251
|
Neves F, Muñoz-Mérida A, Machado AM, Almeida T, Gaigher A, Esteves PJ, Castro LFC, Veríssimo A. Uncovering a 500 million year old history and evidence of pseudogenization for TLR15. Front Immunol 2022; 13:1020601. [PMID: 36605191 PMCID: PMC9808068 DOI: 10.3389/fimmu.2022.1020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Toll like receptors (TLRs) are at the front line of pathogen recognition and host immune response. Many TLR genes have been described to date with some being found across metazoans while others are restricted to specific lineages. A cryptic member of the TLR gene family, TLR15, has a unique phylogenetic distribution. Initially described in extant species of birds and reptiles, an ortholog has been reported for cartilaginous fish. Methods Here, we significantly expanded the evolutionary analysis of TLR15 gene evolution, taking advantage of large genomic and transcriptomic resources available from different lineages of vertebrates. Additionally, we objectively search for TLR15 in lobe-finned and ray-finned fish, as well as in cartilaginous fish and jawless vertebrates. Results and discussion We confirm the presence of TLR15 in early branching jawed vertebrates - the cartilaginous fish, as well as in basal Sarcopterygii - in lungfish. However, within cartilaginous fish, the gene is present in Holocephalans (all three families) but not in Elasmobranchs (its sister-lineage). Holocephalans have long TLR15 protein sequences that disrupt the typical TLR structure, and some species display a pseudogene sequence due to the presence of frameshift mutations and early stop codons. Additionally, TLR15 has low expression levels in holocephalans when compared with other TLR genes. In turn, lungfish also have long TLR15 protein sequences but the protein structure is not compromised. Finally, TLR15 presents several sites under negative selection. Overall, these results suggest that TLR15 is an ancient TLR gene and is experiencing ongoing pseudogenization in early-branching vertebrates.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,*Correspondence: Fabiana Neves,
| | - Antonio Muñoz-Mérida
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M. Machado
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Tereza Almeida
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Arnaud Gaigher
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany,Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Pedro J. Esteves
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CITS - Center of Investigation in Health Technologies, CESPU, Gandra, Portugal
| | - L. Filipe C. Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
252
|
Sunagar K, Khochare S, Jaglan A, Senthil S, Suranse V. Stings on wings: Proteotranscriptomic and biochemical profiling of the lesser banded hornet ( Vespa affinis) venom. Front Mol Biosci 2022; 9:1066793. [PMID: 36601583 PMCID: PMC9806352 DOI: 10.3389/fmolb.2022.1066793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Distinct animal lineages have convergently recruited venoms as weaponry for prey capture, anti-predator defence, conspecific competition, or a combination thereof. Most studies, however, have been primarily confined to a narrow taxonomic breadth. The venoms of cone snails, snakes, spiders and scorpions remain particularly well-investigated. Much less explored are the venoms of wasps (Order: Hymenoptera) that are infamous for causing excruciating and throbbing pain, justifying their apex position on Schmidt's pain index, including some that are rated four on four. For example, the lesser banded wasp (V. affinis) is clinically important yet has only been the subject of a few studies, despite being commonly found across tropical and subtropical Asia. Stings from these wasps, especially from multiple individuals of a nest, often lead to clinically severe manifestations, including mastocytosis, myasthenia gravis, optic neuropathy, and life-threatening pathologies such as myocardial infarction and organ failure. However, their venom composition and activity remain unexplored in the Indian subcontinent. Here, we report the proteomic composition, transcriptomic profile, and biochemical and pharmacological activities of V. affinis venom from southern India. Our findings suggest that wasp venoms are rich in diverse toxins that facilitate antipredator defence. Biochemical and pharmacological assessments reveal that these toxins can exhibit significantly higher activities than their homologues in medically important snakes. Their ability to exert potent effects on diverse molecular targets makes them a treasure trove for discovering life-saving therapeutics. Fascinatingly, wasp venoms, being evolutionarily ancient, exhibit a greater degree of compositional and sequence conservation across very distant populations/species, which contrasts with the patterns of venom evolution observed in evolutionarily younger lineages, such as advanced snakes and cone snails.
Collapse
Affiliation(s)
- Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
253
|
Divín D, Goméz Samblas M, Kuttiyarthu Veetil N, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Beneš V, Elleder D, Bartoš O, Vinkler M. Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation. Proc Biol Sci 2022; 289:20221941. [PMID: 36475439 PMCID: PMC9727682 DOI: 10.1098/rspb.2022.1941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Collapse
Affiliation(s)
- Daniel Divín
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Mercedes Goméz Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Nithya Kuttiyarthu Veetil
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Eleni Voukali
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Zuzana Świderská
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| |
Collapse
|
254
|
Kumar N, Kaushik R, Singh A, Uversky VN, Zhang KYJ, Sahu U, Bhatia S, Sanyal A. Bayesian Molecular Dating Analyses Combined with Mutational Profiling Suggest an Independent Origin and Evolution of SARS-CoV-2 Omicron BA.1 and BA.2 Sub-Lineages. Viruses 2022; 14:2764. [PMID: 36560768 PMCID: PMC9788409 DOI: 10.3390/v14122764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of the initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track the virus's genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, the most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be that of 18 September 2021 (95% highest posterior density (HPD), 4 August-22 October 2021) and 1.435 × 10-3 (95% HPD = 1.021 × 10-3 - 1.869 × 10-3) substitution/site/year, respectively, whereas 3 November 2021 (95% highest posterior density (HPD) 26 September-28 November 2021) and 1.074 × 10-3 (95% HPD = 6.444 × 10-4 - 1.586 × 10-3) substitution/site/year were estimated for the BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in the spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study sheds light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics of the virus and, as a result, mitigate the impact of emerging variants on public health.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi P.O. Box 3692, United Arab Emirates
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, Yokohama 230-0045, Japan
| | - Ashutosh Singh
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Federal Research Center ‘Pushchino, Scientific Center for Biological Research of the Russian Academy of Sciences’, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kam Y. J. Zhang
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, Yokohama 230-0045, Japan
| | - Upasana Sahu
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Sandeep Bhatia
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Aniket Sanyal
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
255
|
Castelán-Sánchez HG, Martínez-Castilla LP, Sganzerla-Martínez G, Torres-Flores J, López-Leal G. Genome Evolution and Early Introductions of the SARS-CoV-2 Omicron Variant in Mexico. Virus Evol 2022; 8:veac109. [PMID: 36582501 PMCID: PMC9793848 DOI: 10.1093/ve/veac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
A new variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named Omicron (Pango lineage designation B.1.1.529), was first reported to the World Health Organization by South African health authorities on 24 November 2021. The Omicron variant possesses numerous mutations associated with increased transmissibility and immune escape properties. In November 2021, Mexican authorities reported Omicron's presence in the country. In this study, we infer the first introductory events of Omicron and the impact that human mobility has had on the spread of the virus. We also evaluated the adaptive evolutionary processes in Mexican SARS-CoV-2 genomes during the first month of the circulation of Omicron. We inferred 160 introduction events of Omicron in Mexico since its first detection in South Africa; subsequently, after the first introductions there was an evident increase in the prevalence of SARS-CoV-2 during January. This higher prevalence of the novel variant resulted in a peak of reported cases; on average 6 weeks after, a higher mobility trend was reported. During the peak of cases in the country from January to February 2022, the Omicron BA.1.1 sub-lineage dominated, followed by the BA.1 and BA.15 sub-lineages. Additionally, we identified the presence of diversifying natural selection in the genomes of Omicron and found six non-synonymous mutations in the receptor binding domain of the spike protein, all of them related to evasion of the immune response. In contrast, the other proteins in the genome are highly conserved; however, we identified homoplasic mutations in non-structural proteins, indicating a parallel evolution.
Collapse
Affiliation(s)
- Hugo G Castelán-Sánchez
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| | - León P Martínez-Castilla
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| | - Gustavo Sganzerla-Martínez
- Laboratory of Immunity, Shantou University Medical College, Shantou, People’s Republic of China, No. 22 Xinling Road Shantou, Guangdong Province 515041, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, 5850 College street, Halifax, NS B3H 4R2, Canada
| | - Jesús Torres-Flores
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
- Laboratorio Nacional de Vacunología y Virus Tropicales, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tómas, Alcaldía Miguel Hidalgo CDMX C.P. 11340, México
| | - Gamaliel López-Leal
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| |
Collapse
|
256
|
Cuy-Chaparro L, Ricaurte-Contreras LA, Bohórquez MD, Arévalo-Pinzón G, Barreto-Santamaria A, Pabón L, Reyes C, Moreno-Pérez DA, Patarroyo MA. Identification of Babesia bovis MSA-1 functionally constraint regions capable of binding to bovine erythrocytes. Vet Parasitol 2022; 312:109834. [DOI: 10.1016/j.vetpar.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
257
|
Duque P, Vieira CP, Bastos B, Vieira J. The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol Evol 2022; 22:84. [PMID: 35752765 PMCID: PMC9233358 DOI: 10.1186/s12862-022-02040-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Background Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals. Results Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene. Conclusions The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02040-7.
Collapse
|
258
|
Fitzpatrick LLJ, Nijman V, Ligabue-Braun R, Nekaris KAI. The Fast and the Furriest: Investigating the Rate of Selection on Mammalian Toxins. Toxins (Basel) 2022; 14:toxins14120842. [PMID: 36548740 PMCID: PMC9782207 DOI: 10.3390/toxins14120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The evolution of venom and the selection pressures that act on toxins have been increasingly researched within toxinology in the last two decades, in part due to the exceptionally high rates of diversifying selection observed in animal toxins. In 2015, Sungar and Moran proposed the 'two-speed' model of toxin evolution linking evolutionary age of a group to the rates of selection acting on toxins but due to a lack of data, mammals were not included as less than 30 species of venomous mammal have been recorded, represented by elusive species which produce small amounts of venom. Due to advances in genomics and transcriptomics, the availability of toxin sequences from venomous mammals has been increasing. Using branch- and site-specific selection models, we present the rates of both episodic and pervasive selection acting upon venomous mammal toxins as a group for the first time. We identified seven toxin groups present within venomous mammals, representing Chiroptera, Eulipotyphla and Monotremata: KLK1, Plasminogen Activator, Desmallipins, PACAP, CRiSP, Kunitz Domain One and Kunitz Domain Two. All but one group (KLK1) was identified by our results to be evolving under both episodic and pervasive diversifying selection with four toxin groups having sites that were implicated in the fitness of the animal by TreeSAAP (Selection on Amino Acid Properties). Our results suggest that venomous mammal ecology, behaviour or genomic evolution are the main drivers of selection, although evolutionary age may still be a factor. Our conclusion from these results indicates that mammalian toxins are following the two-speed model of selection, evolving predominately under diversifying selection, fitting in with other younger venomous taxa like snakes and cone snails-with high amounts of accumulating mutations, leading to more novel adaptions in their toxins.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Vincent Nijman
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-130, Brazil
| | - K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
259
|
Sikazwe C, Neave MJ, Michie A, Mileto P, Wang J, Cooper N, Levy A, Imrie A, Baird RW, Currie BJ, Speers D, Mackenzie JS, Smith DW, Williams DT. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl Trop Dis 2022; 16:e0010754. [PMID: 36409739 PMCID: PMC9721490 DOI: 10.1371/journal.pntd.0010754] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-eastern Australia in 2022. This study reports the detection, whole genome sequencing and analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021). METHODS Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain specimens was attempted by inoculation of mosquito and mammalian cells or embryonated chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina next generation sequencing methodologies, including a tiling amplicon approach. Phylogenetic and selection analyses were performed using alignments of the Tiwi Islands JEV genome and envelope (E) protein gene sequences and publicly available JEV sequences. RESULTS Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Australian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7-96.8%). The most recent common ancestor of this Australian-Indonesian clade was estimated to have emerged in 2007 (95% HPD range: 1998-2014). Positive selection was detected using two methods (MEME and FEL) at several sites in the E and non-structural protein genes, including a single site in the E protein (S194N) unique to the Australian GIV strains. CONCLUSION This case represents the first detection of GIV JEV acquired in Australia, and only the second confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relationship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin of this novel GIV lineage, which we estimate has circulated in the region for several years prior to the Tiwi Islands case.
Collapse
Affiliation(s)
- Chisha Sikazwe
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Matthew J. Neave
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Alice Michie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Patrick Mileto
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Natalie Cooper
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Avram Levy
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison Imrie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Robert W. Baird
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - David Speers
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- * E-mail: (DWS); (DTW)
| | - David T. Williams
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
- * E-mail: (DWS); (DTW)
| |
Collapse
|
260
|
De-la-Cruz IM, Kariñho-Betancourt E, Núñez-Farfán J, Oyama K. Gene family evolution and natural selection signatures in Datura spp. (Solanaceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Elucidating the diversification process of congeneric species makes it necessary to identify the factors promoting species variation and diversification. Comparative gene family analysis allows us to elucidate the evolutionary history of species by identifying common genetic/genomic mechanisms underlying species responses to biotic and abiotic environments at the genomic level. In this study, we analyzed the high-quality transcriptomes of four Datura species, D. inoxia, D. pruinosa, D. stramonium, and D. wrightii. We performed a thorough comparative gene family analysis to infer the role of selection in molecular variation, changes in protein physicochemical properties, and gain/loss of genes during their diversification processes. The results revealed common and species-specific signals of positive selection, physicochemical divergence and/or expansion of metabolic genes (e.g., transferases and oxidoreductases) associated with terpene and tropane metabolism and some resistance genes (R genes). The gene family analysis presented here is a valuable tool for understanding the genome evolution of economically and ecologically significant taxa such as the Solanaceae family.
Collapse
|
261
|
Lucaci AG, Zehr JD, Shank SD, Bouvier D, Ostrovsky A, Mei H, Nekrutenko A, Martin DP, Kosakovsky Pond SL. RASCL: Rapid Assessment of Selection in CLades through molecular sequence analysis. PLoS One 2022; 17:e0275623. [PMID: 36322581 PMCID: PMC9629619 DOI: 10.1371/journal.pone.0275623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
An important unmet need revealed by the COVID-19 pandemic is the near-real-time identification of potentially fitness-altering mutations within rapidly growing SARS-CoV-2 lineages. Although powerful molecular sequence analysis methods are available to detect and characterize patterns of natural selection within modestly sized gene-sequence datasets, the computational complexity of these methods and their sensitivity to sequencing errors render them effectively inapplicable in large-scale genomic surveillance contexts. Motivated by the need to analyze new lineage evolution in near-real time using large numbers of genomes, we developed the Rapid Assessment of Selection within CLades (RASCL) pipeline. RASCL applies state of the art phylogenetic comparative methods to evaluate selective processes acting at individual codon sites and across whole genes. RASCL is scalable and produces automatically updated regular lineage-specific selection analysis reports: even for lineages that include tens or hundreds of thousands of sampled genome sequences. Key to this performance is (i) generation of automatically subsampled high quality datasets of gene/ORF sequences drawn from a selected "query" viral lineage; (ii) contextualization of these query sequences in codon alignments that include high-quality "background" sequences representative of global SARS-CoV-2 diversity; and (iii) the extensive parallelization of a suite of computationally intensive selection analysis tests. Within hours of being deployed to analyze a novel rapidly growing lineage of interest, RASCL will begin yielding JavaScript Object Notation (JSON)-formatted reports that can be either imported into third-party analysis software or explored in standard web-browsers using the premade RASCL interactive data visualization dashboard. By enabling the rapid detection of genome sites evolving under different selective regimes, RASCL is well-suited for near-real-time monitoring of the population-level selective processes that will likely underlie the emergence of future variants of concern in measurably evolving pathogens with extensive genomic surveillance.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexander Ostrovsky
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
262
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
263
|
Chong SL, Tan JL, Ngeow YF. The resistomes of Mycobacteroides abscessus complex and their possible acquisition from horizontal gene transfer. BMC Genomics 2022; 23:715. [PMID: 36261788 PMCID: PMC9583574 DOI: 10.1186/s12864-022-08941-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Mycobacteroides abscessus complex (MABC), an emerging pathogen, causes human infections resistant to multiple antibiotics. In this study, the genome data of 1,581 MABC strains were downloaded from NCBI database for phylogenetic relatedness inference, resistance profile identification and the estimation of evolutionary pressure on resistance genes in silico. Results From genes associated with resistance to 28 antibiotic classes, 395 putative proteins (ARPs) were identified, based on the information in two antibiotic resistance databases (CARD and ARG-ANNOT). The ARPs most frequently identified in MABC were those associated with resistance to multiple antibiotic classes, beta-lactams and aminoglycosides. After excluding ARPs that had undergone recombination, two ARPs were predicted to be under diversifying selection and 202 under purifying selection. This wide occurrence of purifying selection suggested that the diversity of commonly shared ARPs in MABC have been reduced to achieve stability. The unequal distribution of ARPs in members of the MABC could be due to horizontal gene transfer or ARPs pseudogenization events. Most (81.5%) of the ARPs were observed in the accessory genome and 72.2% ARPs were highly homologous to proteins associated with mobile genetic elements such as plasmids, prophages and viruses. On the other hand, with TBLASTN search, only 18 of the ARPs were identified as pseudogenes. Conclusion Altogether, our results suggested an important role of horizontal gene transfer in shaping the resistome of MABC. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08941-7.
Collapse
Affiliation(s)
- Shay Lee Chong
- Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450, Melaka, Malaysia
| | - Joon Liang Tan
- Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450, Melaka, Malaysia.
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.,Center for Research On Communincable Diseases, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
264
|
Epidemiological Analysis and Genetic Characterization of Parvovirus in Ducks in Northern Vietnam Reveal Evidence of Recombination. Animals (Basel) 2022; 12:ani12202846. [PMID: 36290232 PMCID: PMC9597789 DOI: 10.3390/ani12202846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
In total, 130 tissue-pooled samples collected from ducks in some provinces/cities in north Vietnam were examined for waterfowl parvovirus genome identification. Twenty-six (20%) samples were positive for the parvovirus infection, based on polymerase chain reaction analysis. Of the 38 farms tested, 14 (36.84%) were positive for the waterfowl parvovirus genome. The rate of the parvovirus genome detection in ducks aged 2−4 weeks (37.04%) was significantly (p < 0.05) higher than that at ages <2 weeks (9.09%) and >4 weeks (16.30%). The positive rate on medium-scale farms (9.36%) was significantly (p < 0.05) lower than for small-scale (31.03%) and large-scale (29.73%) farms. The lengths of the four Vietnamese waterfowl parvovirus genomes identified were 4750 nucleotides. Among the four Vietnamese parvovirus genomes, nucleotide identities were from 99.29% to 99.87%. Phylogenetic analysis of the near-complete genomes indicated that the waterfowl circulating in northern Vietnam belonged to the novel goose parvovirus (NGPV) group. The Vietnamese NGPV group was closely related to the Chinese group. Recombination analysis suggested that the Vietnam/VNUA-26/2021 strain was generated by a recombination event. One positive selection site of the capsid protein was detected.
Collapse
|
265
|
Zhao X, Hu Y, Zhao Y, Wang L, Wu Z, Soe MT, Kyaw MP, Cui L, Zhu X, Cao Y. Genetic diversity in the transmission-blocking vaccine candidate Plasmodium vivax gametocyte protein Pvs230 from the China-Myanmar border area and central Myanmar. Parasit Vectors 2022; 15:371. [PMID: 36253843 PMCID: PMC9574792 DOI: 10.1186/s13071-022-05523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual stage surface antigens are potential targets of transmission-blocking vaccines (TBVs). The gametocyte and gamete surface antigen P230, a leading TBV candidate, is critical for red blood cell binding during exflagellation and subsequent oocyst development. Here, the genetic diversity of Pvs230 was studied in Plasmodium vivax parasite isolates from the China-Myanmar border (CMB) and central Myanmar. METHODS Plasmodium vivax isolates were collected in clinics from malaria-endemic areas of the CMB (143 samples) and Myanmar (23 samples). The interspecies variable part (IVP, nucleotides 1-807) and interspecies conserved part (ICP, 808-2862) of Pvs230 were amplified by PCR and sequenced. Molecular evolution studies were conducted to evaluate the genetic diversity, signature of selection, population differentiation, haplotype network, and population structure of the study parasite populations and publicly available Pvs230 sequences from six global P. vivax populations. RESULTS Limited genetic diversity was observed for the CMB (π = 0.002) and Myanmar (π = 0.001) isolates. Most amino acid substitutions were located in the IVP and cysteine-rich domain of Pvs230. Evidence of positive selection was observed for IVP and purifying selection for ICP. Codon-based tests identified specific codons under natural selection in both IVP and ICP. The fixation index (FST) showed low genetic differentiation between East and Southeast Asian populations, with FST ranging from 0.018 to 0.119. The highest FST value (FST = 0.503) was detected between the Turkey and Papua New Guinea populations. A total of 92 haplotypes were identified in global isolates, with the major haplotypes 2 and 9 being the most abundant and circulating in East and Southeast Asia populations. Several detected non-synonymous substitutions were mapped in the predicted structure and B-cell epitopes of Pvs230. CONCLUSIONS We detected low levels of genetic diversity of Pvs230 in global P. vivax populations. Geographically specific haplotypes were identified for Pvs230. Some mutations are located within a potential B-cell epitope region and need to be considered in future TBV designs.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China.,Central Laboratory of the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
266
|
Zhao J, Pu X, Li W, Li M. Characterization and evolutionary diversification of the phospholipase D gene family in mosses. Front Genet 2022; 13:1015393. [PMID: 36313445 PMCID: PMC9607936 DOI: 10.3389/fgene.2022.1015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Plant phospholipase D (PLD) exerts important roles in various biological processes, such as intracellular signaling and morphological development. Our knowledge about early land plant PLDs is still underdeveloped. In this study, we identified 84 PLD genes in six mosses, i.e., Physcomitrella patens, Ceratodon purpureus, Fontinalis antipyretica, Pleurozium schreberi, Sphagnum magellanicum, and Sphagnum fallax. These PLDs were classified into four clades (I-IV). We showed that PLD underwent rapid expansion in mosses. A total of six conserved domains and two core HKD motifs were detected. Structure analysis uncovered that the moss PLDs from within a clade generally exhibited similar exon-intron organization. Cis-elements prediction and expression analyses indicated that P. patens PLDs had key roles in stress responsiveness and plant development. Particularly, about half of the P. patens PLDs (e.g., PpPLD1, PpPLD2, and PpPLD5) were differentially expressed under biotic and abiotic stresses. We also determined the expression pattern of P. patens PLD genes in various tissues and at different stages of development. Although the moss, clubmoss, liverwort, and fern PLDs evolved largely under functional constraints, we found episodic positive selection in the moss PLDs, e.g., C. purpureus PLD2 and P. patens PLD11. We infer that the evolutionary force acting on the PLDs may have facilitated moss colonization of land. Our work provides valuable insights into the diversification of moss PLD genes, and can be used for future studies of their functions.
Collapse
Affiliation(s)
- Jinjie Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Xinyuan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Wenfei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Meng Li
- Yunnan Academy of Tobacco Science, Kunming, Yunnan, China
| |
Collapse
|
267
|
Zhao D, Guo Y, Gao Y. Natural selection drives the evolution of mitogenomes in Acrossocheilus. PLoS One 2022; 17:e0276056. [PMID: 36227932 PMCID: PMC9560497 DOI: 10.1371/journal.pone.0276056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
The mitochondrial genome plays a crucial role in the balance of energy and heat production in organisms and, thus, may be under natural selection due to its potential role in adaptive divergence and speciation. Here, we studied natural selection on the mitogenome of Acrossocheilus (Cypriniformes: Cyprinidae), a genus of fish that inhabits a broad latitudinal distribution ranging from the tropics and subtropics through temperate regions. Specifically, we used 25 published mitogenome sequences of Acrossocheilus species to investigate phylogenetic relationships in this genus and detected signals of positive selection on 13 protein-coding, mitochondrial genes. We found that relaxed purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, we also found evidence of diversifying selection on some codons, indicating episodes of positive selection. Additionally, we analyzed the mitogenomic data within an environmental modeling framework and found that the Ka/Ks ratio of ATP6 may correlated with a mean diurnal temperature range (p = 0.0449), while the Ka/Ks ratio of COX2 may correlated with precipitation during the driest month (p = 0.00761). These results suggest that the mitogenomes of Acrossocheilus species may be involved in evolutionary adaptations to different habitats. Based on this, we believe that our study provides a new insight into the role of the mitochondrial genome of Acrossocheilus species in adaptation to different environments. During our study, we also discovered several cases of paraphyly and polyphyly among accessions of species and their putative synonyms. Thus, our study suggests that a careful reassessment of the taxonomy of Acrossocheilus is using high-quality molecular data merited.
Collapse
Affiliation(s)
- Dan Zhao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yudong Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- * E-mail:
| |
Collapse
|
268
|
Enterovirus 3C Protease Cleaves TRIM7 To Dampen Its Antiviral Activity. J Virol 2022; 96:e0133222. [PMID: 36106874 PMCID: PMC9555159 DOI: 10.1128/jvi.01332-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian TRIM7 is an antiviral protein that inhibits multiple human enteroviruses by degrading the viral 2BC protein. Whether TRIM7 is reciprocally targeted by enteroviruses is not known. Here, we report that the 3C protease (3Cpro) from two enteroviruses, coxsackievirus B3 (CVB3) and poliovirus, targets TRIM7 for cleavage. CVB3 3Cpro cleaves TRIM7 at glutamine 24 (Q24), resulting in a truncated TRIM7 that fails to inhibit CVB3 due to dampened E3 ubiquitin ligase activity. TRIM7 Q24 is highly conserved across mammals, except in marsupials, which instead have a naturally occurring histidine (H24) that is not subject to 3Cpro cleavage. Marsupials also express two isoforms of TRIM7, and the two proteins from koalas have distinct antiviral activities. The longer isoform contains an additional exon due to alternate splice site usage. This additional exon contains a unique 3Cpro cleavage site, suggesting that certain enteroviruses may have evolved to target marsupial TRIM7 even if the canonical Q24 is missing. Combined with computational analyses indicating that TRIM7 is rapidly evolving, our data raise the possibility that TRIM7 may be targeted by enterovirus evasion strategies and that evolution of TRIM7 across mammals may have conferred unique antiviral properties. IMPORTANCE Enteroviruses are significant human pathogens that cause viral myocarditis, pancreatitis, and meningitis. Knowing how the host controls these viruses and how the viruses may evade host restriction is important for understanding fundamental concepts in antiviral immunity and for informing potential therapeutic interventions. In this study, we demonstrate that coxsackievirus B3 uses its virally encoded protease to target the host antiviral protein TRIM7 for cleavage, suggesting a potential mechanism of viral immune evasion. We additionally show that TRIM7 has evolved in certain mammalian lineages to express protein variants with distinct antiviral activities and susceptibilities to viral protease-mediated cleavage.
Collapse
|
269
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
270
|
Minias P, Palomar G, Dudek K, Babik W. Salamanders reveal novel trajectories of amphibian MHC evolution. Evolution 2022; 76:2436-2449. [PMID: 36000494 DOI: 10.1111/evo.14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 01/22/2023]
Abstract
Genes of the major histocompatibility complex (MHC) code for immune proteins that are crucial for pathogen recognition in vertebrates. MHC research in nonmodel taxa has long been hampered by its genomic complexity that makes the locus-specific genotyping challenging. The recent progress in sequencing and genotyping methodologies allows an extensive phylogenetic coverage in studies of MHC evolution. Here, we analyzed the peptide-binding region of MHC class I (MHC-I) in 30 species of salamanders from six families representative of Urodela phylogeny. This extensive dataset revealed an extreme diversity of MHC-I in salamanders, both in terms of sequence diversity (about 3000 variants) and architecture (2-22 gene copies per species). The signal of positive selection was moderate and consistent between both peptide-binding domains, but varied greatly between genera. Positions of positively selected sites mostly coincided with human peptide-binding sites, suggesting similar structural properties of MHC-I molecules across distant vertebrate lineages. Finally, we provided evidence for the common intraexonic recombination at MHC-I and for the role of life history traits in the processes of MHC-I expansion/contraction. Our study revealed novel evolutionary trajectories of amphibian MHC and it contributes to the understanding of the mechanisms that generated extraordinary MHC diversity throughout vertebrate evolution.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland.,Parasitology Unit, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|
271
|
Oliveira MLG, Castelli EC, Veiga‐Castelli LC, Pereira ALE, Marcorin L, Carratto TMT, Souza AS, Andrade HS, Simões AL, Donadi EA, Courtin D, Sabbagh A, Giuliatti S, Mendes‐Junior CT. Genetic diversity of the
LILRB1
and
LILRB2
coding regions in an admixed Brazilian population sample. HLA 2022; 100:325-348. [DOI: 10.1111/tan.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Erick C. Castelli
- Pathology Department, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Luciana C. Veiga‐Castelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Alison Luis E. Pereira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Thássia M. T. Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Andreia S. Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Heloisa S. Andrade
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Aguinaldo L. Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Eduardo A. Donadi
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | | | | | - Silvana Giuliatti
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Celso Teixeira Mendes‐Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
272
|
Shishir TA, Jannat T, Naser IB. Genomic surveillance unfolds the SARS-CoV-2 transmission and divergence dynamics in Bangladesh. Front Genet 2022; 13:966939. [PMID: 36226176 PMCID: PMC9548531 DOI: 10.3389/fgene.2022.966939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The highly pathogenic virus SARS-CoV-2 has shattered the healthcare system of the world causing the COVID-19 pandemic since first detected in Wuhan, China. Therefore, scrutinizing the genome structure and tracing the transmission of the virus has gained enormous interest in designing appropriate intervention strategies to control the pandemic. In this report, we examined 4,622 sequences from Bangladesh and found that they belonged to thirty-five major PANGO lineages, while Delta alone accounted for 39%, and 78% were from just four primary lineages. Our research has also shown Dhaka to be the hub of viral transmission and observed the virus spreading back and forth across the country at different times by building a transmission network. The analysis resulted in 7,659 unique mutations, with an average of 24.61 missense mutations per sequence. Moreover, our analysis of genetic diversity and mutation patterns revealed that eight genes were under negative selection pressure to purify deleterious mutations, while three genes were under positive selection pressure. Together with an ongoing genomic surveillance program, these data will contribute to a better understanding of SARS-CoV-2, as well as its evolution pattern and pandemic characteristics in Bangladesh.
Collapse
Affiliation(s)
- Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- Rangamati General Hospital, Chattogram, Bangladesh
| | - Taslimun Jannat
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- *Correspondence: Iftekhar Bin Naser,
| |
Collapse
|
273
|
Tsu BV, Agarwal R, Gokhale NS, Kulsuptrakul J, Ryan AP, Castro LK, Beierschmitt CM, Turcotte EA, Fay EJ, Vance RE, Hyde JL, Savan R, Mitchell PS, Daugherty MD. Host specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.21.508960. [PMID: 36172130 PMCID: PMC9516851 DOI: 10.1101/2022.09.21.508960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CL pro ) encoded by diverse coronaviruses, including SARS-CoV-2, cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CL pro , including 3CL pro -mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8’s ability to sense coronavirus 3CL pros , and instead enables sensing of 3C proteases (3C pro ) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intra-species variation in inflammasome-mediated viral sensing and immunopathology.
Collapse
Affiliation(s)
- Brian V. Tsu
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Rimjhim Agarwal
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Nandan S. Gokhale
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington; Seattle, WA, USA
| | - Andrew P. Ryan
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Lennice K. Castro
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | | | - Elizabeth A. Turcotte
- Division of Immunology and Pathogenesis, University of California, Berkeley; Berkeley, CA, USA
| | - Elizabeth J. Fay
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Russell E. Vance
- Division of Immunology and Pathogenesis, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA, USA
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington; Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington; Seattle, WA, USA
| | | | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
274
|
Oliveira JIN, Cardoso AL, Wolf IR, de Oliveira RA, Martins C. First characterization of PIWI-interacting RNA clusters in a cichlid fish with a B chromosome. BMC Biol 2022; 20:204. [PMID: 36127679 PMCID: PMC9490952 DOI: 10.1186/s12915-022-01403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes are extra elements found in several eukaryote species. Usually, they do not express a phenotype in the host. However, advances in bioinformatics over the last decades have allowed us to describe several genes and molecular functions related to B chromosomes. These advances enable investigations of the relationship between the B chromosome and the host to understand how this element has been preserved in genomes. However, considering that transposable elements (TEs) are highly abundant in this supernumerary chromosome, there is a lack of knowledge concerning the dynamics of TE control in B-carrying cells. Thus, the present study characterized PIWI-interacting RNA (piRNA) clusters and pathways responsible for silencing the mobilization of TEs in gonads of the cichlid fish Astatotilapia latifasciata carrying the B chromosome. RESULTS Through small RNA-seq and genome assembly, we predicted and annotated piRNA clusters in the A. latifasciata genome for the first time. We observed that these clusters had biased expression related to sex and the presence of the B chromosome. Furthermore, three piRNA clusters, named curupira, were identified in the B chromosome. Two of them were expressed exclusively in gonads of samples with the B chromosome. The composition of these curupira sequences was derived from LTR, LINE, and DNA elements, representing old and recent transposition events in the A. latifasciata genome and the B chromosome. The presence of the B chromosome also affected the expression of piRNA pathway genes. The mitochondrial cardiolipin hydrolase-like (pld6) gene is present in the B chromosome, as previously reported, and an increase in its expression was detected in gonads with the B chromosome. CONCLUSIONS Due to the high abundance of TEs in the B chromosome, it was possible to investigate the origin of piRNA from these jumping genes. We hypothesize that the B chromosome has evolved its own genomic guardians to prevent uncontrolled TE mobilization. Furthermore, we also detected an expression bias in the presence of the B chromosome over A. latifasciata piRNA clusters and pathway genes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Rogério Antônio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
275
|
Immunoglobulin heavy constant gamma gene evolution is modulated by both the divergent and birth-and-death evolutionary models. Primates 2022; 63:611-625. [DOI: 10.1007/s10329-022-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
|
276
|
Putaporntip C, Kuamsab N, Rojrung R, Seethamchai S, Jongwutiwes S. Structural organization and sequence diversity of the complete nucleotide sequence encoding the Plasmodium malariae merozoite surface protein-1. Sci Rep 2022; 12:15591. [PMID: 36114242 PMCID: PMC9481586 DOI: 10.1038/s41598-022-19049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
The merozoite surface protein-1 (MSP1) is a prime candidate for an asexual blood stage vaccine against malaria. However, polymorphism in this antigen could compromise the vaccine’s efficacy. Although the extent of sequence variation in MSP1 has been analyzed from various Plasmodium species, little is known about structural organization and diversity of this locus in Plasmodium malariae (PmMSP1). Herein, we have shown that PmMSP1 contained five conserved and four variable blocks based on analysis of the complete coding sequences. Variable blocks were characterized by short insertion and deletion variants (block II), polymorphic nonrepeat sequences (block IV), complex repeat structure with size variation (block VI) and degenerate octapeptide repeats (block VIII). Like other malarial MSP1s, evidences of intragenic recombination have been found in PmMSP1. The rate of nonsynonymous nucleotide substitutions significantly exceeded that of synonymous nucleotide substitutions in block IV, suggesting positive selection in this region. Codon-based analysis of deviation from neutrality has identified a codon under purifying selection located in close proximity to the homologous region of the 38 kDa/42 kDa cleavage site of P. falciparum MSP1. A number of predicted linear B-cell epitopes were identified across both conserved and variable blocks of the protein. However, polymorphism in repeat-containing blocks resulted in alteration of the predicted linear B-cell epitope scores across variants. Although a number of predicted HLA-class II-binding peptides were identified in PmMSP1, all variants of block IV seemed not to be recognized by common HLA-class II alleles among Thai population, suggesting that diversity in this positive selection region could probably affect host immune recognition. The data on structural diversity in PmMSP1 could be useful for further studies such as vaccine development and strain characterization of this neglected malaria parasite.
Collapse
|
277
|
Lan Y, Sun J, Chen C, Wang H, Xiao Y, Perez M, Yang Y, Kwan YH, Sun Y, Zhou Y, Han X, Miyazaki J, Watsuji TO, Bissessur D, Qiu JW, Takai K, Qian PY. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. THE ISME JOURNAL 2022; 16:2132-2143. [PMID: 35715703 PMCID: PMC9381778 DOI: 10.1038/s41396-022-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host’s cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
Collapse
Affiliation(s)
- Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yao Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maeva Perez
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yi Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yick Hang Kwan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Junichi Miyazaki
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Tomo-O Watsuji
- Department of Food and Nutrition, Higashi-Chikushi Junior College, 5-1-1 Shimoitozu, Kitakyusyu, 803-0846, Japan
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration & Exploration, Prime Minister's Office, 2nd Floor, Belmont House, 12 Intendance Street, Port Louis, 11328, Mauritius
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ken Takai
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China. .,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
278
|
Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins in bats and primates identify important host determinants of COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2206610119. [PMID: 35947637 PMCID: PMC9436378 DOI: 10.1073/pnas.2206610119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. However, the host genetic determinants that drive SARS-CoV-2 susceptibility and COVID-19 severity are largely unknown. Understanding how cellular proteins interacting with SARS-CoV-2 have evolved in primates and bats is of primary importance to decipher differences in the infection outcome between humans and the viral reservoir in bats. Here, we performed comparative functional genetic analyses of hundreds of SARS-CoV-2-interacting proteins to study virus–host interface adaptation over millions of years, pointing to genes similarly—or differentially—engaged in evolutionary arms races and that may be at the basis of in vivo pathogenic differences. The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus–host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus–host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus–host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.
Collapse
|
279
|
Yan Q, Wu K, Zeng W, Yu S, Li Y, Sun Y, Liu X, Ruan Y, Huang J, Ding H, Yi L, Zhao M, Chen J, Fan S. Historical Evolutionary Dynamics and Phylogeography Analysis of Transmissible Gastroenteritis Virus and Porcine Deltacoronavirus: Findings from 59 Suspected Swine Viral Samples from China. Int J Mol Sci 2022; 23:ijms23179786. [PMID: 36077190 PMCID: PMC9456201 DOI: 10.3390/ijms23179786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shu Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Juncong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (S.F.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (S.F.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (S.F.)
| |
Collapse
|
280
|
LaFond J, Martin KR, Dahn H, Richmond JQ, Murphy RW, Rollinson N, Savage AE. Invasive Bullfrogs Maintain MHC Polymorphism Including Alleles Associated with Chytrid Fungal Infection. Integr Comp Biol 2022; 62:262-274. [PMID: 35588059 DOI: 10.1093/icb/icac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Maintenance of genetic diversity at adaptive loci may facilitate invasions by non-native species by allowing populations to adapt to novel environments, despite the loss of diversity at neutral loci that typically occurs during founder events. To evaluate this prediction, we compared genetic diversity at major histocompatibility complex (MHC) and cytochrome b (cytb) loci from 20 populations of the American bullfrog (Rana catesbeiana) across theinvasive and native ranges in North America and quantified the presence of the pathogen Batrachochytrium dendrobatidis (Bd). Compared to native populations, invasive populations had significantly higher Bd prevalence and intensity, significantly higher pairwise MHC and cytb FST, and significantly lower cytb diversity, but maintained similar levels of MHC diversity. The two most common MHC alleles (LiCA_B and Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on four peptide binding residues. Phylogenetic analysis suggested invasive populations likely arose from a single founding population in the American Midwest with a possible subsequent invasion in the northwest. Overall, our study suggests that the maintenance of diversity at adaptive loci may contribute to invasion success and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations.
Collapse
Affiliation(s)
- Jacob LaFond
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
- Department of Biology, University of Tampa, Tampa, FL 33606, USA
| | - Katherine R Martin
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Hollis Dahn
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Q Richmond
- U.S. Geological Survey, 4165 Spruance Rd. Suite 200, San Diego, CA 92101, USA
| | - Robert W Murphy
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Njal Rollinson
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
281
|
Maachi A, Donaire L, Hernando Y, Aranda MA. Genetic Differentiation and Migration Fluxes of Viruses from Melon Crops and Crop Edge Weeds. J Virol 2022; 96:e0042122. [PMID: 35924924 PMCID: PMC9400485 DOI: 10.1128/jvi.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Abstract
Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Livia Donaire
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| |
Collapse
|
282
|
Vakić M, Stainton D, Delić D, Tzanetakis IE. Characterization of the first Rubus yellow net virus genome from blackberry. Virus Genes 2022; 58:594-597. [PMID: 35941271 DOI: 10.1007/s11262-022-01926-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
Rubus yellow net virus (RYNV) is a badnavirus that infects Rubus spp. Mixed infections with black raspberry necrosis virus and raspberry leaf mottle virus cause raspberry mosaic, a disease that leads to significant losses and even plant death. RYNV has been reported in several European countries and the Americas yet there is substantial lack of knowledge, especially when it comes to virus diversity and the evolutionary forces that affect virus fitness outside its primary host, raspberry. Herein, we report the first RYNV episomal genome isolated from blackberry and this is the first report of the virus in Bosnia and Herzegovina. The isolate has five open reading frames (ORFs) and, when compared with other fully sequenced counterparts, showed 82-97% nucleotide pairwise identity. This communication adds to our limited knowledge on RYNV and addresses some of the gaps in RYNV genetics when it comes to the coding capacity of episomal isolates and the probability of the first fully sequenced isolate of the virus being integrated in the raspberry genome.
Collapse
Affiliation(s)
- Mišaela Vakić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Duška Delić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA.
| |
Collapse
|
283
|
Clinical and genomic signatures of SARS-CoV-2 Delta breakthrough infections in New York. EBioMedicine 2022; 82:104141. [PMID: 35906172 PMCID: PMC9323230 DOI: 10.1016/j.ebiom.2022.104141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background In 2021, Delta became the predominant SARS-CoV-2 variant worldwide. While vaccines have effectively prevented COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occurred. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contributed to increased rates of breakthrough infections compared to unvaccinated controls. Methods We studied SARS-CoV-2 variant distribution, dynamics, and adaptive selection over time in relation to vaccine status, phylogenetic relatedness of viruses, full genome mutation profiles, and associated clinical and demographic parameters. Findings We show a steep and near-complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25 (14% in vaccinated, 7% in unvaccinated), its spike mutation S112L, and AY.44 (8% in vaccinated, 2% in unvaccinated) with its nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthrough infections increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. Interpretation We observed a modest adaptation of Delta genomes in breakthrough infections in New York, suggesting an improved genomic framework to support Delta's epidemic growth in times of waning vaccine protection despite limited impact on vaccine escape. Funding The study was supported by NYU institutional funds. The NYULH Genome Technology Center is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
Collapse
|
284
|
Evolutionary analysis of rabies virus isolates from Georgia. Arch Virol 2022; 167:2293-2298. [DOI: 10.1007/s00705-022-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
|
285
|
Sheward DJ, Hermanus T, Murrell B, Garrett N, Abdool Karim SS, Morris L, Moore PL, Williamson C. HIV Coinfection Provides Insights for the Design of Vaccine Cocktails to Elicit Broadly Neutralizing Antibodies. J Virol 2022; 96:e0032422. [PMID: 35758668 PMCID: PMC9327685 DOI: 10.1128/jvi.00324-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bNAbs) to HIV and other diverse pathogens will likely require the use of multiple immunogens. An understanding of the dynamics of antibody development to multiple diverse but related antigens would facilitate the rational design of immunization strategies. Here, we characterize, in detail, the development of neutralizing antibodies in three individuals coinfected with several divergent HIV variants. Two of these coinfected individuals developed additive or cross-neutralizing antibody responses. However, interference was observed in the third case, with neutralizing antibody responses to one viral variant arising to the near exclusion of neutralizing responses to the other. Longitudinal characterization of the diversity in the Envelope glycoprotein trimer (Env) structure showed that in the individual who developed the broadest neutralizing antibodies, circulating viruses shared a conserved epitope on the trimer apex that was targeted by cross-neutralizing antibodies. In contrast, in the other two individuals, diversity was distributed across Env. Taken together, these data highlight that multiple related immunogens can result in immune interference. However, they also suggest that immunogen cocktails presenting shared, conserved neutralizing epitopes in a variable background may focus broadly neutralizing antibody responses to these targets. IMPORTANCE Despite being the focus of extensive research, we still do not know how to reproducibly elicit cross-neutralizing antibodies against variable pathogens by vaccination. Here, we characterize the antibody responses in people coinfected with more than one HIV variant, providing insights into how the use of antigen "cocktails" might affect the breadth of the elicited neutralizing antibody response and how the relatedness of the antigens may shape this.
Collapse
Affiliation(s)
- Daniel J. Sheward
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tandile Hermanus
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Medical Research Council Antibody Immunity Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Medical Research Council Antibody Immunity Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, South Africa
| |
Collapse
|
286
|
Jax E, Franchini P, Sekar V, Ottenburghs J, Monné Parera D, Kellenberger RT, Magor KE, Müller I, Wikelski M, Kraus RHS. Comparative genomics of the waterfowl innate immune system. Mol Biol Evol 2022; 39:6649919. [PMID: 35880574 PMCID: PMC9356732 DOI: 10.1093/molbev/msac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Vaishnovi Sekar
- Department of Biology, Lund University, Lund, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Inge Müller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
287
|
Evolutionary Dynamics of Foot and Mouth Disease Virus Serotype A and Its Endemic Sub-Lineage A/ASIA/Iran-05/SIS-13 in Pakistan. Viruses 2022; 14:v14081634. [PMID: 35893699 PMCID: PMC9331208 DOI: 10.3390/v14081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Foot and mouth disease (FMD) causes severe economic losses to the livestock industry of endemic countries, including Pakistan. Pakistan is part of the endemic pool 3 for foot and mouth disease viruses (FMDV), characterized by co-circulating O, A, and Asia 1 serotypes, as designated by the world reference laboratory for FMD (WRL-FMD). FMDV serotype A lineage ASIA/Iran-05 is widespread in buffalos and cattle populations and was first reported in Pakistan in 2006. This lineage has a high turnover, with as many as 10 sub-lineages reported from Pakistan over the years. In this study, we reconstructed the evolutionary, demographic, and spatial history of serotype A and one of its sub-lineages, A/ASIA/Iran-05/SIS-13, prevalent in Pakistan. We sequenced nearly complete genomes of three isolates belonging to sub-lineage A/ASIA/Iran-05/SIS-13. We estimated recombination patterns and natural selection acting on the serotype A genomes. Source and transmission routes in Pakistan were inferred, and the clustering pattern of isolates of the SIS-13 sub-lineage were mapped on a tree. We hereby report nearly complete genome sequences of isolates belonging to sub-lineage A/ASIA/Iran-05/SIS-13, along with purported recombinant genomes, and highlight that complete coding sequences can better elucidate the endemic history and evolutionary pressures acting on long-term co-circulating FMDV strains.
Collapse
|
288
|
Tan CY, Thanawongnuwech R, Arshad SS, Hassan L, Fong MWC, Ooi PT. Genotype Shift of Malaysian Porcine Circovirus 2 (PCV2) from PCV2b to PCV2d within a Decade. Animals (Basel) 2022; 12:1849. [PMID: 35883396 PMCID: PMC9311952 DOI: 10.3390/ani12141849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022] Open
Abstract
This paper aims to update the molecular status of porcine circovirus 2 (PCV2) in Malaysia. Firstly, the molecular detection rate of PCV2 in farm and sampled pig population were reported to be 83.78% (31/37 farms) and 83.54% (66/79 pigs) positive for PCV2, respectively. PCV2 was detected across all age groups, from fetuses, porkers to sows. Co-detection of PCV2 and PCV3 antigens was also reported at a rate of 28.77% (21/73). Secondly, PCV2 antigen was also detected in Malaysian abattoir lung samples: 18 out of 19 (94.74%) samples originating from clinically healthy finishers were tested positive. Further, this is the first study to confirm the circulation of PCV2 in the wild boar population roaming Peninsular Malaysia, where 28 out of 28 (100%) wild boar lung samples were found positive. One decade earlier, only genotype PCV2b was reported in Malaysia. This most recent update revealed that genotypes PCV2a, PCV2b and PCV2d were present, with PCV2d being the predominant circulating genotype. PCV2 cap gene nucleotide sequences in this study were found to be under negative selection pressure, with an estimated substitution rate of 1.102 × 10-3 substitutions/site/year (ssy).
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand;
| | - Siti Suri Arshad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| |
Collapse
|
289
|
Genetic characterization and evolutionary analysis of canine parvovirus in Tangshan, China. Arch Virol 2022; 167:2263-2269. [PMID: 35829824 DOI: 10.1007/s00705-022-05502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Canine parvovirus (CPV) is a major enteric virus of carnivores worldwide that poses a considerable threat to dogs. In this study, we investigated the genetic variation of CPV in Tangshan, China, and the relationships between CPV disease and the vaccination status, age, and gender of dogs. Seventy-seven fecal samples from dogs in Tangshan that tested positive for CPV were obtained for analysis. Twenty-two full-length VP2 gene sequences were successfully amplified. The 22 strains included 17 CPV-2c variants, four new CPV-2a variants, and one new CPV-2b variant. Phylogenetic analysis showed that all of the CPV-2c strains clustered together and were closely related to CPV-2c strains from Asia but distantly related to CPV-2c strains from Europe. Further amino acid sequence analysis showed that, relative to CPV-2c strains from Europe, most of the CPV-2c stains in this study had A5G, F267Y, Y324I, and Q370R mutations. These findings provide a more comprehensive understanding of the variants of CPV circulating in China.
Collapse
|
290
|
Bakshi A, Rai U. In silico analyses of leptin and leptin receptor of spotted snakehead Channa punctata. PLoS One 2022; 17:e0270881. [PMID: 35797380 PMCID: PMC9262212 DOI: 10.1371/journal.pone.0270881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The present study, in addition to molecular characterization of leptin (lepa) and its receptor (lepr) of spotted snakehead Channa punctata, is focussed on physicochemical, structural, evolutionary and selection pressure analyses which are poorly elucidated in teleosts in spite of that existence of these genes is well reported in several fish species. The putative full-length Lep and Lepr of C. punctata showed conserved structural and functional domains, especially the residues responsible for structural integrity and signal transduction. Conversely, residues predicted essential for Lep-Lepr interaction displayed divergence between teleosts and tetrapods. Impact of substitutions/deletions predicted using protein variation effect analyser tool highlighted species specificity in ligand-receptor interaction. Physicochemical properties of ligand and receptor predicted for the first time in vertebrates revealed high aliphatic and instability indices for both Lepa and Lepr, indicating thermostability of proteins but their instability under ex vivo conditions. Positive grand average of hydropathy score of Lepa suggests its hydrophobic nature conjecturing existence of leptin binding proteins in C. punctata. In addition to disulphide bonding, a novel posttranslational modification (S-126 phosphorylation) was predicted in Lepa of C. punctata. In Lepr, disulphide bond formation and N-linked glycosylation near WSXWS motif in ECD, and phosphorylation at tyrosine residues in ICD were predicted. Leptin and its receptor sequence of C. punctata cladded with its homolog from C. striata and C. argus of order Anabantiformes. Leptin system of Anabantiformes was phylogenetically closer to that of Pleuronectiformes, Scombriformes and Perciformes. Selection pressure analysis showed higher incidence of negative selection in teleostean leptin genes indicating limited adaptation in their structure and function. However, evidence of pervasive and episodic diversifying selection laid a foundation of co-evolution of Lepa and Lepr in teleosts.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
291
|
Wang X, Hu J, Song L, Rong E, Yang C, Chen X, Pu J, Sun H, Gao C, Burt DW, Liu J, Li N, Huang Y. Functional divergence of oligoadenylate synthetase 1 (OAS1) proteins in Tetrapods. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1395-1412. [PMID: 34826092 DOI: 10.1007/s11427-021-2002-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
OASs play critical roles in immune response against virus infection by polymerizing ATP into 2-5As, which initiate the classical OAS/RNase L pathway and induce degradation of viral RNA. OAS members are functionally diverged in four known innate immune pathways (OAS/RNase L, OASL/IRF7, OASL/RIG-I, and OASL/cGAS), but how they functionally diverged is unclear. Here, we focus on evolutionary patterns and explore the link between evolutionary processes and functional divergence of Tetrapod OAS1. We show that Palaeognathae and Primate OAS1 genes are conserved in genomic and protein structures but differ in function. The former (i.e., ostrich) efficiently synthesized long 2-5A and activated RNase L, while the latter (i.e., human) synthesized short 2-5A and did not activate RNase L. We predicted and verified that two in-frame indels and one positively selected site in the active site pocket contributed to the functional divergence of Palaeognathae and Primate OAS1. Moreover, we discovered and validated that an in-frame indel in the C-terminus of Palaeognathae OAS1 affected the binding affinity of dsRNA and enzymatic activity, and contributed to the functional divergence of Palaeognathae OAS1 proteins. Our findings unravel the molecular mechanism for functional divergence and give insights into the emergence of novel functions in Tetrapod OAS1.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Chuze Gao
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - David W Burt
- University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
292
|
Foley S, Vlasova A, Marcet-Houben M, Gabaldón T, Hinman VF. Evolutionary analyses of genes in Echinodermata offer insights towards the origin of metazoan phyla. Genomics 2022; 114:110431. [PMID: 35835427 PMCID: PMC9552553 DOI: 10.1016/j.ygeno.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Despite recent studies discussing the evolutionary impacts of gene duplications and losses among metazoans, the genomic basis for the evolution of phyla remains enigmatic. Here, we employ phylogenomic approaches to search for orthologous genes without known functions among echinoderms, and subsequently use them to guide the identification of their homologs across other metazoans. Our final set of 14 genes was obtained via a suite of homology prediction tools, gene expression data, gene ontology, and generating the Strongylocentrotus purpuratus phylome. The gene set was subjected to selection pressure analyses, which indicated that they are highly conserved and under negative selection. Their presence across broad taxonomic depths suggests that genes required to form a phylum are ancestral to that phylum. Therefore, rather than de novo gene genesis, we posit that evolutionary forces such as selection on existing genomic elements over large timescales may drive divergence and contribute to the emergence of phyla.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Anna Vlasova
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
293
|
Rupasinghe R, Lee K, Liu X, Gauger PC, Zhang J, Martínez-López B. Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020. Microbiol Spectr 2022; 10:e0263421. [PMID: 35499352 PMCID: PMC9241855 DOI: 10.1128/spectrum.02634-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses an extensive economic threat to the United States swine industry. The high degree of PRRSV genetic and antigenic variability challenges existing vaccination programs. We evaluated the ORF5 sequence of 1,931 PRRSV-2 strains detected from >300 farms managed by two pork production systems in the midwestern United States from 2001 to 2020 to assess the genetic diversity and molecular characteristics of heterologous PRRSV-2 strains. Phylogenetic analysis was performed on ORF5 sequences and classified using the global PRRSV classification system. N-glycosylation and the global and local selection pressure in the putative GP5 encoded by ORF5 were estimated. The PRRSV-2 sequences were classified into lineage 5 (L5; n = 438[22.7%]) or lineage 1 (L1; n = 1,493[77.3%]). The L1 strains belonged to one of three subclades: L1A (n = 1,225[63.4%]), L1B (n = 69[3.6%]), and L1C/D (n = 199[10.3%]). 10 N-glycosylation sites were predicted, and positions N44 and N51 were detected in most GP5 sequences (n = 1,801[93.3%]). Clade-specific N-glycosylation sites were observed: 57th in L1A, 33rd in L1B, 30th and 34th in L1C/D, and 30th and 33rd in L5. We identified nine and 19 sites in GP5 under significant positive selection in L5 and L1, respectively. The 13th, 151st, and 200th positive selection sites were exclusive to L5. Heterogeneity of N-glycosylation and positive selection sites may contribute to varying the evolutionary processes of PRRSV-2 strains circulating in these swine production systems. L1A and L5 strains denoted excellence in adaptation to the current swine population by their extensive positive selection sites with higher site-specific selection pressure. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is known for its high genetic and antigenic variability. In this study, we evaluated the ORF5 sequences of PRRSV-2 strains circulating in two swine production systems in the midwestern United States from 2001 to 2020. All the field strains were classified into four major groups based on genetic relatedness, where one group is closely related to the Ingelvac PRRS MLV strain. Here, we systematically compared differences in the ORF5 polymorphisms, N-glycosylation sites, and local and global evolutionary dynamics between different groups. Sites 44 and 51 were common for N-glycosylation in most amino acid sequences (n = 1,801, 93.3%). We identified that the L5 sequences had more positive selection pressure compared to the L1 strains. Our findings will provide valuable insights into the evolutionary mechanisms of PRRSV-2 and these molecular changes may lead to suboptimal effectiveness of Ingelvac PRRS MLV vaccine.
Collapse
Affiliation(s)
- Ruwini Rupasinghe
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Xin Liu
- Department of Computer Science, University of California, Davis, California, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
294
|
Santos C, Mendes T, Antunes A. The genes from the pseudoautosomal region 1 (PAR1) of the mammalian sex chromosomes: Synteny, phylogeny and selection. Genomics 2022; 114:110419. [PMID: 35753589 DOI: 10.1016/j.ygeno.2022.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
Sex chromosomes recombine restrictly in their homologous area, the pseudoautosomal region (PAR), represented by PAR1 and PAR2, which behave like an autosome in both pairing and recombination. The PAR1, common to most of the eutherian mammals, is located at the terminus of the sex chromosomes short arm and exhibit recombination rates ~20 times higher than the autosomes. Here, we assessed the interspecific evolutionary genomic dynamics of 15 genes of the PAR1 across 41 mammalian genera (representing six orders). The strong negative selection detected in most of the assessed groups reinforces the presence of evolutionary constraints, imposed by the important function of the PAR1 genes. Indeed, mutations in these genes are associated with various diseases in humans, including stature problems (Klinefelter Syndrome), leukemia and mental diseases. Yet, a few genes exhibiting positive selection (ω-value >1) were depicted in Rodentia (ASMT and ZBED1) and Primates (CRLF2 and CSF2RA). Rodents have the smallest described PAR1, while that of simian primates/humans underwent a 3 to 5 fold size reduction. The assessment of the PAR1 genes synteny revealed differences among the mammalian species, especially in the Rodentia order where chromosomic translocations from the sex chromosomes to the autosomes were observed. Such syntenic changes may be an evidence of the rapid evolution in rodents, as previous referred in other papers, also depicted by their increased branch lengths in the phylogenetic analyses. Concluding, we suggest that genome migration is an important factor influencing the evolution of mammals and may result in changes of the selective pressures operating on the genome.
Collapse
Affiliation(s)
- Carla Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Tito Mendes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Agostinho Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
295
|
Baek YG, Lee YN, Park YR, Chung DH, Kwon JH, Si YJ, Heo GB, Lee YJ, Lee DH, Lee EK. Evolution, Transmission, and Pathogenicity of High Pathogenicity Avian Influenza Virus A (H5N8) Clade 2.3.4.4, South Korea, 2014–2016. Front Vet Sci 2022; 9:906944. [PMID: 35799844 PMCID: PMC9253604 DOI: 10.3389/fvets.2022.906944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
During 2014–2016, clade 2.3.4.4 H5N8 high pathogenicity avian influenza virus (HPAIV) caused the largest known avian influenza epidemic in South Korea. Based on data from earlier H5N8 outbreaks, primitive H5N8 virus in South Korea was classified into five subgroups: C1, C2, C3, C4, and C5. The present study investigated the pathogenic and molecular epidemiologic characteristics of H5N8 viruses obtained from 388 cases of poultry farms and 85 cases of wild bird infections in South Korea during 2014–2016. Representative viruses of subgroups C1, C2, and C4 showed significant pathobiological differences in specific pathogen-free (SPF) chickens, with the H1731 (C1) virus showing substantially lower infectivity, transmissibility, and pathogenicity than the H2102 (C2) and H1924 (C4) viruses. Full genome sequence analysis showed the number of mutations that significantly increased in domestic duck-origin H5N8 HPAIVs compared to the viruses from gallinaceous poultry. These differences may have been due to the long-term circulation of viruses in domestic duck farms. The same mutations, at positions 219 and 757 of PB1, independently evolving in the C0, C1, and C2 subgroups may have been positively selected, resulting in convergent evolution at the amino acid level. Bayesian discrete trait phylodynamic analysis (DTA) indicated multiple introductions of H5N8 HPAIV from wild birds into domestic poultry in various regions in South Korea. Following initial viral introduction into domestic duck farms in the western part of Korea, domestic ducks played a major role in viral transmission and maintenance. These findings highlight the need for continued genomic surveillance and pathobiological characterization of HPAIV in birds. Enhanced biosecurity in poultry farms should be implemented to prevent the introduction, maintenance, and spread of HPAIV.
Collapse
Affiliation(s)
- Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Yu-Ri Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - David H. Chung
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Jae Si
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Gyeong-Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Dong-Hun Lee
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
- Eun-Kyoung Lee
| |
Collapse
|
296
|
Suranse V, Jackson TNW, Sunagar K. Contextual Constraints: Dynamic Evolution of Snake Venom Phospholipase A 2. Toxins (Basel) 2022; 14:toxins14060420. [PMID: 35737081 PMCID: PMC9231074 DOI: 10.3390/toxins14060420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Venom is a dynamic trait that has contributed to the success of numerous organismal lineages. Predominantly composed of proteins, these complex cocktails are deployed for predation and/or self-defence. Many non-toxic physiological proteins have been convergently and recurrently recruited by venomous animals into their toxin arsenal. Phospholipase A2 (PLA2) is one such protein and features in the venoms of many organisms across the animal kingdom, including snakes of the families Elapidae and Viperidae. Understanding the evolutionary history of this superfamily would therefore provide insight into the origin and diversification of venom toxins and the evolution of novelty more broadly. The literature is replete with studies that have identified diversifying selection as the sole influence on PLA2 evolution. However, these studies have largely neglected the structural/functional constraints on PLA2s, and the ecology and evolutionary histories of the diverse snake lineages that produce them. By considering these crucial factors and employing evolutionary analyses integrated with a schema for the classification of PLA2s, we uncovered lineage-specific differences in selection regimes. Thus, our work provides novel insights into the evolution of this major snake venom toxin superfamily and underscores the importance of considering the influence of evolutionary and ecological contexts on molecular evolution.
Collapse
Affiliation(s)
- Vivek Suranse
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India;
| | - Timothy N. W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Kartik Sunagar
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: ; Tel.: +91-080-2293-2895
| |
Collapse
|
297
|
Wang W, He X, Zhang Y, Qiao Y, Shi J, Chen R, Chen J, Xiang Y, Wang Z, Chen G, Huang J, Huang T, Wei T, Mo M, Wei P. Analysis of the global origin, evolution and transmission dynamics of the emerging novel variant IBDV (A2dB1b): The accumulation of critical aa-residue mutations and commercial trade contributes to the emergence and transmission of novel variants. Transbound Emerg Dis 2022; 69:e2832-e2851. [PMID: 35717667 DOI: 10.1111/tbed.14634] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022]
Abstract
The Chinese IBDV novel variant (nvIBDV), belonging to the genotype A2dB1b, an emerging pathotype that can cause subclinical disease with severe, prolonged immunosuppression, poses a new threat to the poultry industry. The process of the global origin, evolution and transmission dynamics of nvIBDV, however, is poorly understood. In this study, phylogenetic trees, site substitutions of amino acid (aa) and highly accurate protein structure modelling, selection pressure, evolutionary and transmission dynamics of nvIBDV were analysed. Interestingly, nvIBDV was classified into the same genogroup with the early US antigenic variants (avIBDV) but in a new lineage with a markedly different and specific pattern of 17 aa-residual substitutions: 13 in VP2 (77D, 213N, 221K, 222T, 249K, 252I, 253Q, 254N, 284A, 286I, 299S, 318D and 323E) and four in VP1 (141I, 163V, 240E and 508K). Importantly, the aa-residues 299S and 163V may play a key role in cell binding and polymerase activity, respectively. The effective population size of the circulating avIBDV experienced two growth phases, respectively, in the years 1999-2007 (in North America) and 2015-2021 (in Asia), which is consistent with the observed trend of the epidemic outbreaks. The most recent common ancestor (tMRCA) of avIBDV most first originated in the USA and was dated around the 1970s. After its emergence, the ancestor virus of this group probably spread to China around the 1990s and the variants experienced a long-term latent circulation with the accumulation of several critical aa-residue mutations in VP2 until re-emerging in 2016. At present, central China has become the epicentre of nvIBDV spread to other parts of China and Asian countries. Importantly, a strong correlation seems to exist between the transmission patterns of virus and the flow of commercial trade of live poultry and products. These findings provide important insights into the origin, evolution and transmission of the nvIBDV and will assist in the development of programs for control strategies for these emerging viruses.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yan Zhang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yuanzheng Qiao
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Jun Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Rui Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yanhua Xiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Guo Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Jianni Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
298
|
Tran GTH, Mai NT, Bui VN, Dao TD, Trinh DQ, Vu TTT, Le VP, Van Dong H. Duck circovirus in northern Vietnam: genetic characterization and epidemiological analysis. Arch Virol 2022; 167:1871-1877. [PMID: 35716264 DOI: 10.1007/s00705-022-05501-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
In the present study, tissue samples collected from 130 ducks from clinically suspected commercial flocks and diseased birds in six provinces of northern Vietnam were tested for duck circovirus (DuCV) infection. The DuCV genome was detected in 56 out of 130 (43.08%) duck samples by PCR. Of 38 tested farms, 26 (68.42%) were positive for the DuCV genome. The rate of the DuCV genome detection in ducks at 3-4 weeks of age (54.17%) was significantly higher (p < 0.05) than that at <3 (32.43%) and >7 (33.33%) weeks of age and insignificantly higher than that at 5-7 weeks of age (43.33%) (p = 0.11). The genomes of six Vietnamese DuCV isolates were determined. They ranged in length from 1,988 to 1,995 nucleotides, and their nucleotide sequences were 83.24% to 99.69% identical to each other. Phylogenetic analysis based on the complete genome sequences indicated that the DuCV strains circulating in northern Vietnam can be divided into two main genotypes (I and II) and several subgenotypes. The Vietnamese DuCV isolates were closely related to Chinese, Taiwanese, and Korean strains. One positively selected site was detected in the capsid protein.
Collapse
Affiliation(s)
- Giang Thi Huong Tran
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 131000, Vietnam
| | - Ngan Thi Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 131000, Vietnam
| | - Vuong Nghia Bui
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Vietnam
| | - Tung Duy Dao
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Vietnam
| | - Dai Quang Trinh
- Central Veterinary Medicine JSC No. 5, Ha Binh Phuong Industrial Zone, Hanoi, Vietnam
| | - Tra Thi Thu Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 131000, Vietnam
| | - Van Phan Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 131000, Vietnam
| | - Hieu Van Dong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 131000, Vietnam.
| |
Collapse
|
299
|
Awadi A, Suchentrunk F, Knauer F, Smith S, Tolesa Z, Ben Slimen H. Spatial diversity of MHC class II DRB exon2 sequences in North African cape hares (Lepus capensis): positive selection and climatic adaptation signals. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
300
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|