251
|
Bieszke B, Namiotko L, Namiotko T. Life history traits of a temporary water ostracod Heterocypris incongruens (Crustacea, Ostracoda) are affected by power frequency (50 Hz) electromagnetic environmental pollution. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1736654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- B. Bieszke
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - L. Namiotko
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - T. Namiotko
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
252
|
Wilén J, Olsrud J, Frankel J, Hansson Mild K. Valid Exposure Protocols Needed in Magnetic Resonance Imaging Genotoxic Research. Bioelectromagnetics 2020; 41:247-257. [PMID: 32157722 DOI: 10.1002/bem.22257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/22/2020] [Indexed: 11/10/2022]
Abstract
Several in vitro and in vivo studies have investigated if a magnetic resonance imaging (MRI) examination can cause DNA damage in human blood cells. However, the electromagnetic field (EMF) exposure that the cells received in the MR scanner was not sufficiently described. The first studies looking into this could be regarded as hypothesis-generating studies. However, for further exploration into the role of MRI exposure on DNA integrity, the exposure itself cannot be ignored. The lack of sufficient method descriptions makes the early experiments difficult, if not impossible, to repeat. The golden rule in all experimental work is that a study should be repeatable by someone with the right knowledge and equipment, and this is simply not the case with many of the recent studies on MRI and genotoxicity. Here we discuss what is lacking in previous studies, and how we think the next generation of in vitro and in vivo studies on MRI and genotoxicity should be performed. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jonna Wilén
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Johan Olsrud
- Department of Diagnostic Radiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jennifer Frankel
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Kjell Hansson Mild
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
253
|
Safety and Tolerability of Repetitive Transcranial Magnetic Stimulation During Pregnancy: A Case Report and Literature Review. J Clin Neurophysiol 2020; 37:164-169. [PMID: 32142024 DOI: 10.1097/wnp.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients with neuropsychiatric disease may benefit from repetitive transcranial magnetic stimulation as a nonpharmacologic alternative to relieve symptoms of major depression, obsessive compulsive disorder, and perhaps other syndromes such as epilepsy. We present a case of repetitive transcranial magnetic stimulation treatment as an adjunct therapy for a patient experiencing refractory epileptic seizures during the third trimester of pregnancy. Notably, the patient tolerated repetitive transcranial magnetic stimulation well, without adverse events, and delivered a healthy child. We also summarize the current literature pertaining to therapeutic repetitive transcranial magnetic stimulation use during pregnancy.
Collapse
|
254
|
Trentadue G, Pinto R, Salvetti M, Zanni M, Pliakostathis K, Scholz H, Martini G. Assessment of Low-Frequency Magnetic Fields Emitted by DC Fast Charging Columns. Bioelectromagnetics 2020; 41:308-317. [PMID: 32043629 PMCID: PMC7217217 DOI: 10.1002/bem.22254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/31/2020] [Indexed: 11/24/2022]
Abstract
The expected imminent widespread use of electromobility in transport systems draws attention to the possible effects of human exposure to magnetic fields generated inside electric vehicles and during their recharge. The current trend is to increase the capacity of the battery inside the vehicles to extend the available driving range and to increase the power of recharging columns to reduce the time required for a full recharge. This leads to higher currents and potentially stronger magnetic fields. The Interoperability Center of the Joint Research Center started an experimental activity focused on the assessment of low‐frequency magnetic fields emitted by five fast‐charging devices available on the market in recharge and standby conditions. The aim of this study was to contribute to the development of a standard measurement procedure for the assessment of magnetic fields emitted by direct current charging columns. The spectrum and amplitudes of the magnetic field, as well as exposure indices according to guidelines for the general public and occupational exposure, were recorded by means of a magnetic field probe analyzer. The worst‐case scenario for instantaneous physical direct and indirect effects was identified. Measurements within the frequency range of 25 Hz–2 kHz revealed localized magnetic flux density peaks above 100 μT at the 50 Hz frequency in three out of five chargers, registered in close proximity during the recharge. Beyond this distance, exposure indices were recorded showing values below 50% of reference levels. Bioelectromagnetics. 2020;41:308–317 © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rosanna Pinto
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, RC Casaccia, Rome, Italy
| | - Marco Salvetti
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | - Marco Zanni
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Harald Scholz
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | - Giorgio Martini
- European Commission, Joint Research Center (JRC), Ispra, Italy
| |
Collapse
|
255
|
Bagheri Hosseinabadi M, Khanjani N, Atashi A, Norouzi P, Mirbadie SR, Mirzaii M. The effect of vitamin E and C on comet assay indices and apoptosis in power plant workers: A double blind randomized controlled clinical trial. Mutat Res 2020; 850-851:503150. [PMID: 32247559 DOI: 10.1016/j.mrgentox.2020.503150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Extremely low frequency electromagnetic fields have been classified as a possible human carcinogen by the International Agency for Research on Cancer and this has raised some concern about its health effects on employees extensively exposed to these fields at thermal power plants. In this study, the effect of using vitamin E and C supplements have been examined on employees working at a thermal power plant. In this randomized controlled, double-blind clinical trial, 81 employees from different parts of the thermal power plant were enrolled between July and November 2017, and divided into four groups: Group 1 received vitamin E (400 units/day), Group 2: vitamin C (1000 mg/day), Group 3: vitamin E + C and Group 4: no intervention. DNA damage was measured in peripheral blood lymphocytes using comet assay and apoptosis, using flow cytometry. Based on the results, tail intensity and tail length in the vitamin E group, and all comet assay indices in the vitamin E + C and vitamin C groups (except DNA damage index) significantly decreased after the intervention, while the comet assay indices did not change significantly in the control group. None of the flow cytometry indices including early apoptosis, late apoptosis and necrosis changed after intervention in either group. The use of antioxidant vitamins such as E and C, can increase the activity of the non-enzymatic antioxidant defense system, and protect DNA from damage caused by exposure to extremely low frequency magnetic fields. But, taking these vitamins has no effect on apoptosis. It seems that consumption of vitamin E affected all investigated comet assay indices and can be probably considered as the best intervention.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Atashi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
256
|
Modeling, Analysis, and Implementation of Series-Series Compensated Inductive Coupled Power Transfer (ICPT) System for an Electric Vehicle. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2020. [DOI: 10.1155/2020/9561523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper focuses on the modeling and implementation of an Electric Vehicle (EV) wireless charging system based on inductively coupled power transfer (ICPT) technique where electrical energy can be wirelessly transferred from source to vehicle battery. In fact, the wireless power transfer (WPT) system can solve the fundamental problems of the electric vehicle, which are the short battery life of the EV due to limited battery storage and the user safety by handling high voltage cables. In addition, this paper gives an equivalent electrical circuit of the DC-DC converter for WPT and comprises some basic components, which include the H-bridge inverter, inductive coupling transformer, filter, and rectifier. The input impedance of ICPT with series-series compensation circuit, their phases, and the power factor are calculated and plotted by using Matlab scripts programming for different air gap values between the transmitter coil and receiver coil. The simulation results indicate that it is important to operate the system in the resonance state to transfer the maximum real power from the source to the load. A mathematical expression of optimal equivalent load resistance, corresponding to a maximal transmission efficiency of a wireless charging system, was demonstrated in detail. Finally, a prototype of a wireless charging system has been constructed for using two rectangular coils. The resonant frequency of the designed system with a 500 × 200 mm transmitter coil and a 200 × 100 mm receiver coil is 10 kHz. By carefully adjusting the circuit parameters, the implementation prototype have been successfully transferred a 100 W load power through 10 cm air gap between the coils.
Collapse
|
257
|
Soldati M, Laakso I. Computational errors of the induced electric field in voxelized and tetrahedral anatomical head models exposed to spatially uniform and localized magnetic fields. ACTA ACUST UNITED AC 2020; 65:015001. [DOI: 10.1088/1361-6560/ab5dfb] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
258
|
Gerçek C, Kourtiche D, Nadi M, Magne I, Schmitt P, Roth P, Souques M. Phantom Model Testing of Active Implantable Cardiac Devices at 50/60 Hz Electric Field. Bioelectromagnetics 2020; 41:136-147. [PMID: 31903644 DOI: 10.1002/bem.22245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/18/2019] [Indexed: 11/11/2022]
Abstract
Exposure to external extremely low-frequency (ELF) electric and magnetic fields induces the development of electric fields inside the human body, with their nature depending on multiple factors including the human body characteristics and frequency, amplitude, and wave shape of the field. The objective of this study was to determine whether active implanted cardiac devices may be perturbed by a 50 or 60 Hz electric field and at which level. A numerical method was used to design the experimental setup. Several configurations including disadvantageous scenarios, 11 implantable cardioverter-defibrillators, and 43 cardiac pacemakers were tested in vitro by an experimental bench test up to 100 kV/m at 50 Hz and 83 kV/m at 60 Hz. No failure was observed for ICNIRP public exposure levels for most configurations (in more than 99% of the clinical cases), except for six pacemakers tested in unipolar mode with maximum sensitivity and atrial sensing. The implants configured with a nominal sensitivity in the bipolar mode were found to be resistant to electric fields exceeding the low action levels, even for the highest action levels, as defined by the Directive 2013/35/EU. Bioelectromagnetics. 2020;41:136-147. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Cihan Gerçek
- Institut Jean Lamour (UMR 7198), Universite de Lorraine-CNRS, Nancy, France.,Department of Design, Production and Management, University of Twente, Enschede, the Netherlands
| | - Djilali Kourtiche
- Institut Jean Lamour (UMR 7198), Universite de Lorraine-CNRS, Nancy, France
| | - Mustapha Nadi
- Institut Jean Lamour (UMR 7198), Universite de Lorraine-CNRS, Nancy, France
| | | | - Pierre Schmitt
- Institut Jean Lamour (UMR 7198), Universite de Lorraine-CNRS, Nancy, France
| | - Patrice Roth
- Institut Jean Lamour (UMR 7198), Universite de Lorraine-CNRS, Nancy, France
| | | |
Collapse
|
259
|
Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem 2020; 122:151467. [PMID: 31784235 DOI: 10.1016/j.acthis.2019.151467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Long-term use of cell phones emitting electromagnetic fields (EMFs) have raised concerns regarding public health in recent year. We aimed to investigate the possible effects of 900 MHz EMF exposure (60 min/day for 28 days) on the rat testis. Another objective was to determine whether the deleterious effect of EMF radiation would be reduced by the administration of thymoquinone (TQ) (10 mg/kg/day). Twenty-four male adult Wistar albino rats were randomly selected, then assigned into four groups as followControl, EMF, TQ and EMF + TQ. Testicular samples were analyzed using histological, stereological, biochemical and immunohistochemical techniques. Total numbers of primary spermatocytes and spermatids as well as Leydig cells were significantly decreased in the EMF group compared to the Control group (p < 0.05). In the EMF + TQ group, the total number of primary spermatocytes was significantly increased compared to the EMF group (p < 0.05). Superoxide dismutase (SOD) activity was significantly increased in the EMF group compared to the Control group (p < 0.05). Also, serum testosterone levels and wet weight of testes were significantly decreased in the EMF group compared to the Control group (p < 0.05). Our findings suggested that exposure to a 900 MHz EMF had adverse effects on rat testicular tissue and that the administration of TQ partially mitigated testicular oxidative damages caused by EMF radiation.
Collapse
|
260
|
Koutsojannis C, Andrikopoulos A, Seimenis I, Adamopoulos A. MAGNETO-THERAPY IN PHYSIOTHERAPY UNITS: INTRODUCTION OF QUALITY CONTROL PROCEDURE DUE TO LACK OF MAINTENANCE. RADIATION PROTECTION DOSIMETRY 2019; 185:532-541. [PMID: 31329986 DOI: 10.1093/rpd/ncz049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 06/10/2023]
Abstract
Rehabilitation practice for many patients consisting of a combined use of magneto therapy resulting emission of low frequency magnetic fields to the patient, elicit concerns about occupational exposure to electromagnetic radiation (EMR) for the operators. The time extended use of the device periodically leads to mechanical failures or troubleshooting of the machine which, in most cases, are not perceived by the operator of the device. All device's efficient functionality have a major impact on the completion of the treatment procedure in a large percentage of specific clinical conditions. If the device's operating condition is technically out of order or in a mode of over-activity, operators are mainly seeking solutions by reviewing the clinical case of the patient. This eliminates their contribution during the primary therapeutic plan or increases the treatment sessions. In this work, an extended survey is presented including 75 physiotherapy centres concerning usability and maintenance issues of magneto therapy devices throughout Greek territory combined with extended measurements of Electromagnetic Radiation in the unit room were performed. Physiotherapists' perceptions revealed lack of technical support, maintenance and safe use of magneto therapy devices that extract auxiliary observations upon their clinical practice routines. Additionally safety measurements have not revealed field strengths over International Reference Levels which could result health risks for users and coexisting patients. The pilot survey that conducted in Attica and Western Greece confirms that magnetic fields strength that are measured are in accordance with the statutory legislation but will, at the same time, revealed lack of maintenance of the devices. Deficiency in topics such as proper equipment function will necessitate the creation of quality safety protocols, concerning the use of magneto-therapy, with the main aim the improvement of treatment procedures for the higher performance of therapeutic rehabilitation services to patients. Finally in this work, the proposal of a QC protocol for magnetotherapy devices is proposed for evaluation.
Collapse
Affiliation(s)
- Constantinos Koutsojannis
- Laboratory of Health Physics, Department of Physiotherapy, Technological and Educational Institute of Western Greece, 251 00 Aigion, Greece
| | - Andreas Andrikopoulos
- Laboratory of Health Physics, Department of Physiotherapy, Technological and Educational Institute of Western Greece, 251 00 Aigion, Greece
| | - Ioannis Seimenis
- Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece
| | - Adam Adamopoulos
- Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece
| |
Collapse
|
261
|
Filice S, Rossi R, Crisi G. ASSESSMENT OF MOVEMENT-INDUCED TIME-VARYING MAGNETIC FIELDS EXPOSURE IN MAGNETIC RESONANCE IMAGING BY A COMMERCIAL PORTABLE MAGNETOMETER. RADIATION PROTECTION DOSIMETRY 2019; 185:326-330. [PMID: 30806458 DOI: 10.1093/rpd/ncz016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to describe a simple procedure to assess head exposure of MRI workers to time-varying magnetic field, due to their movements in the static magnetic field of a 3T MRI scanner. A group of MRI workers were provided with a commercial portable meter that stored in its internal memory the instantaneous B values. The dB/dt was obtained by the post hoc processing of measured data. The movement-induced time-varying electric field (TVEF) was calculated from dB/dt. The weighted peak index was evaluated in the frequency domain, by first computing the spectrum of dB/dt waveform, to verify the compliance with the exposure limits. The portable magnetometer may be useful to locally explore the MRI workers exposure to time-varying magnetic field and perform the local risk assessments in order to carry out the obligations laid down by Directive 2013/35/EU.
Collapse
Affiliation(s)
- Silvano Filice
- Medical Physics Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Raffaella Rossi
- Medical Physics Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Girolamo Crisi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| |
Collapse
|
262
|
Transcranial magnetic stimulation safety from operator exposure perspective. Med Biol Eng Comput 2019; 58:249-256. [PMID: 31834609 DOI: 10.1007/s11517-019-02084-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
A simulated model of a commercial transcranial magnetic stimulation (TMS) coil is analyzed to determine electromagnetic field (EMF) exposure for an operator while holding or adjusting the coil. Induced EMF strengths are calculated using a commercial figure-8 coil geometry and pulse configuration, with geometrical representations of the subject's head and the operator's head, torso, and hand. Exposure levels are compared to experimental results in the literature and international guidelines for occupational EMF exposure limits. Exposure limit guidelines of 0.8 V/m rms are exceeded at approximately 24.6 cm from the coil for the torso model and at 20.3 cm for the head model measured perpendicular to the plane of the coil. In the plane of the coil, the operator can approach closer without exceeding guidelines. The results in the hand model along the edge of the coil give 9.9 V/m and 88.5 V/m for average and peak field strength, respectively. A discussion of the potential consequences of operator exposure to fields exceeding published guidelines concludes that since the guidelines are only concerned with acute effects and do not suggest any potential chronic effects, occupational exposure in the context of delivering TMS treatment may be considered reasonable. Graphical abstract A model of an operator's head/torso was moved in space relative to a standard TMS coil and subject. Positions at which safety guidelines are exceeded were calculated. The maximum induced electric field was also calculated in a hand model placed in a position commonly used to hold TMS coils during treatments.
Collapse
|
263
|
Optimization of the Alignment Method for an Electric Vehicle Magnetic Field Wireless Power Transfer System Using a Low-Frequency Ferrite Rod Antenna. ENERGIES 2019. [DOI: 10.3390/en12244689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The establishment of international and regional standards for electric vehicle (EV) magnetic field wireless power transfer (MF-WPT) systems started in 2010 by the Society of Automotive Engineers (SAE). In the meantime, the EV MF-WPT standardization has been focused on primary device and secondary device topology. Recently, the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), and SAE have begun describing the communication and alignment techniques for EV MF-WPT. In this paper, we present a fine positioning method using a low-frequency (LF) signal, as mentioned in IEC 61980 and SAE J2954. Through modeling and simulation, we optimized a LF ferrite rod antenna (FRA) for EV MF-WPT fine positioning. We also found the optimal arrangement of LF-FRAs on primary device and secondary device Finally, we used a test bench to experiment and check the results of our proposal.
Collapse
|
264
|
Multi-Objective Optimization of Massive MIMO 5G Wireless Networks towards Power Consumption, Uplink and Downlink Exposure. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rapid development of the number of wireless broadband devices requires that the induced uplink exposure be addressed during the design of the future wireless networks, in addition to the downlink exposure due to the transmission of the base stations. In this paper, the positions and power levels of massive MIMO-LTE (Multiple Input Multiple Output-Long Term Evolution) base stations are optimized towards low power consumption, low downlink and uplink electromagnetic exposure and maximal user coverage. A suburban area in Ghent, Belgium has been considered. The results show that the higher the number of BS antenna elements, the fewer number of BSs the massive MIMO network requires. This leads to a decrease of the downlink exposure (−12% for the electric field and −32% for the downlink dose) and an increase of the uplink exposure (+70% for the uplink dose), whereas both downlink and uplink exposure increase with the number of simultaneous served users (+174% for the electric field and +22% for the uplink SAR). The optimal massive MIMO network presenting the better trade-off between the power consumption, the total dose and the user coverage has been obtained with 37 64-antenna BSs. Moreover, the level of the downlink electromagnetic exposure (electric field) of the massive MIMO network is 5 times lower than the 4G reference scenario.
Collapse
|
265
|
Migault L, Bowman JD, Kromhout H, Figuerola J, Baldi I, Bouvier G, Turner MC, Cardis E, Vila J. Development of a Job-Exposure Matrix for Assessment of Occupational Exposure to High-Frequency Electromagnetic Fields (3 kHz-300 GHz). Ann Work Expo Health 2019; 63:1013-1028. [PMID: 31702767 PMCID: PMC6853656 DOI: 10.1093/annweh/wxz067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/18/2019] [Accepted: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of this work was to build a job-exposure matrix (JEM) using an international coding system and covering the non-thermal intermediate frequency (IF) (3-100 kHz, named IFELF), thermal IF (100 kHz-10 MHz, named IFRF), and radiofrequency (RF) (>10 MHz) bands. METHODS Detailed occupational data were collected in a large population-based case-control study, INTEROCC, with occupations coded into the International Standard Classification of Occupations system 1988 (ISCO88). The subjects' occupational source-based ancillary information was combined with an existing source-exposure matrix and the reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for occupational exposure to calculate estimates of level (L) of exposure to electric (E) and magnetic (H) fields by ISCO88 code and frequency band as ICNIRP ratios (IFELF) or squared ratios (IFRF and RF). Estimates of exposure probability (P) were obtained by dividing the number of exposed subjects by the total number of subjects available per job title. RESULTS With 36 011 job histories collected, 468 ISCO88 (four-digit) codes were included in the JEM, of which 62.4% are exposed to RF, IFRF, and/or IFELF. As a reference, P values for RF E-fields ranged from 0.3 to 65.0% with a median of 5.1%. L values for RF E-fields (ICNIRP squared ratio) ranged from 6.94 × 10-11 to 33.97 with a median of 0.61. CONCLUSIONS The methodology used allowed the development of a JEM for high-frequency electromagnetic fields containing exposure estimates for the largest number of occupations to date. Although the validity of this JEM is limited by the small number of available observations for some codes, this JEM may be useful for epidemiological studies and occupational health management programs assessing high-frequency electromagnetic field exposure in occupational settings.
Collapse
Affiliation(s)
- Lucile Migault
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, Bordeaux, France
| | | | - Hans Kromhout
- Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein Yalelaan, Utrecht, The Netherlands
| | - Jordi Figuerola
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, Barcelona, Spain
| | - Isabelle Baldi
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, Bordeaux, France
- Bordeaux University Hospital, Service de Médecine du Travail et pathologie professionnelle, Pessac, France
| | - Ghislaine Bouvier
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, Bordeaux, France
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Av. Monforte de Lemos, Madrid, Spain
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Av. Monforte de Lemos, Madrid, Spain
| | - Javier Vila
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Av. Monforte de Lemos, Madrid, Spain
- Environmental Protection Agency (EPA), Office of Radiation Protection and Environmental Monitoring, McCumiskey House, Richview, Dublin, Ireland
| |
Collapse
|
266
|
Yang L, Lu M, Lin J, Li C, Zhang C, Lai Z, Wu T. Long-Term Monitoring of Extremely Low Frequency Magnetic Fields in Electric Vehicles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193765. [PMID: 31591344 PMCID: PMC6801816 DOI: 10.3390/ijerph16193765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022]
Abstract
Extremely low frequency (ELF) magnetic field (MF) exposure in electric vehicles (EVs) has raised public concern for human health. There have been many studies evaluating magnetic field values in these vehicles. However, there has been no report on the temporal variation of the magnetic field in the cabin. This is the first study on the long-term monitoring of actual MFs in EVs. In the study, we measured the magnetic flux density (B) in three shared vehicles over a period of two years. The measurements were performed at the front and rear seats during acceleration and constant-speed driving modes. We found that the B amplitudes and the spectral components could be modified by replacing the components and the hubs, while regular checks or maintenance did not influence the B values in the vehicle. This observation highlights the necessity of regularly monitoring ELF MF in EVs, especially after major repairs or accidents, to protect car users from potentially excessive ELF MF exposure. These results should be considered in updates of the measurement standards. The ELF MF effect should also be taken into consideration in relevant epidemiological studies.
Collapse
Affiliation(s)
- Lei Yang
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Meng Lu
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Jun Lin
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Congsheng Li
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Chen Zhang
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Zhijing Lai
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China
| | - Tongning Wu
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, Beijing 100191, China.
| |
Collapse
|
267
|
Gomez LJ, Dannhauer M, Koponen LM, Peterchev AV. Conditions for numerically accurate TMS electric field simulation. Brain Stimul 2019; 13:157-166. [PMID: 31604625 DOI: 10.1016/j.brs.2019.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Computational simulations of the E-field induced by transcranial magnetic stimulation (TMS) are increasingly used to understand its mechanisms and to inform its administration. However, characterization of the accuracy of the simulation methods and the factors that affect it is lacking. OBJECTIVE To ensure the accuracy of TMS E-field simulations, we systematically quantify their numerical error and provide guidelines for their setup. METHOD We benchmark the accuracy of computational approaches that are commonly used for TMS E-field simulations, including the finite element method (FEM) with and without superconvergent patch recovery (SPR), boundary element method (BEM), finite difference method (FDM), and coil modeling methods. RESULTS To achieve cortical E-field error levels below 2%, the commonly used FDM and 1st order FEM require meshes with an average edge length below 0.4 mm, 1st order SPR-FEM requires edge lengths below 0.8 mm, and BEM and 2nd (or higher) order FEM require edge lengths below 2.9 mm. Coil models employing magnetic and current dipoles require at least 200 and 3000 dipoles, respectively. For thick solid-conductor coils and frequencies above 3 kHz, winding eddy currents may have to be modeled. CONCLUSION BEM, FDM, and FEM all converge to the same solution. Compared to the common FDM and 1st order FEM approaches, BEM and 2nd (or higher) order FEM require significantly lower mesh densities to achieve the same error level. In some cases, coil winding eddy-currents must be modeled. Both electric current dipole and magnetic dipole models of the coil current can be accurate with sufficiently fine discretization.
Collapse
Affiliation(s)
- Luis J Gomez
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, USA.
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, USA.
| | - Lari M Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, USA.
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27710, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA; Department of Neurosurgery, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
268
|
He Y, Sun W, Leung PSW, Chow YT. Effect of Static Magnetic Field of Electric Vehicles on Driving Performance and on Neuro-Psychological Cognitive Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183382. [PMID: 31547412 PMCID: PMC6765815 DOI: 10.3390/ijerph16183382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022]
Abstract
Human neuropsychological reactions and brain activities when driving electric vehicles (EVs) are considered as an issue for traffic and public safety purposes; this paper examined the effect of the static magnetic field (SMF) derived from EVs. A lane change task was adopted to evaluate the driving performance; and the driving reaction time test and the reaction time test were adopted to evaluate the variation of the neuro-psychological cognitive functions. Both the sham and the real exposure conditions were performed with a 350 μT localized SMF in this study; 17 student subjects were enrolled in this single-blind experiment. Electroencephalographs (EEGs) of the subjects were adopted and recorded during the experiment as an indicator of the brain activity for the variations of the driving performance and of the cognitive functions. Results of this study have indicated that the impact of the given SMF on both the human driving performance and the cognitive functions are not considerable; and that there is a correlation between beta sub-band of the EEGs and the human reaction time in the analysis
Collapse
Affiliation(s)
- Yaqing He
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
| | - Weinong Sun
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
| | - Peter Sai-Wing Leung
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
- EMC Consortium Limited, Hong Kong, China.
| | - Yuk-Tak Chow
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
269
|
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:347-368. [PMID: 31565000 PMCID: PMC6746309 DOI: 10.2147/mder.s214152] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The potential for using non-ionizing electromagnetic fields (EMF; at frequencies from 0 Hz up to the THz range) for medical purposes has been of interest since many decades. A number of established and familiar methods are in use all over the world. This review, however, provides an overview of applications that already play some clinical role or are in earlier stages of development. The covered methods include modalities used for bone healing, cancer treatment, neurological conditions, and diathermy. In addition, certain other potential clinical areas are touched upon. Most of the reviewed technologies deal with therapy, whereas just a few diagnostic approaches are mentioned. None of the discussed methods are having such a strong impact in their field of use that they would be expected to replace conventional methods. Partly this is due to a knowledge base that lacks mechanistic explanations for EMF effects at low-intensity levels, which often are used in the applications. Thus, the possible optimal use of EMF approaches is restricted. Other reasons for the limited impact include a scarcity of well-performed randomized clinical trials that convincingly show the efficacy of the methods and that standardized user protocols are mostly lacking. Presently, it seems that some EMF-based methods can have a niche role in treatment and diagnostics of certain conditions, mostly as a complement to or in combination with other, more established, methods. Further development and a stronger impact of these technologies need a better understanding of the interaction mechanisms between EMF and biological systems at lower intensity levels. The importance of the different physical parameters of the EMF exposure needs also further investigations.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| | - Myrtill Simkó
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| |
Collapse
|
270
|
Brech A, Kubinyi G, Németh Z, Bakos J, Fiocchi S, Thuróczy G. Genotoxic effects of intermediate frequency magnetic fields on blood leukocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403060. [DOI: 10.1016/j.mrgentox.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
271
|
Schmid G, Hirtl R, Samaras T. Dosimetric issues with simplified homogeneous body models in low frequency magnetic field exposure assessment. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:794-808. [PMID: 31146271 DOI: 10.1088/1361-6498/ab25be] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simplified procedure, using circular disk models with homogeneous electric conductivity as representations for different body parts, has been proposed recently by product standard IEC 62822-3 for the assessment of magnetic field exposure in proximity to current-carrying conductors of welding equipment. Based on such simplified models, worst case coupling coefficients CCEi(I), i.e. maximum induced electric field strength, normalised for current and frequency, for body parts at different distances d to straight single and double wire arrangements, as well as rectangular loop-shaped current paths are tabulated in the standard. In this work we compared CCEi(I) values obtained by numerical computations with detailed anatomical models of the hand/forearm with the corresponding values given in IEC 62822-3 for current-carrying single wire conductors along the forearm at distances d = 30, 50 and 100 mm, respectively. Our results clearly indicated that the CCEi(I) given in the standard may substantially underestimate the actual exposure. Using average values for tissue conductivities the observed extent of underestimation was up to 8.9 dB (factor 2.79) and may be even higher for worst case combinations of tissue conductivities. The reasons for this substantial underestimation are the oversimplified geometry, i.e. the circular disk does not reflect anatomical constrictions of the induction area present in realistic hand/forearm geometries, as well as the missing conductivity contrast between different tissues in the homogeneous disk models. Results of exposure assessment and corresponding minimum distances to components of welding equipment obtained by the simplified disk model approach suggested by IEC 62822-3 should therefore be considered with caution.
Collapse
Affiliation(s)
- Gernot Schmid
- Seibersdorf Laboratories, Dept. EMC & Optics, A-2444 Seibersdorf, Austria. Aristotle University of Thessaloniki, Dept. of Physics, GR-54124 Thessaloniki, Greece
| | | | | |
Collapse
|
272
|
Wang Y, Liu X, Zhang Y, Wan B, Zhang J, He W, Hu D, Yang Y, Lai J, He M, Chen C. Exposure to a 50 Hz magnetic field at 100 µT exerts no DNA damage in cardiomyocytes. Biol Open 2019; 8:bio.041293. [PMID: 31362949 PMCID: PMC6737969 DOI: 10.1242/bio.041293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effects of exposure to magnetic fields (MFs) at electric frequencies (50-60 Hz) on carcinogenicity are still in debate. Whether exposure to MFs affects the heart is also a debated issue. This study aimed to determine whether exposure to extremely low frequency MFs (ELF-MFs) induced DNA damage in cardiomyocytes both in vitro and in vivo Human ventricular cardiomyocytes were exposed to 50 Hz ELF-MF at 100 µT for 1 h continuously or 75 min intermittently. The effects of the treatments were evaluated by DNA damage, redox status changes and relative signal molecular expression. Moreover, ten male Sprague-Dawley rats were exposed to a 50 Hz MF at 100 µT for 7 days, while another 10 rats were sham exposed. The protein levels of p53 and Hsp70 in heart tissue were analyzed by western blot. The results showed that exposure to ELF-MF did not induce DNA damage, changes to cell cycle distribution or increased reactive oxygen species level. No significant differences were detected in p53 and Hsp70 expression level between the ELF-MF and sham-exposure groups both in vitro and in vivo All these data indicate that MFs at power-frequency may not cause DNA damage in cardiomyocytes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yong Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingfa Liu
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Yemao Zhang
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Baoquan Wan
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Jiangong Zhang
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430030, China
| | - Wei He
- Electric Power Research Institute of State Grid Gansu Electric Power Company, Lanzhou 730050, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinsheng Lai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
273
|
Li X, Liu X, Wan B, Li X, Li M, Zhu H, Hua H. Effects of continuous exposure to power frequency electric fields on soybean Glycine max. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 204:35-41. [PMID: 30959328 DOI: 10.1016/j.jenvrad.2019.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
With the increasing density of high voltage transmission systems, the potential risks and hazards of environmental electric fields (EFs) generated by these systems to surrounding organisms is becoming a source of public concern. To evaluate the effect of environmental EFs on plants, we used soybean as a model and systematically evaluated the effect of continuous exposure to different intensities (0 kV/m, 2 kV/m, and 10 kV/m) of power frequency EFs on agronomic characters, yield, nutrient contents, protective enzyme activities, and gene transcription. We found that the effects on soybean were more pronounced when plants were exposed to EF during development (especially at the seedling stage) than when they were exposed at maturity. The functional leaf number, stem diameter, plant dry weight, and pod number were largely unaffected by EF, while the germination rate and protective enzyme activities increased with increasing EF intensity. In plants exposed to low-intensity EF (2 kV/m), some agronomic characters, including chlorophyll content, plant height, and bean dry weight, as well as the soluble sugar and total protein contents, were significantly higher than those of plants exposed to high-intensity EF (10 kV/m) and control plants (0 kV/m). Through transcriptome analysis, we found that 2,977 genes were significantly up-regulated and 1,462 genes were down-regulated when plants were exposed to EF. These differentially expressed genes mainly encode ribosome proteins and related enzymes involved in carbon metabolism pathway, providing a novel perspective for understanding molecular mechanisms underpinning the responses to EF stress in soybean.
Collapse
Affiliation(s)
- Xiang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingfa Liu
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan, China
| | - Baoquan Wan
- State Key Laboratory of Power Grid Environmental Protection, High Voltage Research Institute, China Electric Power Research Institute, Wuhan, China
| | - Xiangwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyu Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
274
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
275
|
Evans ID, Palmisano S, Loughran SP, Legros A, Croft RJ. Frequency‐dependent and montage‐based differences in phosphene perception thresholds via transcranial alternating current stimulation. Bioelectromagnetics 2019; 40:365-374. [DOI: 10.1002/bem.22209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/06/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ian D. Evans
- School of PsychologyUniversity of Wollongong Wollongong Australia
- Illawarra Health and Medical Research InstituteUniversity of Wollongong Wollongong Australia
- Australian Centre for Electromagnetic Bioeffects Research Wollongong Australia
- Centre for Population Health Research on Electromagnetic EnergyMonash University Melbourne Australia
| | - Stephen Palmisano
- School of PsychologyUniversity of Wollongong Wollongong Australia
- Illawarra Health and Medical Research InstituteUniversity of Wollongong Wollongong Australia
| | - Sarah P. Loughran
- School of PsychologyUniversity of Wollongong Wollongong Australia
- Illawarra Health and Medical Research InstituteUniversity of Wollongong Wollongong Australia
- Australian Centre for Electromagnetic Bioeffects Research Wollongong Australia
- Centre for Population Health Research on Electromagnetic EnergyMonash University Melbourne Australia
| | - Alexandre Legros
- Lawson Health Research InstituteWestern University London Canada
| | - Rodney J. Croft
- School of PsychologyUniversity of Wollongong Wollongong Australia
- Illawarra Health and Medical Research InstituteUniversity of Wollongong Wollongong Australia
- Australian Centre for Electromagnetic Bioeffects Research Wollongong Australia
- Centre for Population Health Research on Electromagnetic EnergyMonash University Melbourne Australia
| |
Collapse
|
276
|
Abstract
This study deals with the inductive-based wireless power transfer (WPT) technology applied to power a deep implant with no fixed position. The usage of a large primary coil is here proposed in order to obtain a nearly uniform magnetic field inside the human body at intermediate frequencies (IFs). A simple configuration of the primary coil, derived by the Helmholtz theory, is proposed. Then, a detailed analysis is carried out to assess the compliance with electromagnetic field (EMF) safety standards. General guidelines on the design of primary and secondary coils are provided for powering or charging a deep implant of cylindrical shape with or without metal housing. Finally, three different WPT coil demonstrators have been fabricated and tested. The obtained results have demonstrated the validity of the proposed technology.
Collapse
|
277
|
Campos-Sanchez E, Vicente-Dueñas C, Rodríguez-Hernández G, Capstick M, Kuster N, Dasenbrock C, Sánchez-García I, Cobaleda C. Novel ETV6-RUNX1 Mouse Model to Study the Role of ELF-MF in Childhood B-Acute Lymphoblastic Leukemia: a Pilot Study. Bioelectromagnetics 2019; 40:343-353. [PMID: 31157932 DOI: 10.1002/bem.22193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Exposure to extremely low-frequency magnetic fields (ELF-MFs) has been classified by the International Agency for Research on Cancer (IARC) as "possibly carcinogenic to humans," based on limited scientific evidence concerning childhood leukemia. This assessment emphasized the lack of appropriate animal models recapitulating the natural history of this disease. Childhood B-cell acute lymphoblastic leukemia (B-ALL) is the result of complex interactions between genetic susceptibility and exposure to exogenous agents. The most common chromosomal alteration is the ETV6-RUNX1 fusion gene, which confers a low risk of developing the malignancy by originating a preleukemic clone requiring secondary hits for full-blown disease to appear. To develop potential prophylactic interventions, we need to identify the environmental triggers of the second hit. Recently, we generated a B-ALL mouse model of the human ETV6-RUNX1+ preleukemic state. Here, we present the results from the ARIMMORA pilot study, obtained by exposing 34 Sca1-ETV6-RUNX1 mice (vs. 27 unexposed) to a 50 Hz magnetic field of 1.5 mT with both fundamental and harmonic content, with an on/off cycle of 10 min/5 min, for 20 h/day, from conception until 3 months of age. Mice were monitored until 2 years of age and peripheral blood was periodically analyzed by flow cytometry. One of the exposed mice developed B-ALL while none of the non-exposed did. Although the results are statistically non-significant due to the limited number of mice used in this pilot experiment, overall, the results show that the newly developed Sca1-ETV6-RUNX1 mouse can be successfully used for ELF-MF exposure studies about the etiology of childhood B-ALL. Bioelectromagnetics. 2019;40:343-353. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Elena Campos-Sanchez
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid, Spain
| | - Carolina Vicente-Dueñas
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo Rodríguez-Hernández
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | | | - Niels Kuster
- IT'IS Foundation, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETHZ, Zurich, Switzerland
| | - Clemens Dasenbrock
- Fraunhofer ITEM, Toxicology and Environmental Hygiene, Hannover, Germany
| | - Isidro Sánchez-García
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - César Cobaleda
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid, Spain
| |
Collapse
|
278
|
Hosseinabadi MB, Khanjani N. The Effect of Extremely Low‐Frequency Electromagnetic Fields on the Prevalence of Musculoskeletal Disorders and the Role of Oxidative Stress. Bioelectromagnetics 2019; 40:354-360. [DOI: 10.1002/bem.22198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CentreKerman University of Medical SciencesKerman Iran
| |
Collapse
|
279
|
Takahashi K, Yamada T, Takemura Y. Circuit Parameters of a Receiver Coil Using a Wiegand Sensor for Wireless Power Transmission. SENSORS 2019; 19:s19122710. [PMID: 31208144 PMCID: PMC6632003 DOI: 10.3390/s19122710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
We previously demonstrated an efficient method of wireless power transmission using a Wiegand sensor for the application in implantable medical devices. The Wiegand sensor has an advantage in inducing sharp pulse voltage independent of the drive frequency. A down-sized receiver coil for wireless power transmission within blood vessels has been prepared, which enables medical treatment on any part of a human body. In order to develop practical applications of the Wiegand sensor as implantable medical devices, the circuit design is important. The circuit parameters in the circuit model of the Wiegand sensor must be clearly identified. However, a fast reversal of magnetization of the magnetic wire used in the Wiegand sensor, known as a large Barkhausen jump, and the induced nonlinear pulse signal make the inductance of the receiver coil time-dependent and inconsistent as conventionally considered in circuit analysis. In this study, the voltage and current responses of a wire-core coil are analyzed, and the time-dependent inductance is determined. The results showed that the inductance depends on the magnetization state of the wire, which can be negative during the fast reversal of magnetization.
Collapse
Affiliation(s)
- Katsuki Takahashi
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Tsutomu Yamada
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Yasushi Takemura
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
280
|
Noureddine Y, Kraff O, Ladd ME, Wrede K, Chen B, Quick HH, Schaefers G, Bitz AK. Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips. Magn Reson Med 2019; 82:1859-1875. [DOI: 10.1002/mrm.27835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yacine Noureddine
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy and Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Karsten Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- High Field and Hybrid MR, University Hospital Essen Essen Germany
| | - Gregor Schaefers
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
- MRI‐STaR – Magnetic Resonance Institute for Safety, Technology and Research GmbH Gelsenkirchen Germany
| | - Andreas K. Bitz
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology FH Aachen University of Applied Sciences Aachen NRW Germany
| |
Collapse
|
281
|
Massardier-Pilonchery A, Nerrière E, Croidieu S, Ndagijimana F, Gaudaire F, Martinsons C, Noé N, Hours M. Assessment of Personal Occupational Exposure to Radiofrequency Electromagnetic Fields in Libraries and Media Libraries, Using Calibrated On-Body Exposimeters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122087. [PMID: 31200442 PMCID: PMC6616949 DOI: 10.3390/ijerph16122087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/23/2022]
Abstract
Background and Objectives: With the spread of Wifi networks, safety concerns have arisen, with complaints of somatic disorders, notably in traditional libraries and media libraries. The aim of the present study was to describe the conditions and levels of exposure to radiofrequency electromagnetic fields in the real-life occupational conditions of those working in traditional libraries and media libraries. Methods: Dynamic measurements, using an exposimeter, were taken in 20 radiofrequency bands from 88 to 5850 MHz. The activity of 28 library workers was analyzed on a space-time budget. An audit of exposure sources and static measurements enabled the work-places to be mapped. Results: In seven libraries, 78,858 samples were taken over the 20 radiofrequency bands from 88 to 5850 MHz. Exposure was described for 28 working days. The median total field was 0.071 V/m (10th percentile: 0.022 V/m, 90th percentile: 0.534 V/m) and for Wifi the median field was 0.005 V/m (10th percentile: 0.005 V/m, 90th percentile: 0.028 V/m). Median individual exposure to Wifi frequency waves ranged from 0.005 to 0.040 V/m. Conclusions: Overall, the occupational exposure in this sector was close to the exposure in the general population. Peaks were due to the use of walkie-talkies by security staff. Exposure due to external sources depended on geographic location. Exposure in this occupation is well below the general occupational exposure levels, notably as regards Wifi.
Collapse
Affiliation(s)
- Amelie Massardier-Pilonchery
- Université de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller 69373 Lyon, France.
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69495 Pierre Bénite, France.
| | - Elena Nerrière
- Université de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller 69373 Lyon, France.
| | - Sophie Croidieu
- Service de médecine préventive de la Ville Lyon, 69006 Lyon, France.
| | | | - François Gaudaire
- Division Eclairage et Champs Electromagnétiques, Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin d'Hères, France.
| | - Christophe Martinsons
- Division Eclairage et Champs Electromagnétiques, Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin d'Hères, France.
| | - Nicolas Noé
- Division Eclairage et Champs Electromagnétiques, Centre Scientifique et Technique du Bâtiment, 11 rue Henri Picherit, 44300 Nantes, France.
| | - Martine Hours
- Université de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller 69373 Lyon, France.
| |
Collapse
|
282
|
Ohayon MM, Stolc V, Freund FT, Milesi C, Sullivan SS. The potential for impact of man-made super low and extremely low frequency electromagnetic fields on sleep. Sleep Med Rev 2019; 47:28-38. [PMID: 31252334 DOI: 10.1016/j.smrv.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023]
Abstract
An ever-growing number of electromagnetic (EM) emission sources elicits health concerns, particularly stemming from the ubiquitous low to extremely low frequency fields from power lines and appliances, and the radiofrequency fields emitted from telecommunication devices. In this article we review the state of knowledge regarding possible impacts of electromagnetic fields on melatonin secretion and on sleep structure and the electroencephalogram of humans. Most of the studies on the effects of melatonin on humans have been conducted in the presence of EM fields, focusing on the effects of occupational or residential exposures. While some of the earlier studies indicated that EM fields may have a suppressive effect on melatonin, the results cannot be generalized because of the large variability in exposure conditions and other factors that may influence melatonin. For instance, exposure to radiofrequency EM fields on sleep architecture show little or no effect. However, a number of studies show that pulsating radiofrequency electromagnetic fields, such as those emitted from cellular phones, can alter brain physiology, increasing the electroencephalogram power in selective bands when administered immediately prior to or during sleep. Additional research is necessary that would include older populations and evaluate the interactions of EM fields in different frequency ranges to examine their effects on sleep in humans.
Collapse
Affiliation(s)
- Maurice M Ohayon
- Stanford Sleep Epidemiology Research Center, Stanford University, School of Medicine, Palo Alto, CA, 94303, USA.
| | - Victor Stolc
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | | | | | | |
Collapse
|
283
|
Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs. ENERGIES 2019. [DOI: 10.3390/en12112115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wireless power transfer (WPT) systems for charging Electric Vehicles (EVs) have gained extensive attention due to their many advantages. However, human exposure to electromagnetic fields (EMFs) has become a serious concern in high-power cases. In this paper, shielding techniques, including magnetic, metallic, and resonant reactive current shields, are investigated. Finite element method software is used to evaluate and compare the shielding effectiveness, charger weight, and system performance. The results show that the resonant reactive current shielding has a low EMF level with reasonable system efficiency and acceptable charger weight. In addition, 5 kW with 15 cm air gap WPT chargers were built to validate the simulation results.
Collapse
|
284
|
Ohtani S, Ushiyama A, Maeda M, Wada K, Suzuki Y, Hattori K, Kunugita N, Ishii K. Global Analysis of Transcriptional Expression in Mice Exposed to Intermediate Frequency Magnetic Fields Utilized for Wireless Power Transfer Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101851. [PMID: 31130593 PMCID: PMC6572459 DOI: 10.3390/ijerph16101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intermediate frequency magnetic fields (IF-MFs) at around 85 kHz are a component of wireless power transfer systems used for charging electrical vehicles. However, limited data exist on the potential health effects of IF-MFs. We performed a comprehensive analysis of transcriptional expression in mice after IF-MF exposure. MATERIALS AND METHODS We developed an IF-MF exposure system to generate a high magnetic flux density (25.3 mT). The system can expose the IF-MF for a mouse whole-body without considering thermal effects. After 10 days (1 h/day) of exposure, a comprehensive expression analysis was performed using microarray data from both the brain and liver. RESULTS No significant differences in transcriptional expression were detected in the 35,240 probe-sets when controlling the false discovery rate (FDR) under a fold change cutoff >1.5. However, several differential expressions were detected without FDR-adjustment, but these were not confirmed by RT-PCR analysis. CONCLUSIONS To our knowledge, this is the first in vivo study to evaluate the biological effects of IF-MF exposure with an intense magnetic flux density 253 times higher than the occupational restriction level defined by the International Commission on Non-Ionizing Radiation Protection guidelines. However, our findings indicate that transcriptional responses in the living body are not affected under these conditions.
Collapse
Affiliation(s)
- Shin Ohtani
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Machiko Maeda
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Keiji Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| | - Yukihisa Suzuki
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| | - Kenji Hattori
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
285
|
Recordati C, De Maglie M, Marsella G, Milite G, Rigamonti A, Paltrinieri S, Scanziani E. Long-Term Study on the Effects of Housing C57BL/6NCrl Mice in Cages Equipped With Wireless Technology Generating Extremely Low-Intensity Electromagnetic Fields. Toxicol Pathol 2019; 47:598-611. [PMID: 31117895 DOI: 10.1177/0192623319852353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recent development of mouse cages equipped with monitoring wireless technology raised questions on the potential effects on animals induced by electromagnetic fields (EMFs) generated by electronic boards positioned underneath the cages. The aims of this study were to characterize the EMF produced by digitally ventilated cages (DVC) and perform a clinicopathological study on mice maintained in DVC for up to 1 year. The EMFs were measured in empty individually ventilated cages (IVC) and DVC. Male (n = 160) and female (n = 160) C57BL/6NCrl mice were randomly housed in IVC and DVC in a single rack, 4 mice per cage. Body weight and food and water consumption were recorded at 14-day intervals. At sacrifice (days 60, 120, 180, and 365), body and testes weight was measured, and necropsy, hematology, bone marrow cytology, histology, and immunohistochemistry for cleaved-caspase 3 on the testes were performed. Digitally ventilated cages produced extremely low-intensity electric fields ranging from 5 Hz to 3 GHz. No exposure-related clinical signs and mortality occurred. Occasional statistical differences in body weight, food and water consumption, hematology, bone marrow, and histopathology were recorded, but considered without biological or clinical relevance. In conclusion, long-term maintenance in DVC had no definite effects on C57BL/6NCrl mice.
Collapse
Affiliation(s)
- Camilla Recordati
- 1 Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy
| | - Marcella De Maglie
- 1 Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,2 Department of Veterinary Medicine, University of Milan, Milano, Italy
| | - Gerardo Marsella
- 3 Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | - Alessandro Rigamonti
- 1 Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,2 Department of Veterinary Medicine, University of Milan, Milano, Italy
| | | | - Eugenio Scanziani
- 1 Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,2 Department of Veterinary Medicine, University of Milan, Milano, Italy
| |
Collapse
|
286
|
Abstract
Wireless Power Transfer (WPT) is a promising technique, yet still an experimental solution, to replace batteries in existing implants and overcome the related health complications. However, not all techniques are adequate to meet the safety requirements of medical implants for patients. Ensuring a compromise between a small form factor and a high Power Transfer Efficiency (PTE) for transcutaneous applications still remains a challenge. In this work, we have used a resonant inductive coupling for WPT and a coil geometry optimization approach to address constraints related to maintaining a small form factor and the efficiency of power transfer. Thus, we propose a WPT system for medical implants operating at 13.56 MHz using high-efficiency Complementary Metal Oxide-Semiconductor (CMOS) components and an optimized Printed Circuit Coil (PCC). It is divided into two main circuits, a transmitter circuit located outside the human body and a receiver circuit implanted inside the body. The transmitter circuit was designed with an oscillator, driver and a Class-E power amplifier. Experimental results acquired in the air medium show that the proposed system reaches a power transfer efficiency of 75.1% for 0.5 cm and reaches 5 cm as a maximum transfer distance for 10.67% of the efficiency, all of which holds promise for implementing WPT for medical implants that don’t require further medical intervention, and without taking up a lot of space.
Collapse
|
287
|
Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954. ENERGIES 2019. [DOI: 10.3390/en12091795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Society of Automotive Engineers (SAE) Recommended Practice (RP) J2954 (November 2017) was recently published to standardize the wireless power transfer (WPT) technology to recharge the battery of an electric vehicle (EV). The SAE J2954 RP establishes criteria for interoperability, electromagnetic compatibility (EMC), electromagnetic field (EMF) safety, etc. The aim of this study was to predict the magnetic field behavior inside and outside an EV during wireless charging using the design criteria of SAE RP J2954. Analyzing the worst case configurations of WPT coils and EV bodyshell by a sophisticated software tool based on the finite element method (FEM) that takes into account the field reflection and refraction of the metal EV bodyshell, it is possible to numerically assess the magnetic field levels in the environment. The investigation was performed considering the worst case configuration—a small city car with a Class 2 WPT system of 7.7 kVA with WPT coils with maximum admissible ground clearance and offset. The results showed that the reference level (RL) of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines in terms of magnetic flux density was exceeded under and beside the EV. To mitigate the magnetic field, the currents flowing through the WPT coils were varied using the inductor-capacitor-capacitor (LCC) compensation instead of the traditional series-series (SS) compensation. The corresponding calculated field was compliant with the 2010 ICNIRP RL and presented a limited exceedance of the 1998 ICNIRP RL. Finally, the influence of the body width on the magnetic field behavior adopting maximum offset was investigated, demonstrating that the magnetic field emission in the environment increased as the ground clearance increased and as the body width decreased.
Collapse
|
288
|
Mahaki H, Jabarivasal N, Sardarian K, Zamani A. The effects of extremely low-frequency electromagnetic fields on c-Maf, STAT6, and RORα expressions in spleen and thymus of rat. Electromagn Biol Med 2019; 38:177-183. [PMID: 31017814 DOI: 10.1080/15368378.2019.1608832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study investigated the effect of extremely low-frequency electromagnetic fields (ELF-EMFs) exposure at different magnetic flux densities on genes expression of transcription factor Maf (c-Maf), signal transducer and activator of transcription 6 (STAT6), and retinoid-related orphan receptor alpha (RORα) in the spleen and thymus of rats. Eighty adult male rats were separated into four ELF-EMFs exposed and were exposed to magnetic flux densities of 1, 100, 500, and 2000 µT at a frequency of 50 Hz for 2 h daily for up to 60 d. All rats were intraperitoneally immunized on d 31, 44, and 58 of exposure. The experimental results showed that the expression levels of c-Maf, STAT6, and RORα in the thymus were not significantly changed at different magnetic flux densities. The expression levels of RORα and c-Maf were significantly downregulated at the densities of 1 and 100 µT, while the expression of STAT6 was only significantly decreased at the density of 100 µT. In conclusion, low magnetic flux densities of ELF-EMFs may reduce the expression levels of c-Maf, STAT6, and RORα genes in the spleen.
Collapse
Affiliation(s)
- Hanie Mahaki
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Naghi Jabarivasal
- c Department of Medical Physics , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Khosro Sardarian
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Zamani
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,d Molecular Immunology Research Group , Research Center for Molecular Medicine, Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
289
|
A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems. ENERGIES 2019. [DOI: 10.3390/en12071332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continuous increase in the number and relevance of electric transmission lines and distribution networks, there is a higher exposure to the magnetic fields generated by them, leading to more cases of human electrosensitivity, which greatly necessitates the design and development of magnetic field mitigation procedures and, at the same time, the need to minimize both performance degradation and deterioration in the efficiency as well. During the last four decades, fruitful results have been reported about extremely low frequency magnetic field mitigation, giving a wide variety of solutions. This survey paper aims to give a comprehensive overview of cost-effective optimization techniques destined to magnetic field mitigation in power systems, with particular attention to the results reported in the last decade.
Collapse
|
290
|
Hansson Mild K, Lundström R, Wilén J. Non-Ionizing Radiation in Swedish Health Care-Exposure and Safety Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1186. [PMID: 30987016 PMCID: PMC6479478 DOI: 10.3390/ijerph16071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The main aim of the study was to identify and describe methods using non-ionizing radiation (NIR) such as electromagnetic fields (EMF) and optical radiation in Swedish health care. By examining anticipated exposure levels and by identifying possible health hazards we also aimed to recognize knowledge gaps in the field. NIR is mainly used in health care for diagnosis and therapy. Three applications were identified where acute effects cannot be ruled out: magnetic resonance imaging (MRI), transcranial magnetic stimulation (TMS) and electrosurgery. When using optical radiation, such as class 3 and 4 lasers for therapy or surgical procedures and ultra-violet light for therapy, acute effects such as unintentional burns, photo reactions, erythema and effects on the eyes need to be avoided. There is a need for more knowledge regarding long-term effects of MRI as well as on the combination of different NIR exposures. Based on literature and after consulting staff we conclude that the health care professionals' knowledge about the risks and safety measures should be improved and that there is a need for clear, evidence-based information from reliable sources, and it should be obvious to the user which source to address.
Collapse
Affiliation(s)
- Kjell Hansson Mild
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| | - Ronnie Lundström
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| | - Jonna Wilén
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| |
Collapse
|
291
|
Romanelli P, Piangerelli M, Ratel D, Gaude C, Costecalde T, Puttilli C, Picciafuoco M, Benabid A, Torres N. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. J Neurosurg 2019; 130:1166-1179. [PMID: 29749917 DOI: 10.3171/2017.10.jns17400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate (Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had undergone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed a mild inflammatory process. CONCLUSIONS This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.
Collapse
Affiliation(s)
| | - Marco Piangerelli
- 2Computer Science Division, School of Science and Technology, University of Camerino, Italy; and
| | - David Ratel
- 3Biomedical Research Center, Polygone Scientifique Grenoble (CLINATEC Campus), University of Grenoble Alpes, Grenoble, France
| | - Christophe Gaude
- 3Biomedical Research Center, Polygone Scientifique Grenoble (CLINATEC Campus), University of Grenoble Alpes, Grenoble, France
| | - Thomas Costecalde
- 3Biomedical Research Center, Polygone Scientifique Grenoble (CLINATEC Campus), University of Grenoble Alpes, Grenoble, France
| | | | | | - Alim Benabid
- 3Biomedical Research Center, Polygone Scientifique Grenoble (CLINATEC Campus), University of Grenoble Alpes, Grenoble, France
| | - Napoleon Torres
- 3Biomedical Research Center, Polygone Scientifique Grenoble (CLINATEC Campus), University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
292
|
Nishimura I, Doi Y, Imai N, Kawabe M, Mera Y, Shiina T. Carcinogenicity of intermediate frequency magnetic field in Tg.rasH2 mice. Bioelectromagnetics 2019; 40:160-169. [PMID: 30875092 PMCID: PMC6594107 DOI: 10.1002/bem.22177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/18/2019] [Indexed: 11/11/2022]
Abstract
Although the likelihood of exposure to leaking intermediate frequency magnetic fields (MFs) from electronic devices, such as induction-heating and wireless power transfer systems, has increased, biological data assessing the health risks associated with human exposure remain insufficient. We examined the carcinogenicity of a 20 kHz MF, a typical frequency produced by induction-heating cookers, using a transgenic rasH2 mouse model. Twenty-five male and female CByB6F1-Tg(HRAS)2Jic mice were exposed to a 0.20 mT, 20 kHz MF (22 h/day) or sham-exposed for 26 weeks. As a positive control, 10 male and female rasH2 mice from the same batch were administered a single intraperitoneal injection of 75 mg/kg N-methyl-N-nitrosourea. A blinded histopathological evaluation was performed, and the same experiments were conducted twice, independently, to confirm the reproducibility of the results. Histopathological examination revealed that spontaneous neoplastic lesions, such as splenic hemangiosarcomas and gastric squamous cell papillomas, were less (1-3 per group) in the MF- and sham-exposed groups. The frequency of the neoplastic lesions was not significantly different between the groups. Eight to ten mice in each positive-control group exhibited malignant lymphoma. The outcomes were consistent between duplicated experiments, which indicates lack of carcinogenicity of 20 kHz MF in the rasH2 mouse model. Bioelectromagnetics. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Izumi Nishimura
- Central Research Institute of Electric Power IndustryAbikoJapan
| | - Yuko Doi
- DIMS Institute of Medical ScienceIchinomiyaJapan
| | - Norio Imai
- DIMS Institute of Medical ScienceIchinomiyaJapan
| | | | | | - Takeo Shiina
- Central Research Institute of Electric Power IndustryYokosukaJapan
| |
Collapse
|
293
|
Bodewein L, Schmiedchen K, Dechent D, Stunder D, Graefrath D, Winter L, Kraus T, Driessen S. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). ENVIRONMENTAL RESEARCH 2019; 171:247-259. [PMID: 30690271 DOI: 10.1016/j.envres.2019.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many novel technologies, including induction cookers or wireless power transfer, produce electric fields (EF), magnetic fields (MF) or electromagnetic fields (EMF) in the intermediate frequency (IF) range. The effects of such fields on biological systems, however, have been poorly investigated. The aim of this systematic review was to provide an update of the state of research and to evaluate the potential for adverse effects of EF, MF and EMF in the IF range (300 Hz to 1 MHz) on biological systems. METHODS The review was prepared in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Methodical limitations in individual studies were assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies. RESULTS Fifty-six studies exposing humans, animals or in vitro systems were eligible for this review. In these studies, many different endpoints were examined and most of the findings were obtained in studies with exposure to MF. For most endpoints, however, the reviewed studies yielded inconsistent results, with some studies indicating no effect and some linking IF exposure with adverse effects. In the majority of the included studies, the applied field strengths were above the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels for the general public and the applied frequencies were mainly below 100 kHz. Furthermore, many of the reviewed studies suffered from methodical limitations which lowered the credibility of the reported results. CONCLUSION Due to the large heterogeneity in study designs, endpoints and exposed systems, as well as the inconsistent results and methodical limitations in many studies, the quality of evidence for adverse effects remains inadequate for drawing a conclusion on investigated biological effects of IF fields for most endpoints. We recommend that in future studies, effects of EF, MF and EMF in the IF range should be investigated more systematically, i.e., studies should consider various frequencies to identify potential frequency-dependent effects and apply different field strengths, especially if threshold-dependent effects are expected. Priority should be given to the investigation of acute effects, like induction of phosphenes, perception, excitation of nerves or muscles and thermal effects. This would be an important step towards the validation of the reference levels recommended by ICNIRP. Furthermore, we recommend that any new studies aim at implementing high quality dosimetry and minimizing sources of risk of bias.
Collapse
Affiliation(s)
- Lambert Bodewein
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Kristina Schmiedchen
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Dominik Stunder
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - David Graefrath
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lukas Winter
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Thomas Kraus
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Sarah Driessen
- Research Center for Bioelectromagnetic Interaction (femu) - Institute for Occupational, Social and Environmental Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
294
|
Schmid G, Hirtl R, Samaras T. Benchmark of different assessment methods for non-sinusoidal magnetic field exposure in the context of European Directive 2013/35/EU. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:455-469. [PMID: 30794996 DOI: 10.1088/1361-6498/ab0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the assessment of non-sinusoidal magnetic fields the European EMF Directive 2013/35/EU specified the Weighted Peak Method in Time Domain (WPM-TD) as the reference method. However, also other scientifically validated methods are allowed, provided that they lead to approximately equivalent and comparable results. In the non-binding guide for practical implementation of 2013/35/EU three methods alternative to the WPM-TD are described, i.e. the Weighted Peak Method in Frequency Domain (WPM-FD), the Multiple Frequency Rule (MFR), and an alternative Time Domain Assessment Method (TDAM). In this paper the results of a benchmark comparison of these assessment methods, based on 12 different time domain signals of magnetic induction, measured close to real devices and nine additional generic waveforms, are presented. The results demonstrated that assessments obtained with WPM-TD and WPM-FD can be considered approximately equivalent (maximum deviation 3.4 dB). The MFR systematically overestimates exposure, due to its inherently conservative definitions. In contrast, the TDAM significantly and systematically underestimates exposure up to a factor of 22 (26.8 dB) for the considered waveforms. The main reasons for this exposure underestimation by the TDAM are the introduction of an inappropriate time averaging, and the fact that the characteristic time parameter τ p,min, describing the minimum duration of all field changes dB/dt of the waveform is derived independently from the extent of the field change in the definitions of the TDAM. Consequently, we recommend not to use the TDAM as presently published in the non-binding guide to 2013/35/EU, as its application would be in contradiction with the underlying aim of 2013/35/EU, i.e. a harmonised level of occupational safety with respect to exposure to electromagnetic fields.
Collapse
Affiliation(s)
- Gernot Schmid
- Seibersdorf Laboratories, Dept. EMC & Optics, A-2444 Seibersdorf, Austria. Aristotle University of Thessaloniki, Dept. of Physics, GR-54124 Thessaloniki, Greece
| | | | | |
Collapse
|
295
|
Chiaramello E, Le Brusquet L, Parazzini M, Fiocchi S, Bonato M, Ravazzani P. 3D space‐dependent models for stochastic dosimetry applied to exposure to low frequency magnetic fields. Bioelectromagnetics 2019; 40:170-179. [DOI: 10.1002/bem.22179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle TelecomunicazioniCNRMilanoItaly
| | - Laurent Le Brusquet
- Laboratoire des Signaux et Systèmes (UMR CNRS 8506)Centrale Supelec, CNRS, Univ Paris‐SudUniversité Paris‐SaclayFrance
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle TelecomunicazioniCNRMilanoItaly
| | - Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle TelecomunicazioniCNRMilanoItaly
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle TelecomunicazioniCNRMilanoItaly
- Dipartimento di ElettronicaInformazione e Bioingegneria DEIBPolitecnico di MilanoMilanoItaly
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle TelecomunicazioniCNRMilanoItaly
| |
Collapse
|
296
|
Li C, Ye Z, Wei Y, Wu T. An optimized block forward-elimination and backward-substitution algorithm for GPU accelerated ILU preconditioner in evaluating the induced electric field during transcranial magnetic stimulation. Bioelectromagnetics 2019; 40:278-284. [PMID: 30888704 DOI: 10.1002/bem.22178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Congsheng Li
- China Academy of Information and Communications Technology, Beijing, China
| | - Zhenfei Ye
- China Academy of Information and Communications Technology, Beijing, China
| | - Yiwen Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| | - Tongning Wu
- China Academy of Information and Communications Technology, Beijing, China
| |
Collapse
|
297
|
Chiaramello E, Bonato M, Fiocchi S, Tognola G, Parazzini M, Ravazzani P, Wiart J. Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E955. [PMID: 30884917 PMCID: PMC6466609 DOI: 10.3390/ijerph16060955] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Exposure to radiofrequency (RF) electromagnetic fields (EMFs) in indoor environments depends on both outdoor sources such as radio, television and mobile phone antennas and indoor sources, such as mobile phones and wireless communications applications. Establishing the levels of exposure could be challenging due to differences in the approaches used in different studies. The goal of this study is to present an overview of the last ten years research efforts about RF EMF exposure in indoor environments, considering different RF-EMF sources found to cause exposure in indoor environments, different indoor environments and different approaches used to assess the exposure. The highest maximum mean levels of the exposure considering the whole RF-EMF frequency band was found in offices (1.14 V/m) and in public transports (0.97 V/m), while the lowest levels of exposure were observed in homes and apartments, with mean values in the range 0.13⁻0.43 V/m. The contribution of different RF-EMF sources to the total level of exposure was found to show slightly different patterns among the indoor environments, but this finding has to be considered as a time-dependent picture of the continuous evolving exposure to RF-EMF.
Collapse
Affiliation(s)
- Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
- Dipartimento di Elettronica, Informazione e Bioingegneria DEIB, Politecnico di Milano, 20133 Milano, Italy.
| | - Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Gabriella Tognola
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Joe Wiart
- Télécom ParisTech, LTCI University Paris Saclay, Chair C2M, 75013 Paris, France.
| |
Collapse
|
298
|
In Vivo Analysis of Embryo Development and Behavioral Response of Medaka Fish under Static Magnetic Field Exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050844. [PMID: 30857154 PMCID: PMC6427164 DOI: 10.3390/ijerph16050844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022]
Abstract
The static magnetic field (SMF) in human exposure has become a health risk concern, especially with respect to prolonged exposure. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has been considering cell or animal models to be adopted to estimate the possible human health impacts after such exposure. The medaka fish is a good animal model for human-related health assessment studies; this paper examines both the embryo development and behavioral responses in medaka fish in vivo to long-term SMF exposure at the mT level. SMF exposure was examined for the complete developmental period of embryos until hatched; the embryos were monitored and recorded every 24 h for different morphological abnormalities in their developmental stages. The behavioral response of adult fish was also examined by analyzing their swimming velocities and positioning as compared with that of the control group. It was observed that there were no impacts on embryo development under prolonged exposure up to about 100 mT while the swimming behavior of the adult fish under exposure was different to the control group-the swimming movement of the treated group was more static, with an average velocity of 24.6% less as observed over a 24-h duration.
Collapse
|
299
|
Zeighami A, Alizadeh F, Saviz M. Optimal currents for electrical stimulation of bone fracture repair: A computational analysis including variations in frequency, tissue properties, and fracture morphology. Bioelectromagnetics 2019; 40:128-135. [DOI: 10.1002/bem.22173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Amin Zeighami
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Farhad Alizadeh
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
300
|
Hamnerius Y, Nilsson T, Friman E. Evaluating exposure from electric fields in a high voltage switchyard according to the EU directive. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:150-160. [PMID: 30693868 DOI: 10.1088/1361-6498/aaf817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An assessment according to Directive 2013/35/EU of exposure in a 400 kV switchyard has been performed. Part of the body was exposed to electric field strength above the high action level. We therefore performed simulations of the electric fields induced in the body to assess these accoding to the exposure limit values (ELVs). The simulations show that as long as the body is not grounded nor touching any grounded metallic objects, worker exposure is compliant with the directive. When grounded metallic objects are touched with hand or foot the ELV are exceeded. The ELV is exceeded already at very low contact currents (2-3 μA) in the finger. If not appropriate measures are taken, this would lead to a severe limitation of the work tasks that can be performed in switchyards.
Collapse
Affiliation(s)
- Yngve Hamnerius
- Dept. of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | |
Collapse
|