251
|
Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Molina-Freaner F, Hernández-López A, Kawaguchi L, Nagano AJ, Kajita T, Watano Y, Tsuchimatsu T, Takahashi Y, Murakami M. Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. THE NEW PHYTOLOGIST 2020; 227:1872-1884. [PMID: 32392621 DOI: 10.1111/nph.16647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.
Collapse
Affiliation(s)
| | | | - Takuro Ito
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Miguel Angel Pérez-Farrera
- Laboratorio de Ecología Evolutiva, Herbario Eizi Matuda, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, 29039, Mexico
| | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, 91070, Mexico
| | - José F Martínez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, 37684, Mexico
| | - Lina Kawaguchi
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa, 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuma Takahashi
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masashi Murakami
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
252
|
Connection, isolation and reconnection: Quaternary climatic oscillations and the Andes shaped the phylogeographical patterns of the Patagonian bee Centris cineraria (Apidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe joint effect of the Andes as a geographical barrier and the Quaternary glaciations as promoters of genetic divergence remains virtually unexplored in southern South America. To help fill this knowledge gap, in this study we investigated the demographic history of Centris cineraria, a solitary bee mainly distributed in Patagonia. We used mitochondrial and nuclear markers and performed phylogeographical and dating analyses, adjusted spatio-temporal diffusion and species distribution models, and used Approximate Bayesian Computation to identify likely historical demographic scenarios. Our results revealed that during glacial periods the Andes represented a barrier due to the extent of the ice-sheets and the occurrence of unsuitable habitats, while interglacials allowed for gene flow across the Andes. Secondary contact between previously isolated lineages was evident across at least two low-altitude Andean areas, the northern one being a putative glacial refugium. Our findings also suggest that C. cineraria has persisted in situ in four periglacial refugia located along a north–south transect, congruent with the maximum extent of the ice sheet during the Greatest Patagonian Glaciation. As the first phylogeographical study of Patagonian insects, our work reveals that the interaction between Quaternary climatic oscillations and the Andes as a barrier was the main driver of the spatial and demographic history of C. cineraria.
Collapse
|
253
|
Donne C, Neiman M, Woodell JD, Haase M, Verhaegen G. A layover in Europe: Reconstructing the invasion route of asexual lineages of a New Zealand snail to North America. Mol Ecol 2020; 29:3446-3465. [PMID: 32741004 DOI: 10.1111/mec.15569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Non-native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.
Collapse
Affiliation(s)
- Carina Donne
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - Maurine Neiman
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - James D Woodell
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - Martin Haase
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Gerlien Verhaegen
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Advanced Science-Technology Research (ASTER) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
254
|
Nowicki M, Houston LC, Boggess SL, Aiello AS, Payá‐Milans M, Staton ME, Hayashida M, Yamanaka M, Eda S, Trigiano RN. Species diversity and phylogeography of Cornus kousa (Asian dogwood) captured by genomic and genic microsatellites. Ecol Evol 2020; 10:8299-8312. [PMID: 32788980 PMCID: PMC7417245 DOI: 10.1002/ece3.6537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cornus kousa (Asian dogwood), an East Asia native tree, is the most economically important species of the dogwood genus, owing to its desirable horticultural traits and ability to hybridize with North America-native dogwoods. To assess the species genetic diversity and to better inform the ongoing and future breeding efforts, we assembled an herbarium and arboretum collection of 131 noncultivated C. kousa specimens. Genotyping and capillary electrophoresis analyses of our C. kousa collection with the newly developed genic and published nuclear genomic microsatellites permitted assessment of genetic diversity and evolutionary history of the species. Regardless of the microsatellite type used, the study yielded generally similar insights into the C. kousa diversity with subtle differences deriving from and underlining the marker used. The accrued evidence pointed to the species distinct genetic pools related to the plant country of origin. This can be helpful in the development of the commercial cultivars for this important ornamental crop with increased pyramided utility traits. Analyses of the C. kousa evolutionary history using the accrued genotyping datasets pointed to an unsampled ancestor population, possibly now extinct, as per the phylogeography of the region. To our knowledge, there are few studies utilizing the same gDNA collection to compare performance of genomic and genic microsatellites. This is the first detailed report on C. kousa species diversity and evolutionary history inference.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
| | - Logan C. Houston
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
| | - Sarah L. Boggess
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
| | | | - Miriam Payá‐Milans
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
- Present address:
Centro de Biotecnología y Genómica de PlantasUPM‐INIAMadridSpain
| | - Margaret E. Staton
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
| | | | - Masahiro Yamanaka
- Department of Pharmaceytical SciencesInternational University of Health and WelfareOhtawaraJapan
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and FisheriesCenter for Wildlife Health ORUKnoxvilleTNUSA
- Department of MicrobiologyCenter for Wildlife Health ORUKnoxvilleTNUSA
| | - Robert N. Trigiano
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTNUSA
| |
Collapse
|
255
|
Ye B, Saito T, Hirano T, Dong Z, Do VT, Chiba S. Human-geographic effects on variations in the population genetics of Sinotaia quadrata (Gastropoda: Viviparidae) that historically migrated from continental East Asia to Japan. Ecol Evol 2020; 10:8055-8072. [PMID: 32788961 PMCID: PMC7417235 DOI: 10.1002/ece3.6456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Anthropogenic factors potentially affect observed biogeographical patterns in population genetics, but the effects of ancient human activities on the original patterns created by natural processes are unknown. Sinotaia quadrata, a widely distributed freshwater snail species in East Asia, was used to investigate this issue. It is unclear whether S. quadrata in Japan was introduced from China and how different human uses and varying geographic patterns affect the contemporary population genetics between the two regions. Thus, we investigated the demography of S. quadrata and detected its genetic structure in Japan and continental East Asia. RESULTS Sinotaia quadrata populations first naturally migrated from continental East Asia to Japan, which is associated with the ancient period in Japanese geohistory (about 70,000 years ago). They were then artificially introduced in association with agriculture expansion by human movements in two recent periods (about 8,000 and 1,200 years ago). Populations in different parts of Japan have their own sources. Natural migration in the ancient period and artificial introduction in the recent period suggest that the population distribution is affected by both the geohistory of East Asia and the history of human expansion. In the background of the historical migration and introduction, contemporary populations in the two regions show different genetic patterns. Population divergence levels were significantly correlated with geographical patterns in Japan and significantly correlated with human interventions variables in continental East Asia, suggesting that long-term geographical isolation is likely the major factor that shaped the contemporary population genetics in Japan, while modern human uses are likely the major factor in continental East Asia. CONCLUSIONS Our preliminary results show a complex demography and unusual genetic patterns in the contemporary populations for a common freshwater snail and are of significance to determine the historical formation and contemporary patterns of biogeography in Japan and continental East Asia.
Collapse
Affiliation(s)
- Bin Ye
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takumi Saito
- Department of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Takahiro Hirano
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Center for Northeast Asian StudiesTohoku UniversitySendaiJapan
| | - Zhengzhong Dong
- Agricultural Experiment StationZhejiang UniversityHangzhouChina
| | - Van Tu Do
- Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHa NoiVietnam
- Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHa NoiVietnam
| | - Satoshi Chiba
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Center for Northeast Asian StudiesTohoku UniversitySendaiJapan
| |
Collapse
|
256
|
Fernando HSD, Hapugoda M, Perera R, Black IV WC, De Silva BGDNK. Mitochondrial metabolic genes provide phylogeographic relationships of global collections of Aedes aegypti (Diptera: Culicidae). PLoS One 2020; 15:e0235430. [PMID: 32722672 PMCID: PMC7386613 DOI: 10.1371/journal.pone.0235430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Phylogeographic relationships among global collections of the mosquito Aedes aegypti were evaluated using the mitochondrial Cytochrome C Oxidase 1 (CO1) and NADH dehydrogenase subunit 4 (ND4) genes including new sequences from Sri Lanka. Phylogeographic analysis estimated that Ae. aegypti arose as a species ~614 thousand years ago (kya) in the late Pleistocene. At 545 kya an “early” East African clade arose that continued to differentiate in East Africa, and eventually gave rise to three lineages one of which is distributed throughout all tropical and subtropical regions, a second that contains Southeast Asian/Sri Lankan mosquitoes and a third that contains mostly New World mosquitoes. West African collections were not represented in this early clade. The late clade continued to differentiate throughout Africa and gave rise to a lineage that spread globally. The most recent branches of the late clade are represented by South-East Asia and India/Pakistan collections. Analysis of migration rates suggests abundant gene flow between India/Pakistan and the rest of the world with the exception of Africa.
Collapse
Affiliation(s)
- H. S. D. Fernando
- Department of Zoology, Center for Biotechnology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black IV
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - B. G. D. N. K. De Silva
- Department of Zoology, Center for Biotechnology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- * E-mail:
| |
Collapse
|
257
|
Lucati F, Poignet M, Miró A, Trochet A, Aubret F, Barthe L, Bertrand R, Buchaca T, Calvez O, Caner J, Darnet E, Denoël M, Guillaume O, Le Chevalier H, Martínez-Silvestre A, Mossoll-Torres M, O'Brien D, Osorio V, Pottier G, Richard M, Sabás I, Souchet J, Tomàs J, Ventura M. Multiple glacial refugia and contemporary dispersal shape the genetic structure of an endemic amphibian from the Pyrenees. Mol Ecol 2020; 29:2904-2921. [PMID: 32563209 DOI: 10.1111/mec.15521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022]
Abstract
Historical factors (colonization scenarios, demographic oscillations) and contemporary processes (population connectivity, current population size) largely contribute to shaping species' present-day genetic diversity and structure. In this study, we use a combination of mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic oscillations and present-day gene flow dynamics in determining the genetic diversity and structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of variation. In contrast, microsatellites revealed five major genetic lineages with admixture patterns at their boundaries. Approximate Bayesian computation analyses and linear models indicated that the five lineages likely underwent separate evolutionary histories and can be tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders likely represent zones of secondary contact following expansion from multiple refugia. Finally, we did not find genetic evidence of sex-biased dispersal. This work highlights the importance of integrating past evolutionary processes and present-day gene flow and dispersal dynamics, together with multilocus approaches, to gain insights into what shaped the current genetic attributes of amphibians living in montane habitats.
Collapse
Affiliation(s)
- Federica Lucati
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Manon Poignet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Alexandre Miró
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Audrey Trochet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France.,Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Fabien Aubret
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Association Nature En Occitanie, Maison de l'Environnement de Midi-Pyrénées, Toulouse, France
| | - Romain Bertrand
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Teresa Buchaca
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Olivier Calvez
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Jenny Caner
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Elodie Darnet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liege, Liege, Belgium
| | - Olivier Guillaume
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | | | | | | | - Víctor Osorio
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Gilles Pottier
- Association Nature En Occitanie, Maison de l'Environnement de Midi-Pyrénées, Toulouse, France
| | - Murielle Richard
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Ibor Sabás
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Jérémie Souchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Jan Tomàs
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Marc Ventura
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| |
Collapse
|
258
|
Mohan AV, Orozco-terWengel P, Shanker K, Vences M. The Andaman day gecko paradox: an ancient endemic without pronounced phylogeographic structure. Sci Rep 2020; 10:11745. [PMID: 32678130 PMCID: PMC7367275 DOI: 10.1038/s41598-020-68402-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
The Andaman day gecko (Phelsuma andamanensis) is endemic to the Andaman Archipelago, located ~ 6000 km away from Madagascar where the genus Phelsuma likely evolved. We complemented existing phylogenetic data with additional markers to show that this species consistently branches off early in the evolution of the genus Phelsuma, and this early origin led us to hypothesize that island populations within the Andaman Archipelago could have further diversified. We sampled the Andaman day gecko from all major islands in the Andamans, developed new microsatellite markers and amplified mitochondrial markers to study population diversification. We detected high allelic diversity in microsatellites, but surprisingly poor geographical structuring. This study demonstrates that the Andaman day gecko has a panmictic population (K = 1), but with weak signals for two clusters that we name ‘North’ (North Andaman, Middle Andaman, Interview, Baratang, Neil, and Long Islands) and ‘South’ (Havelock, South Andaman, Little Andaman Islands). The mitochondrial COI gene uncovered wide haplotype sharing across islands with the presence of several private haplotypes (except for the Little Andaman Island, which only had an exclusive private haplotype) signalling ongoing admixture. This species differs from two other Andaman endemic geckos for which we provide comparative mitochondrial data, where haplotypes show a distinct phylogeographic structure. Testing population history scenarios for the Andaman day gecko using Approximate Bayesian Computation (ABC) supports two possible scenarios but fails to tease apart whether admixture or divergence produced the two weak clusters. Both scenarios agree that admixture and/or divergence prior to the onset of the last glacial maximum shaped the genetic diversity and structure detected in this study. ABC supports population expansion, possibly explained by anthropogenic food subsidies via plantations of cash crops, potentially coupled with human mediated dispersal resulting in the observed panmictic population. The Andaman day gecko may thus be a rare example of an island endemic reptile benefiting from habitat modification and increased movement in its native range.
Collapse
Affiliation(s)
- Ashwini V Mohan
- Department of Evolutionary Biology, Zoological Institute, Braunschweig University of Technology, 38106, Braunschweig, Germany. .,Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | | | - Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Miguel Vences
- Department of Evolutionary Biology, Zoological Institute, Braunschweig University of Technology, 38106, Braunschweig, Germany
| |
Collapse
|
259
|
Barrera-Redondo J, Piñero D, Eguiarte LE. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front Genet 2020; 11:742. [PMID: 32760427 PMCID: PMC7373799 DOI: 10.3389/fgene.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
In the last decade, genomics and the related fields of transcriptomics and epigenomics have revolutionized the study of the domestication process in plants and animals, leading to new discoveries and new unresolved questions. Given that some domesticated taxa have been more studied than others, the extent of genomic data can range from vast to nonexistent, depending on the domesticated taxon of interest. This review is meant as a rough guide for students and academics that want to start a domestication research project using modern genomic tools, as well as for researchers already conducting domestication studies that are interested in following a genomic approach and looking for alternate strategies (cheaper or more efficient) and future directions. We summarize the theoretical and technical background needed to carry out domestication genomics, starting from the acquisition of a reference genome and genome assembly, to the sampling design for population genomics, paleogenomics, transcriptomics, epigenomics and experimental validation of domestication-related genes. We also describe some examples of the aforementioned approaches and the relevant discoveries they made to understand the domestication of the studied taxa.
Collapse
Affiliation(s)
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
260
|
Garg KM, Chattopadhyay B, Koane B, Sam K, Rheindt FE. Last Glacial Maximum led to community-wide population expansion in a montane songbird radiation in highland Papua New Guinea. BMC Evol Biol 2020; 20:82. [PMID: 32652951 PMCID: PMC7353695 DOI: 10.1186/s12862-020-01646-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Quaternary climate fluctuations are an engine of biotic diversification. Global cooling cycles, such as the Last Glacial Maximum (LGM), are known to have fragmented the ranges of higher-latitude fauna and flora into smaller refugia, dramatically reducing species ranges. However, relatively less is known about the effects of cooling cycles on tropical biota. RESULTS We analyzed thousands of genome-wide DNA markers across an assemblage of three closely related understorey-inhabiting scrubwrens (Sericornis and Aethomyias; Aves) from montane forest along an elevational gradient on Mt. Wilhelm, the highest mountain of Papua New Guinea. Despite species-specific differences in elevational preference, we found limited differentiation within each scrubwren species, but detected a strong genomic signature of simultaneous population expansions at 27-29 ka, coinciding with the onset of the LGM. CONCLUSION The remarkable synchronous timing of population expansions of all three species demonstrates the importance of global cooling cycles in expanding highland habitat. Global cooling cycles have likely had strongly different impacts on tropical montane areas versus boreal and temperate latitudes, leading to population expansions in the former and serious fragmentation in the latter.
Collapse
Affiliation(s)
- Kritika M. Garg
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
| | - Balaji Chattopadhyay
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
| | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Katerina Sam
- Biology Centre CAS, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branisovska 1760, Ceske Budejovice, Czech Republic
| | - Frank E. Rheindt
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
| |
Collapse
|
261
|
Parvizi E, Fraser CI, Dutoit L, Craw D, Waters JM. The genomic footprint of coastal earthquake uplift. Proc Biol Sci 2020; 287:20200712. [PMID: 32635859 PMCID: PMC7423469 DOI: 10.1098/rspb.2020.0712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Theory suggests that catastrophic earth-history events can drive rapid biological evolution, but empirical evidence for such processes is scarce. Destructive geological events such as earthquakes can represent large-scale natural experiments for inferring such evolutionary processes. We capitalized on a major prehistoric (800 yr BP) geological uplift event affecting a southern New Zealand coastline to test for the lasting genomic impacts of disturbance. Genome-wide analyses of three co-distributed keystone kelp taxa revealed that post-earthquake recolonization drove the evolution of novel, large-scale intertidal spatial genetic 'sectors' which are tightly linked to geological fault boundaries. Demographic simulations confirmed that, following widespread extirpation, parallel expansions into newly vacant habitats rapidly restructured genome-wide diversity. Interspecific differences in recolonization mode and tempo reflect differing ecological constraints relating to habitat choice and dispersal capacity among taxa. This study highlights the rapid and enduring evolutionary effects of catastrophic ecosystem disturbance and reveals the key role of range expansion in reshaping spatial genetic patterns.
Collapse
Affiliation(s)
- Elahe Parvizi
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ceridwen I. Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Dave Craw
- Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jonathan M. Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
262
|
Local dispersal pathways during the invasion of the cactus moth, Cactoblastis cactorum, within North America and the Caribbean. Sci Rep 2020; 10:11012. [PMID: 32620784 PMCID: PMC7335065 DOI: 10.1038/s41598-020-66864-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Cactoblastis cactorum, a species of moth native to Argentina, feeds on several prickly pear cactus species (Opuntia) and has been successfully used as a biological control of invading Opuntia species in Australia, South Africa and native ruderal Opuntia species in some Caribbean islands. Since its introduction to the Caribbean its spread was uncontrolled, invading successfully Florida, Texas and Louisiana. Despite this long history of invasion, we are still far from understanding the factors determining the patterns of invasion of Cactoblastis in North America. Here, we explored three non-mutually exclusive explanations: a) a stepping stone model of colonization, b) long distance colonization due to hurricanes, and/or c) hitchhiking through previously reported commercial routes. Genetic diversity, genetic structure and the patterns of migration among populations were obtained by analyzing 10 nuclear microsatellite loci. Results revealed the presence of genetic structure among populations of C. cactorum in the invaded region and suggest that both marine commercial trade between the Caribbean islands and continental USA, as well as recurrent transport by hurricanes, explain the observed patterns of colonization. Provided that sanitary regulations avoiding human-mediated dispersal are enforced, hurricanes probably represent the most important agent of dispersal and future invasion to continental areas.
Collapse
|
263
|
Ren G, Mateo RG, Conti E, Salamin N. Population Genetic Structure and Demographic History of Primula fasciculata in Southwest China. FRONTIERS IN PLANT SCIENCE 2020; 11:986. [PMID: 32714358 PMCID: PMC7351516 DOI: 10.3389/fpls.2020.00986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Understanding the factors that drive the genetic structure of a species and its responses to past climatic changes is an important first step in modern population management. The response to the last glacial maximum (LGM) has been well studied, however, the effect of previous glaciation periods on plant demographic history is still not well studied. Here we investigated the population structure and demographic history of Primula fasciculata that widely occurs in the Hengduan Mountains and Qinghai-Tibetan Plateau. We obtained genomic data for 234 samples of the species using restriction site-associated DNA (RAD) sequencing and combined approximate Bayesian computation (ABC) and species distribution modeling (SDM) to evaluate the effects of multiple glaciation periods by testing several population divergence models and demographic scenarios. The analyses of population structure showed that P. fasciculata displays a striking population structure with six groups that could be identified genetically. Our ABC modeling suggested that the current groups diverged from ancestral populations located in the eastern Hengduan Mountains after the largest glaciation occurred in the region (~ 0.8-0.5 million years ago), which is consistent with the result of SDMs. Each current group has survived in different glacial refugia during the LGM and experienced expansions and/or bottlenecks since their divergence during or across the following Quaternary glacial cycles. Our study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes in alpine plant species with shallow population structure.
Collapse
Affiliation(s)
- Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou, China
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Rubén G. Mateo
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanic Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
264
|
Cai Y, Fu W, Cai D, Heller R, Zheng Z, Wen J, Li H, Wang X, Alshawi A, Sun Z, Zhu S, Wang J, Yang M, Hu S, Li Y, Yang Z, Gong M, Hou Y, Lan T, Wu K, Chen Y, Jiang Y, Wang X. Ancient Genomes Reveal the Evolutionary History and Origin of Cashmere-Producing Goats in China. Mol Biol Evol 2020; 37:2099-2109. [PMID: 32324877 PMCID: PMC7306693 DOI: 10.1093/molbev/msaa103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Goats are one of the most widespread farmed animals across the world; however, their migration route to East Asia and local evolutionary history remain poorly understood. Here, we sequenced 27 ancient Chinese goat genomes dating from the Late Neolithic period to the Iron Age. We found close genetic affinities between ancient and modern Chinese goats, demonstrating their genetic continuity. We found that Chinese goats originated from the eastern regions around the Fertile Crescent, and we estimated that the ancestors of Chinese goats diverged from this population in the Chalcolithic period. Modern Chinese goats were divided into a northern and a southern group, coinciding with the most prominent climatic division in China, and two genes related to hair follicle development, FGF5 and EDA2R, were highly divergent between these populations. We identified a likely causal de novo deletion near FGF5 in northern Chinese goats that increased to high frequency over time, whereas EDA2R harbored standing variation dating to the Neolithic. Our findings add to our understanding of the genetic composition and local evolutionary process of Chinese goats.
Collapse
Affiliation(s)
- Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Akil Alshawi
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Iraqi Ministry of Higher Education and Scientific Research, Iraq
| | | | - Siqi Zhu
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Juan Wang
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou, China
| | | | - Songmei Hu
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Yan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunan Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tianming Lan
- BGI-Shenzhen, Build 11, Beishan Industrial Zone, Yantian District, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kui Wu
- China National GeneBank-Shenzhen, BGI-Shenzhen, China
- Cancer Institute, BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
265
|
Banerjee AK, Guo W, Qiao S, Li W, Xing F, Lin Y, Hou Z, Li S, Liu Y, Huang Y. Land masses and oceanic currents drive population structure of Heritiera littoralis, a widespread mangrove in the Indo-West Pacific. Ecol Evol 2020; 10:7349-7363. [PMID: 32760533 PMCID: PMC7391321 DOI: 10.1002/ece3.6460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phylogeographic forces driving evolution of sea-dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo-West Pacific region and identify the phylogeographic factors influencing its present-day distribution. Analysis of five chloroplast DNA fragments' sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo-Malesia and Australasia was not so prominent. Long-distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Sitan Qiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Weixi Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Division of Ecology & BiodiversitySchool of Biological SciencesThe University of Hong KongHong KongChina
| | - Fen Xing
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhuangwei Hou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
266
|
Cros E, Chattopadhyay B, Garg KM, Ng NSR, Tomassi S, Benedick S, Edwards DP, Rheindt FE. Quaternary land bridges have not been universal conduits of gene flow. Mol Ecol 2020; 29:2692-2706. [PMID: 32542783 DOI: 10.1111/mec.15509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Quaternary climate oscillations are a well-known driver of animal diversification, but their effects are most well studied in areas where glaciations lead to habitat fragmentation. In large areas of the planet, however, glaciations have had the opposite effect, but here their impacts are much less well understood. This is especially true in Southeast Asia, where cyclical changes in land distribution have generated enormous land expansions during glacial periods. In this study, we selected a panel of five songbird species complexes covering a range of ecological specificities to investigate the effects Quaternary land bridges have had on the connectivity of Southeast Asian forest biota. Specifically, we combined morphological and bioacoustic analysis with an arsenal of population genomic and modelling approaches applied to thousands of genome-wide DNA markers across a total of more than 100 individuals. Our analyses show that species dependent on forest understorey exhibit deep differentiation between Borneo and western Sundaland, with no evidence of gene flow during the land bridges accompanying the last 1-2 ice ages. In contrast, dispersive canopy species and habitat generalists have experienced more recent gene flow. Our results argue that there remains much cryptic species-level diversity to be discovered in Southeast Asia even in well-known animal groups such as birds, especially in nondispersive forest understorey inhabitants. We also demonstrate that Quaternary land bridges have not been equally suitable conduits of gene flow for all species complexes and that life history is a major factor in predicting relative population divergence time across Quaternary climate fluctuations.
Collapse
Affiliation(s)
- Emilie Cros
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Balaji Chattopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nathaniel S R Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Suzan Benedick
- Sustainable Agriculture School, Universiti Malaysia Sabah, Sabah, Malaysia
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
267
|
Ding XH, Hsu KC, Tang WQ, Liu D, Ju YM, Lin HD, Yang JQ. Genetic diversity and structure of the Chinese lake gudgeon ( Sarcocheilichthys sinensis). Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:228-237. [PMID: 32723222 DOI: 10.1080/24701394.2020.1779239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mitochondrial DNA cytochrome b and d-loop sequences (2,137 bp) in 65 specimens of Sarcocheilichthys sinensis from five populations were identified as two lineages (I and II). The pairwise genetic distance between lineages I and II was 1.94%. SAMOVA analyses suggested that the best grouping occurred at three groups, Yangtze, Qiantang and Minjiang Rivers. High haplotype diversity (0.949) and low nucleotide diversity (θ π = 1.067%) were detected. The results of the neutrality tests, mismatch distribution and approximate Bayesian computation (ABC) did not support demographic expansions. The results of phylogenetic analysis, statistical dispersal-vicariance analysis (S-DIVA), ABC, MIGRATE-N and the time to the most recent common ancestor (TMRCA) indicated two colonization routes. First, before the Wuyi Mountains lifted, S. sinensis dispersed from the Yangtze River to the Minjiang River. Second, during glaciation, the continental shelf was exposed, which contributed to the dispersion of populations from the Yangtze River.
Collapse
Affiliation(s)
- Xin-Hua Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kui-Ching Hsu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Wen-Qiao Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Min Ju
- Department of Biology, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hung-Du Lin
- Department of Biology, The Affiliated School of National Tainan First Senior High School, Tainan, Taiwan
| | - Jin-Quan Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
268
|
Arteaga MC, Bello-Bedoy R, Gasca-Pineda J. Hybridization Between Yuccas From Baja California: Genomic and Environmental Patterns. FRONTIERS IN PLANT SCIENCE 2020; 11:685. [PMID: 32733491 PMCID: PMC7358647 DOI: 10.3389/fpls.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Hybridization can occur when two geographically isolated species are reproductively compatible and have come into sympatry due to range shifts. Yucca and yucca moths exhibit obligate pollination mutualism; yucca moths are responsible for the gene flow mediated by pollen among yucca populations. In the Baja California Peninsula, there are two yucca sister species, Y. capensis and Y. valida, that have coevolved with the same pollinator, Tegeticula baja. Both yucca species are endemic to the peninsula, and their current distributions are allopatric. Based on their morphological characteristics, it has been suggested that some plants growing in the southern part of the Magdalena flatland, a spatially disjunct part of Yucca valida's range, have hybrid origins. We conducted genomic and climatic analyses of the two yucca species as well as the putative hybrid populations. We genotyped 3,423 single nucleotide polymorphisms in 120 individuals sampled from 35 localities. We applied Bayesian tests and geographic cline analyses to the genomic data. Using climatic information from the occurrence sites, we projected species distribution models in different periods to assess changes in the distributional range, and we performed a statistical test to define the niche divergence between the paternal species and the putative hybrid populations. Structure analysis revealed mixed ancestry in the genome of hybrid populations, and the Bayesian models supported a scenario of post-divergence gene flow between the yucca species. Our species distribution models reveal that the geographical ranges of the parental species overlapped mainly during the Last Glacial Maximum, which could facilitate genetic admixture between those species. Finally, we found that most of the assessed environmental axes between the parents and hybrid populations are divergent, indicating that the climatic niche of the hybrid populations is shifting from that of the populations' progenitors. Our results show that the populations in the southern part of the Magdalena flatland are the result of combination of the genetic components of two species. Hybrid individuals with this novel genomic combination arose in a different habitat than their parental species, and they exhibit ecological divergence, which contributes to reproductive isolation through spatial and temporal barriers.
Collapse
Affiliation(s)
- Maria Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Jaime Gasca-Pineda
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
269
|
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. FRONTIERS IN PLANT SCIENCE 2020; 11:638. [PMID: 32523597 PMCID: PMC7261834 DOI: 10.3389/fpls.2020.00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The characterization of the largest worldwide representative data set of apricot (Prunus armeniaca L.) germplasm was performed using molecular markers. Genetic diversity and structure of the cultivated apricot genetic resources were analyzed to decipher the history of diffusion of this species around the world. A common set of 25 microsatellite markers was used for genotyping a total of 890 apricot accessions in different collections from the center of origin to the more recent regions of apricot culture. Using a Bayesian model-based clustering approach, the apricot genotypes can be structured into five different genetic clusters (FST = 0.174), correlated with the geographical regions of origin of the accessions. Accessions from China and Central Asia were clustered together and exhibited the highest levels of diversity, confirming an origin in this region. A loss of genetic diversity was observed from the center of origin to both western and eastern zones of recent apricot culture. Altogether, our results revealed that apricot spread from China and Central Asia, defined as the center of origin, following three major diffusion routes with a decreasing gradient of genetic variation in each geographical group. The identification of specific alleles outside the center of origin confirmed the existence of different secondary apricot diversification centers. The present work provides more understanding of the worldwide history of apricot species diffusion as well as the field of conservation of the available genetic resources. Data have been used to define an apricot core collection based on molecular marker diversity which will be useful for further identification of genomic regions associated with commercially important horticultural traits through genome-wide association studies to sustain apricot breeding programs.
Collapse
Affiliation(s)
- Hedia Bourguiba
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ivan Scotti
- INRA Centre PACA, UR 629 URFM, Avignon, France
| | | | - Tetyana Zhebentyayeva
- Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Craig Ledbetter
- San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests & Genetics, Parlier, CA, United States
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Lednice, Czechia
| | | | - Claudio D’Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Pisa, Italy
| | - Hiroyuki Iketani
- National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science, Tsukuba, Japan
| | - Danilo Christen
- Département Fédéral de L’économie DFE, Station de Recherche Agroscope Changins-Wädenswil ACW, Centre de Recherche Conthey, Conthey, Switzerland
| | - Lamia Krichen
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Neila Trifi-Farah
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou City, China
| | - Guillaume Roch
- INRA Centre PACA, UR 1052 GAFL, Montfavet, France
- CEP Innovation, Lyon, France
| | | |
Collapse
|
270
|
Marková S, Horníková M, Lanier HC, Henttonen H, Searle JB, Weider LJ, Kotlík P. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol Ecol 2020; 29:1730-1744. [PMID: 32248595 DOI: 10.1111/mec.15427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023]
Abstract
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land-bridge route deriving from a "Carpathian" glacial refugium and one via a north-eastern route from an "Eastern" glacial refugium near the Ural Mountains. Clustering of genome-wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red-backed voles (Myodes rutilus) took place in Fennoscandia just after end-glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.
Collapse
Affiliation(s)
- Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA.,Sam Noble Museum, University of Oklahoma, Norman, OK, USA
| | | | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
271
|
Ledo RMD, Domingos FMCB, Giugliano LG, Sites JW, Werneck FP, Colli GR. Pleistocene expansion and connectivity of mesic forests inside the South American Dry Diagonal supported by the phylogeography of a small lizard*. Evolution 2020; 74:1988-2004. [DOI: 10.1111/evo.13978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Roger Maia D. Ledo
- Área de Meio Ambiente Instituto Federal de Educação, Ciência e Tecnologia de Brasília Campus Samambaia Samambaia DF 70860 Brazil
- Departamento de Zoologia Universidade de Brasília Brasília DF 70910 Brazil
| | | | - Lilian G. Giugliano
- Departamento de Genética e Morfologia Universidade de Brasília Brasília DF 70910‐900 Brazil
| | - Jack W. Sites
- Department of Biology and Bean Life Sciences Museum Brigham Young University Provo Utah 84602 USA
| | - Fernanda P. Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus AM 69060 Brazil
| | - Guarino R. Colli
- Departamento de Zoologia Universidade de Brasília Brasília DF 70910 Brazil
| |
Collapse
|
272
|
Sotelo-Muñoz M, Maldonado-Coelho M, Svensson-Coelho M, Dos Santos SS, Miyaki CY. Vicariance, dispersal, extinction and hybridization underlie the evolutionary history of Atlantic forest fire-eye antbirds (Aves: Thamnophilidae). Mol Phylogenet Evol 2020; 148:106820. [PMID: 32283137 DOI: 10.1016/j.ympev.2020.106820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
In order to gain insights into the biogeographic processes underlying biotic diversification in the Atlantic Forest (AF), we used a multi-locus approach to examine the evolutionary history of the White-shouldered Fire-eye (Pyriglena leucoptera) and the Fringe-backed Fire-eye (Pyriglena atra), two parapatric sister species endemic to the AF. We sequenced one mitochondrial, three Z chromosome-linked and three anonymous markers of 556 individuals from 66 localities. We recovered four lineages throughout the AF: P. atra and three populations within P. leucoptera. All populations diverged during the late Pleistocene and presented varying levels of admixture. One Z-linked locus showed the highest level of differentiation between the two species. On the other hand, a mitochondrial haplotype was shared extensively between them. Our data supported vicariance driving speciation along with extinction and dispersal as processes underlying intraspecific diversification. Furthermore, signatures of demographic expansion in most populations and areas of genetic admixture were recovered throughout the AF, suggesting that forest fragmentation was also important in differentiation. Genetic admixture areas are located between large rivers suggesting that AF rivers may diminish gene flow. Our results indicated a complex and dynamic biogeographic history of Pyriglena in the AF, with vicariance, extinction, dispersal and secondary contact followed by introgression likely influencing the current patterns of genetic distribution.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Rua do Matão 277, 05508-090 São Paulo, Brazil.
| | | | - Maria Svensson-Coelho
- Lund University, Department of Biology, Ekologihuset, Sölvegatan 37, 22362 Lund, Sweden
| | - Sidnei S Dos Santos
- Programa de Pós-graduação em Diversidade Animal, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Cristina Y Miyaki
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Rua do Matão 277, 05508-090 São Paulo, Brazil
| |
Collapse
|
273
|
Mutitu EK, Hoareau TB, Hurley BP, Garnas JR, Wingfield MJ, Slippers B. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): cities as bridgeheads for global pest invasions. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
274
|
Duncan SI, Robertson EP, Fletcher RJ, Austin JD. Urbanization and Population Genetic Structure of the Panama City crayfish (Procambarus econfinae). J Hered 2020; 111:204-215. [PMID: 31746328 DOI: 10.1093/jhered/esz072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
For species with geographically restricted distributions, the impacts of habitat loss and fragmentation on long-term persistence may be particularly pronounced. We examined the genetic structure of Panama City crayfish (PCC), Procambarus econfinae, whose historical distribution is limited to an area approximately 145 km2, largely within the limits of Panama City and eastern Bay County, FL. Currently, PCC occupy approximately 28% of its historical range, with suitable habitat composed of fragmented patches in the highly urbanized western portion of the range and managed plantations in the more contiguous eastern portion of the range. We used 1640 anonymous single-nucleotide polymorphisms to evaluate the effects of anthropogenic habitat modification on the genetic diversity and population structure of 161 PCC sampled from across its known distribution. First, we examined urban habitat patches in the west compared with less-developed habitat patches in the east. Second, we used approximate Bayesian computation to model inferences on the demographic history of eastern and western populations. We found anthropogenic habitat modifications explain the genetic structure of PCC range-wide. Clustering analyses revealed significant genetic structure between and within eastern and western regions. Estimates of divergence between east and west were consistent with urban growth in the mid-20th century. PCC have low genetic diversity and high levels of inbreeding and relatedness, indicating populations are small and isolated. Our results suggest that PCC have been strongly affected by habitat loss and fragmentation and management strategies, including legal protection, translocations, or reintroductions, may be necessary to ensure long-term persistence.
Collapse
Affiliation(s)
| | - Ellen P Robertson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Robert J Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - James D Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| |
Collapse
|
275
|
Takeuchi T, Masaoka T, Aoki H, Koyanagi R, Fujie M, Satoh N. Divergent northern and southern populations and demographic history of the pearl oyster in the western Pacific revealed with genomic SNPs. Evol Appl 2020; 13:837-853. [PMID: 32211071 PMCID: PMC7086055 DOI: 10.1111/eva.12905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
In the open ocean without terrain boundaries, marine invertebrates with pelagic larvae can migrate long distances using ocean currents, suggesting reduced genetic diversification. Contrary to this assumption, however, genetic differentiation is often observed in marine invertebrates. In the present study, we sought to explain how population structure is established in the western Pacific Ocean, where the strong Kuroshio Current maintains high levels of gene flow from south to north, presumably promoting genetic homogeneity. We determined the population structure of the pearl oyster, Pinctada fucata, in the Indo-Pacific Ocean using genome-wide genotyping data from multiple sampling localities. Cluster analysis showed that the western Pacific population is distinct from that of the Indian Ocean, and that it is divided into northern (Japanese mainland) and southern (Nansei Islands, China, and Cambodia) populations. Genetic differentiation of P. fucata can be explained by geographic barriers in the Indian Ocean and a local lagoon, and by environmental gradients of sea surface temperature (SST) and oxygen concentration in the western Pacific. A genome scan showed evidence of adaptive evolution in genomic loci, possibly associated with changes in environmental factors, including SST and oxygen concentration. Furthermore, Bayesian simulation demonstrated that the past population expansion and division are congruent with ocean warming after the last glacial period. It is highly likely that the environmental gradient forms a genetic barrier that diversifies P. fucata populations in the western Pacific. This hypothesis helps to explain genetic differentiation and possible speciation of marine invertebrates.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Tetsuji Masaoka
- Aquaculture Technology DivisionNational Research Institute of Aquaculture, Fisheries Research and Education AgencyTamaki‐choJapan
| | - Hideo Aoki
- Mie Prefecture Fisheries Research InstituteShimaJapan
| | - Ryo Koyanagi
- DNA Sequencing SectionOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Manabu Fujie
- DNA Sequencing SectionOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Noriyuki Satoh
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
276
|
Allen A, Guerrero J, Byrne A, Lavery J, Presho E, Courcier E, O'Keeffe J, Fogarty U, Delahay R, Wilson G, Newman C, Buesching C, Silk M, O'Meara D, Skuce R, Biek R, McDonald RA. Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200288. [PMID: 32431911 PMCID: PMC7211870 DOI: 10.1098/rsos.200288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
The colonization of Ireland by mammals has been the subject of extensive study using genetic methods and forms a central problem in understanding the phylogeography of European mammals after the Last Glacial Maximum. Ireland exhibits a depauperate mammal fauna relative to Great Britain and continental Europe, and a range of natural and anthropogenic processes have given rise to its modern fauna. Previous Europe-wide surveys of the European badger (Meles meles) have found conflicting microsatellite and mitochondrial DNA evidence in Irish populations, suggesting Irish badgers have arisen from admixture between human imported British and Scandinavian animals. The extent and history of contact between British and Irish badger populations remains unclear. We use comprehensive genetic data from Great Britain and Ireland to demonstrate that badgers in Ireland's northeastern and southeastern counties are genetically similar to contemporary British populations. Simulation analyses suggest this admixed population arose in Ireland 600-700 (CI 100-2600) years before present most likely through introduction of British badgers by people. These findings add to our knowledge of the complex colonization history of Ireland by mammals and the central role of humans in facilitating it.
Collapse
Affiliation(s)
- Adrian Allen
- Agri-Food and Biosciences Institute, Belfast, UK
| | - Jimena Guerrero
- Centre D'Ecologie Fonctionelle et Evolutive, Montpellier, France
| | - Andrew Byrne
- Agri-Food and Biosciences Institute, Belfast, UK
| | - John Lavery
- Agri-Food and Biosciences Institute, Belfast, UK
| | | | - Emily Courcier
- Department of Agriculture, Environment and Rural Affairs, Belfast, UK
| | | | | | | | | | - Chris Newman
- Wildlife Conservation Research Unit, University of Oxford, UK
| | | | - Matthew Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | | | - Robin Skuce
- Agri-Food and Biosciences Institute, Belfast, UK
| | | | - Robbie A. McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| |
Collapse
|
277
|
Fu PC, Sun SS, Khan G, Dong XX, Tan JZ, Favre A, Zhang FQ, Chen SL. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. ANNALS OF BOTANY 2020; 125:677-690. [PMID: 31922527 PMCID: PMC7103000 DOI: 10.1093/aob/mcaa003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/08/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hosting several global biodiversity hotspots, the region of the Qinghai-Tibetan Plateau (QTP) is exceptionally species-rich and harbours a remarkable level of endemism. Yet, despite a growing number of studies, factors fostering divergence, speciation and ultimately diversity remain poorly understood for QTP alpine plants. This is particularly the case for the role of hybridization. Here, we explored the evolutionary history of three closely related Gentiana endemic species, and tested whether our results supported the mountain geo-biodiversity hypothesis (MGH). METHODS We genotyped 69 populations across the QTP with one chloroplast marker and 12 nuclear microsatellite loci. We performed phylogeographical analysis, Bayesian clustering, approximate Bayesian computation and principal components analysis to explore their genetic relationship and evolutionary history. In addition, we modelled their distribution under different climates. KEY RESULTS Each species was composed of two geographically distinct clades, corresponding to the south-eastern and north-western parts of their distribution. Thus Gentiana veitchiorum and G. lawrencei var. farreri, which diverged recently, appear to have shared at least refugia in the past, from which their range expanded later on. Indeed, climatic niche modelling showed that both species went through continuous expansion from the Last Interglacial Maximum to the present day. Moreover, we have evidence of hybridization in the northwest clade of G. lawrencei var. farreri, which probably occurred in the refugium located on the plateau platform. Furthermore, phylogenetic and population genetic analyses suggested that G. dolichocalyx should be a geographically limited distinct species with low genetic differentiation from G. lawrencei var. farreri. CONCLUSIONS Climatic fluctuations in the region of the QTP have played an important role in shaping the current genetic structure of G. lawrencei var. farreri and G. veitchiorum. We argue that a species pump effect did occur prior to the Last Interglacial Maximum, thus lending support to the MGH. However, our results do depart from expectations as suggested in the MGH for more recent distribution range and hybridization dynamics.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse, Oldenburg, Germany
| | - Xiao-Xia Dong
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Jin-Zhou Tan
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Adrien Favre
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage, Frankfurt am Main, Germany
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, P. R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, P. R. China
| |
Collapse
|
278
|
Evidence for Plio-Pleistocene Duck Mussel Refugia in the Azov Sea River Basins. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshwater mussels (Bivalvia: Unionoida) play an important role in freshwater habitats as ecosystem engineers of the water environment. Duck mussel Anodonta anatina is widely distributed throughout Europe, Siberia, and Western and Central Asia, which makes it a convenient object for biogeographic studies. In this study, we analyzed the divergence of A. anatina populations and discovered a separate genetic lineage distributed in rivers of the Azov Sea basin. This was confirmed by the high genetic distances between this group and previously defined populations, and by the position of this clade in the Bayesian phylogeny calibrated by an external substitution rate. Based on our approximate Bayesian computation (ABC) analysis, biogeographic scenarios of A. anatina dispersal in Europe and Northern, Western, and Central Asia over the Neogene–Quaternary were simulated. The haplogroup’s isolation in the rivers of the Azov Sea basin most likely occurred in the Late Pliocene that was probably facilitated by rearrangement of freshwater basins boundaries in the Ponto-Caspian Region. Population genetic indices show the stability of this group, which allowed it to exist in the river basins of the region for a long time. The discovery of a long-term refugium in the rivers of the Azov Sea led to a better understanding of freshwater fauna evolution in the Neogene–Quaternary and highlighted the importance of conservation of these freshwater animals in the region as a source of unique genetic diversity.
Collapse
|
279
|
Ma L, Cao L, Hoffmann AA, Gong Y, Chen J, Chen H, Wang X, Zeng A, Wei S, Zhou Z. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hong‐Song Chen
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests Institute of Plant Protection Guangxi Academy of Agricultural Sciences Nanning China
| | - Xu‐Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University Kunming China
| | - Ai‐Ping Zeng
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Zhong‐Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
280
|
Sanín MJ, Zapata P, Pintaud JC, Galeano G, Bohórquez A, Tohme J, Hansen MM. Up and Down the Blind Alley: Population Divergence with Scant Gene Flow in an Endangered Tropical Lineage of Andean Palms (Ceroxylon quindiuense Clade: Ceroxyloideae). J Hered 2020; 108:288-298. [PMID: 28186241 DOI: 10.1093/jhered/esx006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/25/2017] [Indexed: 11/14/2022] Open
Abstract
Given the geographical complexity of the Andes, species distributions hold interesting information regarding the history of isolation and gene flow across geographic barriers and ecological gradients. Moreover, current threats to the region's enormous plant diversity pose an additional challenge to the understanding of these patterns. We explored the geographic structure of genetic diversity within the Ceroxylon quindiuense species complex (wax palms) at a regional scale, using a model-based approach to disentangle the historical mechanisms by which these species have dispersed over a range encompassing 17° of latitude in the tropical Andes. A total of 10 microsatellite loci were cross-amplified in 8 populations of the 3 species comprising the C. quindiuense complex. Analyses performed include estimates of molecular diversity and genetic structure, testing for genetic bottlenecks and an evaluation of the colonization scenario under approximate Bayesian computation. We showed that there was a geographical diversity gradient reflecting the orogenetic pattern of the northern Andes and its end at the cordilleras facing the Caribbean Sea. A general pattern of diversity suggests that the cordilleras of Colombia have served as historical recipients of gene flow occurring only scantly along the northern Andes. We provided evidence of important isolation between the largest populations of this complex, suggesting that both historical constraints to dispersal but also current anthropogenic effects might explain the high levels of population structuring. We provide a list of advisable measures for conservation stakeholders.
Collapse
Affiliation(s)
- María José Sanín
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Patricia Zapata
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Jean-Christophe Pintaud
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Gloria Galeano
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Adriana Bohórquez
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Joseph Tohme
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| | - Michael Møller Hansen
- From the Universidad CES, Calle 10 A No. 22 - 04Medellín, Colombia (Sanín); Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (Galeano); Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia (Zapata, Bohórquez, and Tohme); Institut de Recherche pour le Développement IRD-CIRAD, TA A51/PS2, Montpellier cedex 5, France (Pintaud); and Department of Bioscience, Aarhus University, Aarhus, Denmark (Hansen)
| |
Collapse
|
281
|
Garg KM, Sam K, Chattopadhyay B, Sadanandan KR, Koane B, Ericson PGP, Rheindt FE. Gene Flow in the Müllerian Mimicry Ring of a Poisonous Papuan Songbird Clade (Pitohui; Aves). Genome Biol Evol 2020; 11:2332-2343. [PMID: 31418795 PMCID: PMC6735254 DOI: 10.1093/gbe/evz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Müllerian mimicry rings are remarkable symbiotic species assemblages in which multiple members share a similar phenotype. However, their evolutionary origin remains poorly understood. Although gene flow among species has been shown to generate mimetic patterns in some Heliconius butterflies, mimicry is believed to be due to true convergence without gene flow in many other cases. We investigated the evolutionary history of multiple members of a passerine mimicry ring in the poisonous Papuan pitohuis. Previous phylogenetic evidence indicates that the aposematic coloration shared by many, but not all, members of this genus is ancestral and has only been retained by members of the mimicry ring. Using a newly assembled genome and thousands of genomic DNA markers, we demonstrate gene flow from the hooded pitohui (Pitohui dichrous) into the southern variable pitohui (Pitohui uropygialis), consistent with shared patterns of aposematic coloration. The vicinity of putatively introgressed loci is significantly enriched for genes that are important in melanin pigment expression and toxin resistance, suggesting that gene flow may have been instrumental in the sharing of plumage patterns and toxicity. These results indicate that interspecies gene flow may be a more general mechanism in generating mimicry rings than hitherto appreciated.
Collapse
Affiliation(s)
- Kritika M Garg
- Department of Biological Sciences, National University of Singapore
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Per G P Ericson
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore
| |
Collapse
|
282
|
Lee KM, Ranta P, Saarikivi J, Kutnar L, Vreš B, Dzhus M, Mutanen M, Kvist L. Using genomic information for management planning of an endangered perennial, Viola uliginosa. Ecol Evol 2020; 10:2638-2649. [PMID: 32185008 PMCID: PMC7069310 DOI: 10.1002/ece3.6093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 11/11/2022] Open
Abstract
Species occupying habitats subjected to frequent natural and/or anthropogenic changes are a challenge for conservation management. We studied one such species, Viola uliginosa, an endangered perennial wetland species typically inhabiting sporadically flooded meadows alongside rivers/lakes. In order to estimate genomic diversity, population structure, and history, we sampled five sites in Finland, three in Estonia, and one each in Slovenia, Belarus, and Poland using genomic SNP data with double-digest restriction site-associated DNA sequencing (ddRAD-seq). We found monophyletic populations, high levels of inbreeding (mean population F SNP = 0.407-0.945), low effective population sizes (N e = 0.8-50.9), indications of past demographic expansion, and rare long-distance dispersal. Our results are important in implementing conservation strategies for V. uliginosa, which should include founding of seed banks, ex situ cultivations, and reintroductions with individuals of proper origin, combined with continuous population monitoring and habitat management.
Collapse
Affiliation(s)
- Kyung Min Lee
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Pertti Ranta
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lado Kutnar
- Department of Forest EcologySlovenian Forestry InstituteLjubljanaSlovenia
| | - Branko Vreš
- Jovan Hadži Institute of BiologyZRC SAZULjubljanaSlovenia
| | - Maxim Dzhus
- Department of BotanyBelarusian State UniversityMinskBelarus
| | - Marko Mutanen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Laura Kvist
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
283
|
Noskova E, Ulyantsev V, Koepfli KP, O’Brien SJ, Dobrynin P. GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data. Gigascience 2020; 9:giaa005. [PMID: 32112099 PMCID: PMC7049072 DOI: 10.1093/gigascience/giaa005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/16/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The demographic history of any population is imprinted in the genomes of the individuals that make up the population. One of the most popular and convenient representations of genetic information is the allele frequency spectrum (AFS), the distribution of allele frequencies in populations. The joint AFS is commonly used to reconstruct the demographic history of multiple populations, and several methods based on diffusion approximation (e.g., ∂a∂i) and ordinary differential equations (e.g., moments) have been developed and applied for demographic inference. These methods provide an opportunity to simulate AFS under a variety of researcher-specified demographic models and to estimate the best model and associated parameters using likelihood-based local optimizations. However, there are no known algorithms to perform global searches of demographic models with a given AFS. RESULTS Here, we introduce a new method that implements a global search using a genetic algorithm for the automatic and unsupervised inference of demographic history from joint AFS data. Our method is implemented in the software GADMA (Genetic Algorithm for Demographic Model Analysis, https://github.com/ctlab/GADMA). CONCLUSIONS We demonstrate the performance of GADMA by applying it to sequence data from humans and non-model organisms and show that it is able to automatically infer a demographic model close to or even better than the one that was previously obtained manually. Moreover, GADMA is able to infer multiple demographic models at different local optima close to the global one, providing a larger set of possible scenarios to further explore demographic history.
Collapse
Affiliation(s)
- Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russian Federation
| | - Vladimir Ulyantsev
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russian Federation
| | - Klaus-Peter Koepfli
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russian Federation
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Ave., NW Washington, D.C. 20008, USA
| | - Stephen J O’Brien
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russian Federation
- Guy Harvey Oceanographic Center, Nova Southeastern University Ft. Lauderdale, 8000 North Ocean Drive, Ft. Lauderdale, Florida 33004, USA
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russian Federation
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Ave., NW Washington, D.C. 20008, USA
| |
Collapse
|
284
|
Hudson J, Johannesson K, McQuaid CD, Rius M. Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evol Appl 2020; 13:600-612. [PMID: 32431738 PMCID: PMC7045719 DOI: 10.1111/eva.12893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Kerstin Johannesson
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Christopher D. McQuaid
- Department of Zoology and EntomologyCoastal Research GroupRhodes UniversityGrahamstownSouth Africa
| | - Marc Rius
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
285
|
Kraft S, Pérez-Álvarez MJ, Olavarría C, Poulin E. Global phylogeography and genetic diversity of the long-finned pilot whale Globicephala melas, with new data from the southeastern Pacific. Sci Rep 2020; 10:1769. [PMID: 32019997 PMCID: PMC7000830 DOI: 10.1038/s41598-020-58532-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
The matrilineal long-finned pilot whale presents an antitropical distribution and is divided into two subspecies, one in the temperate seas of the Southern Hemisphere and the other restricted to the North Atlantic and Mediterranean. Until now, population genetic and phylogeographic studies have included localities of most of its Northern Hemisphere distribution, while only the southwestern Pacific has been sampled in the Southern Hemisphere. We add new genetic data from the southeastern Pacific to the published sequences. Low mitochondrial and nuclear diversity was encountered in this new area, as previously reported for other localities. Four haplotypes were found with only one new for the species. Fifteen haplotypes were detected in the global dataset, underlining the species’ low diversity. As previously reported, the subspecies shared two haplotypes and presented a strong phylogeographic structure. The extant distribution of this species has been related to dispersal events during the Last Glacial Maximum. Using the genetic data and Approximate Bayesian Calculations, this study supports this historical biogeographic scenario. From a taxonomic perspective, even if genetic analyses do not support the subspecies category, this study endorses the incipient divergence process between hemispheres, thus maintaining their status and addressing them as Demographically Independent Populations is recommended.
Collapse
Affiliation(s)
- Sebastián Kraft
- Instituto de Ecología y Biodiversidad, Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - MJosé Pérez-Álvarez
- Instituto de Ecología y Biodiversidad, Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. .,Centro de Investigación Eutropia, Santiago, Chile. .,Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Carlos Olavarría
- Centro de Investigación Eutropia, Santiago, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad, Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
286
|
Masello JF, Quillfeldt P, Sandoval-Castellanos E, Alderman R, Calderón L, Cherel Y, Cole TL, Cuthbert RJ, Marin M, Massaro M, Navarro J, Phillips RA, Ryan PG, Shepherd LD, Suazo CG, Weimerskirch H, Moodley Y. Additive Traits Lead to Feeding Advantage and Reproductive Isolation, Promoting Homoploid Hybrid Speciation. Mol Biol Evol 2020; 36:1671-1685. [PMID: 31028398 PMCID: PMC6657733 DOI: 10.1093/molbev/msz090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.
Collapse
Affiliation(s)
- Juan F Masello
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Germany
| | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Germany
| | | | - Rachael Alderman
- Department of Primary Industries, Parks, Water and Environment, Hobart, TAS, Australia
| | - Luciano Calderón
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Germany
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Theresa L Cole
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Germany.,Manaaki Whenua Landcare Research, Canterbury, New Zealand
| | - Richard J Cuthbert
- Royal Society for the Protection of Birds (RSPB), The Lodge, Sandy, Bedfordshire, United Kingdom
| | - Manuel Marin
- Section of Ornithology, Natural History Museum of Los Angeles County, Los Angeles, CA.,Feather Link Inc., Cincinnati, OH
| | - Melanie Massaro
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, NSW, Australia
| | - Joan Navarro
- Institut de Ciències del Mar CSIC, Barcelona, Spain
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, Republic of South Africa
| | - Lara D Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Cristián G Suazo
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Germany
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| |
Collapse
|
287
|
Bateta R, Saarman NP, Okeyo WA, Dion K, Johnson T, Mireji PO, Okoth S, Malele I, Murilla G, Aksoy S, Caccone A. Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the Serengeti ecosystem. PLoS Negl Trop Dis 2020; 14:e0007855. [PMID: 32092056 PMCID: PMC7058365 DOI: 10.1371/journal.pntd.0007855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2020] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glossina pallidipes is the main vector of animal African trypanosomiasis and a potential vector of human African trypanosomiasis in eastern Africa where it poses a large economic burden and public health threat. Vector control efforts have succeeded in reducing infection rates, but recent resurgence in tsetse fly population density raises concerns that vector control programs require improved strategic planning over larger geographic and temporal scales. Detailed knowledge of population structure and dispersal patterns can provide the required information to improve planning. To this end, we investigated the phylogeography and population structure of G. pallidipes over a large spatial scale in Kenya and northern Tanzania using 11 microsatellite loci genotyped in 600 individuals. Our results indicate distinct genetic clusters east and west of the Great Rift Valley, and less distinct clustering of the northwest separate from the southwest (Serengeti ecosystem). Estimates of genetic differentiation and first-generation migration indicated high genetic connectivity within genetic clusters even across large geographic distances of more than 300 km in the east, but only occasional migration among clusters. Patterns of connectivity suggest isolation by distance across genetic breaks but not within genetic clusters, and imply a major role for river basins in facilitating gene flow in G. pallidipes. Effective population size (Ne) estimates and results from Approximate Bayesian Computation further support that there has been recent G. pallidipes population size fluctuations in the Serengeti ecosystem and the northwest during the last century, but also suggest that the full extent of differences in genetic diversity and population dynamics between the east and the west was established over evolutionary time periods (tentatively on the order of millions of years). Findings provide further support that the Serengeti ecosystem and northwestern Kenya represent independent tsetse populations. Additionally, we present evidence that three previously recognized populations (the Mbeere-Meru, Central Kenya and Coastal "fly belts") act as a single population and should be considered as a single unit in vector control.
Collapse
Affiliation(s)
- Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Winnie A. Okeyo
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kisumu, Kenya
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Thomas Johnson
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Imna Malele
- Vector and Vector Borne Diseases Research Institute, Tanzania Veterinary Laboratory Agency, Tanga, Tanzania
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Connecticut, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| |
Collapse
|
288
|
Page A, Gibson J, Meyer RS, Chapman MA. Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Mol Biol Evol 2020; 36:1359-1372. [PMID: 31039581 DOI: 10.1093/molbev/msz062] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes. Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates. Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis. Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli. This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
Collapse
Affiliation(s)
- Anna Page
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jane Gibson
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
289
|
Deng JY, Fu RH, Compton SG, Liu M, Wang Q, Yuan C, Zhang LS, Chen Y. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol Ecol 2020; 29:762-782. [PMID: 31943487 DOI: 10.1111/mec.15353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
The dynamics of populations and their divergence over time have shaped current levels of biodiversity and in the case of the "sky islands" of mountainous southwest (SW) China have resulted in an area of exceptional botanical diversity. Ficus tikoua is a prostrate fig tree subendemic to the area that displays unique intraspecific diversity, producing figs typical of different pollination modes in different parts of its range. By combining climate models, genetic variation in populations of the tree's obligate fig wasp pollinators and distributions of the different plant phenotypes, we examined how this unusual situation may have developed. We identified three genetically distinct groups of a single Ceratosolen pollinator species that have largely parapatric distributions. The complex topography of the region contributed to genetic divergence among the pollinators by facilitating geographical isolation and providing refugia. Migration along elevations in response to climate oscillations further enhanced genetic differentiation of the three pollinator groups. Their distributions loosely correspond to the distributions of the functionally significant morphological differences in the male figs of their host plants, but postglacial expansion of one group has not been matched by spread of its associated plant phenotype, possibly due to a major river barrier. The results highlight how interplay between the complex topography of the "sky island" complex and climate change has shaped intraspecies differentiation and relationships between the plant and its pollinator. Similar processes may explain the exceptional botanical diversity of SW China.
Collapse
Affiliation(s)
- Jun-Yin Deng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.,Division of Genetics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rong-Hua Fu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Mei Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Qin Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Chuan Yuan
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lu-Shui Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
290
|
Evidence of an ancient connectivity and biogeodispersal of a bitterling species, Rhodeus notatus, across the Korean Peninsula. Sci Rep 2020; 10:1011. [PMID: 31974505 PMCID: PMC6978382 DOI: 10.1038/s41598-020-57625-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/03/2020] [Indexed: 12/03/2022] Open
Abstract
The modern-day distribution of freshwater fishes throughout multiple rivers is likely the result of past migration during times when currently separate drainages were once connected. Here, we used mitochondrial and microsatellite analyses for 248 individuals of Rhodeus notatus collected from seven different rivers to obtain better understand historical gene flow of freshwater fish on the Korean Peninsula. Based on our phylogenetic analyses, this Korean species originated through the paleo-Yellow River from China and first colonized near the west coast. These genetic data also provided evidence of estuary coalescences among the rivers flowing to the west and southwest coast on well-developed continental shelf. In addition, the pattern of population structure revealed the biogeodispersal route from the west coast to the south coast. It could be inferred that massive migration was not involved in the formation of southern populations, since the signature of historical genetic drift was clearly observed. Our study is the first genetic attempt to confirm hypotheses describing the migration of freshwater species towards the end of East Asia, which have previously been developed using only geological reasoning.
Collapse
|
291
|
Kou Y, Zhang L, Fan D, Cheng S, Li D, Hodel RGJ, Zhang Z. Evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae), in south-east China during the late Neogene: old lineage, young populations. ANNALS OF BOTANY 2020; 125:105-117. [PMID: 31765468 PMCID: PMC6948213 DOI: 10.1093/aob/mcz153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). METHODS DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). KEY RESULTS Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. CONCLUSIONS These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.
Collapse
Affiliation(s)
- Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Li Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dezhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
292
|
Yu W, Wu B, Wang X, Yao Z, Li Y, Liu Y. Scale-dependent effects of habitat fragmentation on the genetic diversity of Actinidia chinensis populations in China. HORTICULTURE RESEARCH 2020; 7:172. [PMID: 33082978 PMCID: PMC7553913 DOI: 10.1038/s41438-020-00401-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
Spatial scale partly explains the differentiated effects of habitat fragmentation on plant biodiversity, but the mechanisms remain unclear. To investigate the effects of habitat fragmentation on genetic diversity at different scales, we sampled Actinidia chinensis Planch. at broad and fine scales, China. The broad-scale sampling included five mountain populations and one oceanic island population (Zhoushan Archipelago), and the fine-scale sampling covered 11 lake islands and three neighboring land populations in Thousand-Island Lake (TIL). These populations were genotyped at 30 microsatellite loci, and genetic diversity, gene flow, and genetic differentiation were evaluated. Genetic differentiation was positively related to geographical distance at the broad scale, indicating an isolation-by-distance effect of habitat fragmentation on genetic diversity. The oceanic population differed from the mainland populations and experienced recent bottleneck events, but it showed high gene flow with low genetic differentiation from a mountain population connected by the Yangtze River. At the fine scale, no negative genetic effects of habitat fragmentation were found because seed dispersal with water facilitates gene flow between islands. The population size of A. chinensis was positively correlated with the area of TIL islands, supporting island biogeography theory, but no correlation was found between genetic diversity and island area. Our results highlight the scale-dependent effects of habitat fragmentation on genetic diversity and the importance of connectivity between island-like isolated habitats at both the broad and fine scales.
Collapse
Affiliation(s)
- Wenhao Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Baofeng Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Zhi Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Yonghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| |
Collapse
|
293
|
Liu X, Ma Y, Wan Y, Li Z, Ma H. Genetic Diversity of Phyllanthus emblica From Two Different Climate Type Areas. FRONTIERS IN PLANT SCIENCE 2020; 11:580812. [PMID: 33329643 PMCID: PMC7734338 DOI: 10.3389/fpls.2020.580812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Phyllanthus emblica L. is a well-known medicinal and edible plant species. Various medicinal compounds in the fruit make it an important medicinal and promising economic material. The plant is widely distributed in Southwestern and Southern China. However, due to massive deforestation and land reclamation as well as deterioration of its natural habitat in recent years, the wild resources of this species have been sharply reduced, and it is rare to see large-scale wild P. emblica forests so far. In order to effectively protect and rationally utilize this species, we investigated the genetic diversity, genetic structure, and population dynamics of 260 individuals from 10 populations of P. emblica sampled from the dry climate area in Yunnan and wet climate area in Guangxi using 20 polymorphic EST-SSR markers. We found high genetic diversity at the species level (He = 0.796) and within populations (He = 0.792), but low genetic differentiation among populations (F ST = 0.084). In addition, most genetic variation existed within populations (92.44%) compared with variation among the populations (7.56%). Meanwhile, the NJ tree, STRUCTURE, and hierarchical analysis suggested that the sampled individuals were clustered into two distinct genetic groups. In contrast, the genetic diversity of the dry climate group (He = 0.786, Na = 11.790, I = 1.962) was higher than that of the wet climate group (He = 0.673, Na = 9.060, I = 1.555), which might be attributed to the combined effects of altitude, precipitation, and geographic distance. Interestingly, only altitude and precipitation had significant pure effects on the genetic diversity, and the former was slightly stronger. In addition, DIYABC analysis suggested the effective population size of P. emblica might have contracted in the beginning of the Last Glacial Maximum. These genetic features provided vital information for the conservation and sustainable development of genetic resources of P. emblica, and they also provided new insights and guidelines for ecological restoration and economic development in dry-hot valleys of Yunnan and karst areas in Guangxi.
Collapse
Affiliation(s)
- Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
- *Correspondence: Hong Ma,
| |
Collapse
|
294
|
Rocha-Méndez A, Sánchez-González LA, González C, Navarro-Sigüenza AG. The geography of evolutionary divergence in the highly endemic avifauna from the Sierra Madre del Sur, Mexico. BMC Evol Biol 2019; 19:237. [PMID: 31888449 PMCID: PMC6937948 DOI: 10.1186/s12862-019-1564-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background Mesoamerica is a remarkable region with a high geological and ecological complexity. Within northern Mesoamerica, the biotic province of the Sierra Madre del Sur (SMS) in southwestern Mexico harbors exceptionally high avian endemism and diversity. Herein, we searched for spatially and temporally concordant phylogeographic patterns, in four bird genera from three distinct avian orders co-distributed across Mesoamerica and investigated their causes through hypothesis testing regarding historical processes. Selected species include endemic and differentiated populations across the montane forests of Mesoamerica, and particularly within the SMS. Results We gathered mitochondrial DNA sequences for at least one locus from 177 individuals across all species. We assessed genetic structure, demographic history, and defined a framework for the coalescent simulations used in biogeographic hypothesis testing temporal and spatial co-variance. Our analyses suggested shared phylogeographic breaks in areas corresponding to the SMS populations, and between the main montane systems in Mesoamerica, with the Central Valley of Oaxaca and the Nicaragua Depression being the most frequently shared breaks among analyzed taxa. Nevertheless, dating analyses and divergence patterns observed were consistent with the hypothesis of broad vicariance across Mesoamerica derived from mechanisms operating at distinct times across taxa in the SMS. Conclusions Our study provides a framework for understanding the evolutionary origins and historical factors enhancing speciation in well-defined regions within Mesoamerica, indicating that the evolutionary history of extant biota inhabiting montane forests is complex and often idiosyncratic.
Collapse
Affiliation(s)
- Alberto Rocha-Méndez
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico. .,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| | - Luis A Sánchez-González
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico
| | - Clementina González
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
295
|
Tsykun T, Javal M, Hölling D, Roux G, Prospero S. Fine-scale invasion genetics of the quarantine pest, Anoplophora glabripennis, reconstructed in single outbreaks. Sci Rep 2019; 9:19436. [PMID: 31857611 PMCID: PMC6923442 DOI: 10.1038/s41598-019-55698-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022] Open
Abstract
The xylophagous cerambycid Anoplophora glabripennis, the Asian long-horned beetle (ALB), is highly polyphagous and can colonize a wide range of broadleaved host trees causing significant economic damage. For this reason, it is considered a quarantine pest in Europe and North America. Although the global spread of ALB has been depicted recently, no comprehensive studies exist on the genetic pattern of populations' establishment and dynamics at fine-scale (i.e. within invasive outbreaks), before eradication measures are applied. This information may, however, be particularly important for an efficient management and control of invasive pests. Here, we characterized population genetic diversity and patterns of spread of ALB within and among the four outbreaks detected in Switzerland between 2011 and 2015. For this, we genotyped 223 specimens at 15 nuclear microsatellite loci and conducted specific population-based analyses. Our study shows: (1) At least three independent introductions and a, human-mediated, secondary dispersal event leading to the four outbreaks in the country; (2) An overall low intra-population genetic diversity in the viable and several years active invasive populations; (3) A colonization of single trees by homogeneous ALB genotypes; And (4) an establishment of populations several generations prior to its official discovery.
Collapse
Affiliation(s)
- Tetyana Tsykun
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Marion Javal
- INRA UR633 Zoologie Forestière, CS 40001 Ardon, 45075, Orléans, cedex 2, France
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, Republic of South Africa
| | - Doris Hölling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Géraldine Roux
- INRA UR633 Zoologie Forestière, CS 40001 Ardon, 45075, Orléans, cedex 2, France
- Université d'Orléans - COST, 45075, Orléans, France
| | - Simone Prospero
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
296
|
Walsh J, Clucas GV, MacManes MD, Thomas WK, Kovach AI. Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. Ecol Evol 2019; 9:13477-13494. [PMID: 31871659 PMCID: PMC6912898 DOI: 10.1002/ece3.5804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Gemma V. Clucas
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Present address:
Cornell Lab of OrnithologyIthacaNYUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - W. Kelley Thomas
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
297
|
Andersen JC, Havill NP, Mannai Y, Ezzine O, Dhahri S, Ben Jamâa ML, Caccone A, Elkinton JS. Identification of winter moth ( Operophtera brumata) refugia in North Africa and the Italian Peninsula during the last glacial maximum. Ecol Evol 2019; 9:13931-13941. [PMID: 31938492 PMCID: PMC6953680 DOI: 10.1002/ece3.5830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field-collected winter moth individuals from southern Italy and northwestern Tunisia-the latter a region where severe oak forest defoliation by winter moth has recently been reported-using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.
Collapse
Affiliation(s)
- Jeremy C. Andersen
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMAUSA
| | | | - Yaussra Mannai
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Olfa Ezzine
- LR161INRGREF03 Laboratory of Forest EcologyNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Samir Dhahri
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Mohamed Lahbib Ben Jamâa
- LR161INRGREF01 Laboratory of Management and Valorization of Forest ResourcesNational Institute for Research in Rural Engineering Water and Forest (INRGREF)University of CarthageArianaTunisia
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Joseph S. Elkinton
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMAUSA
| |
Collapse
|
298
|
Delatte H, De Meyer M, Virgilio M. Genetic structure and range expansion of Zeugodacus Cucurbitae (Diptera: Tephritidae) in Africa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:713-722. [PMID: 30724141 DOI: 10.1017/s0007485319000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypotheses about the worldwide colonization routes of the melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), are mainly based on sparse historical records. Here we aim at reconstructing the colonization history of the African continent based on an improved description of the population structure of Z. cucurbitae and approximate Bayesian analyses. Individuals of Z. cucurbitae were sampled in 17 localities from East, West and Central Africa and genotyped at 19 microsatellite markers. Bayesian analyses showed intracontinental population structuring with populations from Uganda diverging from those of Tanzania and populations from Burundi and Kenya showing traces of admixture with West African samples. Approximate Bayesian Computation provided support to the hypothesis of a single introduction Z. cucurbitae into East Africa and subsequent expansion to West Africa, each colonization event was followed by a bottleneck that promoted population divergence within Africa. Parameter estimates suggested that these events are roughly compatible with the historical records of Z. cucurbitae presence in sub-Saharan Africa (viz. 1936 in East Africa and 1999 in West Africa) and allow excluding alternative hypotheses on older or multiple introductions of Z. cucurbitae.
Collapse
Affiliation(s)
- H Delatte
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Réunion, France
| | - M De Meyer
- Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - M Virgilio
- Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|
299
|
Sun Y, Hou N, Woeste K, Zhang C, Yue M, Yuan X, Zhao P. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China. Ecol Evol 2019; 9:14154-14166. [PMID: 31938510 PMCID: PMC6953554 DOI: 10.1002/ece3.5850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/07/2022] Open
Abstract
Southwestern (SW) China is an area of active tectonism and erosion, yielding a dynamic, deeply eroded landscape that influences the genetic structure of the resident populations of plants and animals. Iron walnut (Juglans regia subsp. sigillata) is a deciduous tree species endemic to this region of China and cultivated there for its edible nuts. We sampled 36 iron walnut populations from locations throughout the species' range in SW China and genotyped a total of 765 individuals at five chloroplast DNA regions and 22 nuclear microsatellite loci. Species distribution models were produced to predict the evolution and historical biogeography of iron walnut and to estimate the impacts of climate oscillations and orographic environments on the species' demography. Our results indicated that J. regia subsp. sigillata had relatively low genetic diversity, high interpopulation genetic differentiation, and asymmetric interpopulation gene flow. Based on DIYABC analysis, we identified two lineages of J. sigillata in southwestern China. The lineages (subpopulations) diverge during the last glacial period (~1.34 Ma). Southwestern China was a glacial refuge during the last glacial period, but increasingly colder and arid climates might have fostered the fragmentation of J. regia subsp. sigillata within this refugium. Finally, we found that recent habitat fragmentation has led to a reduction in population connectivity and increased genetic differentiation by genetic drift in isolated populations. Our results support a conclusion that geological and climatic factors since the Miocene triggered the differentiation, evolutionary origin, and range shifts of J. sigillata in the studied region.
Collapse
Affiliation(s)
- Yi‐Wei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Na Hou
- Guizhou Academy of ForestryGuiyangChina
| | - Keith Woeste
- Department of Forestry and Natural ResourcesUSDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC)Purdue UniversityWest LafayetteINUSA
| | - Chuchu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
- Xi'an Botanical Garden of Shaanxi ProvinceXi'anChina
| | - Xiao‐Ying Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| |
Collapse
|
300
|
Shen TT, Ran JH, Wang XQ. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol Phylogenet Evol 2019; 141:106612. [DOI: 10.1016/j.ympev.2019.106612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|