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Perelman School of Medicine, 3600 Spruce Street, 5039 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
266
|
Uemura N, Kondo T. Current advances in esophageal cancer proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:687-95. [PMID: 25233958 DOI: 10.1016/j.bbapap.2014.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
Abstract
We review the current status of proteomics for esophageal cancer (EC) from a clinician's viewpoint. The ultimate goal of cancer proteomics is the improvement of clinical outcome. The proteome as a functional translation of the genome is a straightforward representation of genomic mechanisms that trigger carcinogenesis. Cancer proteomics has identified the mechanisms of carcinogenesis and tumor progression, detected biomarker candidates for early diagnosis, and provided novel therapeutic targets for personalized treatments. Our review focuses on three major topics in EC proteomics: diagnostics, treatment, and molecular mechanisms. We discuss the major histological differences between EC types, i.e., esophageal squamous cell carcinoma and adenocarcinoma, and evaluate the clinical significance of published proteomics studies, including promising diagnostic biomarkers and novel therapeutic targets, which should be further validated prior to launching clinical trials. Multi-disciplinary collaborations between basic scientists, clinicians, and pathologists should be established for inter-institutional validation. In conclusion, EC proteomics has provided significant results, which after thorough validation, should lead to the development of novel clinical tools and improvement of the clinical outcome for esophageal cancer patients. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Norihisa Uemura
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, 1-1 Kanokoden, chikusa-ku, Nagoya, Aichi 464-8681, Japan.
| | - Tadashi Kondo
- Division of Pharmacoproteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
267
|
Won EJ, Ra K, Kim KT, Lee JS, Lee YM. Three novel superoxide dismutase genes identified in the marine polychaete Perinereis nuntia and their differential responses to single and combined metal exposures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:36-45. [PMID: 24905695 DOI: 10.1016/j.ecoenv.2014.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
To identify superoxide dismutase (SOD) genes and evaluate their usefulness as potential markers for monitoring metal toxicity in aquatic environment, we cloned, sequenced, and characterized 3 SOD genes (Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD) from the marine polychaete Perinereis nuntia. The accumulated metal contents and expressions of 3 SOD genes were compared after exposure to single and combinations of heavy metals, As, Ni, and Pb. The deduced amino acid sequences of the 3 SODs had evolutionary conserved domains, such as metal binding sites, and signature sequences. The phylogenetic analysis revealed that Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD were clustered with extracellular Cu/Zn-SOD, intracellular Cu/Zn-SOD and mitochondrial Mn-SOD, respectively, of other species. The accumulated contents of Ni and Pb increased significantly in a time - dependent manner after exposure to both single and combination of the metals. However, the concentration of As did not change significantly in the exposure test. The quantitative real-time polymerase chain reaction (PCR) array showed that the 3 SOD genes had differential expression patterns depending on the exposure condition. The expression of all SODs mRNAs was significantly elevated in response to Pb alone and in combination with As. The mRNA level of Cu/Zn-SOD1 was the highest after exposure to Pb alone, while that of Mn-SOD was remarkably enhanced after exposure to a combination of As and Pb. Exposure to Ni alone rapidly elevated the expression of Cu/Zn-SOD1 and Mn-SOD mRNA, which then gradually decreased. Exposure to As had no significant effect on the modulation of any of the SOD genes of P. nuntia. These results suggest that all SOD genes might play important roles in cellular protection as antioxidant enzymes against heavy metal toxicity via different modes of action in P. nuntia and might have the potential to act as indicators in an environment containing a mixture of metals.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Kongtae Ra
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Kyung-Tae Kim
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea.
| |
Collapse
|
268
|
Gedye CA, Hussain A, Paterson J, Smrke A, Saini H, Sirskyj D, Pereira K, Lobo N, Stewart J, Go C, Ho J, Medrano M, Hyatt E, Yuan J, Lauriault S, Meyer M, Kondratyev M, van den Beucken T, Jewett M, Dirks P, Guidos CJ, Danska J, Wang J, Wouters B, Neel B, Rottapel R, Ailles LE. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity. PLoS One 2014; 9:e105602. [PMID: 25170899 PMCID: PMC4149490 DOI: 10.1371/journal.pone.0105602] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 11/18/2022] Open
Abstract
Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.
Collapse
Affiliation(s)
- Craig A Gedye
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ali Hussain
- Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joshua Paterson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alannah Smrke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Harleen Saini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danylo Sirskyj
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Keira Pereira
- Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nazleen Lobo
- Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Stewart
- Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Christopher Go
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jenny Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mauricio Medrano
- Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Elzbieta Hyatt
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Julie Yuan
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Stevan Lauriault
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Maria Kondratyev
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Michael Jewett
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Peter Dirks
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Cynthia J Guidos
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jayne Danska
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jean Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bradly Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benjamin Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laurie E Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
269
|
Giusti L, Cetani F, Da Valle Y, Pardi E, Ciregia F, Donadio E, Gargini C, Piano I, Borsari S, Jaber A, Caputo A, Basolo F, Giannaccini G, Marcocci C, Lucacchini A. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation. J Cell Mol Med 2014; 18:1944-52. [PMID: 25164318 PMCID: PMC4244010 DOI: 10.1111/jcmm.12372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022] Open
Abstract
The parathyroid glands play an overall regulatory role in the systemic calcium (Ca2+) homeostasis. The purpose of the present study was to demonstrate the presence of the Ca2+ channels transient receptor potential vanilloid (TRPV) 5 and TRPV6 in human parathyroid glands. Semi-quantitative and quantitative PCR was carried out to evaluate the presence of TRPV5 and TRPV6 mRNAs in sporadic parathyroid adenomas and normal parathyroid glands. Western blot and immunocytochemical assays were used to assess protein expression, cellular localization and time expression in primary cultures from human parathyroid adenoma. TRPV5 and TRPV6 transcripts were then identified both in normal and pathological tissues. Predominant immunoreactive bands were detected at 75–80 kD for both vanilloid channels. These channels co-localized with the calcium-sensing receptor (CASR) on the membrane surface, but immunoreactivity was also detected in the cytosol and around the nuclei. Our data showed that western blotting recorded an increase of protein expression of both channels in adenoma samples compared with normal glands suggesting a potential relation with the cell calcium signalling pathway and the pathological processes of these glands.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Kim N, Jeong E, Wang X, Yoon S. Dissecting the global variation of gene expression for the functional interpretation of transcriptome data. Genomics 2014; 104:279-86. [PMID: 25111883 DOI: 10.1016/j.ygeno.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/18/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
To perform their biological functions, individual genes exhibit varying ranges of expression levels. Thus, considering the intrinsic variability of gene expression can improve geneset-based functional analyses which are typically used to interpret transcriptome data. Through the extensive quantitative analysis of the expressional variability of individual genes using large collections of transcriptome and proteome data, we found the existence of the intrinsic variability of gene expression at the transcriptional level. Interestingly, genes under post-translational regulation were not sensitively regulated at the transcriptional level. Because genes have intrinsically different levels of regulation at the transcription and translation stages, the functional geneset-based interpretation of transcriptome data should only include genes that are significantly varied at the transcriptional level. Thus, by removing genes with low transcriptional variation from the DNA microarray data, we showed that geneset enrichment analysis could provide improved resolution in prioritizing target functional pathways in several different experimental datasets.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Euna Jeong
- Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Xiaoqi Wang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea; Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
271
|
De León H, Boué S, Schlage WK, Boukharov N, Westra JW, Gebel S, VanHooser A, Talikka M, Fields RB, Veljkovic E, Peck MJ, Mathis C, Hoang V, Poussin C, Deehan R, Stolle K, Hoeng J, Peitsch MC. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability. J Transl Med 2014; 12:185. [PMID: 24965703 PMCID: PMC4227037 DOI: 10.1186/1479-5876-12-185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability.
Collapse
Affiliation(s)
- Héctor De León
- Philip Morris International R&D, Philip Morris Products S,A,, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
273
|
Chen Y, Chen X, Wang H, Bao Y, Zhang W. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 2014; 12:33. [PMID: 25028572 PMCID: PMC4099015 DOI: 10.1186/1477-5956-12-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. RESULTS Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. CONCLUSIONS Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy metabolism, with the noted photosynthetic decline also possibly attributed to ROS production. The observed PCD could be regulated by TCTP with a possible role for H2O2 in TCTP induction under flooding stress. Additionally, increased SAMS2 expression was closely associated with an increased polyamine synthesis during flooding treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yiqun Bao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|
274
|
Yu L, Shen J, Mannoor K, Guarnera M, Jiang F. Identification of ENO1 as a potential sputum biomarker for early-stage lung cancer by shotgun proteomics. Clin Lung Cancer 2014; 15:372-378.e1. [PMID: 24984566 DOI: 10.1016/j.cllc.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung cancer is the leading cancer killer. Early detection will reduce the related deaths. The objective of this study was to identify potential biomarkers for early-stage lung cancer in sputum supernatant. MATERIALS AND METHODS Using shotgun proteomics, we detected changes in protein profiles that were associated with lung cancer by analyzing sputum supernatants from 6 patients with early-stage lung cancer and 5 cancer-free controls. Using western blotting, we validated the proteomic results in 22 lung cancer cases and 22 controls. Using enzyme-linked immunosorbent assay (ELISA), we evaluated the diagnostic performance of the biomarker candidates in an independent set of 35 cases and 36 controls. RESULTS Proteomics identified 8 biomarker candidates for lung cancer. Western blotting validation of the candidates showed that enolase 1 (ENO1) displayed a higher expression level in patients with cancer than in cancer-free individuals (P = .015). ELISA revealed that the assessment of ENO1 expression in sputum supernatant had 58.33% sensitivity and 80.00% specificity in distinguishing patients with stage I lung cancer from cancer-free individuals. CONCLUSION The analysis of protein biomarkers in sputum may provide a potential approach for the early detection of lung cancer. Future validation of all the candidates defined by shotgun proteomics in a large cohort study may help develop additional biomarkers that can be added to ENO1 to provide more diagnostic efficacy for lung cancer.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Jun Shen
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Kaiissar Mannoor
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria Guarnera
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
275
|
Cui K, Yang Z, Darwish H, Zhang Y, Ge Y, Zhang X, Li R, Deng X. Molecular cloning and characterization of the β-catenin gene from fine-wool sheep. Gene 2014; 546:277-82. [PMID: 24881815 DOI: 10.1016/j.gene.2014.05.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
β-Catenin is an evolutionarily conserved molecule that functions as a crucial effector in both cell-to-cell adhesion and Wnt signaling. To gain a better understanding of its role in the development of hair follicles, we cloned the cDNA sequence of the β-catenin gene from the skin of Aohan fine-wool sheep and performed a variety of bioinformatics analyses. We obtained the full-length sequence, which was 4573-bp long and contained a 2346-bp open reading frame encoding a protein of 781 amino acids. The protein had a predicted molecular weight of 85.4 kDa and a theoretical isoelectric point of 5.57. Domain architecture analysis of the β-catenin protein revealed an armadillo repeat region, which is a common feature of β-catenin in other species. The ovine β-catenin gene shares 97.91%, 94.25%, 94.59%, 83.89%, and 89.39% sequence identity with its homologs in Bos taurus, Homo sapiens, Sus scrofa, Gallus gallus, and Mus musculus, respectively, while the amino acid sequence is more than 99% identical with each of these species. The expression of β-catenin mRNA was detected in the heart, liver, spleen, lung, kidney, skin, muscle, and adipose tissue. Expression levels were maximal in the lung and minimal in the muscle, and the difference in expression in these tissues was significant (P<0.01). Western blot analysis revealed the presence of the β-catenin protein in all tissues examined; expression was lowest in the skin and adipose tissues.
Collapse
Affiliation(s)
- Kai Cui
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Zu Yang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Hesham Darwish
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yaqiong Ge
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xiyue Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Rongni Li
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
276
|
Zhang P, Li C, Li Y, Zhang P, Shao Y, Jin C, Li T. Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:370-377. [PMID: 24468075 DOI: 10.1016/j.dci.2014.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Skin ulceration syndrome (SUS) was the main limitation in the development of Apostichopus japonicus culture industries. To better understand how Vibrio splendidus modulates SUS outbreak, the immune response of A. japonicus coelomocytes after the pathogen challenge were investigated through comparative proteomics approach, and differentially expressed proteins were screened and characterized in the present study. A total of 40 protein spots representing 30 entries were identified at 24, 72 and 96 h post-infection. Of these proteins, 32 were up-regulated and 8 were down-regulated in the V. splendidus challenged samples compared to those of control. These differentially expressed proteins were mainly classified into four categories by GO analysis, in which approximate 33% of proteins showed to be related to immunity response. The mRNA expression levels of 6 differentially expressed proteins were further validated by qRT-PCR. Similar protein-mRNA-level expression patterns were detected in genes of phospholipase (spot 4), G protein (spot 20), annexin (spot 30) and filamin (spot 31). Whilst the levels of ficolin (spot 12) and calumenin (spot 14) transcripts were not corresponded with those of their translation products. These data provide a new insight to understand the molecular immune mechanism of sea cucumber responsive towards pathogen infection.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Taiwu Li
- Ningbo City College of Vocational Technology, Ningbo 315100, PR China
| |
Collapse
|
277
|
Neapolitan R, Xue D, Jiang X. Modeling the altered expression levels of genes on signaling pathways in tumors as causal bayesian networks. Cancer Inform 2014; 13:77-84. [PMID: 24932098 PMCID: PMC4051800 DOI: 10.4137/cin.s13578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
This paper concerns a study indicating that the expression levels of genes in signaling pathways can be modeled using a causal Bayesian network (BN) that is altered in tumorous tissue. These results open up promising areas of future research that can help identify driver genes and therapeutic targets. So, it is most appropriate for the cancer informatics community. Our central hypothesis is that the expression levels of genes that code for proteins on a signal transduction network (STP) are causally related and that this causal structure is altered when the STP is involved in cancer. To test this hypothesis, we analyzed 5 STPs associated with breast cancer, 7 STPs associated with other cancers, and 10 randomly chosen pathways, using a breast cancer gene expression level dataset containing 529 cases and 61 controls. We identified all the genes related to each of the 22 pathways and developed separate gene expression datasets for each pathway. We obtained significant results indicating that the causal structure of the expression levels of genes coding for proteins on STPs, which are believed to be implicated in both breast cancer and in all cancers, is more altered in the cases relative to the controls than the causal structure of the randomly chosen pathways.
Collapse
Affiliation(s)
- Richard Neapolitan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Diyang Xue
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xia Jiang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
278
|
Vieira HGS, Grynberg P, Bitar M, Pires SDF, Hilário HO, Macedo AM, Machado CR, de Andrade HM, Franco GR. Proteomic analysis of Trypanosoma cruzi response to ionizing radiation stress. PLoS One 2014; 9:e97526. [PMID: 24842666 PMCID: PMC4026238 DOI: 10.1371/journal.pone.0097526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress.
Collapse
Affiliation(s)
| | - Priscila Grynberg
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone da Fonseca Pires
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heron Oliveira Hilário
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hélida Monteiro de Andrade
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
279
|
Chintamaneni K, Bruder ED, Raff H. Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific. Endocrinology 2014; 155:1763-70. [PMID: 24564395 DOI: 10.1210/en.2013-1736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intermittent hypoxia (IH) is an animal model of apnea-induced hypoxia, a common stressor in the premature neonate. Neonatal stressors may have long-term programming effects in the adult. We hypothesized that neonatal exposure to IH leads to significant changes in basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis function in the adult male rat. Rat pups were exposed to normoxia (control) or 6 approximately 30-second cycles of IH (5% or 10% inspired O₂) daily on postnatal days 2-6. At approximately 100 days of age, we assessed the diurnal rhythm of plasma corticosterone and stress-induced plasma ACTH and corticosterone responses, as well as mRNA expression of pertinent genes within the HPA axis. Basal diurnal rhythm of plasma corticosterone concentrations in the adult rat were not affected by prior exposure to neonatal IH. Adults exposed to 10% IH as neonates exhibited an augmented peak ACTH response and a prolonged corticosterone response to restraint stress; however, HPA axis responses to insulin-induced hypoglycemia were not augmented in adults exposed to neonatal IH. Pituitary Pomc, Crhr1, Nr3c1, Nr3c2, Avpr1b, and Hif1a mRNA expression was decreased in adults exposed to neonatal 10% IH. Expression of pertinent hypothalamic and adrenal mRNAs was not affected by neonatal IH. We conclude that exposure to neonatal 10% IH programs the adult HPA axis to hyperrespond to acute stimuli in a stressor-specific manner.
Collapse
Affiliation(s)
- Kathan Chintamaneni
- Endocrine Research Laboratory (K.C., E.D.B., H.R.), Aurora St Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin 53215; and Departments of Medicine, Surgery, and Physiology (H.R.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | |
Collapse
|
280
|
The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study. J Cereb Blood Flow Metab 2014; 34:827-35. [PMID: 24496175 PMCID: PMC4013760 DOI: 10.1038/jcbfm.2014.21] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 11/08/2022]
Abstract
Substantial efforts are being spent on postmortem mRNA transcription mapping on the assumption that in vivo protein distribution can be predicted from such data. We tested this assumption by comparing mRNA transcription maps from the Allen Human Brain Atlas with reference protein concentration maps acquired with positron emission tomography (PET) in two representative systems of neurotransmission (opioid and serotoninergic). We found a tight correlation between mRNA expression and specific binding with 5-HT1A receptors measured with PET, but for opioid receptors, the correlation was weak. The discrepancy can be explained by differences in expression regulation between the two systems: transcriptional mechanisms dominate the regulation in the serotoninergic system, whereas in the opioid system proteins are further modulated after transcription. We conclude that mRNA information can be exploited for systems where translational mechanisms predominantly regulate expression. Where posttranscriptional mechanisms are important, mRNA data have to be interpreted with caution. The methodology developed here can be used for probing assumptions about the relationship of mRNA and protein in multiple neurotransmission systems.
Collapse
|
281
|
Zeng W, van den Berg A, Huitema S, Gouw ASH, Molema G, de Jong KP. Correlation of microRNA-16, microRNA-21 and microRNA-101 expression with cyclooxygenase-2 expression and angiogenic factors in cirrhotic and noncirrhotic human hepatocellular carcinoma. PLoS One 2014; 9:e95826. [PMID: 24759835 PMCID: PMC3997433 DOI: 10.1371/journal.pone.0095826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 03/31/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a classical example of inflammation-linked cancer and is characterized by hypervascularity suggesting rich angiogenesis. Cycloxygenase-2 (COX-2) is a potent mediator of inflammation and is considered to upregulate angiogenesis. The aims of the study are (1) to analyze expression of Cox-2 mRNA, Cox-2 protein, miR-16, miR-21 and miR-101 in HCC and adjacent liver parenchyma in cirrhotic and noncirrhotic liver, (2) to investigate the relation between COX-2 expression, miR-21 expression and angiogenic factors in these tissues and (3) to investigate the association between miR-16 and miR-101 and COX-2 expression. METHODS Tissue samples of HCC and adjacent liver parenchyma of 21 noncirrhotic livers and 20 cirrhotic livers were analyzed for COX-2 expression at the mRNA level (qRT-PCR) and at the protein level by Western blot and immunohistochemistry. Gene expression of VEGFA, VEGFR1, VEGFR2, Ang-1, Ang-2 and Tie-2 were correlated with COX-2 levels. miR-16, miR-21 and miR-101 gene expression levels were quantified in HCC tumor tissue. RESULTS COX-2 mRNA and protein levels were lower in HCC as compared to adjacent liver parenchyma both in cirrhotic and noncirrhotic liver. COX-2 protein localized mainly in vascular and sinusoidal endothelial cells and in Kupffer cells. At the mRNA level but not at the protein level, COX-2 correlated with mRNA levels of angiogenic factors VEGFR1, Ang-1, and Tie2. miR-21 expression was higher in cirrhotic tissues versus noncirrhotic tissues. MiR-101 expression was lower in cirrhotic versus noncirrhotic adjacent liver parenchyma. None of the miRNAs correlelated with COX-2 expression. miR-21 correlated negatively with Tie-2 receptor in adjacent liver parenchyma. CONCLUSIONS In human HCC, COX-2 mRNA but not COX-2 protein levels are associated with expression levels of angiogenic factors. MiR-21 levels are not associated with angiogenic molecules. MiR-16 and miR-101 levels do not correlate with COX-2 mRNA and protein levels.
Collapse
Affiliation(s)
- Wenjiao Zeng
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sippie Huitema
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annette S. H. Gouw
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology & Medical Biology. Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Koert P. de Jong
- Department of Hepato-Pancreato-Biliary Surgery & Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
282
|
Chaudhury A, Kongchan N, Gengler JP, Mohanty V, Christiansen AE, Fachini JM, Martin JF, Neilson JR. A piggyBac-based reporter system for scalable in vitro and in vivo analysis of 3' untranslated region-mediated gene regulation. Nucleic Acids Res 2014; 42:e86. [PMID: 24753411 PMCID: PMC4041432 DOI: 10.1093/nar/gku258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulation of messenger ribonucleic acid (mRNA) subcellular localization, stability and translation is a central aspect of gene expression. Much of this control is mediated via recognition of mRNA 3′ untranslated regions (UTRs) by microRNAs (miRNAs) and RNA-binding proteins. The gold standard approach to assess the regulation imparted by a transcript's 3′ UTR is to fuse the UTR to a reporter coding sequence and assess the relative expression of this reporter as compared to a control. Yet, transient transfection approaches or the use of highly active viral promoter elements may overwhelm a cell's post-transcriptional regulatory machinery in this context. To circumvent this issue, we have developed and validated a novel, scalable piggyBac-based vector for analysis of 3′ UTR-mediated regulation in vitro and in vivo. The vector delivers three independent transcription units to the target genome—a selection cassette, a turboGFP control reporter and an experimental reporter expressed under the control of a 3′ UTR of interest. The pBUTR (piggyBac-based 3′ UnTranslated Region reporter) vector performs robustly as a siRNA/miRNA sensor, in established in vitro models of post-transcriptional regulation, and in both arrayed and pooled screening approaches. The vector is robustly expressed as a transgene during murine embryogenesis, highlighting its potential usefulness for revealing post-transcriptional regulation in an in vivo setting.
Collapse
Affiliation(s)
- Arindam Chaudhury
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jon P Gengler
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vakul Mohanty
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Fachini
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
283
|
Sun J, Han Z, Shao Y, Cao Z, Kong X, Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics 2014; 14:1403-23. [PMID: 24610701 PMCID: PMC7167649 DOI: 10.1002/pmic.201300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/16/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D‐DIGE followed MALDI‐TOF/TOF‐MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
284
|
Dufour MA, Woodhouse A, Goaillard JM. Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J Neurosci Res 2014; 92:981-99. [PMID: 24723263 DOI: 10.1002/jnr.23382] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.
Collapse
Affiliation(s)
- Martial A Dufour
- INSERM, UMR_S 1072, 13015, Marseille, France; Aix-Marseille Université, UNIS, 13015, Marseille, France
| | | | | |
Collapse
|
285
|
Byers LA. Molecular Profiling. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
286
|
Stark AL, Hause RJ, Gorsic LK, Antao NN, Wong SS, Chung SH, Gill DF, Im HK, Myers JL, White KP, Jones RB, Dolan ME. Protein quantitative trait loci identify novel candidates modulating cellular response to chemotherapy. PLoS Genet 2014; 10:e1004192. [PMID: 24699359 PMCID: PMC3974641 DOI: 10.1371/journal.pgen.1004192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022] Open
Abstract
Annotating and interpreting the results of genome-wide association studies (GWAS) remains challenging. Assigning function to genetic variants as expression quantitative trait loci is an expanding and useful approach, but focuses exclusively on mRNA rather than protein levels. Many variants remain without annotation. To address this problem, we measured the steady state abundance of 441 human signaling and transcription factor proteins from 68 Yoruba HapMap lymphoblastoid cell lines to identify novel relationships between inter-individual protein levels, genetic variants, and sensitivity to chemotherapeutic agents. Proteins were measured using micro-western and reverse phase protein arrays from three independent cell line thaws to permit mixed effect modeling of protein biological replicates. We observed enrichment of protein quantitative trait loci (pQTLs) for cellular sensitivity to two commonly used chemotherapeutics: cisplatin and paclitaxel. We functionally validated the target protein of a genome-wide significant trans-pQTL for its relevance in paclitaxel-induced apoptosis. GWAS overlap results of drug-induced apoptosis and cytotoxicity for paclitaxel and cisplatin revealed unique SNPs associated with the pharmacologic traits (at p<0.001). Interestingly, GWAS SNPs from various regions of the genome implicated the same target protein (p<0.0001) that correlated with drug induced cytotoxicity or apoptosis (p≤0.05). Two genes were functionally validated for association with drug response using siRNA: SMC1A with cisplatin response and ZNF569 with paclitaxel response. This work allows pharmacogenomic discovery to progress from the transcriptome to the proteome and offers potential for identification of new therapeutic targets. This approach, linking targeted proteomic data to variation in pharmacologic response, can be generalized to other studies evaluating genotype-phenotype relationships and provide insight into chemotherapeutic mechanisms. The central dogma of biology explains that DNA is transcribed to mRNA that is further translated into protein. Many genome-wide studies have implicated genetic variation that influences gene expression and that ultimately affect downstream complex traits including response to drugs. However, because of technical limitations, few studies have evaluated the contribution of genetic variation on protein expression and ensuing effects on downstream phenotypes. To overcome this challenge, we used a novel technology to simultaneously measure the baseline expression of 441 proteins in lymphoblastoid cell lines and compared them with publicly available genetic data. To further illustrate the utility of this approach, we compared protein-level measurements with chemotherapeutic induced apoptosis and cell-growth inhibition data. This study demonstrates the importance of using protein information to understand the functional consequences of genetic variants identified in genome-wide association studies. This protein data set will also have broad utility for understanding the relationship between other genome-wide studies of complex traits.
Collapse
Affiliation(s)
- Amy L. Stark
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Ronald J. Hause
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lidija K. Gorsic
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Nirav N. Antao
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Shan S. Wong
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Sophie H. Chung
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Daniel F. Gill
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Hae K. Im
- Department of Health Studies, The University of Chicago, Chicago, Illinois, United States of America
| | - Jamie L. Myers
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Richard Baker Jones
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (RBJ); (MED)
| | - M. Eileen Dolan
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (RBJ); (MED)
| |
Collapse
|
287
|
Potier E, Rivron NC, Van Blitterswijk CA, Ito K. Micro-aggregates do not influence bone marrow stromal cell chondrogenesis. J Tissue Eng Regen Med 2014; 10:1021-1032. [PMID: 24700552 DOI: 10.1002/term.1887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/04/2013] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Although bone marrow stromal cells (BMSCs) appear promising for cartilage repair, current clinical results are suboptimal and the success of BMSC-based therapies relies on a number of methodological improvements, among which is better understanding and control of their differentiation pathways. We investigated here the role of the cellular environment (paracrine vs juxtacrine signalling) in the chondrogenic differentiation of BMSCs. Bovine BMSCs were encapsulated in alginate beads, as dispersed cells or as small micro-aggregates, to create different paracrine and juxtacrine signalling conditions. BMSCs were then cultured for 21 days with TGFβ3 added for 0, 7 or 21 days. Chondrogenic differentiation was assessed at the gene (type II and X collagens, aggrecan, TGFβ, sp7) and matrix (biochemical assays and histology) levels. The results showed that micro-aggregates had no beneficial effects over dispersed cells: matrix production was similar, whereas chondrogenic marker gene expression was lower for the micro-aggregates, under all TGFβ conditions tested. This weakened chondrogenic differentiation might be explained by a different cytoskeleton organization at day 0 in the micro-aggregates. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Potier
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - N C Rivron
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - C A Van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
288
|
Zhang S, Cao X, He Y, Hartson S, Jiang H. Semi-quantitative analysis of changes in the plasma peptidome of Manduca sexta larvae and their correlation with the transcriptome variations upon immune challenge. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 47:46-54. [PMID: 24565606 PMCID: PMC3992937 DOI: 10.1016/j.ibmb.2014.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 05/23/2023]
Abstract
The tobacco hornworm, Manduca sexta, has been used as a biochemical model for studying insect physiological processes. While the transcriptomes of its fat body, hemocytes, midgut, and antennae have been examined in several studies, limited information is available for proteins in tissues, cells, or body fluids of this insect. In keeping pace with the M. sexta genome project, we launched a pilot study to identify differences in the peptidome of cell-free hemolymph samples from larvae injected with buffer or a mixture of bacteria. At 24 h after injection, plasma was collected and treated with 50% acetonitrile to precipitate large proteins. The supernatants, containing peptides (<25 kDa) and other stable proteins (>25 kDa), were digested with trypsin and analyzed by nano-liquid chromatography and nano-electrospray tandem mass spectrometry (nanoLC-MS/MS) on an LTQ Orbitrap XL mass spectrometer. Known M. sexta cDNA sequences and gene transcripts from the draft genome were translated in silico to generate a database of polypeptides (i.e. peptides and proteins) in this species. By searching the database, we identified 268 hemolymph polypeptides, 50 of which showed 1.67-200 fold abundance increases after the immune challenge, as judged by significant changes in normalized spectral counts between the control and induced plasma. These included a total of 33 antimicrobial peptides (attacins, cecropins, defensins, diapausins, gallerimycin, gloverin, lebocins, lysozymes), pattern recognition receptors, and proteinase inhibitors. Although there was no strong parallel (correlation coefficients: -0.13, 0.11, 0.39 and 0.62) between plasma peptide levels and their transcript levels in control or induced hemocytes or fat body, we observed the mRNA level changes in hemocytes and fat body concurred with their peptide level changes with correlation coefficients of 0.67 and 0.76, respectively. These data suggest that fat body contributed a significant portion of the plasma polypeptides involved in various aspects of innate immunity after the bacterial injection.
Collapse
Affiliation(s)
- Shuguang Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
289
|
Jahns F, Wilhelm A, Jablonowski N, Mothes H, Greulich KO, Glei M. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues. Mol Carcinog 2014; 54:249-60. [PMID: 24677319 DOI: 10.1002/mc.22102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/21/2013] [Accepted: 10/11/2013] [Indexed: 01/27/2023]
Abstract
The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.
Collapse
Affiliation(s)
- Franziska Jahns
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany; Department of Single Cell and Single Molecule Techniques, Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | | | | |
Collapse
|
290
|
Liu X, Yang N, Tang J, Liu S, Luo D, Duan Q, Wang X. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res 2014; 185:64-71. [PMID: 24662240 PMCID: PMC7114376 DOI: 10.1016/j.virusres.2014.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/26/2022]
Abstract
We investigated the ACE2 levels after infection with influenza A (H1N1) virus. Influenza infection results in downregulation of ACE2 protein levels that was dispensable for viral replication. ACE2 downregulation was most likely related to ACE2 protein degradation by proteasome pathway rather than ACE2 shedding. The neuraminidase of influenza virion results in ACE2 cleavage.
Influenza A (H1N1) virus, a high-risk infectious pathogen, can cause severe acute lung injury leading to significant morbidity and mortality. Angiotensin-converting enzyme 2 (ACE2), a negative regulator of the renin-angiotensin system (RAS), plays a protective role in pathogenesis of acute lung injury. Here, we showed that ACE2 protein levels were significantly downregulated after infection with H1N1 viruses but was dispensable for viral replication. ACE2 protein downregulation was most likely related to ACE2 protein degradation by proteasome pathway rather than ACE2 shedding. Finally, we found that ACE2 cleavage could be regulated by influenza neuraminidase (NA), which was fundamentally different from the classically sheddase-induced proteolytic cleavage of ACE2.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Ning Yang
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Jun Tang
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Song Liu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Deyan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
291
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 2014; 9:e90422. [PMID: 24594867 PMCID: PMC3940904 DOI: 10.1371/journal.pone.0090422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Thea King
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
292
|
McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, Choy D, Warke TJ, Bradding P, Ennis M, Zholos A, Costello RW, Heaney LG. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 2014; 133:704-12.e4. [DOI: 10.1016/j.jaci.2013.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/18/2013] [Accepted: 09/17/2013] [Indexed: 12/18/2022]
|
293
|
Rossi AFT, Duarte MC, Poltronieri AB, Valsechi MC, Jorge YC, de-Santi Neto D, Rahal P, Oliani SM, Silva AE. Deregulation of annexin-A1 and galectin-1 expression in precancerous gastric lesions: intestinal metaplasia and gastric ulcer. Mediators Inflamm 2014; 2014:478138. [PMID: 24719523 PMCID: PMC3955591 DOI: 10.1155/2014/478138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) are mediators that play an important role in the inflammatory response and are also associated with carcinogenesis. We investigated mRNA and protein expression in precancerous gastric lesions that participate in the progression cascade to gastric cancer, such as intestinal metaplasia (IM) and gastric ulcer (GU). METHODS Quantitative real-time PCR (qPCR) and immunohistochemical techniques were used to analyze the relative quantification levels (RQ) of ANXA1 and LGALS1 mRNA and protein expression, respectively. RESULTS Increased relative expression levels of ANXA1 were found in 100% of cases, both in IM (mean RQ = 6.22 ± 0.06) and in GU (mean RQ = 6.69 ± 0.10). However, the LGALS1 presented basal expression in both groups (IM: mean RQ = 0.35 ± 0.07; GU: mean RQ = 0.69 ± 0.09). Immunohistochemistry revealed significant positive staining for both the AnxA1 and Gal-1 proteins in the epithelial nucleus and cytoplasm as well as in the stroma of the IM and GU groups (P < 0.05) but absence or low immunorectivity in normal mucosa. CONCLUSION Our results bring an important contribution by evidencing that both the AnxA1 and Gal-1 anti-inflammatory proteins are deregulated in precancerous gastric lesions, suggesting their involvement in the early stages of gastric carcinogenesis, possibly due to an inflammatory process in the gastric mucosa.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Márcia Cristina Duarte
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ayla Blanco Poltronieri
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Marina Curado Valsechi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Yvana Cristina Jorge
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Dalísio de-Santi Neto
- Legal Medicine Department and Pathology Service, Hospital de Base, Avenida Brigadeiro Faria Lima 5544, 15090-000 São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ana Elizabete Silva
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
294
|
How to discover new proteins-translatome profiling. SCIENCE CHINA-LIFE SCIENCES 2014; 57:358-360. [PMID: 24532458 DOI: 10.1007/s11427-014-4618-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/22/2013] [Indexed: 12/15/2022]
|
295
|
García-Suárez O, García B, Fernández-Vega I, Astudillo A, Quirós LM. Neuroendocrine tumors show altered expression of chondroitin sulfate, glypican 1, glypican 5, and syndecan 2 depending on their differentiation grade. Front Oncol 2014; 4:15. [PMID: 24570896 PMCID: PMC3917325 DOI: 10.3389/fonc.2014.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/21/2014] [Indexed: 11/22/2022] Open
Abstract
Neuroendocrine tumors (NETs) are found throughout the body and are important as they give rise to distinct clinical syndromes. Glycosaminoglycans, in proteoglycan (PG) form or as free chains, play vital roles in every step of tumor progression. Analyzing tumor samples with different degrees of histological differentiation we determined the existence of important alterations in chondroitin sulfate (CS) chains. Analysis of the transcription of the genes responsible for the production of CS showed a decline in the expression of some genes in poorly differentiated compared to well-differentiated tumors. Using anti-CS antibodies, normal stroma was always negative whereas tumoral stroma always showed a positive staining, more intense in the highest grade carcinomas, while tumor cells were negative. Moreover, certain specific cell surface PGs experienced a drastic decrease in expression depending on tumor differentiation. Syndecan 2 levels were very low or undetectable in healthy tissues, increasing significantly in well-differentiated tumors, and decreasing in poorly differentiated NETs, and its expression levels showed a positive correlation with patient survival. Glypican 5 appeared overexpressed in high-grade tumors with epithelial differentiation, and not in those that displayed a neuroendocrine phenotype. In contrast, normal neuroendocrine cells were positive for glypican 1, displaying intense staining in cytoplasm and membrane. Low-grade NETs had increased expression of this PG, but this reduced as tumor grade increased, its expression correlating positively with patient survival. Whilst elevated glypican 1 expression has been documented in different tumors, the downregulation in high-grade tumors observed in this work suggests that this proteoglycan could be involved in cancer development in a more complex and context-dependent manner than previously thought.
Collapse
Affiliation(s)
| | - Beatriz García
- Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
- University Institute of Oncology of Asturias (IUOPA), Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain
- University Institute of Oncology of Asturias (IUOPA), Oviedo, Spain
| |
Collapse
|
296
|
Tuttle TR, Hugo ER, Tong WS, Ben-Jonathan N. Placental lactogen is expressed but is not translated into protein in breast cancer. PLoS One 2014; 9:e87325. [PMID: 24475273 PMCID: PMC3901772 DOI: 10.1371/journal.pone.0087325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 11/24/2022] Open
Abstract
Introduction Several studies reported that the pregnancy-specific hormone placental lactogen (hPL) is expressed at both mRNA and protein levels in breast cancer. The overall objective was to establish hPL, the product of the CSH1 and CSH2 genes, as a biomarker for breast cancer. Methods CSH expression was determined at the mRNA level in breast cancer cell lines (BCC) and primary carcinomas by real-time and conventional PCR and the products verified as CSH1 by sequencing. Expression of hPL protein was examined by western blots and immuno-histochemistry, using commercial and custom-made polyclonal and monoclonal antibodies. Results Variable levels of CSH mRNA were detected in several BCC, and in some primary tumors. We detected a protein, slightly larger than recombinant hPL by western blotting using several antibodies, leading us to postulate that it represents an hPL variant (‘hPL’). Furthermore, some monoclonal antibodies detected ‘hPL’ by immunohistochemistry in breast carcinomas but not in normal breast. However, further examination revealed that these antibodies were non-specific, as efficient suppression of CSH mRNA by shRNA did not abolish the ‘hPL’ band. Custom-made monoclonal antibodies against recombinant hPL detected hPL of the correct size in placental lysate and hPL-overexpressing BCC, but not in unmodified cells or primary carcinomas. hPL protein was detected only when mRNA was increased several thousand fold. Conclusions We call into question previous reports of hPL expression in breast cancer which relied on mRNA levels as surrogates for protein and/or used improperly validated antibodies to measure hPL protein levels. Our data suggests that an inhibitory mechanism(s) prevents translation of CSH mRNA in breast cancer when not highly expressed. The mechanism by which translation of CSH mRNA is inhibited is intriguing and should be further investigated.
Collapse
Affiliation(s)
- Traci R. Tuttle
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Eric R. Hugo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wilson S. Tong
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nira Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
297
|
Abstract
Protein turnover is a neglected dimension in postgenomic studies, defining the dynamics of changes in protein expression and forging a link between transcriptome, proteome and metabolome. Recent advances in postgenomic technologies have led to the development of new proteomic techniques to measure protein turnover on a proteome-wide scale. These methods are driven by stable isotope metabolic labeling of cells in culture or in intact animals. This review considers the merits and difficulties of different methods that allow access to proteome dynamics.
Collapse
Affiliation(s)
- Mary K Doherty
- Protein Function Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, L69 7ZJ, UK.
| | | |
Collapse
|
298
|
Gorini G, Adron Harris R, Dayne Mayfield R. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology 2014; 39:104-30. [PMID: 23900301 PMCID: PMC3857647 DOI: 10.1038/npp.2013.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
299
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 DOI: 10.1186/preaccept-3895766441330481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
|
300
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 PMCID: PMC4269173 DOI: 10.1186/s13059-014-0548-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
Affiliation(s)
- Yuying Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Weihao Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Jianghua Cai
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Yanrui Zhang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Guozheng Qin
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Shiping Tian
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| |
Collapse
|