251
|
Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:539-565. [PMID: 32274726 DOI: 10.1007/978-3-030-34521-1_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pixatimod is an inhibitor of heparanase, a protein which promotes cancer via its regulation of the extracellular environment by enzymatic cleavage of heparan sulfate (HS) and non-enzymatic signaling. Through its inhibition of heparanase and other HS-binding signaling proteins, pixatimod blocks a number of pro-cancerous processes including cell proliferation, invasion, metastasis, angiogenesis and epithelial-mesenchymal transition. Several laboratories have found that these activities have translated into potent activity using a range of different mouse cancer models, including approximately 30 xenograft and 20 syngeneic models. Analyses of biological samples from these studies have confirmed the heparanase targeting of this agent in vivo and the broad spectrum of anti-cancer effects that heparanase blockade achieves. Pixatimod has been tested in combination with a number of approved anti-cancer drugs demonstrating its clinical potential, including with gemcitabine, paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody. Clinical testing has shown pixatimod to be well tolerated as a monotherapy, and it is currently being investigated in combination with the anti-PD-1 drug nivolumab in a pancreatic cancer phase I trial.
Collapse
|
252
|
Li X, Dai J, Ni D, He X, Zhang H, Zhang J, Fu Q, Liu Y, Lu S. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B. Int J Biol Macromol 2019; 144:643-655. [PMID: 31816384 DOI: 10.1016/j.ijbiomac.2019.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Ras is a key member in the superfamily of small GTPase. Transforming between GTP-bound active state and GDP-bound inactive state in response to exogenous signals, Ras serves as a binary switch in various signaling pathways. One of its downstream effectors is phosphatidylinositol-4,5-bisphosphate 3-kinase α (PI3Kα), which phosphorylates phosphatidylinositol 4,5-bisphosphate into phosphatidylinositol 3,4,5-trisphosphate in the PI3K/Akt/mTOR pathway and mediates an array of important cellular activities including cell growth, migration and survival. Hyperactivation of PI3Kα induced by the Ras isoform K-Ras4B has been unveiled as a key event during the oncogenesis of pancreatic ductal adenocarcinoma, but the underlying mechanism of how K-Ras4B allosterically activates PI3Kα still remains largely unsolved. Here, we employed accelerated molecular dynamic simulations and allosteric pathway analysis to explore into the activation process of PI3Kα by K-Ras4B and unraveled the underlying structural mechanisms. We found that K-Ras4B binding induced more conformational dynamics within PI3Kα and triggered its step-wise transition from a self-inhibited state towards an activated state. Moreover, K-Ras4B binding markedly disrupted the interactions along the p110/p85 interface, especially the ones between nSH2 in p85 and its nearby functional domains in p110 like C2, helical, and kinase domains. The altered inter-domain interactions exposed the kinase domain, which promoted the membrane association and substrate phosphorylation of PI3Kα, thereby facilitating its activation. In particular, the community networks and allosteric pathways analysis further revealed that in PI3Kα/K-Ras4B system, allosteric signaling regulating p110/p85 interaction was rewired from the helical domain to the kinase domain and several important residues and their related allosteric pathways mediating PI3Kα autoinhibition were bypassed. The obtained structural mechanisms provide an in-depth mechanistic insight into the allosteric activation of PI3Kα by K-Ras4B as well as shed light on its drug discovery.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jinyuan Dai
- Chemical Engineering and Technology, School of Chemical Engineering, East China University of Science and Technology, Shanghai 201424, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China.
| | - Yaqin Liu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
253
|
Morrow ZT, Powers ZM, Sauer JD. Listeria monocytogenes cancer vaccines: bridging innate and adaptive immunity. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:213-224. [PMID: 33072493 DOI: 10.1007/s40588-019-00133-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of the Review Immunotherapy has emerged as a promising cancer treatment, however success in only select clinical indications underscores the need for novel approaches. Recently Listeria monocytogenes-based vaccines have been developed to drive tumor specific T-cell responses. Here, we discuss recent preclinical studies using L. monocytogenes vaccines, innate immune pathways that influence T-cell priming, and new vaccine strategies in clinical trials. Recent Findings Recent studies indicate that in addition to inducing antigen specific T-cell responses, L. monocytogenes vaccines remodel the TME. In addition, several innate immune pathways influence adaptive immune responses to L. monocytogenes and modulating these pathways holds promise to enhance anti-tumor T-cell responses. Summary The interplay between innate and adaptive immune responses to L. monocytogenes is poorly understood. Understanding these interactions will facilitate the design of better anti-cancer vaccines and improved use of combination therapies.
Collapse
Affiliation(s)
- Zachary T Morrow
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - Zachary M Powers
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - John-Demian Sauer
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology, 1550 Linden Dr. Rm 4203, Madison WI, 53706
| |
Collapse
|
254
|
Hareendran S, Yang X, Lou H, Xiao L, Loh YP. Carboxypeptidase E-∆N Promotes Proliferation and Invasion of Pancreatic Cancer Cells via Upregulation of CXCR2 Gene Expression. Int J Mol Sci 2019; 20:E5725. [PMID: 31731578 PMCID: PMC6888591 DOI: 10.3390/ijms20225725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer-related mortality worldwide. The molecular basis for the pathogenesis of this disease remains elusive. In this study, we have investigated the role of wild-type Carboxypeptidase E (CPE-WT) and a 40 kDa N-terminal truncated isoform, CPE-ΔN in promoting proliferation and invasion of Panc-1 cells, a pancreatic cancer cell line. Both CPE-WT and CPE-ΔN were expressed in Panc-1 and BXPC-3 pancreatic cancer cells. Immunocytochemical studies revealed that in CPE transfected Panc-1 cells, CPE-ΔN was found primarily in the nucleus, whereas CPE-WT was present exclusively in the cytoplasm as puncta, characteristic of secretory vesicles. Endogenous CPE-WT was secreted into the media. Overexpression of CPE-ΔN in Panc-1 cells resulted in enhancement of proliferation and invasion of these cells, as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay and Matrigel invasion assay, respectively. In contrast, the expression of CPE-WT protein at comparable levels to CPE-ΔN in Panc-1 cells resulted in promotion of proliferation but not invasion. Importantly, there was an upregulation of the expression of CXCR2 mRNA and protein in Panc-1 cells overexpressing CPE-ΔN, and these cells exhibited significant increase in proliferation in a CXCR2-dependent manner. Thus, CPE-ΔN may play an important role in promoting pancreatic cancer growth and malignancy through upregulating the expression of the metastasis-related gene, CXCR2.
Collapse
Affiliation(s)
| | | | | | | | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
255
|
Lai E, Puzzoni M, Ziranu P, Pretta A, Impera V, Mariani S, Liscia N, Soro P, Musio F, Persano M, Donisi C, Tolu S, Balconi F, Pireddu A, Demurtas L, Pusceddu V, Camera S, Sclafani F, Scartozzi M. New therapeutic targets in pancreatic cancer. Cancer Treat Rev 2019; 81:101926. [PMID: 31739115 DOI: 10.1016/j.ctrv.2019.101926] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor survival. Of all newly diagnosed patients, only about 20% can benefit from a potentially curative surgical resection, the remaining 80% presenting with unresectable locally advanced (LAPC) or metastatic (MPC) disease. Currently, there are limited therapeutic options for LAPC and MPC patients. Furthermore, despite intensive research efforts to better understand the molecular bases of PDAC and the biological relevance of its tumor microenvironment, treatments still largely consist of classical cytotoxic chemotherapy agents. Several studies of genetic and epigenetic sequencing have demonstrated the existence of 4 molecular PDAC subtypes, with heterogeneous genetic characteristics and different biological behaviour: squamous, pancreatic progenitor, immunogenic and aberrantly differentiated endocrine exocrine (ADEX). These distinct subtypes derive from alterations at multiple levels. Apart from the DNA repair pathway, however, none of these has so far been validated as a clinically relevant therapeutic target. Also, PDAC is unique from an immunological perspective and many studies have recently tried to elucidate the role of intratumoral effector T-cells, RAS oncogene, immunosuppressive leukocytes and desmoplastic reaction in maintaining the immunological homeostasis of this disease. However, there still remains much to be learned about the mechanisms whereby the pancreatic immune microenvironment promotes immune escape of cancer cells. Furthermore, while therapies targeting the stroma as well as immunotherapies hold promise for the future, these are not yet standard of care. This review aims to outline the state-of-the-art of LAPC and MPC treatment, highlighting data on the target therapies failure and current ongoing clinical trials on new promising therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Paolo Soro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Simona Tolu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Annagrazia Pireddu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Silvia Camera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | | | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| |
Collapse
|
256
|
Ling J, Chiao PJ. Two Birds with One Stone: Therapeutic Targeting of IL1α Signaling Pathways in Pancreatic Ductal Adenocarcinoma and the Cancer-Associated Fibroblasts. Cancer Discov 2019; 9:173-175. [PMID: 30737215 DOI: 10.1158/2159-8290.cd-18-1460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cancer Discovery, Biffi and colleagues report that IL1 signaling cascades resulted in JAK/STAT activation and promoted an inflammatory cancer-associated fibroblast (iCAF) state, which contributed to the establishment of distinct fibroblast niches in the pancreatic ductal adenocarcinoma (PDAC) microenvironment to support the growth of PDAC cells. Furthermore, the investigators demonstrated that TGFβ signaling inhibited IL1R1 expression, antagonized IL1α responses, and promoted differentiation of CAFs into myofibroblasts; thus, IL1α signaling is an important therapeutic target for both PDAC cells and the iCAFs in the tumor microenvironment.See related article by Biffi et al. p. 282.
Collapse
Affiliation(s)
- Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas, The Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
257
|
Tu B, Yao J, Ferri-Borgogno S, Zhao J, Chen S, Wang Q, Yan L, Zhou X, Zhu C, Bang S, Chang Q, Bristow CA, Kang Y, Zheng H, Wang H, Fleming JB, Kim M, Heffernan TP, Draetta GF, Pan D, Maitra A, Yao W, Gupta S, Ying H. YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight 2019; 4:130811. [PMID: 31557131 DOI: 10.1172/jci.insight.130811] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Transcriptomic profiling classifies pancreatic ductal adenocarcinoma (PDAC) into several molecular subtypes with distinctive histological and clinical characteristics. However, little is known about the molecular mechanisms that define each subtype and their correlation with clinical outcome. Mutant KRAS is the most prominent driver in PDAC, present in over 90% of tumors, but the dependence of tumors on oncogenic KRAS signaling varies between subtypes. In particular, the squamous subtype is relatively independent of oncogenic KRAS signaling and typically displays much more aggressive clinical behavior versus the progenitor subtype. Here, we identified that yes-associated protein 1 (YAP1) activation is enriched in the squamous subtype and associated with poor prognosis. Activation of YAP1 in progenitor subtype cancer cells profoundly enhanced malignant phenotypes and transformed progenitor subtype cells into squamous subtype. Conversely, depletion of YAP1 specifically suppressed tumorigenicity of squamous subtype PDAC cells. Mechanistically, we uncovered a significant positive correlation between WNT5A expression and YAP1 activity in human PDAC and demonstrated that WNT5A overexpression led to YAP1 activation and recapitulated a YAP1-dependent but Kras-independent phenotype of tumor progression and maintenance. Thus, our study identifies YAP1 oncogene as a major driver of squamous subtype PDAC and uncovers the role of WNT5A in driving PDAC malignancy through activation of the YAP pathway.
Collapse
Affiliation(s)
- Bo Tu
- Molecular and Cellular Oncology Department
| | - Jun Yao
- Molecular and Cellular Oncology Department
| | - Sammy Ferri-Borgogno
- Pathology Department, and.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Liang Yan
- Molecular and Cellular Oncology Department
| | - Xin Zhou
- Molecular and Cellular Oncology Department.,Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Cihui Zhu
- Molecular and Cellular Oncology Department
| | - Seungmin Bang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Qing Chang
- Institute for Applied Cancer Science and
| | | | - Ya'an Kang
- Surgical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Jason B Fleming
- Surgical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michael Kim
- Surgical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Giulio F Draetta
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anirban Maitra
- Pathology Department, and.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wantong Yao
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sonal Gupta
- Pathology Department, and.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
258
|
Qiu W, Duan N, Chen X, Ren S, Zhang Y, Wang Z, Chen R. Pancreatic Ductal Adenocarcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis For Prediction Of Histopathological Grade. Cancer Manag Res 2019; 11:9253-9264. [PMID: 31802945 PMCID: PMC6826202 DOI: 10.2147/cmar.s218414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To assess the performance of combining computed tomography (CT) texture analysis with machine learning for discriminating different histopathological grades of pancreatic ductal adenocarcinoma (PDAC). METHODS From July 2012 to August 2017, this retrospective study comprised 56 patients with confirmed histopathological PDAC (32 men, 24 women, mean age 64.04±7.82 years) who had undergone preoperative contrast-enhanced CT imaging within 1 month before surgery. Two radiologists blinded to the histopathological outcome independently segmented lesions for quantitative texture analysis. Histogram features, co-occurrence, and run-length texture were calculated. A support-vector machine was constructed to predict the pathological grade of PDAC based on preoperative texture features. RESULTS Pathological analysis confirmed 37 low-grade PDAC (five well-differentiated/grade I and 32 moderately differentiated/grade II) and 19 high-grade PDAC (19 poorly differentiated/grade III) tumors. There were no significant differences in clinical or biological characteristics between patients with high-grade and low-grade tumors (P>0.05). There were significant differences between low-grade PDAC and high-grade PDAC on nine histogram features, seven run-length features, and two co-occurrence features. Cluster shade was the most important predictor (sensitivity 0.315). Using these texture features, the support-vector machine achieved 86% accuracy, 78% sensitivity, 95% and specificity. CONCLUSION Machine learning-based CT texture analysis accurately predicted histopathological differentiation grade of PDAC based on preoperative texture features, leading to maximization patient survival and achievement of personalized precision treatment.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Na Duan
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
259
|
Bolck HA, Pauli C, Göbel E, Mühlbauer K, Dettwiler S, Moch H, Schraml P. Cancer Sample Biobanking at the Next Level: Combining Tissue With Living Cell Repositories to Promote Precision Medicine. Front Cell Dev Biol 2019; 7:246. [PMID: 31696117 PMCID: PMC6817465 DOI: 10.3389/fcell.2019.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Biorespositories of formalin-fixed and paraffin-embedded (FFPE) or fresh frozen human tissues from malignant diseases generated as integral part of the diagnostic workup in many pathology departments have been pivotal resources for translational cancer studies. However, such tissue biobanks have traditionally contained only non-viable specimens and thus cannot enable functional assays for the discovery and validation of therapeutic targets or the assessment of drug responses and resistance to treatment. To overcome these limitations, we have developed a next-generation comprehensive biobanking platform that includes the generation of patient-derived in vitro cell models from colorectal, pancreatic and kidney cancers among others. As such patient-derived cell (PDC) models retain important features of the original human tumors, they have emerged as relevant tools for more dynamic clinical and experimental analyses of cancer. Here, we describe details of the complex processes of acquisition and processing of patient-derived samples, propagation, annotation, characterization and distribution of resulting cell models and emphasize the requirements of quality assurance, organizational considerations and investment into resources. Taken together, we show how clinical tissue collections can be taken to the next level thus promising major new opportunities for understanding and treating cancer in the context of precision medicine.
Collapse
Affiliation(s)
- Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Elisabeth Göbel
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Katharina Mühlbauer
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Susanne Dettwiler
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| |
Collapse
|
260
|
Lafaro KJ, Melstrom LG. The Paradoxical Web of Pancreatic Cancer Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:44-57. [PMID: 30558722 DOI: 10.1016/j.ajpath.2018.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is projected to become the second leading cause of cancer death in the United States. Despite significant advances in understanding the disease, there has been minimal increase in PDAC patient survival. PDAC tumors are unique in the fact that there is significant desmoplasia. This generates a large stromal compartment composed of immune cells, inflammatory cells, growth factors, extracellular matrix, and fibroblasts, comprising the tumor microenvironment (TME), which may represent anywhere from 15% to 85% of the tumor. It has become evident that the TME, including both the stroma and extracellular component, plays an important role in tumor progression and chemoresistance of PDAC. This review will discuss the multiple components of the TME, their specific impact on tumorigenesis, and the multiple therapeutic targets.
Collapse
Affiliation(s)
- Kelly J Lafaro
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Laleh G Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
261
|
CtBP-a targetable dependency for tumor-initiating cell activity and metastasis in pancreatic adenocarcinoma. Oncogenesis 2019; 8:55. [PMID: 31586042 PMCID: PMC6778071 DOI: 10.1038/s41389-019-0163-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/04/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ctbp2 is a uniquely targetable oncogenic transcriptional coregulator, exhibiting overexpression in most common solid tumors, and critical to the tumor-initiating cell (TIC) transcriptional program. In the “CKP” mouse pancreatic ductal adenocarcinoma (PDAC) model driven by mutant K-Ras, Ctbp2 haploinsufficiency prolonged survival, abrogated peritoneal metastasis, and caused dramatic downregulation of c-Myc, a known critical dependency for TIC activity and tumor progression in PDAC. A small-molecule inhibitor of CtBP2, 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) phenocopied Ctbp2 deletion, decreasing tumor burden similarly to gemcitabine, and the combination of 4-Cl-HIPP and gemcitabine further synergistically suppressed tumor growth. Pharmacodynamic monitoring revealed that the 4-Cl-HIPP/gemcitabine combination induced robust and synergistic tumor apoptosis and marked downregulation of the TIC marker CD133 in CKP PDAC tumors. Collectively, our data demonstrate that targeting CtBP represents a fruitful avenue for development of highly active agents in PDAC that cooperate with standard therapy to limit both primary and metastatic tumor burden.
Collapse
|
262
|
Natale F, Vivo M, Falco G, Angrisano T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin Epigenetics 2019; 11:132. [PMID: 31492175 PMCID: PMC6729090 DOI: 10.1186/s13148-019-0728-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic pancreatitis presents a high risk of inflammation-related progression to pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. The high mortality rate is directly related to the difficulty in promptly diagnosing the disease, which often presents as overt and advanced. Hence, early diagnosis for pancreatic cancer becomes crucial, propelling research into the molecular and epigenetic landscape of the disease. MAIN BODY Recent studies have shown that cell-free DNA methylation profiles from inflammatory diseases or cancer can vary, thus opening a new venue for the development of biomarkers for early diagnosis. In particular, cell-free DNA methylation could be employed in the identification of pre-neoplastic signatures in individuals with suspected pancreatic conditions, representing a specific and non-invasive method of early diagnosis of pancreatic cancer. In this review, we describe the molecular determinants of pancreatic cancer and how these are related to chronic pancreatitis. We will then present an overview of differential methylated genes in the two conditions, highlighting their diagnostic or prognostic potential. CONCLUSION Exploiting the relation between abnormally methylated cell-free DNA and pre-neoplastic lesions or chronic pancreatitis may become a game-changing approach for the development of tools for the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Francesco Natale
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
263
|
Han X, Kuang T, Ren Y, Lu Z, Liao Q, Chen W. Haspin knockdown can inhibit progression and development of pancreatic cancer in vitro and vivo. Exp Cell Res 2019; 385:111605. [PMID: 31493385 DOI: 10.1016/j.yexcr.2019.111605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive and lethal malignancies and it is the eighth most common cause of death from cancer worldwide. The purpose of this study was to investigate the role of GSG2 (HASPIN) in the development and progression of pancreatic cancer. MATERIAL AND METHODS GSG2 expression was detected by immunohistochemistry in tumor tissue samples, and by qRT-PCR and Western blot assay in human pancreatic cancer cell lines. Cell proliferation was evaluated by MTT assay. Giemsa staining was used for analyzing colony formation. Cell cycle and cell apoptosis were determined using Fluorescence activated Cells Sorting. Wound healing assay and transwell assay were applied for examining cell migration. The molecular mechanism was investigated by human apoptosis antibody array. Tumor-bearing animal model was constructed to verify the effects of GSG2 on pancreatic cancer in vivo. RESULTS GSG2 expression was upregulated in pancreatic cancer tissues and human pancreatic cancer cell lines: PANC-1 and SW1990. Higher expression of GSG2 in tumor samples was associated with poorer prognosis. GSG2 knockdown suppressed cell proliferation, colony formation, metastasis and promoted cell apoptosis, which was also verified in vivo. In addition, GSG2 knockdown blocked the cell cycle in G2. It was also found that downregulation of GSG2 inhibited Bcl-2, Bcl-w, cIAP, HSP60 and Livin expression as well as promoted IGFBP-6 expression. CONCLUSION This study revealed that GSG2 upregulation was associated with pancreatic cancer progression. GSG2 knockdown inhibited cell proliferation, colony formation and migration, blocked cell cycle at G2 phase, and induced cell apoptosis. Therefore, GSG2 might serve as a potential therapeutic target for pancreatic cancer therapy and a market for prognosis.
Collapse
Affiliation(s)
- Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yun Ren
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhufeng Lu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Chen
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Department of Anesthesia, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 Gongyuan East Road, Shanghai, 201700, China.
| |
Collapse
|
264
|
Li T, Li H, Li S, Xu S, Zhang W, Gao H, Xu H, Wu C, Wang W, Yu X, Liu L. Research progress and design optimization of CAR-T therapy for pancreatic ductal adenocarcinoma. Cancer Med 2019; 8:5223-5231. [PMID: 31339230 PMCID: PMC6718528 DOI: 10.1002/cam4.2430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with limited treatment options. Chimeric antigen receptor T cells (CAR-T) are genetically engineered T cells that can specifically kill tumor cells without major histocompatibility complex restriction. Encouraging progress in CAR-T therapy for PDAC has been made in preclinical and early phase clinical trials. Challenges in CAR-T therapy for solid tumors still exist, including immunosuppressive microenvironment, interstitial barrier, poor chemotaxis, and the "on-target, off-tumor" effect. Applying neoantigens of PDAC as targets for CAR-T therapy, recognizing the CAR-T subgroup with better antitumor effect, and designing a CAR-T system targeting stroma of PDAC may contribute to develop a powerful CAR-T therapy for PDAC in the future.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotaxis/immunology
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Research
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shuo Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shuaishuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Heli Gao
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Chuntao Wu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wenquan Wang
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
265
|
Elaileh A, Saharia A, Potter L, Baio F, Ghafel A, Abdelrahim M, Heyne K. Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. Am J Cancer Res 2019; 9:1871-1888. [PMID: 31598392 PMCID: PMC6780661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality among men and women in the United States. Its incidence has been on the rise, with a projected two-fold increase by 2030. PDAC carries a poor prognosis due to a lack of effective screening tools, limited understanding of pathophysiology, and ineffective treatment modalities. Recently, there has been a revolution in the world of oncology with the advent of novel treatments to combat this disease. However, the 5-year survival of PDAC remains unchanged at a dismal 8%. The aim of this review is to bring together several studies and identify various recent modalities that have been promising in treating PDAC.
Collapse
Affiliation(s)
- Ahmed Elaileh
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Ashish Saharia
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Lucy Potter
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Flavio Baio
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Afnan Ghafel
- Department of Radiology, The University of JordanAmman, Jordan
| | - Maen Abdelrahim
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Kirk Heyne
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| |
Collapse
|
266
|
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers. Cancers (Basel) 2019; 11:cancers11081162. [PMID: 31412666 PMCID: PMC6721565 DOI: 10.3390/cancers11081162] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, liver, breast and pancreatic cancers.
Collapse
|
267
|
Raj N, Bam R. Reciprocal Crosstalk Between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Front Cell Dev Biol 2019; 7:159. [PMID: 31448276 PMCID: PMC6695833 DOI: 10.3389/fcell.2019.00159] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The YAP1/Hippo and p53 pathways are critical protectors of genome integrity in response to DNA damage. Together, these pathways secure cellular adaptation and maintain overall tissue integrity through transcriptional re-programing downstream of various environmental and biological cues generated during normal tissue growth, cell proliferation, and apoptosis. Genetic perturbations in YAP1/Hippo and p53 pathways are known to contribute to the cells’ ability to turn rogue and initiate tumorigenesis. The Hippo and p53 pathways cooperate on many levels and are closely coordinated through multiple molecular components of their signaling pathways. Several functional and physical interactions have been reported to occur between YAP1/Hippo pathway components and the three p53 family members, p53, p63, and p73. Primarily, functional status of p53 family proteins dictates the subcellular localization, protein stability and transcriptional activity of the core component of the Hippo pathway, Yes-associated protein 1 (YAP1). In this review, we dissect the critical points of crosstalk between the YAP1/Hippo pathway components, with a focus on YAP1, and the p53 tumor suppressor protein family. For each p53 family member, we discuss the biological implications of their interaction with Hippo pathway components in determining cell fate under the conditions of tissue homeostasis and cancer pathogenesis.
Collapse
Affiliation(s)
- Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rakesh Bam
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
268
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
269
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
270
|
MCOLN1 Promotes Proliferation and Predicts Poor Survival of Patients with Pancreatic Ductal Adenocarcinoma. DISEASE MARKERS 2019; 2019:9436047. [PMID: 31481985 PMCID: PMC6701426 DOI: 10.1155/2019/9436047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/10/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Background MCOLN1 (mucolipin subfamily, member 1) was first identified as an autophagic regulator, which was essential for efficient fusion of both autophagosomes and late endosomes with lysosomes. This study is aimed at investigating the role of MCOLN1 in the development of pancreatic ductal adenocarcinoma (PDAC). Methods Immunohistochemistry (IHC) assay was conducted to evaluate the expression level of MCOLN1 in 82 human PDAC tumor tissues. Overall survival (OS) and recurrence-free survival (RFS) analysis was performed to assess the prognosis of patients. Colony formation and MTT assays [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] were performed to measure the proliferation capacity of tumor cells. The expression level of related genes was measured by RT-PCR (reverse transcription polymerase chain reaction) and western blot assays. The animal model was used to examine the effects of indicated protein on tumorigenesis in vivo. Results The results of IHC showed that a high level of MCOLN1 expression was associated with the poor clinical characteristics of PDAC patients. OS and RFS were significantly worse in patients with high MCOLN1 expression. Silencing of MCOLN1 dramatically blocked the proliferation of PDAC cells. Mechanism studies confirmed that knockdown of MCOLN1 decreased the expression of Ki67 and PCNA (proliferating cell nuclear antigen), two markers of cell proliferation. In vivo, MCOILN1 depletion reduced the formation and growth of tumors in mice. Conclusion The high level of MCOLN1 expression was associated with poor clinical outcomes of PDAC patients. MCOLN1 ablation could inhibit PDAC proliferation of both in vitro and in vivo, which provide a new insight and novel therapeutic target for the treatment of PDAC.
Collapse
|
271
|
Lee J, Park SS, Lee YK, Norton JA, Jeffrey SS. Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol 2019; 13:1623-1650. [PMID: 31243883 PMCID: PMC6670020 DOI: 10.1002/1878-0261.12537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Reliable biomarkers are required to evaluate and manage pancreatic ductal adenocarcinoma. Circulating tumor cells and circulating tumor DNA are shed into blood and can be relatively easily obtained from minimally invasive liquid biopsies for serial assays and characterization, thereby providing a unique potential for early diagnosis, forecasting disease prognosis, and monitoring of therapeutic response. In this review, we provide an overview of current technologies used to detect circulating tumor cells and circulating tumor DNA and describe recent advances regarding the multiple clinical applications of liquid biopsy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jee‐Soo Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Sung Sup Park
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Young Kyung Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineHallym University College of MedicineAnyangKorea
| | - Jeffrey A. Norton
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
272
|
Malik R, Luong T, Cao X, Han B, Shah N, Franco-Barraza J, Han L, Shenoy VB, Lelkes PI, Cukierman E. Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biol 2019; 81:50-69. [PMID: 30412725 PMCID: PMC6504628 DOI: 10.1016/j.matbio.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
It is predicted that pancreatic ductal adenocarcinoma (PDAC) will become the second most lethal cancer in the US by 2030. PDAC includes a fibrous-like stroma, desmoplasia, encompassing most of the tumor mass, which is produced by cancer-associated fibroblasts (CAFs) and includes their cell-derived extracellular matrices (CDMs). Since elimination of desmoplasia has proven detrimental to patients, CDM reprogramming, as opposed to stromal ablation, is therapeutically desirable. Hence, efforts are being made to harness desmoplasia's anti-tumor functions. We conducted biomechanical manipulations, using variations of pathological and physiological substrates in vitro, to culture patient-harvested CAFs and generate CDMs that restrict PDAC growth and spread. We posited that extrinsic modulation of the environment, via substrate rigidity, influences CAF's cell-intrinsic forces affecting CDM production. Substrates used were polyacrylamide gels of physiological (~1.5 kPa) or pathological (~7 kPa) stiffnesses. Results showed that physiological substrates influenced CAFs to generate CDMs similar to normal/control fibroblasts. We found CDMs to be softer than the corresponding underlying substrates, and CDM fiber anisotropy (i.e., alignment) to be biphasic and informed via substrate-imparted morphological CAF aspect ratios. The biphasic nature of CDM fiber anisotropy was mathematically modeled and proposed a correlation between CAF aspect ratios and CDM alignment; regulated by extrinsic and intrinsic forces to conserve minimal free energy. Biomechanical manipulation of CDMs, generated on physiologically soft substrates, leads to reduction in nuclear translocation of pERK1/2 in KRAS mutated pancreatic cells. ERK2 was found essential for CDM-regulated tumor cell spread. In vitro findings correlated with in vivo observations; nuclear pERK1/2 is significantly high in human PDAC samples. The study suggests that altering underlying substrates enable CAFs to remodel CDMs and restrict pancreatic cancer cell spread in an ERK2 dependent manner.
Collapse
Affiliation(s)
- R Malik
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America; Department Bioengineering, Temple University, United States of America
| | - T Luong
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - X Cao
- Materials Science and Engineering, University of Pennsylvania, United States of America
| | - B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States of America
| | - N Shah
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - J Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States of America
| | - V B Shenoy
- Materials Science and Engineering, University of Pennsylvania, United States of America
| | - P I Lelkes
- Department Bioengineering, Temple University, United States of America.
| | - E Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America.
| |
Collapse
|
273
|
Wang W, Friedland SC, Guo B, O’Dell MR, Alexander WB, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Myers JR, Ashton JM, Dunne RF, Steiner LA, Hezel AF. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut 2019; 68:1245-1258. [PMID: 30228219 PMCID: PMC6551318 DOI: 10.1136/gutjnl-2017-315541] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Here, we evaluate the contribution of AT-rich interaction domain-containing protein 1A (ARID1A), the most frequently mutated member of the SWItch/sucrose non-fermentable (SWI/SNF) complex, in pancreatic homeostasis and pancreatic ductal adenocarcinoma (PDAC) pathogenesis using mouse models. DESIGN Mice with a targeted deletion of Arid1a in the pancreas by itself and in the context of two common genetic alterations in PDAC, Kras and p53, were followed longitudinally. Pancreases were examined and analysed for proliferation, response to injury and tumourigenesis. Cancer cell lines derived from these models were analysed for clonogenic, migratory, invasive and transcriptomic changes. RESULTS Arid1a deletion in the pancreas results in progressive acinar-to-ductal metaplasia (ADM), loss of acinar mass, diminished acinar regeneration in response to injury and ductal cell expansion. Mutant Kras cooperates with homozygous deletion of Arid1a, leading to intraductal papillary mucinous neoplasm (IPMN). Arid1a loss in the context of mutant Kras and p53 leads to shorter tumour latency, with the resulting tumours being poorly differentiated. Cancer cell lines derived from Arid1a-mutant tumours are more mesenchymal, migratory, invasive and capable of anchorage-independent growth; gene expression analysis showed activation of epithelial-mesenchymal transition (EMT) and stem cell identity pathways that are partially dependent on Arid1a loss for dysregulation. CONCLUSIONS ARID1A plays a key role in pancreatic acinar homeostasis and response to injury. Furthermore, ARID1A restrains oncogenic KRAS-driven formation of premalignant proliferative IPMN. Arid1a-deficient PDACs are poorly differentiated and have mesenchymal features conferring migratory/invasive and stem-like properties.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Medicine, Hematology and Oncology Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott C Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Bing Guo
- Department of Medicine, Hematology and Oncology Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael R O’Dell
- Department of Medicine, Hematology and Oncology Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - William B Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, New York, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Richard F Dunne
- Department of Medicine, Hematology and Oncology Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Aram F Hezel
- Department of Medicine, Hematology and Oncology Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
274
|
Ideno N, Yamaguchi H, Okumura T, Huang J, Brun MJ, Ho ML, Suh J, Gupta S, Maitra A, Ghosh B. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. J Transl Med 2019; 99:1233-1244. [PMID: 30728464 DOI: 10.1038/s41374-018-0171-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario. The advent of CRISPR/Cas9 based gene editing can potentially circumvent many of the aforementioned shortcomings of conventional breeding schema, but ensuring the efficiency of gene editing in vivo remains a challenge. Here we have developed a pipeline for generating PDAC GEMMs of complex genotypes with high efficiency using a single "workhorse" mouse strain expressing Cas9 in the adult pancreas under a p48 promoter. Using adeno-associated virus (AAV) mediated delivery of multiplexed guide RNAs (sgRNAs) to the adult murine pancreas of p48-Cre; LSL-Cas9 mice, we confirm our ability to express an oncogenic Kras G12D allele through homology-directed repair (HDR), in conjunction with CRISPR-induced disruption of cooperating alleles (Trp53, Lkb1 and Arid1A). The resulting GEMMs demonstrate a spectrum of precursor lesions (pancreatic intraepithelial neoplasia [PanIN] or Intraductal papillary mucinous neoplasm [IPMN] with eventual progression to PDAC. Next generation sequencing of the resulting murine PDAC confirms HDR of oncogenic KrasG12D allele at the endogenous locus, and insertion deletion ("indel") and frameshift mutations of targeted tumor suppressor alleles. By using a single "workhorse" mouse strain and optimal AAV serotype for in vivo gene editing with combination of driver alleles, we present a facile autochthonous platform for interrogation of the PDAC genome.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroshi Yamaguchi
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Okumura
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathon Huang
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michelle L Ho
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
275
|
Amrutkar M, Aasrum M, Verbeke CS, Gladhaug IP. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer 2019; 19:596. [PMID: 31208372 PMCID: PMC6580453 DOI: 10.1186/s12885-019-5803-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gemcitabine remains a cornerstone in chemotherapy of pancreatic ductal adenocarcinoma (PDAC) despite suboptimal clinical effects that are partly due to the development of chemoresistance. Pancreatic stellate cells (PSCs) of the tumor stroma are known to interact with pancreatic cancer cells (PCCs) and influence the progression of PDAC through a complex network of signaling molecules that involve extracellular matrix (ECM) proteins. To understand tumor-stroma interactions regulating chemosensitivity, the role of PSC-secreted fibronectin (FN) in the development of gemcitabine resistance in PDAC was examined. Methods PSC cultures obtained from ten different human PDAC tumors were co-cultured with PCC lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, PANC-1 and SW-1990) either directly, or indirectly via incubation with PSC-conditioned medium (PSC-CM). Gemcitabine dose response cytotoxicity was determined using MTT based cell viability assays. Protein expression was assessed by western blotting and immunofluorescence. PSC-CM secretome analysis was performed by proteomics-based LC-MS/MS, and FN content in PSC-CM was determined with ELISA. Radiolabeled gemcitabine was used to determine the capacity of PCCs to uptake the drug. Results In both direct and indirect co-culture, PSCs induced varying degrees of resistance to the cytotoxic effects of gemcitabine among all cancer cell lines examined. A variable degree of increased phosphorylation of ERK1/2 was observed across all PCC lines upon incubation with PSC-CM, while activation of AKT was not detected. Secretome analysis of PSC-CM identified 796 different proteins, including several ECM-related proteins such as FN and collagens. Soluble FN content in PSC-CM was detected in the range 175–350 ng/ml. Neither FN nor PSC-CM showed any effect on PCC uptake capacity of gemcitabine. PCCs grown on FN-coated surface displayed higher resistance to gemcitabine compared to cells grown on non-coated surface. Furthermore, a FN inhibitor, synthetic Arg-Gly-Asp-Ser (RGDS) peptide significantly inhibited PSC-CM-induced chemoresistance in PCCs via downregulation of ERK1/2 phosphorylation. Conclusions The findings of this study suggest that FN secreted by PSCs in the ECM plays a key role in the development of resistance to gemcitabine via activation of ERK1/2. FN-blocking agents added to gemcitabine-based chemotherapy might counteract chemoresistance in PDAC and provide better clinical outcomes. Electronic supplementary material The online version of this article (10.1186/s12885-019-5803-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway. .,Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway.
| | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway
| | - Caroline S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway.,Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway.,Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Nydalen, 0424, Oslo, Norway
| |
Collapse
|
276
|
UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett 2019; 452:226-236. [PMID: 30905812 DOI: 10.1016/j.canlet.2019.03.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
UHRF1 (ubiquitin like with plant homeodomain and ring finger domains 1) is an epigenetic modifier that is overexpressed in some cancers, including pancreatic cancer, and mediates silencing of tumor suppressor genes. However, the role of UHRF1 in regulating pancreatic cancer metabolism and metastasis is not clear. In the present study, we demonstrated that silencing UHRF1 significantly inhibited aerobic glycolysis in pancreatic cancer cells. Furthermore, we demonstrated that UHRF1 knockdown decreased hypoxia inducible factor (HIF)1α levels and HIF1α targeted glycolytic genes. The Cancer Genome Atlas dataset analysis supported this observation. The Sirtuin (SIRT) family members regulate aerobic glycolysis in many cancers. We analyzed the correlation between UHRF1 and SIRT3-5 expression and found a significant negative correlation between UHRF1 and SIRT4. Further transcriptional and functional analysis demonstrates that SIRT4 is a downstream target of UHRF1 and negatively regulated aerobic glycolysis, cell proliferation and tumor growth. Our study identified a novel UHRF1/SIRT4 axis in regulation of pancreatic cancer cell proliferation, metabolism, and metastasis.
Collapse
|
277
|
Al-Ismaeel Q, Neal CP, Al-Mahmoodi H, Almutairi Z, Al-Shamarti I, Straatman K, Jaunbocus N, Irvine A, Issa E, Moreman C, Dennison AR, Emre Sayan A, McDearmid J, Greaves P, Tulchinsky E, Kriajevska M. ZEB1 and IL-6/11-STAT3 signalling cooperate to define invasive potential of pancreatic cancer cells via differential regulation of the expression of S100 proteins. Br J Cancer 2019; 121:65-75. [PMID: 31123345 PMCID: PMC6738112 DOI: 10.1038/s41416-019-0483-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background S100 proteins have been implicated in various aspects of cancer, including epithelial-mesenchymal transitions (EMT), invasion and metastasis, and also in inflammatory disorders. Here we examined the impact of individual members of this family on the invasion of pancreatic ductal adenocarcinoma (PDAC) cells, and their regulation by EMT and inflammation. Methods Invasion of PDAC cells was analysed in zebrafish embryo xenografts and in transwell invasion assays. Expression and regulation of S100 proteins was studied in vitro by immunoblotting, quantitative PCR and immunofluorescence, and in pancreatic lesions by immunohistochemistry. Results Whereas the expression of most S100 proteins is characteristic for epithelial PDAC cell lines, S100A4 and S100A6 are strongly expressed in mesenchymal cells and upregulated by ZEB1. S100A4/A6 and epithelial protein S100A14 respectively promote and represses cell invasion. IL-6/11-STAT3 pathway stimulates expression of most S100 proteins. ZEB1 synergises with IL-6/11-STAT3 to upregulate S100A4/A6, but nullifies the effect of inflammation on S100A14 expression. Conclusion EMT/ZEB1 and IL-6/11-STAT3 signalling act independently and congregate to establish the expression pattern of S100 proteins, which drives invasion. Although ZEB1 regulates expression of S100 family members, these effects are masked by IL-6/11-STAT3 signalling, and S100 proteins cannot be considered as bona fide EMT markers in PDAC.
Collapse
Affiliation(s)
- Qais Al-Ismaeel
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,College of Medicine, University of Duhokl, Kurdistan region, Duhok, Iraq
| | - Christopher P Neal
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - Hanaa Al-Mahmoodi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Zamzam Almutairi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Kees Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Nabil Jaunbocus
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Andrew Irvine
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eyad Issa
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Catherine Moreman
- Department of Cellular Pathology, Leicester Royal Infirmary, Leicester, UK
| | - Ashley R Dennison
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - Jonathan McDearmid
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Peter Greaves
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. .,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan.
| | - Marina Kriajevska
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
278
|
El Hassouni B, Li Petri G, Liu DSK, Cascioferro S, Parrino B, Hassan W, Diana P, Ali A, Frampton AE, Giovannetti E. Pharmacogenetics of treatments for pancreatic cancer. Expert Opin Drug Metab Toxicol 2019; 15:437-447. [PMID: 31100206 DOI: 10.1080/17425255.2019.1620731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Despite clinical efforts, pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The scarcity of effective therapies can be reflected by the lack of reliable biomarkers to adapt anticancer drugs prescription to tumors' and patients' features. Areas covered: Pharmacogenetics should provide the way to select patients who may benefit from a specific therapy that best matches individual and tumor genetic profile, but it has not yet led to gains in outcome. This review describes PDAC pharmacogenetics findings, critically reappraising studies on polymorphisms and -omics profiles correlated to response to gemcitabine, FOLFIRINOX, and nab-paclitaxel combinations, as well as limitations of targeted therapies. Further, we question whether personalized approaches will benefit patients to any significant degree, supporting the need of new strategies within well-designed trials and validated genomic tests for treatment decision-making. Expert opinion: A major challenge in PDAC is the identification of subgroups of patients who will benefit from treatments. Minimally-invasive tests to analyze biomarkers of drug sensitivity/toxicity should be developed alongside anticancer treatments. However, progress might fall below expectations because of tumor heterogeneity and clonal evolution. Whole-genome sequencing and liquid biopsies, as well as prospective validation in selected cohorts, should overcome the limitations of traditional pharmacogenetic approaches.
Collapse
Affiliation(s)
- Btissame El Hassouni
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Giovanna Li Petri
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Daniel S K Liu
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Stella Cascioferro
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Barbara Parrino
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Waqar Hassan
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Patrizia Diana
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Asif Ali
- d Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow UK.,e Institute of Basic Medical Sciences , Khyber Medical University , Peshawar , Pakistan
| | - Adam E Frampton
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,f Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza , Pisa , Italy
| |
Collapse
|
279
|
Yuan Y, Jiang JY, Wang JM, Sun J, Li C, Liu BQ, Yan J, Meng XN, Wang HQ. BAG3-positive pancreatic stellate cells promote migration and invasion of pancreatic ductal adenocarcinoma. J Cell Mol Med 2019; 23:5006-5016. [PMID: 31119886 PMCID: PMC6653255 DOI: 10.1111/jcmm.14352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
BAG3 is constitutively expressed in multiple types of cancer cells and its high expression is associated with tumour progression and poor prognosis of PDAC. However, little is known about the role of BAG3 in the regulation of stromal microenvironment of PDAC. The current study demonstrated that beside PDAC tumour cells, BAG3 was also expressed in some activated stroma cells in PDAC tissue, as well as in activated PSCs. In addition, the current study demonstrated that BAG3 expression in PSCs was involved in maintenance of PSCs activation and promotion of PDACs invasion via releasing multiple cytokines. The current study demonstrated that BAG3‐positive PSCs promoted invasion of PDACs via IL‐8, MCP1, TGF‐β2 and IGFBP2 in a paracrine manner. Furthermore, BAG3 sustained PSCs activation through IL‐6, TGF‐β2 and IGFBP2 in an autocrine manner. Thereby, the current study provides a new insight into the involvement of BAG3 in remodelling of stromal microenvironment favourable for malignant progression of PDAC, indicating that BAG3 might serve as a potential target for anti‐fibrosis of PDAC.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Cancer Hospital of China Medical University, Liaoning Province, Shenyang, P R China.,Liaoning Cancer Hospital & Institute, Liaoning Province, Shenyang, P R China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Mei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jia Sun
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiao-Na Meng
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
280
|
Tataranni T, Agriesti F, Pacelli C, Ruggieri V, Laurenzana I, Mazzoccoli C, Sala GD, Panebianco C, Pazienza V, Capitanio N, Piccoli C. Dichloroacetate Affects Mitochondrial Function and Stemness-Associated Properties in Pancreatic Cancer Cell Lines. Cells 2019; 8:cells8050478. [PMID: 31109089 PMCID: PMC6562462 DOI: 10.3390/cells8050478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Targeting metabolism represents a possible successful approach to treat cancer. Dichloroacetate (DCA) is a drug known to divert metabolism from anaerobic glycolysis to mitochondrial oxidative phosphorylation by stimulation of PDH. In this study, we investigated the response of two pancreatic cancer cell lines to DCA, in two-dimensional and three-dimension cell cultures, as well as in a mouse model. PANC-1 and BXPC-3 treated with DCA showed a marked decrease in cell proliferation and migration which did not correlate with enhanced apoptosis indicating a cytostatic rather than a cytotoxic effect. Despite PDH activation, DCA treatment resulted in reduced mitochondrial oxygen consumption without affecting glycolysis. Moreover, DCA caused enhancement of ROS production, mtDNA, and of the mitophagy-marker LC3B-II in both cell lines but reduced mitochondrial fusion markers only in BXPC-3. Notably, DCA downregulated the expression of the cancer stem cells markers CD24/CD44/EPCAM only in PANC-1 but inhibited spheroid formation/viability in both cell lines. In a xenograft pancreatic cancer mouse-model DCA treatment resulted in retarding cancer progression. Collectively, our results clearly indicate that the efficacy of DCA in inhibiting cancer growth mechanistically depends on the cell phenotype and on multiple off-target pathways. In this context, the novelty that DCA might affect the cancer stem cell compartment is therapeutically relevant.
Collapse
Affiliation(s)
- Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Gerardo Della Sala
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Concetta Panebianco
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy.
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
281
|
Hao F, Xu Q, Wang J, Yu S, Chang HH, Sinnett-Smith J, Eibl G, Rozengurt E. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS One 2019; 14:e0216603. [PMID: 31100067 PMCID: PMC6524808 DOI: 10.1371/journal.pone.0216603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
We examined the impact of statins on Yes-associated Protein (YAP) localization, phosphorylation and transcriptional activity in human and mouse pancreatic ductal adenocarcinoma (PDAC) cells. Exposure of sparse cultures of PANC-1 and MiaPaCa-2 cells to cerivastatin or simvastatin induced a striking re-localization of YAP from the nucleus to the cytoplasm and inhibited the expression of the YAP/TEAD-regulated genes Connective Tissue Growth Factor (CTGF) and Cysteine-rich angiogenic inducer 61 (CYR61). Statins also prevented YAP nuclear import and expression of CTGF and CYR61 stimulated by the mitogenic combination of insulin and neurotensin in dense culture of these PDAC cells. Cerivastatin, simvastatin, atorvastatin and fluvastatin also inhibited colony formation by PANC-1 and MiaPaCa-2 cells in a dose-dependent manner. In contrast, the hydrophilic statin pravastatin did not exert any inhibitory effect even at a high concentration (10 μM). Mechanistically, cerivastatin did not alter the phosphorylation of YAP at Ser127 in either PANC-1 or MiaPaCa-2 cells incubated without or with neurotensin and insulin but blunted the assembly of actin stress fiber in these cells. We extended these findings with human PDAC cells using primary KC and KPC cells, (expressing KrasG12D or both KrasG12D and mutant p53, respectively) isolated from KC or KPC mice. Using cultures of these murine cells, we show that lipophilic statins induced striking YAP translocation from the nucleus to the cytoplasm, inhibited the expression of Ctgf, Cyr61 and Birc5 and profoundly inhibited colony formation of these cells. Administration of simvastatin to KC mice subjected to diet-induced obesity prevented early pancreatic acini depletion and PanIN formation. Collectively, our results show that lipophilic statins restrain YAP activity and proliferation in pancreatic cancer cell models in vitro and attenuates early lesions leading to PDAC in vivo.
Collapse
Affiliation(s)
- Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Tianjin Medical University, Tianjin, China
| | - Qinhong Xu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Shuo Yu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
282
|
Ling J, Dong X, Wang L, Xue Y, Jia X, Song W, Li Q. MiR-27a-regulated FOXO1 promotes pancreatic ductal adenocarcinoma cell progression by enhancing Wnt/β-catenin signaling activity. Am J Transl Res 2019; 11:3069-3080. [PMID: 31217876 PMCID: PMC6556653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
FOXO1, also known as FKHR, is a member of the Forkhead transcription factor family. Our previous study revealed that FOXO1 expression is significantly downregulated in pancreatic ductal adenocarcinoma (PDAC). However, our knowledge on the clinical significance of FOXO1 and its biological roles and associated mechanisms in PDAC tumorigenesis remains limited. In this study, we confirmed that FOXO1 is commonly downregulated in PDAC tissues, at both the mRNA and protein levels, compared to adjacent tissues. Furthermore, FOXO1 inhibited cell proliferation and tumor formation both in vitro and in vivo, and promoted pancreatic cancer cell invasion. Downregulation of FOXO1 resulted in enhanced Wnt/β-catenin signaling activity, thereby promoting cell proliferation and epithelial-mesenchymal transition. The highly expressed miR-27a could potentially be used to target the 3'-UTR of FOXO1 in PDAC tissues to inhibit or at least slow down the invasion and proliferation of cancerous cells. Taken together, our findings suggest that the miR-27a/FOXO1/β-catenin axis may serve as a promising therapeutic target in PDAC progression.
Collapse
Affiliation(s)
- Jing Ling
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Xiao Dong
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Lei Wang
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Xuebing Jia
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai 200080, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai 200080, China
| |
Collapse
|
283
|
Kong C, Li Y, Liu Z, Ye J, Wang Z, Zhang L, Kong W, Liu H, Liu C, Pang H, Hu Z, Gao J, Qian F. Targeting the Oncogene KRAS Mutant Pancreatic Cancer by Synergistic Blocking of Lysosomal Acidification and Rapid Drug Release. ACS NANO 2019; 13:4049-4063. [PMID: 30912923 DOI: 10.1021/acsnano.8b08246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Survival of KRAS mutant pancreatic cancer is critically dependent on reprogrammed metabolism including elevated macropinocytosis, autophagy, and lysosomal degradation of proteins. Lysosomal acidification is indispensable to protein catabolism, which makes it an exploitable metabolic target for KRAS mutant pancreatic cancer. Herein we investigated ultra-pH-sensitive micelles (UPSM) with pH-specific buffering of organelle pH and rapid drug release as a promising therapy against pancreatic cancer. UPSM undergo micelle-unimer phase transition at their apparent p Ka, with dramatically increased buffer capacity in a narrow pH range (<0.3 pH). Cell studies including amino acid profiling showed that UPSM inhibited lysosomal catabolism more efficiently than conventional lysosomotropic agents ( e. g., chloroquine) and induced cell apoptosis under starved condition. Moreover, pH-triggered rapid drug release from triptolide prodrug-loaded UPSM (T-UPSM) significantly enhanced cytotoxicity over non-pH-sensitive micelles (T-NPSM). Importantly, T-UPSM demonstrated superior safety and antitumor efficacy over triptolide and T-NPSM in KRAS mutant pancreatic cancer mouse models. Our findings suggest that the ultra-pH-sensitive nanoparticles are a promising therapeutic platform to treat KRAS mutant pancreatic cancer through simultaneous lysosomal pH buffering and rapid drug release.
Collapse
Affiliation(s)
- Chao Kong
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Junxiao Ye
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zhaohui Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Ling Zhang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Weijian Kong
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Chun Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zeping Hu
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
284
|
Rozengurt E, Eibl G. Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development. World J Gastroenterol 2019; 25:1797-1816. [PMID: 31057295 PMCID: PMC6478619 DOI: 10.3748/wjg.v25.i15.1797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC. Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network. Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein (YAP) and WW-domain-containing transcriptional co-activator with PDZ-binding motif (TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
- CURE: Digestive Diseases Research Center, Los Angeles, CA 90095, United States
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
- CURE: Digestive Diseases Research Center, Los Angeles, CA 90095, United States
| |
Collapse
|
285
|
Qin Y, Hu Q, Xu J, Ji S, Dai W, Liu W, Xu W, Sun Q, Zhang Z, Ni Q, Zhang B, Yu X, Xu X. PRMT5 enhances tumorigenicity and glycolysis in pancreatic cancer via the FBW7/cMyc axis. Cell Commun Signal 2019; 17:30. [PMID: 30922330 PMCID: PMC6440122 DOI: 10.1186/s12964-019-0344-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The epigenetic factor protein arginine methyltransferase 5 (PRMT5) has been reported to play vital roles in a wide range of cellular processes, such as gene transcription, genomic organization, differentiation and cell cycle control. However, its role in pancreatic cancer remains unclear. Our study aimed to investigate the roles of PRMT5 in pancreatic cancer prognosis and progression and to explore the underlying molecular mechanism. METHODS Real-time PCR, immunohistochemistry and analysis of a dataset from The Cancer Genome Atlas (TCGA) were performed to study the expression of PRMT5 at the mRNA and protein levels in pancreatic cancer. Cell proliferation assays, including cell viability, colony formation ability and subcutaneous mouse model assays, were utilized to confirm the role of PRMT5 in cell proliferation and tumorigenesis. A Seahorse extracellular flux analyzer, a glucose uptake kit, a lactate level measurement kit and the measurement of 18F-FDG (fluorodeoxyglucose) uptake by PET/CT (positron emission tomography/computed tomography) imaging were used to verify the role of PRMT5 in aerobic glycolysis, which sustains cell proliferation. The regulatory effect of PRMT5 on cMyc, a master regulator of oncogenesis and aerobic glycolysis, was explored by quantitative PCR and protein stability measurements. RESULTS PRMT5 expression was significantly upregulated in pancreatic cancer tissues compared with that in adjacent normal tissues. Clinically, elevated expression of PRMT5 was positively correlated with worse overall survival in pancreatic cancer patients. Silencing PRMT5 expression inhibited the proliferation of pancreatic cancer cells both in vitro and in vivo. Moreover, PRMT5 regulated aerobic glycolysis in vitro in cell lines, in vivo in pancreatic cancer patients and in a xenograft mouse model used to measure 18F-FDG uptake. We found that mechanistically, PRMT5 posttranslationally regulated cMyc stability via F-box/WD repeat-containing protein 7 (FBW7), an E3 ubiquitin ligase that controls cMyc degradation. Moreover, PRMT5 epigenetically regulated the expression of FBW7 in pancreatic cancer cells. CONCLUSIONS The present study demonstrated that PRMT5 epigenetically silenced the expression of the tumor suppressor FBW7, leading to increased cMyc levels and the subsequent enhancement of the proliferation of and aerobic glycolysis in pancreatic cancer cells. The PRMT5/FBW7/cMyc axis could be a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.,Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
286
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
287
|
Luo J, Chen XQ, Li P. The Role of TGF-β and Its Receptors in Gastrointestinal Cancers. Transl Oncol 2019; 12:475-484. [PMID: 30594036 PMCID: PMC6314240 DOI: 10.1016/j.tranon.2018.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Early detection of gastrointestinal tumors improves patient survival. However, patients with these tumors are typically diagnosed at an advanced stage and have poor prognosis. The incidence and mortality of gastrointestinal cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers, are increasing worldwide. Novel diagnostic and therapeutic agents are required to improve patient survival and quality of life. The tumor microenvironment, which contains nontumor cells, signaling molecules such as growth factors and cytokines, and extracellular matrix proteins, plays a critical role in cancer cell proliferation, invasion, and metastasis. Transforming growth factor beta (TGF-β) signaling has dual roles in gastrointestinal tumor development and progression as both a tumor suppressor and tumor promoter. Here, we review the dynamic roles of TGF-β and its receptors in gastrointestinal tumors and provide evidence that targeting TGF-β signaling may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jingwen Luo
- Oncology Department, West China Hospital of Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xu-Qiao Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ping Li
- Oncology Department, West China Hospital of Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
288
|
Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Biosci Rep 2019; 39:BSR20182306. [PMID: 30765611 PMCID: PMC6390130 DOI: 10.1042/bsr20182306] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/28/2023] Open
Abstract
Overexpressed genes in tumors usually contributed to aggressiveness in pancreatic ductal adenocarcinoma (PDAC). Using Gene Expression Omnibus (GEO) profiles including GSE46234, GSE71989, and GSE107610, we detected overexpressed genes in tumors with R program, which were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO), and Reactome pathway databases. Then, we performed a survival analysis of enriched genes based on TCGA profile. Our results revealed that high BUB1B, CCNA2, CDC20, and CDK1 expression in tumors was significantly associated with worse overall survival (OS) (Log rank P=0.00338, P=0.0447, P=0.00965, and P=0.00479, respectively), which was validated using a Kaplan–Meier plotter with a median cutoff (Log rank P=0.028, P=0.0035, P=0.039, and P=0.0033, respectively). Moreover, overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues was significantly associated with disease-free survival (DFS) in PDAC patients (Log rank P=0.00565, P=0.0357, P=0.00104, and P=0.00121, respectively). BUB1B, CCNA2, CDC20, and CDK1 were significantly overexpressed in deceased PDAC patients (all P<0.01) and in patients with recurrence/disease progression (all P<0.05). In addition, PDAC patients with neoplasms of histologic grade G3-4 had significantly higher BUB1B, CCNA2 and CDC20 levels (all P<0.05). In conclusion, the up-regulation of BUB1B, CCNA2, CDC20, CDK1, and WEE1 in tumor tissues are associated with worse OS and DFS in PDAC and is correlated with advanced tumor stage and tumor development.
Collapse
|
289
|
Araujo-Gutierrez R, Van Eps JL, Kirui D, Bryan NS, Kang Y, Fleming JB, Fernandez-Moure JS. Enhancement of gemcitabine cytotoxicity in pancreatic adenocarcinoma through controlled release of nitric oxide. Biomed Microdevices 2019; 21:23. [PMID: 30790060 DOI: 10.1007/s10544-019-0375-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gemcitabine (GEM) is the first-line treatment for pancreatic adenocarcinoma (PAC) yet chemoresistance is common. Nitric oxide (NO) is the predominant species responsible for the cytotoxic action of macrophages against cancer cells yet localized delivery is difficult given the short half-life. We sought to study the effect of locally delivered NO on GEM mediated PAC cytotoxicity and the potential role of SMAD4 in this effect. We hypothesized that NO would enhance the cytotoxicity of GEM in a SMAD4 dependent manner. NO-Silica nanoparticles (NO-Si) were synthesized via a co-condensation of tetraethoxysilane with aminoalkoxysilane under high-pressure nitrous oxide. NO release was measured using chemiluminescence. A SMAD4 negative PAC cell line (SMAD4-) was made using retroviral knockdown of Panc1 PAC cells. Panc1 and SMAD4- cells were treated with gemcitabine (100 nm (hi) to 30 μm (lo)), 30 mg NOSi particles, or both (NOSihi or NOSilo) and cell viability assessed. NoSi reduced cell viability by 25.99% in Panc1 and 24.38% in SMAD4-. When combined with gemcitabine, further reductions were seen in a dose dependent manner for both cell lines. We have demonstrated the in-vitro dose dependent cytotoxic effects of NOSi. When combined with GEM there is a synergistic effect resulting in improved cytotoxicity seen in both Panc1 and SMAD4- PAC cells with a differential pattern of cell death seen at high concentrations of NO. These findings suggest not only that NO is useful chemosensitizing agent but that SMAD4- may play a role in its synergism with GEM.
Collapse
Affiliation(s)
- R Araujo-Gutierrez
- Department of Heart Failure & Transplant Cardiology, Houston Methodist Research Institute, 6565 Fannin St. F657, Houston, TX, 77030, USA
| | - J L Van Eps
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin St. Sm1661, Houston, TX, 77030, USA
| | - D Kirui
- Department of Maxillofacial Injury and Disease US Navy Medical Research Center, 3650 Chambers Pass, Fort Sam Houston, San Antonio, TX, 78234, USA
| | - N S Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Y Kang
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - J B Fleming
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - J S Fernandez-Moure
- Department of Surgery, Division of Traumatology, Critical Care, and Emergency Surgery, University of Pennsylvania, 51N 39th St. MOB Suite 120, Philadelphia, PA, 19104, USA.
| |
Collapse
|
290
|
Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, Tai S, Jin L, Teng CB. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif 2019; 52:e12568. [PMID: 30706544 PMCID: PMC6496122 DOI: 10.1111/cpr.12568] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/28/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives Clinical observations have demonstrated that copper levels elevate in several cancer types, and copper deprivation is shown to inhibit tumour angiogenesis and growth in both animal models and preclinical trials. However, the content of copper in pancreatic duct adenocarcinoma (PDAC) and whether it is a potential therapy target is still unknown. Materials and Methods The levels of copper in PDAC specimens were detected by ICP‐MS assays. Copper depletion in Panc‐1 or MiaPaCa‐2 cells was conducted via copper transporter 1 (SLC31A1) interference and copper chelator tetrathiomolybdate (TM) treatment. The effects of copper deprivation on cancer cells were evaluated by cell proliferation, migration, invasion, colony formation and cell apoptosis. The mechanism of copper deprivation‐caused cancer cell quiescence was resolved through mitochondrial dysfunction tests and autophagy studies. The tumour‐suppression experiments under the condition of copper block and/or autophagy inhibition were performed both in vitro and in xenografted mice. Results SLC31A1‐dependent copper levels are correlated with the malignant degree of pancreatic cancer. Blocking copper absorption could inhibit pancreatic cancer progression but did not increase cell death. We found that copper deprivation increased mitochondrial ROS level and decreased ATP level, which rendered cancer cells in a dormant state. Strikingly, copper deprivation caused an increase in autophagy to resist death of pancreatic cancer cells. Simultaneous treatment with TM and autophagy inhibitor CQ increased cell death of cancer cells in vitro and retarded cancer growth in vivo. Conclusions These findings reveal that copper deprivation‐caused cell dormancy and the increase in autophagy is a reason for the poor clinical outcome obtained from copper depletion therapies for cancers. Therefore, the combination of autophagy inhibition and copper depletion is potentially a novel strategy for the treatment of pancreatic cancer and other copper‐dependent malignant tumours.
Collapse
Affiliation(s)
- Ze Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rongtao Zhou
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yicheng Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiang su Key Laboratory of Drug Screening, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Liang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and the Center for Precision Medicine, The 1st Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiang su Key Laboratory of Drug Screening, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
291
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC ) is one of the deadliest human cancers and is associated with extensive desmoplastic changes in the tumor microenvironment. In this issue of EMBO Reports , two studies by Cortes et al 1 , 2 identify the G‐protein‐coupled estrogen receptor (GPER ) as an important regulator of the PDAC ‐associated stroma, modulating tissue stiffness, hypoxic responses, and desmoplasia. Intriguingly, the authors find that tamoxifen, which is widely used for its antagonizing effect on nuclear estrogen receptor (ER )‐positive breast cancers, acts as GPER agonist to normalize the PDAC microenvironment. The two studies thus open up new opportunities to explore tamoxifen as potential anti‐stromal therapy in PDAC .
Collapse
Affiliation(s)
- Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| |
Collapse
|
292
|
Ma Y, Xu J, Huang P, Bai X, Gao H. Ubiquitin-independent, Proteasome-mediated targeted degradation of KRAS in pancreatic adenocarcinoma cells using an engineered ornithine decarboxylase/antizyme system. IUBMB Life 2019; 71:57-65. [PMID: 30347501 PMCID: PMC7379993 DOI: 10.1002/iub.1945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
The oncogene KRAS not only promotes the tumorigenesis of pancreatic cancers but also is required for the malignant progression and metastasis of these cancers. Many methods have been explored to influence the malignant biological behavior of these cancers by targeting mutant KRAS. The ornithine decarboxylase/antizyme (ODC/AZ) system is another protein degradation pathway that exists in nature. The formation of an ODC and protein substrate complex through direct combination can promote its degradation by the 26S proteasome without ubiquitination, and this process can be catalyzed by AZ. In this study, we designed and reconstructed a chimeric fusion protein (named RC-ODC). The engineered fusion protein RC-ODC was confirmed to interact with the mutant KRAS oncoprotein in a co-immunoprecipitation assay, and the introduction of both RC-ODC and AZ resulted in degradation of the exogenous and endogenous mutant KRAS oncoprotein at the post-translational level independent of ubiquitination in vitro. Along with a decreased KRAS level, suppression of PANC-1 cell proliferation was detected in vitro and in vivo, and meanwhile downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) was also observed. Targeted degradation of the KRAS oncoprotein through the ODC/AZ pathway at the post-translational level may reflect a more effective future therapeutic strategy for pancreatic cancer patients. © 2018 The Authors. IUBMB Life published by Wiley Periodicals,Inc. on behalf of International Union of Biochemistry and Molecular Biology, 71(1):57-65, 2019.
Collapse
Affiliation(s)
- Yihui Ma
- Department of PathologyZhengzhou University1st Affiliated Hospital, ZhengzhouChina
| | - Jingjing Xu
- Department of PathologyZhengzhou University1st Affiliated Hospital, ZhengzhouChina
| | - Pei Huang
- Department of PathologyZhengzhou University1st Affiliated Hospital, ZhengzhouChina
| | - Xue Bai
- Department of PathologyZhengzhou University1st Affiliated Hospital, ZhengzhouChina
| | - Hanqing Gao
- Department of PathologyZhengzhou University1st Affiliated Hospital, ZhengzhouChina
| |
Collapse
|
293
|
Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichimura T, Kasinath V, Eskandari SK, Annabi N, Bromberg JS, Shultz LD, Greiner DL, Abdi R. Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine 2018; 38:79-88. [PMID: 30497977 PMCID: PMC6306381 DOI: 10.1016/j.ebiom.2018.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
294
|
Manning AA, Zhao L, Zhu Z, Xiao H, Redington CG, Ding VA, Stewart-Hester T, Bai Q, Dunlap J, Wakefield MR, Fang Y. IL-39 acts as a friend to pancreatic cancer. Med Oncol 2018; 36:12. [PMID: 30506430 DOI: 10.1007/s12032-018-1236-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is the most lethal digestive cancer and the fourth leading cause of cancer death in the US. IL-39, a heterodimer of p19 and EBI3, is a newly found cytokine and its role in the pathogenesis of neoplasia has not been studied yet. This study was designed to investigate the direct role of IL-39 in the growth of pancreatic cancer. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the direct effects of IL-39 on cell survival, proliferation and apoptosis of the widely studied pancreatic cancer cell line MiaPaCa-2. We further investigated the possible molecular mechanisms by using RT-PCR and IHC. The percentage of colonies of pancreatic cancer cells increased significantly in the presence of IL-39. This was paralleled with the increase in the OD value of cancer cells in the presence of IL-39. Interestingly, the relative caspase-3 activity in cancer cells decreased significantly in the presence of IL-39. Furthermore, the pro-tumor effect of IL-39 on pancreatic cancer cells correlated with decreased anti-proliferative molecule p21.The anti-apoptotic effect of IL-39 correlated with decreased pro-apoptotic molecule TRAILR1. These results suggest that IL-39 favors growth of pancreatic cancer by promoting growth and inhibiting apoptosis of cancer cells. This suggests that IL-39 acts as a friend to pancreatic cancer. Thus, inhibition of effect of IL-39 on cells might be a promising strategy to treat pancreatic cancer.
Collapse
Affiliation(s)
- Alicia A Manning
- Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Lei Zhao
- Department of Respiratory Medicine, The 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Chase G Redington
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Vivi A Ding
- Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Theodore Stewart-Hester
- Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jacob Dunlap
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
| |
Collapse
|
295
|
Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 2018; 9:4945. [PMID: 30470748 PMCID: PMC6251888 DOI: 10.1038/s41467-018-07472-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS is the key driver of pancreatic ductal adenocarcinoma (PDAC). We previously described a role for KRAS in PDAC tumor maintenance through rewiring of cellular metabolism to support proliferation. Understanding the details of this metabolic reprogramming in human PDAC may provide novel therapeutic opportunities. Here we show that the dependence on oncogenic KRAS correlates with specific metabolic profiles that involve maintenance of nucleotide pools as key mediators of KRAS-dependence. KRAS promotes these effects by activating a MAPK-dependent signaling pathway leading to MYC upregulation and transcription of the non-oxidative pentose phosphate pathway (PPP) gene RPIA, which results in nucleotide biosynthesis. The use of MEK inhibitors recapitulates the KRAS-dependence pattern and the expected metabolic changes. Antagonizing the PPP or pyrimidine biosynthesis inhibits the growth of KRAS-resistant cells. Together, these data reveal differential metabolic rewiring between KRAS-resistant and sensitive cells, and demonstrate that targeting nucleotide metabolism can overcome resistance to KRAS/MEK inhibition.
Collapse
|
296
|
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory reaction that includes immune cells, fibroblasts, extracellular matrix, vascular and lymphatic vessels, and nerves. Overwhelming evidence indicates that the pancreatic cancer microenvironment regulates cancer initiation, progression, and maintenance. Pancreatic cancer treatment has progressed little over the past several decades, and the prognosis remains one of the worst for any cancer. The contribution of the microenvironment to carcinogenesis is a key area of research, offering new potential targets for treating the disease. Here, we explore the composition of the pancreatic cancer stroma, discuss the network of interactions between different components, and describe recent attempts to target the stroma therapeutically. We also discuss current areas of active research related to the tumor microenvironment.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
297
|
Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, Smith LM, Yu X, Neelamegham S, Fu J, Xia L, Ponnusamy MP, Batra SK. Disruption of C1galt1 Gene Promotes Development and Metastasis of Pancreatic Adenocarcinomas in Mice. Gastroenterology 2018; 155:1608-1624. [PMID: 30086262 PMCID: PMC6219903 DOI: 10.1053/j.gastro.2018.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/23/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - Xinheng Yu
- Department of Chemical and Biological Engineering, Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA,Address Correspondence to: Surinder K. Batra, Ph.D., and Moorthy P. Ponnusamy, Ph.D., Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, and
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA,Address Correspondence to: Surinder K. Batra, Ph.D., and Moorthy P. Ponnusamy, Ph.D., Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, and
| |
Collapse
|
298
|
Gu D, Lin H, Zhang X, Fan Q, Chen S, Shahda S, Liu Y, Sun J, Xie J. Simultaneous Inhibition of MEK and Hh Signaling Reduces Pancreatic Cancer Metastasis. Cancers (Basel) 2018; 10:cancers10110403. [PMID: 30373214 PMCID: PMC6266431 DOI: 10.3390/cancers10110403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Hai Lin
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiaoli Zhang
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Qipeng Fan
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shaoxiong Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Safi Shahda
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Division of Medical Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Yunlong Liu
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jie Sun
- Departments of Medicine and Immunology, Mayo Clinic, Rochester, Minnesota, MN 55905, USA.
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
299
|
Abbruzzese JL, Andersen DK, Borrebaeck CA, Chari ST, Costello E, Cruz-Monserrate Z, Eibl G, Engleman EG, Fisher WE, Habtezion A, Kim SK, Korc M, Logsdon C, Lyssiotis CA, Pandol SJ, Rustgi A, Wolfe BM, Zheng L, Powers AC. The Interface of Pancreatic Cancer With Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:516-525. [PMID: 29702529 PMCID: PMC6361376 DOI: 10.1097/mpa.0000000000001037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC.
Collapse
Affiliation(s)
- James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Suresh T. Chari
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Ohio State University, Columbus, OH
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles
| | - Edgar G. Engleman
- Departments of Pathology and Medicine, Stanford University, Palo Alto, CA
| | | | - Aida Habtezion
- Division of Gastroenterology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Seung K. Kim
- Departments of Developmental Biology and Internal Medicine, Stanford University, Palo Alto, CA
| | - Murray Korc
- Department of Medicine, Indiana University Simon Cancer Center, Indianapolis, IN
| | - Craig Logsdon
- Departments of Cancer Biology and Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Costas A. Lyssiotis
- Division of Gastroenterology, Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Stephen J. Pandol
- Department of Medicine and Biomedical Sciences, Cedars Sinai Medical Center
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Anil Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce M. Wolfe
- Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Lei Zheng
- Departments of Oncology and Surgery, Johns Hopkins University, Baltimore, MD
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology & Biophysics, Vanderbilt University, VA Tennessee Valley Healthcare, Nashville, TN
| |
Collapse
|
300
|
Xu GL, Shen J, Xu YH, Wang WS, Ni CF. ROR1 is highly expressed in circulating tumor cells and promotes invasion of pancreatic cancer. Mol Med Rep 2018; 18:5087-5094. [PMID: 30272313 DOI: 10.3892/mmr.2018.9500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PaC) is an aggressive malignancy, which is associated with high levels of metastasis. Circulating tumor cells (CTCs), which may be considered a functional biomarker and promising treatment strategy for metastasis, are associated with the prognosis and progression of various metastatic cancers, including PaC. Receptor tyrosine kinase‑like orphan receptor 1 (ROR1) expression contributes to cell metastasis and poor clinical outcomes in malignant tumors. The present study aimed to explore the function of ROR1 in PaC CTCs. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to examine the expression of ROR1, E‑cadherin and N‑cadherin. Cell proliferative and invasive ability was assessed by MTT and Transwell assays, respectively. The results revealed that the mRNA and protein expression levels of ROR1 were augmented in PaC tissues. Furthermore, the mRNA expression levels of ROR1 were higher in CTCs compared with in peripheral blood cells, and ROR1 was more highly expressed in CTCs than in cells. Notably, CTCs exhibited a markedly greater proliferative and invasive capacity than PANC‑1 and SW‑1990 cells, whereas knockdown of endogenous ROR1 by small interfering RNA led to suppression of the invasion of CTCs. In addition, it was revealed that the mechanism underlying the effects of ROR1 on PaC CTC metastasis may involve the epithelial‑mesenchymal transition process. In conclusion, ROR1 may be considered a potential biomarker and therapeutic target for the treatment of PaC.
Collapse
Affiliation(s)
- Gui-Li Xu
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Shen
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yun-Hua Xu
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wan-Sheng Wang
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Cai-Fang Ni
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|