251
|
Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HDC. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci 2012; 101:4046-66. [PMID: 22927140 DOI: 10.1002/jps.23300] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/10/2012] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
RNA interference has emerged as a potentially powerful tool in the treatment of genetic and acquired diseases by delivering short interfering RNA (siRNA) or microRNA (miRNA) to target genes, resulting in their silencing. However, many physicochemical and biological barriers have to be overcome to obtain efficient in vivo delivery of siRNA and miRNA molecules to the organ/tissue of interest, thereby enabling their effective clinical therapy. This review discusses the challenges associated with the use of siRNA and miRNA and describes the nonviral delivery strategies used in overcoming these barriers. More specifically, emphasis has been placed on those technologies that have progressed to clinical trials for both local and systemic siRNA and miRNA delivery.
Collapse
Affiliation(s)
- Diana Guzman-Villanueva
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Texas 78712-0120, USA
| | | | | | | | | |
Collapse
|
252
|
Bramsen JB, Kjems J. Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering. Front Genet 2012; 3:154. [PMID: 22934103 PMCID: PMC3422727 DOI: 10.3389/fgene.2012.00154] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 12/25/2022] Open
Abstract
Recent successes in clinical trials have provided important proof of concept that small interfering RNAs (siRNAs) indeed constitute a new promising class of therapeutics. Although great efforts are still needed to ensure efficient means of delivery in vivo, the siRNA molecule itself has been successfully engineered by chemical modification to meet initial challenges regarding specificity, stability, and immunogenicity. To date, a great wealth of siRNA architectures and types of chemical modification are available for promoting safe siRNA-mediated gene silencing in vivo and, consequently, the choice of design and modification types can be challenging to individual experimenters. Here we review the literature and devise how to improve siRNA performance by structural design and specific chemical modification to ensure potent and specific gene silencing without unwarranted side-effects and hereby complement the ongoing efforts to improve cell targeting and delivery by other carrier molecules.
Collapse
Affiliation(s)
- Jesper B Bramsen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University Aarhus C, Denmark
| | | |
Collapse
|
253
|
Glebova KV, Marakhonov AV, Baranova AV, Skoblov MY. Therapeutic siRNAs and nonviral systems for their delivery. Mol Biol 2012. [DOI: 10.1134/s0026893312020069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
254
|
Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, Sheardown H. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers. J Biol Eng 2012; 6:7. [PMID: 22686441 PMCID: PMC3533807 DOI: 10.1186/1754-1611-6-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a ‘universal’ siRNA delivery system for clinical applications.
Collapse
Affiliation(s)
- Ajit Thakur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
255
|
Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 2012; 427:35-57. [DOI: 10.1016/j.ijpharm.2011.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023]
|
256
|
Fucini RV, Haringsma HJ, Deng P, Flanagan WM, Willingham AT. Adenosine modification may be preferred for reducing siRNA immune stimulation. Nucleic Acid Ther 2012; 22:205-10. [PMID: 22519815 DOI: 10.1089/nat.2011.0334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune stimulation induced by short interfering RNAs (siRNAs) has been reported to be quieted or abrogated by methoxy or fluoro modifications of the 2' position of the ribose sugar. However, variables such as the type of modification, nucleotide preference, and strand bias have not been systematically evaluated. Here, we report the results of a screen of several modified siRNAs via a human peripheral blood monocyte cytokine induction assay. Unlike corresponding modifications of guanosine, cytidine, or uridine, 2'-fluoro modification of adenosine significantly reduced cytokine induction while retaining siRNA knockdown activity. The results of this study suggest adenosine as an optimal target for modification.
Collapse
Affiliation(s)
- Raymond V Fucini
- Sirna Therapeutics, a wholly owned subsidiary of Merck and Co., San Francisco, California, USA
| | | | | | | | | |
Collapse
|
257
|
Goldsmith M, Mizrahy S, Peer D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (Lond) 2012; 6:1771-85. [PMID: 22122585 DOI: 10.2217/nnm.11.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNAi is a ubiquitous and highly specific, endogenous, evolutionarily conserved mechanism of gene silencing. RNAi holds great promise as a novel therapeutic modality. Despite the rapid progress in the understanding and utilization of RNAi in vitro, the application of RNAi in vivo has been met with great difficulties, mainly in the delivery of these molecules into specific cell types. Here, we describe the major systemic nanomedicine platforms that have been developed. Focus is given to the development of new strategies to target subsets of leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss the hurdles and potential opportunities for in vivo manipulation of the immune response utilizing RNAi nanomedicines.
Collapse
Affiliation(s)
- Meir Goldsmith
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
258
|
Gore KR, Nawale GN, Harikrishna S, Chittoor VG, Pandey SK, Höbartner C, Patankar S, Pradeepkumar PI. Synthesis, gene silencing, and molecular modeling studies of 4'-C-aminomethyl-2'-O-methyl modified small interfering RNAs. J Org Chem 2012; 77:3233-45. [PMID: 22372696 DOI: 10.1021/jo202666m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The linear syntheses of 4'-C-aminomethyl-2'-O-methyl uridine and cytidine nucleoside phosphoramidites were achieved using glucose as the starting material. The modified RNA building blocks were incorporated into small interfering RNAs (siRNAs) by employing solid phase RNA synthesis. Thermal melting studies showed that the modified siRNA duplexes exhibited slightly lower T(m) (∼1 °C/modification) compared to the unmodified duplex. Molecular dynamics simulations revealed that the 4'-C-aminomethyl-2'-O-methyl modified nucleotides adopt South-type conformation in a siRNA duplex, thereby altering the stacking and hydrogen-bonding interactions. These modified siRNAs were also evaluated for their gene silencing efficiency in HeLa cells using a luciferase-based reporter assay. The results indicate that the modifications are well tolerated in various positions of the passenger strand and at the 3' end of the guide strand but are less tolerated in the seed region of the guide strand. The modified siRNAs exhibited prolonged stability in human serum compared to unmodified siRNA. This work has implications for the use of 4'-C-aminomethyl-2'-O-methyl modified nucleotides to overcome some of the challenges associated with the therapeutic utilities of siRNAs.
Collapse
Affiliation(s)
- Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem 2012; 23:1091-104. [PMID: 22372953 DOI: 10.1021/bc200422w] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oligonucleotides, including antisense oligonucleotides and siRNA, are promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical in view of their clinical application. Therefore, cation-based nanoplexes have been developed to improve the stability as well as the intracellular penetration of these short fragments of nucleic acids. However, this approach is clearly limited by the strong interaction with proteins after administration and by the inherent toxicity of these positively charged transfection materials. Neutral lipid-oligonucleotide conjugates have become a subject of considerable interest to improve the safe delivery of oligonucleotides. These molecules have been chemically conjugated to hydrophobic moieties such as cholesterol, squalene, or fatty acids to enhance their pharmacokinetic behavior and trans-membrane delivery. The present review gives an account of the main synthetic methods available to conjugate lipids to oligonucleotides and will discuss the pharmacological efficacy of this approach.
Collapse
Affiliation(s)
- Mouna Raouane
- Laboratoire de physicochimie, Pharmacotechnie et biopharmacie, UMR CNRS 8612, Université Paris Sud 11 , Faculté de pharmacie, 5 rue J. B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
260
|
Schyth BD, Bramsen JB, Pakula MM, Larashati S, Kjems J, Wengel J, Lorenzen N. In vivo screening of modified siRNAs for non-specific antiviral effect in a small fish model: number and localization in the strands are important. Nucleic Acids Res 2012; 40:4653-65. [PMID: 22287630 PMCID: PMC3378874 DOI: 10.1093/nar/gks033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Small interfering RNAs (siRNAs) are promising new active compounds in gene medicine but the induction of non-specific immune responses following their delivery continues to be a serious problem. With the purpose of avoiding such effects chemically modified siRNAs are tested in screening assay but often only examining the expression of specific immunologically relevant genes in selected cell populations typically blood cells from treated animals or humans. Assays using a relevant physiological state in biological models as read-out are not common. Here we use a fish model where the innate antiviral effect of siRNAs is functionally monitored as reduced mortality in challenge studies involving an interferon sensitive virus. Modifications with locked nucleic acid (LNA), altritol nucleic acid (ANA) and hexitol nucleic acid (HNA) reduced the antiviral protection in this model indicative of altered immunogenicity. For LNA modified siRNAs, the number and localization of modifications in the single strands was found to be important and a correlation between antiviral protection and the thermal stability of siRNAs was found. The previously published sisiRNA will in some sequences, but not all, increase the antiviral effect of siRNAs. The applied fish model represents a potent tool for conducting fast but statistically and scientifically relevant evaluations of chemically optimized siRNAs with respect to non-specific antiviral effects in vivo.
Collapse
Affiliation(s)
- Brian Dall Schyth
- Department of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, Hangøvej 2, DK-8200 Aarhus N.
| | | | | | | | | | | | | |
Collapse
|
261
|
Kubo T, Takei Y, Mihara K, Yanagihara K, Seyama T. Amino-Modified and Lipid-Conjugated Dicer-Substrate siRNA Enhances RNAi Efficacy. Bioconjug Chem 2012; 23:164-73. [DOI: 10.1021/bc200333w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takanori Kubo
- Laboratory of Molecular Cell
Biology, Department of Life Science, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Yoshifumi Takei
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya,
Japan
| | - Keichiro Mihara
- Department of Hematology
and Oncology,
Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Yanagihara
- Laboratory of Molecular Cell
Biology, Department of Life Science, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Toshio Seyama
- Laboratory of Molecular Cell
Biology, Department of Life Science, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| |
Collapse
|
262
|
Streeter J, Thiel W, Brieger K, Miller Jr. FJ. Opportunity Nox: The Future of NADPH Oxidases as Therapeutic Targets in Cardiovascular Disease. Cardiovasc Ther 2012; 31:125-37. [DOI: 10.1111/j.1755-5922.2011.00310.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
263
|
Darniot M, Schildgen V, Schildgen O, Sproat B, Kleines M, Ditt V, Pitoiset C, Pothier P, Manoha C. RNA interference in vitro and in vivo using DsiRNA targeting the nucleocapsid N mRNA of human metapneumovirus. Antiviral Res 2012; 93:364-73. [PMID: 22285728 DOI: 10.1016/j.antiviral.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/19/2011] [Accepted: 01/12/2012] [Indexed: 01/04/2023]
Abstract
Human metapneumovirus causes respiratory diseases with outcomes that can be severe in children, the immunocompromised, and the elderly. Synthetic small interfering RNAs (siRNAs) that silence targeted genes can be used as therapeutic agents. Currently, there is no specific therapy for hMPV. In this study, we designed Dicer-substrate siRNAs (DsiRNAs) that target metapneumovirus sequences on the mRNAs of the N, P, and L genes. In vitro, six DsiRNAs were shown to inhibit virus replication using cell proliferation tests. Of those, the DsiRNA that targets the most conserved mRNA sequence was then resynthesized in Evader™ format with heavy 2'-O-methyl modification of the guide strand. In a murine model, the prophylactic administration of this Evader™ DsiRNA was effective at partially inhibiting viral replication of hMPV (13×10(3) vs. 29×10(3)PFU/g of lung; p<0.01), which was not the case for the control, a mismatched DsiRNA. Inhibition was achieved without inducing cytokines or off-target effects. Moreover, the specificity of the siRNA mechanism of action was demonstrated in vitro and in vivo using 5'-RACE methodology. This in vivo approach of using a DsiRNA against hMPV is an important step in the development of synthetic siRNA as a therapeutic agent for this virus.
Collapse
Affiliation(s)
- Magali Darniot
- Laboratoire de Virologie, CHU Dijon, 2 Rue Angélique Ducoudray, 21070 Dijon cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Haringsma HJ, Li JJ, Soriano F, Kenski DM, Flanagan WM, Willingham AT. mRNA knockdown by single strand RNA is improved by chemical modifications. Nucleic Acids Res 2012; 40:4125-36. [PMID: 22253019 PMCID: PMC3351186 DOI: 10.1093/nar/gkr1301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
While RNAi has traditionally relied on RNA duplexes, early evaluation of siRNAs demonstrated activity of the guide strand in the absence of the passenger strand. However, these single strands lacked the activity of duplex RNAs. Here, we report the systematic use of chemical modifications to optimize single-strand RNA (ssRNA)-mediated mRNA knockdown. We identify that 2′F ribose modifications coupled with 5′-end phosphorylation vastly improves ssRNA activity both in vitro and in vivo. The impact of specific chemical modifications on ssRNA activity implies an Ago-mediated mechanism but the hallmark mRNA cleavage sites were not observed which suggests ssRNA may operate through a mechanism beyond conventional Ago2 slicer activity. While currently less potent than duplex siRNAs, with additional chemical optimization and alternative routes of delivery, chemically modified ssRNAs could represent a powerful RNAi platform.
Collapse
Affiliation(s)
- Henry J Haringsma
- Sirna Therapeutics, 1700 Owens Street, Fourth Floor, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
265
|
Hernandez FJ, Stockdale KR, Huang L, Horswill AR, Behlke MA, McNamara JO. Degradation of nuclease-stabilized RNA oligonucleotides in Mycoplasma-contaminated cell culture media. Nucleic Acid Ther 2012; 22:58-68. [PMID: 22229275 DOI: 10.1089/nat.2011.0316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Artificial RNA reagents such as small interfering RNAs (siRNAs) and aptamers often must be chemically modified for optimal effectiveness in environments that include ribonucleases. Mycoplasmas are common bacterial contaminants of mammalian cell cultures that are known to produce ribonucleases. Here we describe the rapid degradation of nuclease-stabilized RNA oligonucleotides in a human embryonic kidney 293 (HEK) cell culture contaminated with Mycoplasma fermentans, a common species of mycoplasma. RNA with 2'-fluoro- or 2'-O-methyl- modified pyrimidines was readily degraded in conditioned media from this culture, but was stable in conditioned media from uncontaminated HEK cells. RNA completely modified with 2'-O-methyls was not degraded in the mycoplasma-contaminated media. RNA zymogram analysis of conditioned culture media and material centrifuged from the media revealed several distinct protein bands (ranging from 30 to 68 kDa) capable of degrading RNA with 2'-fluoro- or 2'-O-methyl-modified pyrimidines. Finally, the mycoplasma-associated nuclease was detected in material centrifuged from the contaminated culture supernatants in as little as 15 minutes with an RNA oligo-containing 2'-O-methyl-modified pyrimidines and labeled with a 5'-fluorescein amidite (FAM) and 3'-quencher. These results suggest that mycoplasma contamination may be a critical confounding variable for cell culture experiments involving RNA-based reagents, with particular relevance for applications involving naked RNA (e.g., aptamer-siRNA chimeras).
Collapse
Affiliation(s)
- Frank J Hernandez
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
266
|
Sanghvi YS. A status update of modified oligonucleotides for chemotherapeutics applications. ACTA ACUST UNITED AC 2012; Chapter 4:Unit 4.1.1-22. [PMID: 21901670 DOI: 10.1002/0471142700.nc0401s46] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This unit presents an update of recent developments and clinical progress in chemically modified oliogonucleotides useful for therapeutic applications. During the last decade, the number of therapeutic oligonucleotides in clinical trials has nearly tripled. This is primarily due to advances in the synthesis protocols, better understanding of the biology, improved delivery, and better formulation technologies. Currently, over 100 clinical trials with oligonucleotide-based drugs are ongoing in the United States for potential treatment of a variety of life-threatening diseases. Among various oligonucleotides, antisense technology has been at the forefront, with one product on the market. Antisense technologies represent about half of the active clinical trials. Similarly, siRNA, aptamers, spiegelmers microRNA, shRNA, IMO, and CpG have been other active classes of oligonucleotides that are also undergoing clinical trials. This review attempts to summarize the current status of synthesis, chemical modifications, purification, and analysis in light of the rapid progress with multitude of oligonucleotides pursued as therapeutic modality.
Collapse
|
267
|
Abstract
RNA interference (RNAi) is a natural process of gene silencing mediated by small RNAs. Shortly after the discovery of the RNAi mechanism, scientists devised various methods of delivering small interfering RNAs (siRNAs) capable of co-opting the endogenous RNAi machinery and suppressing target gene expression based on sequence complementarity. RNAi has since become a powerful tool to study gene function and is being investigated as a potential therapeutic approach to treat a vast array of human diseases (e.g., cancer, viral infections, and dominant genetic disorders). Among the available RNAi vectors are hairpin-based expression platforms (short-hairpin RNAs and artificial microRNAs) designed to mimic endogenously expressed inhibitory RNAs. These RNAi vectors are capable of achieving long-term potent gene silencing in vitro and in vivo. Here, we describe methods to design and generate these hairpin-based vectors and briefly review considerations for downstream applications.
Collapse
|
268
|
|
269
|
Landesman-Milo D, Peer D. Altering the immune response with lipid-based nanoparticles. J Control Release 2011; 161:600-8. [PMID: 22230342 DOI: 10.1016/j.jconrel.2011.12.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/11/2022]
Abstract
Lipid-based nanoparticles (LNPs) hold great promise as delivery vectors in the treatment of cancer, inflammation, and infections and are already used in clinical practice. Numerous strategies based on LNPs are being developed to carry drugs into specific target sites. The common denominator for all of these LNPs-based platforms is to improve the payloads' pharmacokinetics, biodistribution, stability and therapeutic benefit, and to reduce to minimal adverse effects. In addition, the delivery system must be biocompatible and non-toxic and avoid undesirable interactions with the immune system. In order to achieve optimal benefits from these delivery strategies, interactions with the immune system must be thoroughly investigated. This report will center on the interactions of LNPs with different subsets of leukocytes and will detail representative examples of suppression or activation of the immune system by these carriers. By understanding the interactions of LNPs with the innate and the adaptive arms of the immune system it might be possible to attain improved therapeutic benefits and to avoid immune toxicity.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of Nanomedicine, Dept. of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
270
|
Brzezinska J, D'Onofrio J, Buff MCR, Hean J, Ely A, Marimani M, Arbuthnot P, Engels JW. Synthesis of 2'-O-guanidinopropyl-modified nucleoside phosphoramidites and their incorporation into siRNAs targeting hepatitis B virus. Bioorg Med Chem 2011; 20:1594-606. [PMID: 22264759 DOI: 10.1016/j.bmc.2011.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/25/2022]
Abstract
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Abstract
RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
Collapse
|
272
|
Abstract
Five decades of research have identified more than 100 ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. However, the cellular and functional dynamics of RNA modification remain largely unexplored, mostly because of the lack of functional hypotheses and experimental methods for quantification and large-scale analysis. Many RNA modifications are not essential for life, which parallels the observation that many well-characterized protein and DNA modifications are not essential for life. Instead, increasing evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some examples of RNA modification that are dynamically controlled in cells. We also discuss some recently developed methods that have enhanced the ability to study the cellular dynamics of RNA modification. We discuss four specific examples of RNA modification in detail here. We begin with 4-thio uridine (s(4)U), which can act as a cellular sensor of near-UV light. Then we consider queuosine (Q), which is a potential biomarker for malignancy. Next we examine N(6)-methyl adenine (m(6)A), which is the prevalent modification in eukaryotic messenger RNAs (mRNAs). Finally, we discuss pseudouridine (ψ), which is inducible by nutrient deprivation. We then consider two recent technical advances that have stimulated the study of the cellular dynamics in modified ribonucleosides. The first is a genome-wide method that combines primer extension with a microarray. It was used to study the N(1)-methyl adenine (m(1)A) hypomodification in human transfer RNA (tRNA). The second is a quantitative mass spectrometric method used to investigate dynamic changes in a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications as well as hypotheses for discovering potential RNA demodification enzymes. We conclude by highlighting the need to develop new tools and to generate additional hypotheses for how these modifications function in cells. The study of the cellular dynamics of modified RNA remains a largely open area for new development, which underscores the rich potential for important advances as researchers drive this emerging field to the next level.
Collapse
Affiliation(s)
- Chengqi Yi
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
273
|
Keum JW, Ahn JH, Bermudez H. Design, assembly, and activity of antisense DNA nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3529-35. [PMID: 22025353 DOI: 10.1002/smll.201101804] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Indexed: 05/23/2023]
Abstract
Discrete DNA nanostructures allow simultaneous features not possible with traditional DNA forms: encapsulation of cargo, display of multiple ligands, and resistance to enzymatic digestion. These properties suggested using DNA nanostructures as a delivery platform. Here, DNA pyramids displaying antisense motifs are shown to be able to specifically degrade mRNA and inhibit protein expression in vitro, and they show improved cell uptake and gene silencing when compared to linear DNA. Furthermore, the activity of these pyramids can be regulated by the introduction of an appropriate complementary strand. These results highlight the versatility of DNA nanostructures as functional devices.
Collapse
Affiliation(s)
- Jung-Won Keum
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
274
|
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, Dudits D, Garab G, Bottka S. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. PLANT PHYSIOLOGY 2011; 157:1628-41. [PMID: 21980174 PMCID: PMC3327186 DOI: 10.1104/pp.111.185462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 05/18/2023]
Abstract
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Lundberg P, Yang HJ, Jung SJ, Behlke MA, Rose SD, Cantin EM. Protection against TNFα-dependent liver toxicity by intraperitoneal liposome delivered DsiRNA targeting TNFα in vivo. J Control Release 2011; 160:194-9. [PMID: 22094102 DOI: 10.1016/j.jconrel.2011.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-alpha (TNFα) is a classic proinflammatory cytokine implicated in the pathogenesis of several autoimmune and inflammatory diseases including viral encephalitis. Macrophages being major producers of TNFα are thus attractive targets for in vivo RNA interference (RNAi) mediated down regulation of TNFα. The application of RNAi technology to in vivo models however presents obstacles, including rapid degradation of RNA duplexes in plasma, insufficient delivery to the target cell population and toxicity associated with intravenous administration of synthetic RNAs and carrier compounds. We exploited the phagocytic ability of macrophages for delivery of Dicer-substrate small interfering RNAs (DsiRNAs) targeting TNFα (DsiTNFα) by intraperitoneal administration of lipid-DsiRNA complexes that were efficiently taken up by peritoneal macrophages and other phagocytic cells. We report that DsiTNFα-lipid complexes delivered intraperitoneally altered the disease outcome in an acute sepsis model. Down-regulation of TNFα in peritoneal CD11b+ monocytes reduced liver damage in C57BL/6 mice and significantly delayed acute mortality in mice treated with low dose LPS plus d-galactosamine (D-GalN).
Collapse
Affiliation(s)
- Patric Lundberg
- Division of Immunology, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
276
|
Beverly MB. Applications of mass spectrometry to the study of siRNA. MASS SPECTROMETRY REVIEWS 2011; 30:979-998. [PMID: 20201110 DOI: 10.1002/mas.20260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has quickly become a well-established laboratory tool for regulating gene expression and is currently being explored for its therapeutic potential. The design and use of double-stranded RNA oligonucleotides as therapeutics to trigger the RNAi mechanism and a greater effort to understand the RNAi pathway itself is driving the development of analytical techniques that can characterize these oligonucleotides. Electrospray (ESI) and MALDI have been used routinely to analyze oligonucleotides and their ability to provide mass and sequence information has made them ideal for this application. Reviewed here is the work done to date on the use of ESI and MALDI for the study of RNAi oligonucleotides as well as the strategies and issues associated with siRNA analysis by mass spectrometry. While there is not a large body of literature on the specific application of mass spectrometry to RNAi, the work done in this area is a good demonstration of the range of experiments that can be conducted and the value that ESI and MALDI can provide to the RNAi field.
Collapse
Affiliation(s)
- Michael B Beverly
- RNA Therapeutics Department, Merck and Co., Inc., Boulder, CO 80301, USA.
| |
Collapse
|
277
|
Kim DW, Kim DS, Kim MJ, Kwon SW, Ahn EH, Jeong HJ, Sohn EJ, Dutta S, Lim SS, Cho SW, Lee KS, Park JS, Eum WS, Hwang HS, Choi SY. Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage. BMB Rep 2011; 44:647-52. [DOI: 10.5483/bmbrep.2011.44.10.647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
278
|
D'Alessandro-Gabazza CN, Kobayashi T, Boveda-Ruiz D, Takagi T, Toda M, Gil-Bernabe P, Miyake Y, Yasukawa A, Matsuda Y, Suzuki N, Saito H, Yano Y, Fukuda A, Hasegawa T, Toyobuku H, Rennard SI, Wagner PD, Morser J, Takei Y, Taguchi O, Gabazza EC. Development and preclinical efficacy of novel transforming growth factor-β1 short interfering RNAs for pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 46:397-406. [PMID: 22033267 DOI: 10.1165/rcmb.2011-0158oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of transforming growth factor (TGF)-β1 as the major player in the pathogenesis of the disease. However, attempts to control its expression and to improve the outcome of pulmonary fibrosis have been disappointing. We tested the hypothesis that TGF-β1 is the dominant factor in the acute and chronic phases of pulmonary fibrosis and developed short interfering (si)RNAs directed toward molecules implicated in the disease. This study developed novel sequences of siRNAs targeting the TGF-β1 gene and evaluated their therapeutic efficacy in two models of pulmonary fibrosis: a model induced by bleomycin and a novel model of the disease developed spontaneously in mice overexpressing the full length of human TGF-β1 in the lungs. Intrapulmonary delivery of aerosolized siRNAs of TGF-β1 with sequences common to humans and rodents significantly inhibited bleomycin-induced pulmonary fibrosis in the acute and chronic phases of the disease and in a dose-dependent manner. Aerosolized human-specific siRNA also efficiently inhibited pulmonary fibrosis, improved lung function, and prolonged survival in human TGF-β1 transgenic mice. Mice showed no off-target effects after intratracheal administration of siRNA. These results suggest the applicability of these novel siRNAs as tools for treating pulmonary fibrosis in humans.
Collapse
Affiliation(s)
- Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University School of Medicine, Edobashi 2-174, Tsu city, Mie prefecture 514 8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Steele TWJ, Zhao X, Tarcha P, Kissel T. Factors influencing polycation/siRNA colloidal stability toward aerosol lung delivery. Eur J Pharm Biopharm 2011; 80:14-24. [PMID: 21924355 DOI: 10.1016/j.ejpb.2011.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 01/25/2023]
Abstract
Hexanediol diacrylate cross-linked oligoethylenimine (OEI-HD) is a non-viral polymeric vector designed to deliver siRNA. To achieve safe and effective in vivo siRNA delivery using this vector, the polyplex must have sufficient colloidal stability if administered intravenously or nebulized for delivery by the pulmonary route. In this study, polyplexes from OEI-HD and siRNA were formulated for aerosol-based lung delivery, regarding their colloidal stability, optimal particle size, and in vitro biological activity. Herein, we describe how these properties are dependent upon the polymer-to siRNA weight ratios, buffer composition they were complexed in, PEG-grafting, and the addition of commercial lung surfactants and/or non-ionic surfactants to the formulation. Lastly, the effects of nebulization of the formulation into aerosol droplets, on the polyplex particle size and transfection efficiency, were evaluated. Polyplex size was monitored for up to 2 h after polyplex formation to determine the extent of aggregation and final particle sizes when stability was achieved. Our results suggest that PEG-grafting and polyethylenimine-PEG mixing were effective in achieving colloidal stability in isotonic saline buffers. In addition, colloidal stability was achieved in isotonic glucose buffers using commercially available non-ionic surfactant Pluronic™ P68 or the lung-derived surfactant Alveofact™. The smallest particle size, 140 nm, was obtained with Pluronic™ F68. For transfection efficiency, both Alveofact™ and Pluronic™ F68 achieved equal or better transfection when added to the OEI-HD/siRNA polyplexes. For long term storage of OEI-HD/siRNA formulations, we propose a lyophilization method that created in situ polyplexes upon addition of water. Preparation of OEI-HD/siRNA polyplexes by this method allowed dry storage at room temperature for up to the 3 months. In conclusion, we have identified approaches to achieve formulation and colloidal stability of OEI-HD/siRNA complexes, a step toward successful application of polyplexes for in vivo siRNA delivery.
Collapse
Affiliation(s)
- Terry W J Steele
- School of Material Science & Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | | | | |
Collapse
|
280
|
Henry JC, Azevedo-Pouly ACP, Schmittgen TD. microRNA Replacement Therapy for Cancer. Pharm Res 2011; 28:3030-42. [DOI: 10.1007/s11095-011-0548-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
|
281
|
Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2241-2249. [PMID: 21648076 DOI: 10.1002/smll.201100472] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 05/30/2023]
Abstract
CG-rich duplex containing prostate-specific membrane antigen (PSMA) aptamer-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPIONs) is reported as prostate cancer-specific nanotheranostic agents. These agents are capable of prostate tumor detection in vivo by magnetic resonance imaging (MRI) and selective delivery of drugs to the tumor tissue, simultaneously. The prepared PSMA-functionalized TCL-SPION via a hybridization method (Apt-hybr-TCL-SPION) exhibited preferential binding towards target prostate-cancer cells (LNCaP, PSMA+) in both in vitro and in vivo when analyzed by T(2) -weighted MRI. After Dox molecules were loaded onto the Apt-hybr-TCL-SPION through the intercalation of Dox to the CG-rich duplex containing PSMA aptamer as well as electrostatic interaction between the Dox-and-polymer coating layer of the nanoparticles, the resulting Dox@Apt-hybr-TCL-SPION showed selective drug-delivery efficacy in the LNCaP xenograft mouse model. These results suggest that Dox@Apt-hybr-TCL-SPION has potential for use as novel prostate cancer-specific nanotheranostics.
Collapse
Affiliation(s)
- Mi Kyung Yu
- Cell Dynamics Research Center, Research Center for Biomolecular Nanotechnology, School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
282
|
Kowalski PS, Leus NGJ, Scherphof GL, Ruiters MHJ, Kamps JAAM, Molema G. Targeted siRNA delivery to diseased microvascular endothelial cells-Cellular and molecular concepts. IUBMB Life 2011; 63:648-58. [DOI: 10.1002/iub.487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 12/11/2022]
|
283
|
Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 2011; 18:1111-20. [PMID: 21753793 DOI: 10.1038/gt.2011.100] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antisense techniques have been employed for over 30 years to suppress expression of target RNAs. Recently, microRNAs (miRNAs) have emerged as a new class of small, non-coding, regulatory RNA molecules that widely impact gene regulation, differentiation and disease states in both plants and animals. Antisense techniques that employ synthetic oligonucleotides have been used to study miRNA function and some of these compounds may have potential as novel drug candidates to intervene in diseases where miRNAs contribute to the underlying pathophysiology. Anti-miRNA oligonucleotides (AMOs) appear to work primarily through a steric blocking mechanism of action; these compounds are synthetic reverse complements that tightly bind and inactivate the miRNA. A variety of chemical modifications can be used to improve the performance and potency of AMOs. In general, modifications that confer nuclease stability and increase binding affinity improve AMO performance. Chemical modifications and/or certain structural features of the AMO may also facilitate invasion into the miRNA-induced silencing complex. In particular, it is essential that the AMO binds with high affinity to the miRNA 'seed region', which spans bases 2-8 from the 5'-end of the miRNA.
Collapse
Affiliation(s)
- K A Lennox
- Molecular Genetics and Biophysics, Integrated DNA Technologies, Coralville, IA 52241, USA
| | | |
Collapse
|
284
|
Ogris M, Wagner E. To Be Targeted: Is the Magic Bullet Concept a Viable Option for Synthetic Nucleic Acid Therapeutics? Hum Gene Ther 2011; 22:799-807. [DOI: 10.1089/hum.2011.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manfred Ogris
- Pharmaceutical Biotechnology, Ludwig Maximilians University, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Ludwig Maximilians University, Munich 81377, Germany
| |
Collapse
|
285
|
Hoerter JAH, Krishnan V, Lionberger TA, Walter NG. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 2011; 6:e20359. [PMID: 21647381 PMCID: PMC3103583 DOI: 10.1371/journal.pone.0020359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras) to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET). We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand) double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.
Collapse
Affiliation(s)
- John A. H. Hoerter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Vishalakshi Krishnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Troy A. Lionberger
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
- * E-mail:
| |
Collapse
|
286
|
Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 2011; 6:1017-25. [PMID: 21720513 PMCID: PMC3124387 DOI: 10.2147/ijn.s17040] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 12/18/2022] Open
Abstract
RNA interference is a powerful method for the knockdown of pathologically relevant genes. Small interfering RNAs (siRNAs) have been widely demonstrated as effective biomedical genetic-therapy applications for many diseases. Unfortunately, siRNA duplexes are not ideal drug-like molecules. Problems hindering their effective application fundamentally lie in their delivery, stability, and off-target effects. Delivery systems provide solutions to many of the challenges facing siRNA therapeutics. Due to some fatal disadvantages of viral vectors, nonviral carriers have been studied extensively. Aside from liposomes, nanoparticles and cationic polymer carriers have exhibited improved in vivo stability, better biocompatibility, and efficiency for gene silencing with less cellular toxicity. They may represent a promising strategy for siRNA-based therapies, especially as nanomaterials. The present review also summarizes other methods of siRNA delivery and the side effects of the nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- Tianjin Medical University Eye Center, Tianjin, China
| | | | | |
Collapse
|
287
|
Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, Laiho M, DeWeese TL, Lupold SE. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 2011; 121:2383-90. [PMID: 21555850 DOI: 10.1172/jci45109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/30/2011] [Indexed: 01/07/2023] Open
Abstract
Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen-positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.
Collapse
Affiliation(s)
- Xiaohua Ni
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011; 130:583-605. [PMID: 21537948 DOI: 10.1007/s00439-011-0995-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/17/2011] [Indexed: 12/19/2022]
Abstract
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Collapse
Affiliation(s)
- Attila A Seyhan
- Pfizer Inc., Translational Immunology, Inflammation and Immunology, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
289
|
Abstract
RNA interference (RNAi) is a robust gene silencing mechanism that degrades mRNAs complementary to the antisense strands of double-stranded, short interfering RNAs (siRNAs). As a therapeutic strategy, RNAi has an advantage over small-molecule drugs, as virtually all genes are susceptible to targeting by siRNA molecules. This advantage is, however, counterbalanced by the daunting challenge of achieving safe, effective delivery of oligonucleotides to specific tissues in vivo. Lipid-based carriers of siRNA therapeutics can now target the liver in metabolic diseases and are being assessed in clinical trials for the treatment of hypercholesterolemia. For this indication, a chemically modified oligonucleotide that targets endogenous small RNA modulators of gene expression (microRNAs) is also under investigation in clinical trials. Emerging 'self-delivery' siRNAs that are covalently linked to lipophilic moieties show promise for the future development of therapies. Besides the liver, inflammation of the adipose tissue in patients with obesity and type 2 diabetes mellitus may be an attractive target for siRNA therapeutics. Administration of siRNAs encapsulated within glucan microspheres can silence genes in inflammatory phagocytic cells, as can certain lipid-based carriers of siRNA. New technologies that combine siRNA molecules with antibodies or other targeting molecules also appear encouraging. Although still at an early stage, the emergence of RNAi-based therapeutics has the potential to markedly influence our clinical future.
Collapse
Affiliation(s)
- Michael P Czech
- University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
290
|
Burr DB, Molina SA, Banerjee D, Low DM, Takemoto DJ. Treatment with connexin 46 siRNA suppresses the growth of human Y79 retinoblastoma cell xenografts in vivo. Exp Eye Res 2011; 92:251-9. [PMID: 21320488 PMCID: PMC3060947 DOI: 10.1016/j.exer.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/04/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Tumors with a hypoxic component, including human Y79 retinoblastoma cells, express a specific gap junction protein, Connexin 46 (Cx46), which is usually only found in naturally hypoxic tissues such as the differentiated lens. The aim of this study was to investigate if Cx46 downregulation would suppress Y79 tumor formation in vivo. Five-week old nude mice were subcutaneously implanted with human Y79 retinoblastoma cells and treated with intratumor siRNA injections of 30 μg Cx46 siRNA (n = 6), 30 μg non-silencing siRNA (n = 6), or no siRNA treatment (n = 6) every 2 days for a maximum of 10 treatments. Tumor volume (TV) was calculated from the recorded caliper measurements of length and width. Excised tumors were measured and weighed. Western blot analyses were performed to evaluate Cx46 and Cx43 expression in tumors which received Cx46 siRNA, non-silencing siRNA, or no siRNA treatment. Tumor histopathology was used to assess tumor features. Cx46 siRNA treated Y79 tumors had a reduced TV (287 mm(3) ± 77 mm(3)) when compared to the tumors of mice receiving the negative control siRNA (894 mm(3) ± 218 mm(3); P ≤ 0.03) or no siRNA (1068 mm(3) ± 192 mm(3); P ≤ 0.002). A 6-fold knockdown of Cx46 and a 3-fold rise in Cx43 protein expression was observed from western blots of tumors treated with Cx46 siRNA compared to mice treated with non-silencing siRNA. Knockdown of Cx46 with siRNA had an antitumor effect on human Y79 retinoblastoma tumors in the nude mouse model. The results suggest that anti-Cx46 therapy may be a potential target in the future treatment of retinoblastoma.
Collapse
Affiliation(s)
- Diana B. Burr
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
- Department of Clinical Sciences, Oncology, 106A Mosier Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Samuel A. Molina
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | - Debarshi Banerjee
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | - Derek M. Low
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dolores J. Takemoto
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
291
|
Kannan A, Fostvedt E, Beal PA, Burrows CJ. 8-Oxoguanosine switches modulate the activity of alkylated siRNAs by controlling steric effects in the major versus minor grooves. J Am Chem Soc 2011; 133:6343-51. [PMID: 21452817 DOI: 10.1021/ja2003878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small interfering double-stranded RNAs have been synthesized bearing one or more base modifications at nucleotide positions 4, 11, and/or 16 in the guide strand. The chemically modified base is an N(2)-alkyl-8-oxo-7,8-dihydroguanine (alkyl = propyl, benzyl) that can alternatively pair in a Watson-Crick sense opposite cytosine (C) or as a Hoogsteen pair opposite adenine (A). Cellular delivery with C opposite led to effective targeting of A-containing but not C-containing mRNA sequences in a dual luciferase assay with RNA interference levels that were generally as good as or better than unmodified sequences. The higher activity is ascribed to an inhibitory effect of the alkyl group projecting into the minor groove of double-stranded RNA preventing off-target binding to proteins such as PKR (RNA-activated protein kinase).
Collapse
Affiliation(s)
- Arunkumar Kannan
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
292
|
Boudreau RL, Rodríguez-Lebrón E, Davidson BL. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 2011; 20:R21-7. [PMID: 21459775 DOI: 10.1093/hmg/ddr137] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNAi interference (RNAi) is a powerful gene silencing technology that has immense potential for treating a vast array of human ailments, for which suppressing disease-associated genes may provide clinical benefit. Here, we review the development of RNAi as a therapeutic modality for neurodegenerative diseases affecting the central nervous system (CNS). We overview promising preclinical data for the application of RNAi in the CNS and discuss key challenges (e.g. delivery and specificity) that remain as these approaches transition to the clinic.
Collapse
Affiliation(s)
- Ryan L Boudreau
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
293
|
Pasternak A, Wengel J. Unlocked nucleic acid--an RNA modification with broad potential. Org Biomol Chem 2011; 9:3591-7. [PMID: 21431171 DOI: 10.1039/c0ob01085e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first unlocked nucleic acid (UNA) monomer was described more than a decade ago, but only recent reports have revealed the true potential applications of this acyclic RNA mimic. UNA monomers enable the modulation of the thermodynamic stability of various nucleic acid structures such as RNA and DNA duplexes, quadruplexes or i-motifs. Moreover, UNA monomers were found to be compatible with RNase H activity, a property which is important for single stranded antisense constructs. Notably, UNA monomers can be applied in the design of superior siRNAs, combining potent gene silencing and dramatically reduced off-target effects.
Collapse
Affiliation(s)
- Anna Pasternak
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
294
|
Kumar D, Kim SH, Yokobayashi Y. Combinatorially inducible RNA interference triggered by chemically modified oligonucleotides. J Am Chem Soc 2011; 133:2783-8. [PMID: 21294507 DOI: 10.1021/ja1107436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemically inducible RNA interference (RNAi) enables temporal and/or spatial control of virtually any gene, making it useful for study of gene functions, discovery of potential drug targets, and gene therapy applications. Here we describe a new inducible RNAi platform in which orthogonal chemically modified oligonucleotides are used to trigger silencing of two genes in a combinatorial manner. We developed a modular RNA architecture consisting of an oligonucleotide sensor stem-loop and an RNAi effector domain that is designed to undergo a structural shift upon addition of an oligonucleotide inducer. The induced structural change allows the RNA to be processed by the RNAi machinery, ultimately resulting in gene silencing of the target encoded by the RNAi effector module. Combinatorial regulation of multiple genes should accelerate studies of complex gene-gene interactions and screening of new drug targets.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
295
|
Abstract
IMPORTANCE OF THE FIELD Cancer is frequently caused by altered protein expression. Oligonucleotides (ONs) are short synthetic nucleic acid fragments, able to selectively correct protein expression into cells by different mechanisms. However, biological barriers hamper the therapeutic use of ONs without suitable delivery strategies. AREAS COVERED IN THIS REVIEW This review summarizes the most meaningful non-viral strategies for ON delivery, including the chemical modifications of the ON backbone and non-viral delivery systems. WHAT THE READER WILL GAIN The reader will gain an update of the main strategies for ON delivery in cancer. Advantages and limits of each approach are underlined. Emphasis is given to the delivery strategies that contributed to bringing ONs into clinical trials. TAKE HOME MESSAGE In the long story of ONs for cancer therapy, the development of delivery strategies has led, in the last few years, to different opportunities to use the high therapeutic potential of these molecules in humans.
Collapse
Affiliation(s)
- Giuseppe De Rosa
- University of Naples Federico II, Department of Pharmaceutical and Toxicological Chemistry, Faculty of Pharmacy, Via D Montesano n 49, Naples, Italy.
| | | | | |
Collapse
|
296
|
Abstract
BACKGROUND RNA interference (RNAi) has become the method of choice for researchers wishing to target specific genes for silencing and has provided immense potential as therapeutic tools. This narrative review article aimed to understand potential benefits and limitations of RNAi technique for clinical application and in vivo studies through reading the articles published during the recent 3 years. MATERIALS AND METHODS Medline database was searched by using 'siRNA' or 'RNAi' and 'in vivo' with limits of dates 'published in the last 3 years', language 'English' and article type 'clinical trial' for obtaining articles on in vivo studies on the use of RNAi technique. Characteristics of clinical trials on siRNA registered at the http://www.ClinicalTrials.gov were analysed. RESULTS The only three clinical studies published so far and many in vivo studies in animals showed that the RNAi technique is safe and effective in treatment of cancers of many organ/systems and various other diseases including viral infection, arterial restenosis and some hereditary diseases with considerable benefits such as high specificity, many possible routes of administration and possibility of silencing multiple genes at the same time. Limitations and uncertainty include efficiency of cellular uptake, specific guidance to the target tissue or cell, long-term safety, sustained efficacy and rapid clearance from the body. CONCLUSIONS RNAi technique will become an important and potent weapon for fighting against various diseases. RNAi technique has benefits and limitations in its potential clinical applications. Overcoming the obstacles is still a formidable task.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
297
|
Liu J, Guo S, Cinier M, Shu Y, Chen C, Shen G, Guo P. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS NANO 2011; 5:237-46. [PMID: 21155596 PMCID: PMC3026857 DOI: 10.1021/nn1024658] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Both DNA and RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures. A pioneering concept proposed by Ned Seeman 30 years ago has led to an explosion of knowledge in DNA nanotechnology. RNA can be manipulated with simplicity characteristic of DNA, while possessing noncanonical base-pairing, versatile function, and catalytic activity similar to proteins. However, standing in awe of the sensitivity of RNA to RNase degradation has made many scientists flinch away from RNA nanotechnology. Here we report the construction of stable RNA nanoparticles resistant to RNase digestion. The 2'-F (2'-fluoro) RNA retained its property for correct folding in dimer formation, appropriate structure in procapsid binding, and biological activity in gearing the phi29 nanomotor to package viral DNA and producing infectious viral particles. Our results demonstrate that it is practical to produce RNase-resistant, biologically active, and stable RNA for application in nanotechnology.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology
| | | | - Mathieu Cinier
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Yi Shu
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology
| | - Peixuan Guo
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
- Address correspondence to: Peixuan Guo, 3125 Eden Ave. Rm#1436, Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, OH 45267, Phone: (513)558-0041, Fax: (513)558-6079,
| |
Collapse
|
298
|
Dinh TD, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Evaluation of osteoclastogenesis via NFκB decoy/mannosylated cationic liposome-mediated inhibition of pro-inflammatory cytokine production from primary cultured macrophages. Pharm Res 2011; 28:742-51. [PMID: 21253857 DOI: 10.1007/s11095-011-0366-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/06/2011] [Indexed: 01/19/2023]
Abstract
PURPOSE To explore the effect of NFκB activation in macrophages on osteoclastogenesis of bone marrow cells for potential application as a new type of therapy for preventing bone loss. METHODS Primary cultured macrophages and bone marrow cells were prepared from mice. As macrophage-targeted carriers, Mannosylated cationic liposomes (Man-liposomes) were prepared and were allowed to form complexes with NFκB decoy (a double-stranded oligonucleotide). Cellular uptake, inhibition of NFκB activation, and cytokine production were evaluated using macrophages. Osteoclastogenesis was investigated using bone marrow cells, which were cultured in the conditioned medium prepared from macrophages with or without Man-liposome/NFκB decoy complexes treatment. RESULTS Cellular accumulation of NFκB decoy was enhanced by Man-liposome. NFκB activation in macrophages and TNF-α production were suppressed in macrophages by Man-liposome/NFκB decoy complexes but not by the naked NFκB decoy, Gal-liposome/NFκB decoy complexes, or Man-liposome/random decoy complexes. Osteoclastogenesis of bone marrow cells was induced in the conditioned medium prepared from activated macrophages but not by activated macrophages treated with Man-liposome/NFκB decoy complexes. CONCLUSION Osteoclastogenesis induced by activated macrophages could be suppressed by the treatment macrophages with Man-liposome/NFκB decoy complexes. Macrophage-targeted delivery of NFκB decoys using Man-liposomes may be promising in its use for the remediation of bone loss.
Collapse
Affiliation(s)
- Thuy Duong Dinh
- Department of Drug Delivery Research Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | |
Collapse
|
299
|
Aigner M, Hartl M, Fauster K, Steger J, Bister K, Micura R. Chemical synthesis of site-specifically 2'-azido-modified RNA and potential applications for bioconjugation and RNA interference. Chembiochem 2011; 12:47-51. [PMID: 21171007 PMCID: PMC3193913 DOI: 10.1002/cbic.201000646] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/01/2010] [Indexed: 01/13/2023]
Affiliation(s)
- Michaela Aigner
- Institute of Organic Chemistry, Center for Molecular Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
300
|
Siegmund V, Santner T, Micura R, Marx A. Enzymatic synthesis of 2′-methylseleno-modified RNA. Chem Sci 2011. [DOI: 10.1039/c1sc00404b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|