251
|
Abstract
The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.
Collapse
Affiliation(s)
- Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
252
|
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci U S A 2015; 112:16048-53. [PMID: 26655738 DOI: 10.1073/pnas.1521675112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We performed a screen for genetic suppressors of cobra, an Arabidopsis mutant with defects in cellulose formation and an increased ratio of unesterified/esterified pectin. We identified a suppressor named mongoose1 (mon1) that suppressed the growth defects of cobra, partially restored cellulose levels, and restored the esterification ratio of pectin to wild-type levels. mon1 was mapped to the MEDIATOR16 (MED16) locus, a tail mediator subunit, also known as SENSITIVE TO FREEZING6 (SFR6). When separated from the cobra mutation, mutations in MED16 caused resistance to cellulose biosynthesis inhibitors, consistent with their ability to suppress the cobra cellulose deficiency. Transcriptome analysis revealed that a number of cell wall genes are misregulated in med16 mutants. Two of these genes encode pectin methylesterase inhibitors, which, when ectopically expressed, partially suppressed the cobra phenotype. This suggests that cellulose biosynthesis can be affected by the esterification levels of pectin, possibly through modifying cell wall integrity or the interaction of pectin and cellulose.
Collapse
|
253
|
Mardones W, Callegari E, Eyzaguirre J. Heterologous expression of a Penicillium purpurogenum exo-arabinanase in Pichia pastoris and its biochemical characterization. Fungal Biol 2015; 119:1267-1278. [DOI: 10.1016/j.funbio.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/27/2022]
|
254
|
Strube ML, Jensen TK, Meyer AS, Boye M. In situ prebiotics: enzymatic release of galacto-rhamnogalacturonan from potato pulp in vivo in the gastrointestinal tract of the weaning piglet. AMB Express 2015; 5:66. [PMID: 26475351 PMCID: PMC4608949 DOI: 10.1186/s13568-015-0152-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Prebiotics may be efficient for prevention of intestinal infections in humans and animals by increasing the levels of beneficial bacteria and thereby improving gut health. Using purified prebiotics may however not be cost-effective in the livestock production industry. Instead, prebiotic fibres may be released directly in the gastro-intestinal tract by feeding enzymes with a suitable substrate and allowing the prebiotics to be produced in situ. Using low doses, 0.03 % enzyme-to-substrate ratio, of the enzymes pectin lyase and polygalacturonase in combination with potato pulp, a low-value industrial by-product, we show that high molecular weight galacto-rhamnogalacturonan can be solubilized in the stomach of weaning piglets. The release of this fiber is in the order of 22–38 % of the theoretical amount, achieved within 20 min. The catalysis takes place mainly in the stomach of the animal and is then followed by distribution through the small intestines. To our knowledge, this is the first paper describing targeted production of prebiotics in an animal model.
Collapse
|
255
|
Leclere L, Fransolet M, Cambier P, El Bkassiny S, Tikad A, Dieu M, Vincent SP, Van Cutsem P, Michiels C. Identification of a cytotoxic molecule in heat-modified citrus pectin. Carbohydr Polym 2015; 137:39-51. [PMID: 26686103 DOI: 10.1016/j.carbpol.2015.10.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023]
Abstract
Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin.
Collapse
Affiliation(s)
- Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Pierre Cambier
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Sandy El Bkassiny
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Abdellatif Tikad
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Marc Dieu
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Stéphane P Vincent
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Pierre Van Cutsem
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
256
|
Lin D, Lopez-Sanchez P, Gidley MJ. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydr Polym 2015; 126:108-21. [DOI: 10.1016/j.carbpol.2015.03.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 02/05/2023]
|
257
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|
258
|
Reinprecht Y, Arif M, Simon LC, Pauls KP. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites. PLoS One 2015; 10:e0130371. [PMID: 26167917 PMCID: PMC4500502 DOI: 10.1371/journal.pone.0130371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.
Collapse
Affiliation(s)
| | - Muhammad Arif
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - Leonardo C. Simon
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - K. Peter Pauls
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
| |
Collapse
|
259
|
Ślesak I, Szechyńska-Hebda M, Fedak H, Sidoruk N, Dąbrowska-Bronk J, Witoń D, Rusaczonek A, Antczak A, Drożdżek M, Karpińska B, Karpiński S. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides). PLANT, CELL & ENVIRONMENT 2015; 38:1275-84. [PMID: 24943986 DOI: 10.1111/pce.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 05/10/2023]
Abstract
The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Halina Fedak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Natalia Sidoruk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Andrzej Antczak
- Department of Wood Science and Wood Preservation, Warsaw University of Life Sciences, 02-787, Warszawa, Poland
| | - Michał Drożdżek
- Department of Wood Science and Wood Preservation, Warsaw University of Life Sciences, 02-787, Warszawa, Poland
| | - Barbara Karpińska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776, Warszawa, Poland
| |
Collapse
|
260
|
Jeong HY, Nguyen HP, Lee C. Genome-wide identification and expression analysis of rice pectin methylesterases: Implication of functional roles of pectin modification in rice physiology. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:23-9. [PMID: 26072144 DOI: 10.1016/j.jplph.2015.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/09/2015] [Accepted: 05/10/2015] [Indexed: 05/19/2023]
Abstract
Pectin, which is enriched in primary cell walls and middle lamellae, is an essential polysaccharide in all higher plants. Homogalacturonans (HGA), a major form of pectin, are synthesized and methylesterified by enzymes localized in the Golgi apparatus and transported into the cell wall. Depending on cell type, the degree and pattern of pectin methylesterification are strictly regulated by cell wall-localized pectin methylesterases (PMEs). Despite its importance in plant development and growth, little is known about the physiological functions of pectin in rice, which contains 43 different types of PME. The presence of pectin in rice cell walls has been substantiated by uronic acid quantification and immunodetection of JIM7 monoclonal antibodies. We performed PME activity assays with cell wall proteins isolated from different rice tissues. In accordance with data from Arabidopsis, the highest activity was observed in germinating tissues, young culm, and spikelets, where cells are actively elongating. Transcriptional profiling of OsPMEs by real-time PCR and meta-analysis indicates that PMEs exhibit spatial- and stress-specific expression patterns during rice development. Based on in silico analysis, we identified subcellular compartments, isoelectric point, and cleavage sites of OsPMEs. Our findings provide an important tool for further studies seeking to unravel the functional importance of pectin modification during plant growth and abiotic and biotic responses of grass plants.
Collapse
Affiliation(s)
- Ho Young Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Hong Phuong Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chanhui Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
261
|
Domingos S, Scafidi P, Cardoso V, Leitao AE, Di Lorenzo R, Oliveira CM, Goulao LF. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. FRONTIERS IN PLANT SCIENCE 2015; 6:457. [PMID: 26157448 PMCID: PMC4476107 DOI: 10.3389/fpls.2015.00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/08/2015] [Indexed: 05/11/2023]
Abstract
Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Pietro Scafidi
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Vania Cardoso
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Antonio E. Leitao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Rosario Di Lorenzo
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Cristina M. Oliveira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
| | - Luis F. Goulao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| |
Collapse
|
262
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
263
|
Extraction and structural characteristics of pectic polysaccharides from Abies sibirica L. Carbohydr Polym 2015; 123:228-36. [DOI: 10.1016/j.carbpol.2015.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/20/2022]
|
264
|
Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, Sibout R, Guillon F, Jamet E, Larré C. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins. Proteomics 2015; 15:2296-306. [PMID: 25787258 DOI: 10.1002/pmic.201400485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.
Collapse
Affiliation(s)
| | - Kahina Merah
- INRA, Biopolymères Interactions Assemblages, Nantes, France.,Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | | | | | | | - Richard Sibout
- INRA, Institut Jean-Pierre Bourgin (IJPB), Saclay Plant Science, Versailles, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Colette Larré
- INRA, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
265
|
Fernandes JC, Cobb F, Tracana S, Costa GJ, Valente I, Goulao LF, Amâncio S. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3951-3961. [PMID: 25828510 DOI: 10.1021/jf505169z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell wall (CW) is a dynamic structure that responds to stress. Water shortage (WS) impacts grapevine berry composition and its sensorial quality. In the present work, berry texture, skin CW composition, and expression of remodeling genes were investigated in two V. vinifera varieties, Touriga Nacional (TN) and Trincadeira (TR), under two water regimes, Full Irrigation (FI) and No Irrigation (NI). The global results allowed an evident separation between both varieties and the water treatments. WS resulted in increased anthocyanin contents in both varieties, reduced amounts in cellulose and lignin at maturation, but an increase in arabinose-containing polysaccharides more tightly bound to the CW in TR. In response to WS, the majority of the CW related genes were down-regulated in a variety dependent pattern. The results support the assumption that WS affects grape berries by stiffening the CW through alteration in pectin structure, supporting its involvement in responses to environmental conditions.
Collapse
Affiliation(s)
- J C Fernandes
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - F Cobb
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - S Tracana
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - G J Costa
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - I Valente
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - L F Goulao
- ‡BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão - Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - S Amâncio
- †DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
266
|
Dupree R, Simmons TJ, Mortimer JC, Patel D, Iuga D, Brown SP, Dupree P. Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy. Biochemistry 2015; 54:2335-45. [PMID: 25739924 DOI: 10.1021/bi501552k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass properties, such as recalcitrance to breakdown, it is poorly understood. Here, unprocessed dry (13)C-labeled stems from the model plant Arabidopsis thaliana were analyzed by a variety of (13)C solid state magic angle spinning nuclear magnetic resonance methods, such as one-dimensional cross-polarization and direct polarization, two-dimensional refocused INADEQUATE, RFDR, PDSD, and three-dimensional DARR, demonstrating their viability for the study of native polymer arrangements in intact secondary cell walls. All carbon sites of the two main glucose environments in cellulose (previously assigned to microfibril surface and interior residues) are clearly resolved, as are carbon sites of the other major components of the secondary cell wall: xylan and lignin. The xylan carbon 4 chemical shift is markedly different from that reported previously for solution or primary cell wall xylan, indicating significant changes in the helical conformation in these dried stems. Furthermore, the shift span indicates that xylan adopts a wide range of conformations in this material, with very little in the 31 conformation typical of xylan in solution. Additionally, spatial connections of noncarbohydrate species were observed with both cellulose peaks conventionally assigned as "surface" and as "interior" cellulose environments, raising questions about the origin of these two cellulose signals.
Collapse
Affiliation(s)
- Ray Dupree
- †Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Thomas J Simmons
- ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K
| | - Jennifer C Mortimer
- ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K
| | - Dharmesh Patel
- †Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.,‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K
| | - Dinu Iuga
- †Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Steven P Brown
- †Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Paul Dupree
- ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K
| |
Collapse
|
267
|
Leclere L, Fransolet M, Cote F, Cambier P, Arnould T, Van Cutsem P, Michiels C. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS One 2015; 10:e0115831. [PMID: 25794149 PMCID: PMC4368604 DOI: 10.1371/journal.pone.0115831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.
Collapse
Affiliation(s)
- Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Francois Cote
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Pierre Cambier
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Pierre Van Cutsem
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
268
|
Calcium is an organizer of cell polarity in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2168-72. [PMID: 25725133 DOI: 10.1016/j.bbamcr.2015.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Cell polarity is a fundamental property of pro- and eukaryotic cells. It is necessary for coordination of cell division, cell morphogenesis and signaling processes. How polarity is generated and maintained is a complex issue governed by interconnected feed-back regulations between small GTPase signaling and membrane tension-based signaling that controls membrane trafficking, and cytoskeleton organization and dynamics. Here, we will review the potential role for calcium as a crucial signal that connects and coordinates the respective processes during polarization processes in plants. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
269
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015; 3:10. [PMID: 25750913 PMCID: PMC4335395 DOI: 10.3389/fcell.2015.00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H. Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Tara J. Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Darren M. Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - William G. T. Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of AntwerpAntwerp, Belgium
| | - T. Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
270
|
Voiniciuc C, Yang B, Schmidt MHW, Günl M, Usadel B. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 2015; 16:3452-73. [PMID: 25658798 PMCID: PMC4346907 DOI: 10.3390/ijms16023452] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Bo Yang
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Markus Günl
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
271
|
Leroux C, Bouton S, Kiefer-Meyer MC, Fabrice TN, Mareck A, Guénin S, Fournet F, Ringli C, Pelloux J, Driouich A, Lerouge P, Lehner A, Mollet JC. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. PLANT PHYSIOLOGY 2015; 167:367-380. [PMID: 25524442 PMCID: PMC4326738 DOI: 10.1104/pp.114.250928] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 05/18/2023]
Abstract
Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.
Collapse
Affiliation(s)
- Christelle Leroux
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Sophie Bouton
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Tohnyui Ndinyanka Fabrice
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Alain Mareck
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Stéphanie Guénin
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Françoise Fournet
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Christoph Ringli
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Jérôme Pelloux
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France (C.L., M.-C.K.-M., A.M., A.D., P.L., A.L., J.-C.M.);Unité Biologie des Plantes et Innovation (S.B., S.G., F.F., J.P.) and Centre de Ressources Régionales en Biologie Moléculaire (S.G.), Université de Picardie Jules Verne, 80039 Amiens, France; andInstitute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (T.N.F., C.R.)
| |
Collapse
|
272
|
Carretero-Paulet L, Librado P, Chang TH, Ibarra-Laclette E, Herrera-Estrella L, Rozas J, Albert VA. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Mol Biol Evol 2015; 32:1284-95. [PMID: 25637935 DOI: 10.1093/molbev/msv020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.
Collapse
Affiliation(s)
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tien-Hao Chang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica Para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica Para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
273
|
Khaledi N, Taheri P, Tarighi S. Antifungal activity of various essential oils against Rhizoctonia solani
and Macrophomina phaseolina
as major bean pathogens. J Appl Microbiol 2015; 118:704-17. [DOI: 10.1111/jam.12730] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022]
Affiliation(s)
- N. Khaledi
- Department of Crop Protection; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - P. Taheri
- Department of Crop Protection; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - S. Tarighi
- Department of Crop Protection; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
274
|
Kohorn BD. The state of cell wall pectin monitored by wall associated kinases: A model. PLANT SIGNALING & BEHAVIOR 2015; 10:e1035854. [PMID: 26251881 DOI: 10.1080/15592324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stress response. Evidence is provided for a model for how newly generated pectin fragments compete for longer pectins to alter the WAK dependent responses.
Collapse
Affiliation(s)
- Bruce D Kohorn
- a Department of Biology ; Bowdoin College ; Brunswick , ME USA
| |
Collapse
|
275
|
Kohorn BD. The state of cell wall pectin monitored by wall associated kinases: A model. PLANT SIGNALING & BEHAVIOR 2015; 10:e1035854. [PMID: 26251881 PMCID: PMC4622591 DOI: 10.1080/15592324.2015.1035854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stress response. Evidence is provided for a model for how newly generated pectin fragments compete for longer pectins to alter the WAK dependent responses.
Collapse
Affiliation(s)
- Bruce D Kohorn
- Department of Biology; Bowdoin College; Brunswick, ME USA
- Correspondence to: Bruce D Kohorn;
| |
Collapse
|
276
|
|
277
|
de Souza AJ, Pauly M. Comparative genomics of pectinacetylesterases: Insight on function and biology. PLANT SIGNALING & BEHAVIOR 2015; 10:e1055434. [PMID: 26237162 PMCID: PMC4883895 DOI: 10.1080/15592324.2015.1055434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses.
Collapse
Affiliation(s)
- Amancio José de Souza
- Department of Plant and Microbial Biology; Energy Biosciences Institute; University of California; Berkeley, CA USA
| | - Markus Pauly
- Department of Plant and Microbial Biology; Energy Biosciences Institute; University of California; Berkeley, CA USA
- Correspondence to: Markus Pauly;
| |
Collapse
|
278
|
Rydahl MG, Fangel JU, Mikkelsen MD, Johansen IE, Andreas A, Harholt J, Ulvskov P, Jørgensen B, Domozych DS, Willats WGT. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells. Methods Mol Biol 2015; 1242:1-21. [PMID: 25408439 DOI: 10.1007/978-1-4939-1902-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.
Collapse
Affiliation(s)
- Maja G Rydahl
- Department of Plant and Environmental Sciences, Faculty ofScience, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Woodenberg WR, Pammenter NW, Farrant JM, Driouich A, Berjak P. Embryo cell wall properties in relation to development and desiccation in the recalcitrant-seeded Encephalartos natalensis (Zamiaceae) Dyer and Verdoorn. PROTOPLASMA 2015; 252:245-258. [PMID: 25015529 DOI: 10.1007/s00709-014-0672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/22/2014] [Indexed: 06/03/2023]
Abstract
Plant cell walls are dynamic entities that may change with development, differ between plant species and tissue type and play an important role in responses to various stresses. In this regard, the present investigation employed immunocytochemistry to determine wall composition and possible changes during development of immature and mature embryos of the recalcitrant-seeded cycad Encephalartos natalensis. Fluorescent and gold markers, together with cryo-scanning and transmission electron microscopy (TEM) were also used to analyse potential changes in the cell walls of mature embryos upon desiccation. Immature cell walls were characterised by low- and high methyl-esterified epitopes of pectin, rhamnogalacturonan-associated arabinan, and the hemicellulose xyloglucan. Arabinogalactan protein recognised by the LM2 antibody, along with rhamnogalacturonan-associated galactan and the hemicellulose xylan, were not positively localised using immunological probes, suggesting that the cell walls of the embryo of E. natalensis do not possess these epitopes. Interestingly, mature embryos appeared to be identical to immature ones with respect to the cell wall components investigated, implying that these may not change during the protracted post-shedding embryogenesis of this species. Drying appeared to induce some degree of cell wall folding in mature embryos, although this was limited by the abundant amyloplasts, which filled the cytomatrical space. Folding, however, was correlated with relatively high levels of wall plasticisers typified by arabinose polymers. From the results of this study, it is proposed that the embryo cell walls of E. natalensis are constitutively prepared for the flexibility required during cell growth and expansion, which may also facilitate the moderate cell wall folding observed in mature embryos upon drying. This, together with the abundant occurrence of amyloplasts in the cytomatrix, may provide sufficient mechanical stabilisation if water is lost, even though the seeds of this species are highly desiccation-sensitive.
Collapse
|
280
|
Kleczkowski LA, Decker D. Sugar Activation for Production of Nucleotide Sugars as Substrates for Glycosyltransferases in Plants. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University
| |
Collapse
|
281
|
Sénéchal F, Mareck A, Marcelo P, Lerouge P, Pelloux J. Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4. PLANT SIGNALING & BEHAVIOR 2015; 10:e983351. [PMID: 25826258 PMCID: PMC4622950 DOI: 10.4161/15592324.2014.983351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 05/18/2023]
Abstract
The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.
Collapse
Key Words
- ARF, Auxin response factor
- Arabidopsis thaliana
- BES1/BIM1-3, BRI1 EMS suppressor 1/BES1 interaction MYC-like 1-3
- Col-0, Columbia-0
- DM, Degree of methylesterification
- Gal-A, Galacturonic acid
- HG, Homogalacturonan
- IEF, Isoelectric focusing
- KO, Knock-out
- OG, Oligogalacturonide
- PG, Polygalacturonase
- PL, Pectate lyase
- PM, Plasma membrane
- PME, Pectin methylesterase
- PMEI, Pectin methylesterase inhibitor
- RLK, Receptor-like kinase
- SBT, Subtilase
- TF, Transcription factor
- WAK, Wall-associated kinase
- cell wall
- co-expression
- growth
- pectin
- pectin methylesterase
- pectin methylesterase inhibitor
- root
- subtilase
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne; Amiens, France
| | - Alain Mareck
- EA4358-GlycoMEV Glycobiologie et Matrice Extracellulaire Végétale; IFRMP 23; UFR des Sciences et Techniques; Université de Rouen; Mont-Saint-Aignan, France
| | - Paulo Marcelo
- ICAP Plateforme d’Ingénierie Cellulaire et Analyses des Protéines; Université de Picardie Jules Verne; Amiens, France
| | - Patrice Lerouge
- EA4358-GlycoMEV Glycobiologie et Matrice Extracellulaire Végétale; IFRMP 23; UFR des Sciences et Techniques; Université de Rouen; Mont-Saint-Aignan, France
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne; Amiens, France
- Correspondence to: Jérôme Pelloux;
| |
Collapse
|
282
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015. [PMID: 25750913 DOI: 10.3389/fcell.2015.00010/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | - William G T Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp Antwerp, Belgium
| | - T Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|
283
|
Worden N, Esteve VE, Domozych DS, Drakakaki G. Using chemical genomics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum. Methods Mol Biol 2015; 1242:23-39. [PMID: 25408440 DOI: 10.1007/978-1-4939-1902-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell wall is directly involved in cell growth, and its ability to loosen and rearrange allows for cell expansion through the existing turgor pressure. Thus, information on cell wall deposition and rearrangement can provide insights into the overall plant growth. This chapter describes two methods that can be used to evaluate cell expansion (1) in the model plant Arabidopsis thaliana and (2) the model alga Penium margaritaceum. These methods are further used to screen for small molecules that induce cell growth phenotypic changes affecting cell wall. Identification of such small molecules is beneficial due to their posttranslational mechanism of action that can be controlled in a temporal and spatial manner. Chemical genomics has the ability to overcome issues of genetic redundancy and lethality, which can hinder traditional genetic methods. The identification of small molecules in these screens will provide useful information on plant cell wall biology and overall plant growth.
Collapse
Affiliation(s)
- N Worden
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
284
|
In situ prebiotics for weaning piglets: in vitro production and fermentation of potato galacto-rhamnogalacturonan. Appl Environ Microbiol 2014; 81:1668-78. [PMID: 25527557 DOI: 10.1128/aem.03582-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Postweaning diarrhea (PWD) in pigs is a leading cause of economic loss in pork production worldwide. The current practice of using antibiotics and zinc to treat PWD is unsustainable due to the potential of antibiotic resistance and ecological disturbance, and novel methods are required. In this study, an in vitro model was used to test the possibility of producing prebiotic fiber in situ in the gastrointestinal (GI) tract of the piglet and the prebiotic activity of the resulting fiber in the terminal ileum. Soluble fiber was successfully produced from potato pulp, an industrial waste product, with the minimal enzyme dose in a simulated upper GI tract model extracting 26.9% of the initial dry matter. The fiber was rich in galactose and galacturonic acid and was fermented at 2.5, 5, or 10 g/liter in a glucose-free medium inoculated with the gut contents of piglet terminal ileum. Fermentations of 5 g/liter inulin or 5 g/liter of a purified potato fiber were used as controls. The fibers showed high fermentability, evident by a dose-dependent drop in pH and an increase in the organic acid content, with lactate in particular being increased. Deep sequencing showed a significant increase in the numbers of Lactobacillus and Veillonella organisms and an insignificant increase in the numbers of Clostridium organisms as well as a decrease in the numbers of Streptococcus organisms. Multivariate analysis showed clustering of the treatment groups, with the group treated with purified potato fiber being clearly separated from the other groups, as the microbiota composition was 60% Lactobacillus and almost free of Clostridium. For animal studies, a dosage corresponding to the 5-g/liter treatment is suggested.
Collapse
|
285
|
Lactococcus lactis metabolism and gene expression during growth on plant tissues. J Bacteriol 2014; 197:371-81. [PMID: 25384484 DOI: 10.1128/jb.02193-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.
Collapse
|
286
|
van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol 2014; 72:34-47. [PMID: 24792495 PMCID: PMC4217149 DOI: 10.1016/j.fgb.2014.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 04/18/2014] [Indexed: 11/06/2022]
Abstract
Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.
Collapse
Affiliation(s)
- Jolanda M van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Steven T Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Martin J Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Matthew Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Emelie C M Noltorp
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Kristin Wennberg
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Fetherston
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Beniston
- Biological Mass Spectrometry Facility biOMICS, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK.
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
287
|
Pan X, Tu T, Wang L, Luo H, Ma R, Shi P, Meng K, Yao B. A novel low-temperature-active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem 2014; 162:229-34. [DOI: 10.1016/j.foodchem.2014.04.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
288
|
Large-Scale Single Step Partial Purification of Potato Pectin Methylesterase that Enables the Use in Major Food Applications. Appl Biochem Biotechnol 2014; 174:1998-2006. [PMID: 25161039 PMCID: PMC4207958 DOI: 10.1007/s12010-014-1162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/15/2014] [Indexed: 10/25/2022]
|
289
|
de Souza A, Hull PA, Gille S, Pauly M. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. PLANTA 2014; 240:1123-38. [PMID: 25115560 PMCID: PMC4200376 DOI: 10.1007/s00425-014-2139-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 05/20/2023]
Abstract
PAE8 and PAE9 have pectin acetylesterase activity and together remove one-third of the cell wall acetate associated with pectin formation in Arabidopsis leaves. In pae8 and pae9 mutants, substantial amounts of acetate accumulate in cell walls. In addition, the inflorescence stem height is decreased. Pectic polysaccharides constitute a significant part of the primary cell walls in dicotyledonous angiosperms. This diverse group of polysaccharides has been implicated in several physiological processes including cell-to-cell adhesion and pathogenesis. Several pectic polysaccharides contain acetyl-moieties directly affecting their physical properties such as gelling capacity, an important trait for the food industry. In order to gain further insight into the biological role of pectin acetylation, a reverse genetics approach was used to investigate the function of genes that are members of the Pectin AcetylEsterase gene family (PAE) in Arabidopsis. Mutations in two members of the PAE family (PAE8 and PAE9) lead to cell walls with an approximately 20 % increase in acetate content. High-molecular-weight fractions enriched in pectic rhamnogalacturonan I (RGI) extracted from the mutants had increased acetate content. In addition, the pae8 mutant displayed increased acetate content also in low-molecular-weight pectic fractions. The pae8/pae9-2 double mutant exhibited an additive effect by increasing wall acetate content by up to 37 %, suggesting that the two genes are not redundant and act on acetyl-substituents of different pectic domains. The pae8 and pae8/pae9-2 mutants exhibit reduced inflorescence growth underscoring the role of pectic acetylation in plant development. When heterologously expressed and purified, both gene products were shown to release acetate from the corresponding mutant pectic fractions in vitro. PAEs play a significant role in modulating the acetylation state of pectic polymers in the wall, highlighting the importance of apoplastic metabolism for the plant cell and plant growth.
Collapse
Affiliation(s)
- Amancio de Souza
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| | - Philip A. Hull
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100 USA
| | - Sascha Gille
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Bayer CropScience, Weed Control Biochemistry and Biotechnology, 65929 Frankfurt am Main, Germany
| | - Markus Pauly
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| |
Collapse
|
290
|
Kaya M, Sousa AG, Crépeau MJ, Sørensen SO, Ralet MC. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. ANNALS OF BOTANY 2014; 114:1319-1326. [PMID: 25081519 PMCID: PMC4195561 DOI: 10.1093/aob/mcu150] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/10/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. METHODS Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. KEY RESULTS Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. CONCLUSIONS Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains.
Collapse
Affiliation(s)
- Merve Kaya
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - António G Sousa
- CP Kelco ApS., Ved Banen 16, DK-4623 Lille Skensved, Denmark University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, DK-1871 Frederiksberg, Denmark
| | | | | | | |
Collapse
|
291
|
Mierczyńska J, Cybulska J, Pieczywek PM, Zdunek A. Effect of Storage on Rheology of Water-Soluble, Chelate-Soluble and Diluted Alkali-Soluble Pectin in Carrot Cell Walls. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1392-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
292
|
Baldwin L, Domon JM, Klimek JF, Fournet F, Sellier H, Gillet F, Pelloux J, Lejeune-Hénaut I, Carpita NC, Rayon C. Structural alteration of cell wall pectins accompanies pea development in response to cold. PHYTOCHEMISTRY 2014; 104:37-47. [PMID: 24837358 DOI: 10.1016/j.phytochem.2014.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 05/23/2023]
Abstract
Pea (Pisum sativum) cell wall metabolism in response to chilling was investigated in a frost-sensitive genotype 'Terese' and a frost-tolerant genotype 'Champagne'. Cell walls isolated from stipules of cold acclimated and non-acclimated plants showed that cold temperatures induce changes in polymers containing xylose, arabinose, galactose and galacturonic acid residues. In the tolerant cultivar Champagne, acclimation is accompanied by increases in homogalacturonan, xylogalacturonan and highly branched Rhamnogalacturonan I with branched and unbranched (1→5)-α-arabinans and (1→4)-β-galactans. In contrast, the sensitive cultivar Terese accumulates substantial amounts of (1→4)-β-xylans and glucuronoxylan, but not the pectins. Greater JIM7 labeling was observed in Champagne compared to Terese, indicating that cold acclimation also induces an increase in the degree of methylesterification of pectins. Significant decrease in polygalacturonase activities in both genotypes were observed at the end of cold acclimation. These data indicate a role for esterified pectins in cold tolerance. The possible functions for pectins and their associated arabinans and galactans in cold acclimation are discussed.
Collapse
Affiliation(s)
- Laëtitia Baldwin
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - John F Klimek
- Department of Botany & Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, United States.
| | - Françoise Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Hélène Sellier
- INRA USTL UMR 1281, Laboratoire de Génétique et d'Amélioration des Plantes, Estrées-Mons BP50136, 80203 Péronne, France.
| | - Françoise Gillet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Isabelle Lejeune-Hénaut
- INRA USTL UMR 1281, Laboratoire de Génétique et d'Amélioration des Plantes, Estrées-Mons BP50136, 80203 Péronne, France.
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, United States.
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
293
|
Song D, Sun J, Li L. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. PLANT MOLECULAR BIOLOGY 2014; 85:601-12. [PMID: 24899403 DOI: 10.1007/s11103-014-0206-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/22/2014] [Indexed: 05/09/2023]
Abstract
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.
Collapse
Affiliation(s)
- Dongliang Song
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | |
Collapse
|
294
|
Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 2014; 426:3838-50. [PMID: 25088686 DOI: 10.1016/j.jmb.2014.07.028] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
Even though there are many factors that determine the human colon microbiota composition, diet is an important one because most microorganisms in the colon obtain energy for their growth by degrading complex dietary compounds, particularly dietary fibers. While fiber carbohydrates that escape digestion in the upper gastrointestinal tract are recognized to have a range of structures, the vastness in number of chemical structures from the perspective of the bacteria is not well appreciated. In this article, we introduce the concept of "discrete structure" that is defined as a unique chemical structure, often within a fiber molecule, which aligns with encoded gene clusters in bacterial genomes. The multitude of discrete structures originates from the array of different fiber types coupled with structural variations within types due to genotype and growing environment, anatomical parts of the grain or plant, discrete regions within polymers, and size of oligosaccharides and small polysaccharides. These thousands of discrete structures conceivably could be used to favor bacteria in the competitive colon environment. A global framework needs to be developed to better understand how dietary fibers can be used to obtain predicted changes in microbiota composition for improved health. This will require a multi-disciplinary effort that includes biological scientists, clinicians, and carbohydrate specialists.
Collapse
Affiliation(s)
- Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| |
Collapse
|
295
|
Shakhmatov EG, Toukach PV, Michailowa CICА, Makarova EN. Structural studies of arabinan-rich pectic polysaccharides from Abies sibirica L. Biological activity of pectins of A. sibirica. Carbohydr Polym 2014; 113:515-24. [PMID: 25256514 DOI: 10.1016/j.carbpol.2014.07.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/20/2023]
Abstract
Highly branched arabinan-rich pectic polysaccharides, containing 84% of arabinose, was extracted from wood greenery of Abies sibirica L. The structure of arabinan was studied by the 1D and 2D NMR spectroscopy. The macromolecule backbone was represented mainly by RG-I (molar ratio GalA:Rha ∼ 1.3:1) patterns with high degree of rhamnose branching. Side chains were comprised of 1,5-linked α-L-Araf residues (the major part of polymer mass), 1,3,5-di-O- and 1,2,3,5-tri-O-linked α-L-Araf residues, confirming the presence of highly branched 1,5-α-L-arabinan. Although most L-Araf were in α-anomeric form, minor terminal β-L-Araf-(1 →... was detected. 1,4-β-D-linked Galp residues found in the side chains account for minor AG-I or 1,4-galactan, as compared to arabinan. A tentative structure was proposed. Polysaccharides obtained from Siberian fir greenery were screened for biological activity. Galacturonan had a strongest stimulating effect on germination and growth rate of seeds, germs and roots of Triticum aestivum, Avena sativa, and Secale cereale.
Collapse
Affiliation(s)
- Evgeny G Shakhmatov
- Institute of Chemistry, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Pervomaiskaya str., 48, Syktyvkar 167982, Russia
| | - Philip V Toukach
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow 119991, Russia
| | - Capital Ie Cyrilliclena А Michailowa
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Pervomaiskaya str., 50, Syktyvkar 167982, Russia
| | - Elena N Makarova
- Institute of Chemistry, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Pervomaiskaya str., 48, Syktyvkar 167982, Russia.
| |
Collapse
|
296
|
Kohorn BD, Kohorn SL, Saba NJ, Martinez VM. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J Biol Chem 2014; 289:18978-86. [PMID: 24855660 DOI: 10.1074/jbc.m114.567545] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway.
Collapse
Affiliation(s)
- Bruce D Kohorn
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Susan L Kohorn
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Nicholas J Saba
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | | |
Collapse
|
297
|
McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC PLANT BIOLOGY 2014; 14:79. [PMID: 24666997 PMCID: PMC4108027 DOI: 10.1186/1471-2229-14-79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. RESULTS Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. CONCLUSIONS Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution.
Collapse
Affiliation(s)
- Thomas W McCarthy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua P Der
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Loren A Honaas
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
298
|
Gorshkova TA, Kozlova LV, Mikshina PV. Spatial structure of plant cell wall polysaccharides and its functional significance. BIOCHEMISTRY (MOSCOW) 2014; 78:836-53. [PMID: 24010845 DOI: 10.1134/s0006297913070146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plant polysaccharides comprise the major portion of organic matter in the biosphere. The cell wall built on the basis of polysaccharides is the key feature of a plant organism largely determining its biology. All together, around 10 types of polysaccharide backbones, which can be decorated by different substituents giving rise to endless diversity of carbohydrate structures, are present in cell walls of higher plants. Each of the numerous cell types present in plants has cell wall with specific parameters, the features of which mostly arise from the structure of polymeric components. The structure of polysaccharides is not directly encoded by the genome and has variability in many parameters (molecular weight, length, and location of side chains, presence of modifying groups, etc.). The extent of such variability is limited by the "functional fitting" of the polymer, which is largely based on spatial organization of the polysaccharide and its ability to form supramolecular complexes of an appropriate type. Consequently, the carrier of the functional specificity is not the certain molecular structure but the certain type of the molecules having a certain degree of heterogeneity. This review summarizes the data on structural features of plant cell wall polysaccharides, considers formation of supramolecular complexes, gives examples of tissue- and stage-specific polysaccharides and functionally significant carbohydrate-carbohydrate interactions in plant cell wall, and presents approaches to analyze the spatial structure of polysaccharides and their complexes.
Collapse
Affiliation(s)
- T A Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
| | | | | |
Collapse
|
299
|
Tu T, Bai Y, Luo H, Ma R, Wang Y, Shi P, Yang P, Meng K, Yao B. A novel bifunctional pectinase from Penicillium oxalicum SX6 with separate pectin methylesterase and polygalacturonase catalytic domains. Appl Microbiol Biotechnol 2014; 98:5019-28. [DOI: 10.1007/s00253-014-5533-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 01/28/2023]
|
300
|
Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr Polym 2014; 103:339-47. [DOI: 10.1016/j.carbpol.2013.12.057] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/19/2022]
|