251
|
Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opin Microbiol 2009; 12:415-21. [PMID: 19616990 DOI: 10.1016/j.mib.2009.06.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 11/23/2022]
Abstract
Activation of professional phagocytes with the concomitant generation of oxidant species is a medullar innate immune process for the control of acute Trypanosoma cruzi infection. Recent data reinforce the hypothesis that parasites more prepared to deal with the host-oxidative assault are more efficient for the establishment of Chagas disease. For instance, parasites overexpressing peroxiredoxins are more resistant to macrophage-derived peroxynitrite, a key cytotoxic oxidant produced in the phagosome towards the internalized parasite. Differentiation to the infective metacyclic trypomastigote is accompanied by an increased expression of antioxidant enzymes. Moreover, augmented antioxidant enzyme expression and activities correlate with higher parasite virulence in experimental infections. The potency of the parasite antioxidant armamentarium influences the final fate of the Trypanosoma cruzi journey to macrophage invasion at the onset of infection.
Collapse
|
252
|
Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, Chang S, Pecoul B. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 2009; 3:e484. [PMID: 19582163 PMCID: PMC2702098 DOI: 10.1371/journal.pntd.0000484] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Isabela Ribeiro
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | | | - Fabiana Alves
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Graciela Diap
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Robert Don
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Michael O. Harhay
- Masters of Public Health Program, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Shing Chang
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| | - Bernard Pecoul
- Drugs for Neglected Diseases
initiative, Geneva, Switzerland
| |
Collapse
|
253
|
Alves MJM, Mortara RA. A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells? Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:76-88. [DOI: 10.1590/s0074-02762009000900013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/29/2009] [Indexed: 12/31/2022] Open
|
254
|
Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, da Silveira JF. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 2009; 8:3642-52. [PMID: 19374451 PMCID: PMC2752740 DOI: 10.1021/pr800887u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T. cruzi. These fractions were analyzed by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS), resulting in the identification of 98 proteins of metacyclic trypomastigotes and 280 of epimastigotes. Of those, approximately 65% (n=245) had predicted lipid post-translational modification sites (i.e., GPI-anchor, myristoylation, or prenylation), signal-anchor sequence, or transmembrane domains that could explain their solubility in detergent solution. The identification of some of these modified proteins was also validated by immunoblotting. We also present evidence that, in contrast to the noninfective proliferative epimastigote forms, the infective nonproliferative metacyclic trypomastigote forms express a large repertoire of surface glycoproteins, such as GP90 and GP82, which are involved in adhesion and invasion of host cells. Taken together, our results unequivocally show stage-specific protein profiles that appear to be related to the biology of each T. cruzi insect-derived developmental form.
Collapse
Affiliation(s)
- Esteban M. Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023−062, São Paulo, Brazil
| | - Ernesto S. Nakayasu
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Luciana G. Gentil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023−062, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023−062, São Paulo, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023−062, São Paulo, Brazil
| |
Collapse
|
255
|
Piacenza L, Zago MP, Peluffo G, Alvarez MN, Basombrio MA, Radi R. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int J Parasitol 2009; 39:1455-64. [PMID: 19505468 DOI: 10.1016/j.ijpara.2009.05.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites' antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson's coefficient: 0.617, 0.771, 0.499; respectively, P<0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease.
Collapse
Affiliation(s)
- L Piacenza
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
256
|
Xu D, Brandán CP, Basombrío MA, Tarleton RL. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiol 2009; 9:90. [PMID: 19432966 PMCID: PMC2688506 DOI: 10.1186/1471-2180-9-90] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 05/11/2009] [Indexed: 11/24/2022] Open
Abstract
Background Trypanosoma cruzi, a kinetoplastid protozoan parasite that causes Chagas disease, infects approximately 15 million people in Central and South America. In contrast to the substantial in silico studies of the T. cruzi genome, transcriptome, and proteome, only a few genes have been experimentally characterized and validated, mainly due to the lack of facile methods for gene manipulation needed for reverse genetic studies. Current strategies for gene disruption in T. cruzi are tedious and time consuming. In this study we have compared the conventional multi-step cloning technique with two knockout strategies that have been proven to work in other organisms, one-step-PCR- and Multisite Gateway-based systems. Results While the one-step-PCR strategy was found to be the fastest method for production of knockout constructs, it does not efficiently target genes of interest using gene-specific sequences of less than 80 nucleotides. Alternatively, the Multisite Gateway based approach is less time-consuming than conventional methods and is able to efficiently and reproducibly delete target genes. Conclusion Using the Multisite Gateway strategy, we have rapidly produced constructs that successfully produce specific gene deletions in epimastigotes of T. cruzi. This methodology should greatly facilitate reverse genetic studies in T. cruzi.
Collapse
Affiliation(s)
- Dan Xu
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
257
|
Bartholomeu DC, Cerqueira GC, Leão ACA, daRocha WD, Pais FS, Macedo C, Djikeng A, Teixeira SMR, El-Sayed NM. Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res 2009; 37:3407-17. [PMID: 19336417 PMCID: PMC2691823 DOI: 10.1093/nar/gkp172] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to ∼6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5′ and 3′ untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 2009; 77:2193-200. [PMID: 19273559 DOI: 10.1128/iai.01542-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan Trypanosoma cruzi expresses multiple isoforms of the GP63 family of metalloproteases. Polyclonal antiserum against recombinant GP63 of T. cruzi (TcGP63) was used to study TcGP63 expression and localization in this organism. Western blot analysis revealed that TcGP63 is 61 kDa in epimastigotes, amastigotes, and tissue culture-derived trypomastigotes but 55 kDa in metacyclic trypomastigotes. Antiserum specific for Leishmania amazonensis GP63 specifically reacted with a 55-kDa TcGP63 form in metacyclic trypomastigotes, suggesting stage-specific expression of different isoforms. Surface biotinylation and endoglycosidase digestion experiments showed that TcGP63 is an ecto-glycoprotein in epimastigotes but is intracellular and lacking in N-linked glycans in metacyclic trypomastigotes. Immunofluorescence microscopy showed that TcGP63 is localized on the surfaces of epimastigotes but distributed intracellularly in metacyclic trypomastigotes. TcGP63 is soluble in cold Triton X-100, in contrast to Leishmania GP63, which is detergent resistant in this medium, suggesting that GP63 is not raft associated in T. cruzi. Western blot comparison of our antiserum to a previously described anti-peptide TcGP63 antiserum indicates that each antiserum recognizes distinct TcGP63 proteins. Preincubation of trypomastigotes with either TcGP63 antiserum or a purified TcGP63 C-terminal subfragment reduced infection of host myoblasts. These results show that TcGP63 is expressed at all life stages and that individual isoforms play a role in host cell infection.
Collapse
|
259
|
Ayub MJ, Atwood J, Nuccio A, Tarleton R, Levin MJ. Proteomic analysis of the Trypanosoma cruzi ribosomal proteins. Biochem Biophys Res Commun 2009; 382:30-4. [PMID: 19245787 DOI: 10.1016/j.bbrc.2009.02.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 02/19/2009] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is a parasite responsible for Chagas disease. The identification of new targets for chemotherapy is a major challenge for the control of this disease. Several lines of evidences suggest that the translational system in trypanosomatids show important differences compared to other eukaryotes. However, there little is known information about this. We have performed a detailed data mining search for ribosomal protein genes in T. cruzi genome data base combined with mass spectrometry analysis of purified T. cruzi ribosomes. Our results show that T. cruzi ribosomal proteins have approximately 50% sequence identity to yeast ones. Nevertheless, some parasite proteins are longer due to the presence of several N- or C-terminal extensions, which are exclusive of trypanosomatids. In particular, L19 and S21 show C-terminal extensions of 168 and 164 amino acids, respectively. In addition, we detected two 60S subunit proteins that had not been previously detected in the T. cruzi total proteome; namely, L22 and L42.
Collapse
Affiliation(s)
- Maximiliano Juri Ayub
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
260
|
Proline racemases are conserved mitogens: characterization of a Trypanosoma vivax proline racemase. Mol Biochem Parasitol 2009; 165:170-9. [PMID: 19428664 DOI: 10.1016/j.molbiopara.2009.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 01/24/2009] [Accepted: 02/02/2009] [Indexed: 11/22/2022]
Abstract
Trypanosoma cruzi proline racemases (TcPRAC) are the only eukaryotic proline racemases described so far. Except their role in the interconversion of free L- and D-proline enantiomers, parasite TcPRACs are involved in major T. cruzi biological pathways. These essential enzymes are implicated in the process of parasite differentiation and the acquisition of virulence during metacyclogenesis and are currently considered as key targets for drug development against Chagas' disease. In this study, we searched for the presence of TcPRAC gene homologues among other trypanosomatid genomes. Despite the high degree of gene synteny observed in Kinetoplastidae genomes, PRAC genes are missing in Trypanosoma brucei, Trypanosoma congolense and Leishmania spp. genomes. Interestingly, we identified a hypothetical PRAC gene in Trypanosoma vivax that is the major hemoparasite responsible for livestock trypanosomiasis, a serious economical impact for most of African and South American countries. We report here that the product of this T. vivax gene is bona fide a proline racemase with an activity comparable to the one we described previously for TcPRAC. Inhibition studies using the pyrrole-2-carboxylic acid confirmed that this compound is a competitive inhibitor for both TcPRAC and TvPRAC enzymes. Similarly to TcPRAC and all members of the racemase family studied so far in other pathogenic and nosocomial bacteria, our results show that TvPRAC is a T-cell-independent B-cell mitogen. Therefore the product of the novel TvPRAC gene identified in T. vivax and reported herein has the potential to be used as a drug target for this parasite-based trypanosomiasis.
Collapse
|
261
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
262
|
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 2009; 9:434-50. [PMID: 19105172 PMCID: PMC2869593 DOI: 10.1002/pmic.200800477] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Indexed: 11/07/2022]
Abstract
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2-D LC-MS/MS and gel-LC-MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web-based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.
Collapse
Affiliation(s)
- Aswini K. Panigrahi
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Yuko Ogata
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Alena Zíková
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Atashi Anupama
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Rachel A. Dalley
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Nathalie Acestor
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Peter J. Myler
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
263
|
Crager SE, Price M. Prizes and parasites: incentive models for addressing Chagas disease. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2009; 37:292-304. [PMID: 19493074 DOI: 10.1111/j.1748-720x.2009.00373.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent advances in immunology have provided a foundation of knowledge to understand many of the intricacies involved in manipulating the human response to fight parasitic infections, and a great deal has been learned from malaria vaccine efforts regarding strategies for developing parasite vaccines. There has been some encouraging progress in the development of a Chagas vaccine in animal models. A prize fund for Chagas could be instrumental in ensuring that these efforts are translated into products that benefit patients.
Collapse
|
264
|
Sturm NR, Martinez LLIT, Thomas S. Kinetoplastid genomics: the thin end of the wedge. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2008; 8:901-6. [PMID: 18675383 PMCID: PMC2676795 DOI: 10.1016/j.meegid.2008.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 12/31/2022]
Abstract
The completion of the genome sequencing projects for major pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania major has enabled numerous studies that would have been difficult or impossible to perform otherwise. New technologies in sequencing and protein analyses promise further rapid expansion in our capabilities. The keys to successful use of these new tools are recognizing the power and limitations of studies performed thus far, grasping the unrealized potential of new and developing technologies, and creating access to a multidisciplinary set of skills that will facilitate research, particularly in the bioinformatic analysis of the reams of data that will be forthcoming. In this Discussion, we will provide an overview of kinetoplastid genomics studies with emphasis on studies advanced through genomic data, and a preview of what may come in the near future.
Collapse
Affiliation(s)
- Nancy R Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
265
|
Sodré CL, Chapeaurouge AD, Kalume DE, de Mendonça Lima L, Perales J, Fernandes O. Proteomic map of Trypanosoma cruzi CL Brener: the reference strain of the genome project. Arch Microbiol 2008; 191:177-84. [PMID: 19002435 DOI: 10.1007/s00203-008-0439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/08/2008] [Accepted: 10/13/2008] [Indexed: 12/11/2022]
Abstract
In this work two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of soluble proteins from epimastigote form of Trypanosoma cruzi CL Brener. This strain is a hybrid organism derived from two genotypes, T. cruzi I and T. cruzi II and was chosen for genome sequencing. The two-dimensional gel electrophoresis showed that most of proteins focused at 4-7 pH range. The identification demonstrated that several proteins were in multiple isoforms, such as tubulin and heat shock proteins. Potential targets for development of chemotherapeutic agents like arginine kinase, an enzyme absent from mammalian tissues that is involved in the energy supply of the parasite, were also detected.
Collapse
Affiliation(s)
- Cátia Lacerda Sodré
- Laboratory of Molecular Epidemiology of Infectious Diseases, Oswaldo Cruz Institute-IOC, Oswaldo Cruz Foundation-FIOCRUZ. Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ 21045-900, Brazi.
| | | | | | | | | | | |
Collapse
|
266
|
Ratier L, Urrutia M, Paris G, Zarebski L, Frasch AC, Goldbaum FA. Relevance of the diversity among members of the Trypanosoma cruzi trans-sialidase family analyzed with camelids single-domain antibodies. PLoS One 2008; 3:e3524. [PMID: 18949046 PMCID: PMC2568053 DOI: 10.1371/journal.pone.0003524] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/27/2008] [Indexed: 01/30/2023] Open
Abstract
The sialic acid present in the protective surface mucin coat of Trypanosoma cruzi is added by a membrane anchored trans-sialidase (TcTS), a modified sialidase that is expressed from a large gene family. In this work, we analyzed single domain camelid antibodies produced against trans-sialidase. Llamas were immunized with a recombinant trans-sialidase and inhibitory single-domain antibody fragments were obtained by phage display selection, taking advantage of a screening strategy using an inhibition test instead of the classic binding assay. Four single domain antibodies displaying strong trans-sialidase inhibition activity against the recombinant enzyme were identified. They share the same complementarity-determining region 3 length (17 residues) and have very similar sequences. This result indicates that they likely derived from a unique clone. Probably there is only one structural solution for tight binding inhibitory antibodies against the TcTS used for immunization. To our surprise, this single domain antibody that inhibits the recombinant TcTS, failed to inhibit the enzymatic activity present in parasite extracts. Analysis of individual recombinant trans-sialidases showed that enzymes expressed from different genes were inhibited to different extents (from 8 to 98%) by the llama antibodies. Amino acid changes at key positions are likely to be responsible for the differences in inhibition found among the recombinant enzymes. These results suggest that the presence of a large and diverse trans-sialidase family might be required to prevent the inhibitory response against this essential enzyme and might thus constitute a novel strategy of T. cruzi to evade the host immune system.
Collapse
Affiliation(s)
- Laura Ratier
- Instituto de Investigaciones Biotecnológicas-Instituto
Tecnológico de Chascomús (IIB-INTECH), Universidad
Nacional de General San Martín-CONICET, Buenos Aires,
Argentina
| | - Mariela Urrutia
- Fundación Instituto Leloir, Instituto de Investigaciones
Bioquímicas Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gastón Paris
- Fundación Instituto Leloir, Instituto de Investigaciones
Bioquímicas Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Laura Zarebski
- Fundación Instituto Leloir, Instituto de Investigaciones
Bioquímicas Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alberto C. Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto
Tecnológico de Chascomús (IIB-INTECH), Universidad
Nacional de General San Martín-CONICET, Buenos Aires,
Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, Instituto de Investigaciones
Bioquímicas Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
267
|
Cooley G, Etheridge RD, Boehlke C, Bundy B, Weatherly DB, Minning T, Haney M, Postan M, Laucella S, Tarleton RL. High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection. PLoS Negl Trop Dis 2008; 2:e316. [PMID: 18841200 PMCID: PMC2556098 DOI: 10.1371/journal.pntd.0000316] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/12/2008] [Indexed: 11/21/2022] Open
Abstract
Background Diagnosis of Trypanosoma cruzi infection by direct pathogen detection is complicated by the low parasite burden in subjects persistently infected with this agent of human Chagas disease. Determination of infection status by serological analysis has also been faulty, largely due to the lack of well-characterized parasite reagents for the detection of anti-parasite antibodies. Methods In this study, we screened more than 400 recombinant proteins of T. cruzi, including randomly selected and those known to be highly expressed in the parasite stages present in mammalian hosts, for the ability to detect anti-parasite antibodies in the sera of subjects with confirmed or suspected T. cruzi infection. Findings A set of 16 protein groups were identified and incorporated into a multiplex bead array format which detected 100% of >100 confirmed positive sera and also documented consistent, strong and broad responses in samples undetected or discordant using conventional serologic tests. Each serum had a distinct but highly stable reaction pattern. This diagnostic panel was also useful for monitoring drug treatment efficacy in chronic Chagas disease. Conclusions These results substantially extend the variety and quality of diagnostic targets for Chagas disease and offer a useful tool for determining treatment success or failure. The diagnosis of Trypanosoma cruzi infection (the cause of human Chagas disease) is difficult because the symptoms of the infection are often absent or non-specific, and because the parasites themselves are usually below the level of detection in the infected subjects. Therefore, diagnosis generally depends on the measurement of T. cruzi–specific antibodies produced in response to the infection. However, current methods to detect anti–T. cruzi antibodies are relatively poor. In this study, we have conducted a broad screen of >400 T. cruzi proteins to identify those proteins which are best able to detect anti–T. cruzi antibodies. Using a set of proteins selected by this screen, we were able to detect 100% of >100 confirmed positive human cases of T. cruzi infection, as well as suspect cases that were negative using existing tests. This protein panel was also able to detect apparent changes in infection status following drug treatment of individuals with chronic T. cruzi infection. The results of this study should allow for significant improvements in the detection of T. cruzi infection and better screening methods to avoid blood transfusion–related transmission of the infection, and offer a crucial tool for determining the success or failure of drug treatment and other intervention strategies to limit the impact of Chagas disease.
Collapse
Affiliation(s)
- Gretchen Cooley
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - R. Drew Etheridge
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Courtney Boehlke
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Becky Bundy
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - D. Brent Weatherly
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Todd Minning
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Matthew Haney
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Miriam Postan
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Susana Laucella
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
268
|
Aguirre-Alvarado C, Zaragoza-Martínez F, Rodríguez-Páez L, Nogueda B, Baeza I, Wong C. In vitro and in vivo trypanocidal activity of the ethyl esters of N-allyl and N-propyl oxamates using different Trypanosoma cruzi strains. J Enzyme Inhib Med Chem 2008; 22:227-33. [PMID: 17518350 DOI: 10.1080/14756360601051233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The trypanocidal activity of N-allyl (NAOx) and N-propyl (NPOx) oxamates and that of the ethyl esters ofN-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested on cultured epimastigotes (in vitro) and murine trypanosomiasis (in vivo) using five different T. cruzi strains. NAOx and NPOx did not penetrate intact epimastigotes and therefore we were not able to detect any trypanocidal effect with these oxamates. Whereas the ethyl esters (Et-NAOx and Et-NPOx), acting as prodrugs, exhibited in vitro and in vivo trypanocidal activity on the five tested T. cruzi strains. On the contrary, when Nifurtimox and Benznidazole used as reference drugs were tested, we found that only three of the five tested T cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and in vivo trypanocidal activity of these compounds.
Collapse
Affiliation(s)
- Charmina Aguirre-Alvarado
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Apartado Postal 4-129, Admon. 4, México City 06401, México
| | | | | | | | | | | |
Collapse
|
269
|
Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008; 45:733-42. [PMID: 18588970 DOI: 10.1016/j.freeradbiomed.2008.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Collapse
Affiliation(s)
- Florencia Irigoín
- Departmento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
270
|
Magalhães AD, Charneau S, Paba J, Guércio RAP, Teixeira ARL, Santana JM, Sousa MV, Ricart CAO. Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages. Proteome Sci 2008; 6:24. [PMID: 18778485 PMCID: PMC2553069 DOI: 10.1186/1477-5956-6-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels. RESULTS Different IEF conditions using 6-11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare) equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages. CONCLUSION High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with biological traits of T. cruzi life forms and also corroborated previous T. cruzi proteomic studies. For instance, enzymes related to amino acid metabolism and dehydrogenases were more abundant in epimastigote 2-DE gel whilst trans-sialidase and a paraflagellar protein were found specifically in the trypomastigote 2-DE profile.
Collapse
|
271
|
Alvarez MG, Postan M, Weatherly DB, Albareda MC, Sidney J, Sette A, Olivera C, Armenti AH, Tarleton RL, Laucella SA. HLA Class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl Trop Dis 2008; 2:e288. [PMID: 18846233 PMCID: PMC2565697 DOI: 10.1371/journal.pntd.0000288] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 08/06/2008] [Indexed: 11/23/2022] Open
Abstract
Background Previously, we identified a set of HLA-A020.1-restricted trans-sialidase peptides as targets of CD8+ T cell responses in HLA-A0201+ individuals chronically infected by T. cruzi. Methods and Findings Herein, we report the identification of peptides encoded by the same trans-sialidase gene family that bind alleles representative of the 6 most common class I HLA-supertypes. Based on a combination of bioinformatic predictions and HLA-supertype considerations, a total of 1001 epitopes predicted to bind to HLA A01, A02, A03, A24, B7 and B44 supertypes was selected. Ninety-six supertype-binder epitopes encoded by multiple trans-sialidase genes were tested for the ability to stimulate a recall CD8+ T cell response in the peripheral blood from subjects with chronic T. cruzi infection regardless the HLA haplotype. An overall hierarchy of antigenicity was apparent, with the A02 supertype peptides being the most frequently recognized in the Chagas disease population followed by the A03 and the A24 supertype epitopes. CD8+ T cell responses to promiscuous epitopes revealed that the CD8+ T cell compartment specific for T. cruzi displays a functional profile with T cells secreting interferon-γ alone as the predominant pattern and very low prevalence of single IL-2-secreting or dual IFN-γ/IL-2 secreting T cells denoting a lack of polyfunctional cytokine responses in chronic T. cruzi infection. Conclusions This study identifies a set of T. cruzi peptides that should prove useful for monitoring immune competence and changes in infection and disease status in individuals with chronic Chagas disease. At present, 16–20 million people in Central and South America are infected with Trypanosoma cruzi, the causative agent of Chagas disease in humans. The primary clinical consequence of the infection is a cardiomyopathy, which manifests in approximately 30% of infected individuals, many years after the initial infection. Our work in Chagas disease patients began as an effort to assess the range and specificity of antigens that were recognized by T cells, in particular CD8+ T cells, in individuals with long-term infections with Trypanosoma cruzi. Trans-sialidase proteins from T. cruzi are major surface and released proteins that are targets of humoral and cellular immune responses. We previously, identified a set of trans-sialidase peptides that were recognized by a very low frequency of chronically T. cruzi-infected subjects. Based on bioinformatic predictions, herein we report the identification of new trans-sialidase epitopes that are recognized by a higher proportion of T. cruzi-infected people. The functional profile of T cells specific for these peptides is characteristic of an infection with long term stimulation of the immune system, with high levels of IFN-γ-secreting T cells and low levels of IL-2 production. This set of T. cruzi peptides should prove useful for monitoring immune competence and changes in infection and disease status in individuals with chronic Chagas disease.
Collapse
Affiliation(s)
- María G. Alvarez
- Hospital Interzonal General de Agudos “Eva Perón”, San Martín, Provincia de Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - D. Brent Weatherly
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - María C. Albareda
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, La Jolla, California, United States of America
| | - Carina Olivera
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Alejandro H. Armenti
- Hospital Interzonal General de Agudos “Eva Perón”, San Martín, Provincia de Buenos Aires, Argentina
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Susana A. Laucella
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
272
|
Marciano D, Llorente C, Maugeri DA, de la Fuente C, Opperdoes F, Cazzulo JJ, Nowicki C. Biochemical characterization of stage-specific isoforms of aspartate aminotransferases from Trypanosoma cruzi and Trypanosoma brucei. Mol Biochem Parasitol 2008; 161:12-20. [DOI: 10.1016/j.molbiopara.2008.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/01/2022]
|
273
|
Giese V, Dallagiovanna B, Marchini FK, Pavoni DP, Krieger MA, Goldenberg S. Trypanosoma cruzi: a stage-specific calpain-like protein is induced after various kinds of stress. Mem Inst Oswaldo Cruz 2008; 103:598-601. [DOI: 10.1590/s0074-02762008000600015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/13/2008] [Indexed: 11/22/2022] Open
|
274
|
Abstract
Proteins with tandem repeat (TR) domains have been found in various protozoan parasites, often acting as targets of B-cell responses. However, the extent of the repeats within Trypanosoma cruzi, the causative agent of Chagas' disease, has not been examined well. Here, we present a systematic survey of the TR genes found in T. cruzi, in comparison with other organisms. Although the characteristics of TR genes varied from organism to organism, the presence of genes having large TR domains was unique to the trypanosomatids examined, including T. cruzi. Sequence analyses of T. cruzi TR genes revealed their divergency; they do not share such characteristics as sequence similarity or biased cellular location predicted by the presence of a signal sequence or transmembrane domain(s). In contrast, T. cruzi TR proteins seemed to possess significant antigenicity. A number of previously characterized T. cruzi antigens were detected by this computational screening, and several of those antigens contained a large TR domain. Further analyses of the T. cruzi genome demonstrated that previously uncharacterized TR proteins in this organism may also be immunodominant. Taken together, T. cruzi is rich in large TR domain-containing proteins with immunological significance; it is worthwhile further analyzing such characteristics of TR proteins as the copy number and consensus sequence of the repeats to determine whether they might contribute to the biological variability of T. cruzi strains with regard to induced immunological responses, host susceptibility, disease outcomes, and pathogenicity.
Collapse
|
275
|
Ferella M, Nilsson D, Darban H, Rodrigues C, Bontempi EJ, Docampo R, Andersson B. Proteomics in Trypanosoma cruzi--localization of novel proteins to various organelles. Proteomics 2008; 8:2735-49. [PMID: 18546153 PMCID: PMC2706665 DOI: 10.1002/pmic.200700940] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Indexed: 11/09/2022]
Abstract
The completion of the genome sequence of Trypanosoma cruzi has been followed by several studies of protein expression, with the long-term aim to obtain a complete picture of the parasite proteome. We report a proteomic analysis of an organellar cell fraction from T. cruzi CL Brener epimastigotes. A total of 396 proteins were identified by LC-MS/MS. Of these, 138 were annotated as hypothetical in the genome databases and the rest could be assigned to several metabolic and biosynthetic pathways, transport, and structural functions. Comparative analysis with a whole cell proteome study resulted in the validation of the expression of 173 additional proteins. Of these, 38 proteins previously reported in other stages were not found in the only large-scale study of the total epimastigote stage proteome. A selected set of identified proteins was analyzed further to investigate gene copy number, sequence variation, transmembrane domains, and targeting signals. The genes were cloned and the proteins expressed with a c-myc epitope tag in T. cruzi epimastigotes. Immunofluorescence microscopy revealed the localization of these proteins in different cellular compartments such as ER, acidocalcisome, mitochondrion, and putative cytoplasmic transport or delivery vesicles. The results demonstrate that the use of enriched subcellular fractions allows the detection of T. cruzi proteins that are undetected by whole cell proteomic methods.
Collapse
Affiliation(s)
- Marcela Ferella
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
276
|
Murta SMF, Nogueira FB, Dos Santos PF, Campos FMF, Volpe C, Liarte DB, Nirdé P, Probst CM, Krieger MA, Goldenberg S, Romanha AJ. Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop 2008; 107:59-65. [PMID: 18501872 DOI: 10.1016/j.actatropica.2008.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/19/2008] [Accepted: 04/10/2008] [Indexed: 11/30/2022]
Abstract
Differential gene expression in three pairs of Trypanosoma cruzi populations or clones susceptible or resistant to benznidazole (BZ) was investigated by differential display (DD) and representation of differential expression (RDE). GenBank searches of 14 genes selected by DD showed that four sequences corresponded to different hypothetical proteins and the others were very similar to T. cruzi genes encoding mucin (TcMUC), dihydrolipoamide dehydrogenase (TcLipDH), the hexose transporter (TcHT), or a ribosomal protein. Sequence analysis was performed on 34 clones obtained by RDE; approximately half of these clones encoded 14 different hypothetical proteins and the other half encoded proteins involved with stress response, antioxidant defence, metabolism, transporter proteins, surface proteins, ribosomal proteins and others. The mRNA levels of eight T. cruzi genes obtained by RDE and DD were analysed by northern blotting to confirm the differential expression of these sequences. For six of the eight genes, TcLipDH, TcHT, TcFeSOD-A (iron superoxide dismutase-A), TcHSP70, TcHSP100 (heat shock protein) and Tc52 (thiol-transferase), mRNA levels in the drug-resistant T. cruzi population were at least twice those in the susceptible population. Further analysis of TcHSP70 showed that although the levels of TcHSP70 mRNA were four-fold higher in T. cruzi BZ-resistant population, no corresponding increase was observed in the levels of TcHSP70 protein expression. The results suggest that TcHSP70 is not directly associated with the T. cruzi drug resistance phenotype.
Collapse
Affiliation(s)
- Silvane M F Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, Caixa Postal 1743, CEP 30190-002, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1292-300. [PMID: 18579696 DOI: 10.1128/cvi.00142-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.
Collapse
|
278
|
Andrade HM, Murta SMF, Chapeaurouge A, Perales J, Nirdé P, Romanha AJ. Proteomic Analysis of Trypanosoma cruzi Resistance to Benznidazole. J Proteome Res 2008; 7:2357-67. [DOI: 10.1021/pr700659m] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hélida M. Andrade
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Silvane M. F. Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Alex Chapeaurouge
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jonas Perales
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Phillipe Nirdé
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Alvaro J. Romanha
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
279
|
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 2008; 118:1301-10. [PMID: 18382742 PMCID: PMC2276762 DOI: 10.1172/jci33945] [Citation(s) in RCA: 407] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these "neglected diseases" are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better.
Collapse
Affiliation(s)
- Ken Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta Gen Subj 2008; 1780:1236-48. [PMID: 18395526 DOI: 10.1016/j.bbagen.2008.03.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/09/2023]
Abstract
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.
Collapse
|
281
|
Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 2008; 410:359-68. [PMID: 17973627 DOI: 10.1042/bj20071138] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.
Collapse
|
282
|
Haile S, Dupé A, Papadopoulou B. Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 2008; 36:1634-44. [PMID: 18250085 PMCID: PMC2275140 DOI: 10.1093/nar/gkn019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The life cycle of Leishmania alternates between developmental forms residing within the insect vector (e.g. promastigotes) and the mammalian host (amastigotes). In Leishmania nearly all control of gene expression is post-transcriptional and involves sequences in the 3′-untranslated regions (3′UTRs) of mRNAs. Very little is known as to how these cis-elements regulate RNA turnover and translation rates in trypanosomatids and nothing is known about mRNA degradation mechanisms in Leishmania in particular. Here, we use the amastin mRNA—an amastigote-specific transcript—as a model and show that a ∼100 nt U-rich element (URE) within its 3′UTR significantly accounts for developmental regulation. RNase-H-RNA blot analysis revealed that a major part of the rapid promastigote-specific degradation of the amastin mRNA is not initiated by deadenylation. This is in contrast to the amastin mRNA in amastigotes and to reporter RNAs lacking the URE, which, in common with most eukaryotic mRNAs studied to-date, are deadenylated before being degraded. Moreover, our analysis did not reveal a role for decapping in the stage-specific degradation of the amastin mRNA. Overall, these results suggest that degradation of the amastin mRNA of Leishmania is likely to be bi-phasic, the first phase being stage-specific and dependent on an unusual URE-mediated pathway of mRNA degradation.
Collapse
Affiliation(s)
- Simon Haile
- Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
283
|
Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2008; 10:569-77. [PMID: 18177626 DOI: 10.1016/j.mib.2007.10.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Kinetoplastids branched early from the eukaryotic lineage and include several parasitic protozoan species. Up to several hundred kinetoplastid genes are co-transcribed into polycistronic RNAs and individual mRNAs are resolved by coupled co-transcriptional trans-splicing of a universal splice-leader RNA (SL-RNA) and 3'-end maturation processes. Protein-coding genes lack RNA polymerase II promoters. Consequently, most of gene regulation in these organisms occurs post-transcriptionally. Over the last few years, many more genes that are regulated at the mRNA stability level and a few at the translation level have been reported. Almost all major trypanosome homologues of yeast/mammalian mRNA degradation enzymes have been functionally characterized and major pathways identified. Novel paradigms have also recently emerged: regulated post-transcriptional processing of cytoplasmic RNAs, SL-RNA transcriptional silencing-mediated global stress response, and Leishmania-specific large-scale modulation of post-transcriptional gene expression via inactive degenerated retroelements. Several of these developments have greatly benefited from the recently completed genomic sequences and functional genomic studies.
Collapse
|
284
|
Horn D. Codon usage suggests that translational selection has a major impact on protein expression in trypanosomatids. BMC Genomics 2008; 9:2. [PMID: 18173843 PMCID: PMC2217535 DOI: 10.1186/1471-2164-9-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 01/03/2008] [Indexed: 11/16/2022] Open
Abstract
Background Different proteins are required in widely different quantities to build a living cell. In most organisms, transcription control makes a major contribution to differential expression. This is not the case in trypanosomatids where most genes are transcribed at an equivalent rate within large polycistronic clusters. Thus, trypanosomatids must use post-transcriptional control mechanisms to balance gene expression requirements. Results Here, the evidence for translational selection, the enrichment of 'favoured' codons in more highly expressed genes, is explored. A set of highly expressed, tandem-repeated genes display codon bias in Trypanosoma cruzi, Trypanosoma brucei and Leishmania major. The tRNA complement reveals forty-five of the sixty-one possible anticodons indicating widespread use of 'wobble' tRNAs. Consistent with translational selection, cognate tRNA genes for favoured codons are over-represented. Importantly, codon usage (Codon Adaptation Index) correlates with predicted and observed expression level. In addition, relative codon bias is broadly conserved among syntenic genes from different trypanosomatids. Conclusion Synonymous codon bias is correlated with tRNA gene copy number and with protein expression level in trypanosomatids. Taken together, the results suggest that translational selection is the dominant mechanism underlying the control of differential protein expression in these organisms. The findings reveal how trypanosomatids may compensate for a paucity of canonical Pol II promoters and subsequent widespread constitutive RNA polymerase II transcription.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
285
|
Hoft DF, Eickhoff CS, Giddings OK, Vasconcelos JRC, Rodrigues MM. Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming. THE JOURNAL OF IMMUNOLOGY 2007; 179:6889-900. [PMID: 17982080 DOI: 10.4049/jimmunol.179.10.6889] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Trypanosoma cruzi trans-sialidase (TS) is a unique enzyme with neuraminidase and sialic acid transfer activities important for parasite infectivity. The T. cruzi genome contains a large family of TS homologous genes, and it has been suggested that TS homologues provide a mechanism of immune escape important for chronic infection. We have investigated whether the consensus TS enzymatic domain could induce immunity protective against acute and chronic, as well as mucosal and systemic, T. cruzi infection. We have shown that: 1) TS-specific immunity can protect against acute T. cruzi infection; 2) effective TS-specific immunity is maintained during chronic T. cruzi infection despite the expression of numerous related TS superfamily genes encoding altered peptide ligands that in theory could promote immune tolerization; and 3) the practical intranasal delivery of recombinant TS protein combined with a ssDNA oligodeoxynucleotide (ODN) adjuvant containing unmethylated CpG motifs can induce both mucosal and systemic protective immunity. We have further demonstrated that the intranasal delivery of soluble TS recombinant Ag combined with CpG ODN induces both TS-specific CD4(+) and CD8(+) T cells associated with vaccine-induced protective immunity. In addition, optimal protection induced by intranasal TS Ag combined with CpG ODN requires B cells, which, after treatment with CpG ODN, have the ability to induce TS-specific CD8(+) T cell cross-priming. Our results support the development of TS vaccines for human use, suggest surrogate markers for use in future human vaccine trials, and mechanistically identify B cells as important APC targets for vaccines designed to induce CD8(+) CTL responses.
Collapse
Affiliation(s)
- Daniel F Hoft
- Department of Internal Medicine, Saint Louis University Health Sciences Center, Saint Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
286
|
Abstract
The authors discuss the key challenges that undermine the control of Chagas disease and that must be urgently addressed to ensure long-term, sustainable control.
Collapse
Affiliation(s)
- Rick L Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | | | |
Collapse
|
287
|
Brenchley R, Tariq H, McElhinney H, Szöőr B, Huxley-Jones J, Stevens R, Matthews K, Tabernero L. The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 2007; 8:434. [PMID: 18039372 PMCID: PMC2175518 DOI: 10.1186/1471-2164-8-434] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/26/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome) of the three parasites. RESULTS An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP) family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. CONCLUSION The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent transmission and spread of the diseases, taking advantage of the already extensive knowledge on protein phosphatase inhibitors.
Collapse
Affiliation(s)
- Rachel Brenchley
- Faculty of Life Sciences, Michael Smith, University of Manchester, M13 9PT, UK
- Computer Science, University of Manchester, M13 9PT, UK
| | - Humera Tariq
- Faculty of Life Sciences, Michael Smith, University of Manchester, M13 9PT, UK
| | - Helen McElhinney
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, UK
| | - Balázs Szöőr
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, UK
| | | | | | - Keith Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, UK
| | - Lydia Tabernero
- Faculty of Life Sciences, Michael Smith, University of Manchester, M13 9PT, UK
| |
Collapse
|
288
|
Azuaje F, Ramirez JL, Da Silveira JF. An exploration of the genetic robustness landscape of surface protein families in the human protozoan parasite Trypanosoma cruzi. IEEE Trans Nanobioscience 2007; 6:223-8. [PMID: 17926780 DOI: 10.1109/tnb.2007.903482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability of genes to be robust to mutations at the codon level has been suggested as a key factor for understanding adaptation features. It has been proposed that genes relevant to host-parasite interactions will tend to exhibit high volatility or "antirobust" patterns, which may be related to the capacity of the parasite to evade the host immune system. We compared two superfamilies of surface proteins, trans-sialidase (TS)-like proteins and putative surface protein dispersed gene family-1 (DGF-1), in the parasite Trypanosoma cruzi in terms of a measure of gene volatility. We proposed alternative codon robustness indicators based on cross entropy and impurity of amino acids encoded by point-mutations, which were compared to a volatility estimator previously published. This allowed us to present a more detailed description of the differences between families. A significant difference was observed in terms of these scores, with the TS-MVar1 and the DGF-1 families showing the highest and lowest gene volatility values respectively. The cross entropy and impurity estimators suggest that the MVar1 levels of volatility are linearly correlated with their capacity to generate diverse sets of amino acids as a consequence of potential mutations. This study indicates the feasibility of applying different measures of genetic robustness to detect variations between potential drug targets at the protein level.
Collapse
Affiliation(s)
- Francisco Azuaje
- Computer Science Research Institute, University of Ulster, Jordanstown, BT37 OQB, UK.
| | | | | |
Collapse
|
289
|
Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila AR, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S, Robello C. Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1422-1432. [PMID: 17960573 DOI: 10.1002/jms.1267] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Trypanosoma cruzi, the causative agent of the Chagas disease, has a complex life cycle alternating between replicative and noninfective forms with nonreplicative and infective forms of the parasite. Metacyclogenesis is a process that takes place in the invertebrate host, comprising morphogenetic transformation from a noninfective form to an infective form, such that parasites acquire the ability to invade human cells. We analyze here the metacyclogenesis process by 2D electrophoresis coupled to MALDI-TOF MS. A large proportion of unique proteins expressed during metacyclogenesis were observed. Interestingly, 50% of the spots were found to differ between epimastigotes and trypomastigotes. We provide a 2D map of the infective metacyclic trypomastigotes. Sixty six protein spots were successfully identified corresponding to 43 different proteins. We analyzed the expression profiles for the identified proteins along metacyclogenesis and classified them into three groups according to their maximal level of expression. We detected several isoforms for a number of proteins, some displaying differential expression during metacyclogenesis. These results suggest that posttranslational modifications may be a fundamental part of the parasite's strategy for regulating gene expression during differentiation. This study contributes to the identification of relevant proteins involved in the metacyclogenesis process. The identification and molecular characterization of these proteins will render vital information about the steps of the parasite differentiation into the infective form.
Collapse
|
290
|
Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional Separations-Based Shotgun Proteomics. Chem Rev 2007; 107:3654-86. [PMID: 17649983 DOI: 10.1021/cr068279a] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
291
|
Tarleton RL. Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 2007; 19:430-4. [PMID: 17651955 DOI: 10.1016/j.coi.2007.06.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Innate and adaptive cellular immune recognition is crucial for control of the protozoan parasite Trypanosoma cruzi. T. cruzi triggers both MyD88-dependent and TRIF-dependent innate activation pathways in macrophages and dendritic cells. TLR-2 and TLR-9 recognize GPI anchors and parasite DNA, respectively; however other, as yet undefined receptors and ligands, also appear to be involved in innate recognition. CD8(+) T cells distinguish T. cruzi-infected host cells primarily via robust recognition of MHC-associated peptide epitopes from the large and highly diverse trans-sialidase family of surface proteins. To date there has been minimal investigation of linkages between innate immune recognition in vivo and the generation of adaptive cellular immune responses.
Collapse
Affiliation(s)
- Rick L Tarleton
- Center for Tropical & Emerging Global Diseases and Department of Cellular Biology, Coverdell Center for Biomedical Research, 500 D.W. Brooks Drive, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
292
|
Cuervo P, de Jesus JB, Junqueira M, Mendonça-Lima L, González LJ, Betancourt L, Grimaldi G, Domont GB, Fernandes O, Cupolillo E. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol 2007; 154:6-21. [PMID: 17499861 DOI: 10.1016/j.molbiopara.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/12/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Leishmania (Viannia) braziliensis, a protozoan parasite widespread in the New World, is responsible for the infection of different mammal orders, including humans. This species is considered to be a major etiological agent of American cutaneous leishmaniasis. A proteomic study was carried out to identify proteins expressed by L. (V.) braziliensis. One hundred and one spots representing 75 protein entries were identified by MALDI-TOF-TOF. Isoelectric point values estimated by gel electrophoresis matched closely with predicted values, although some discrepancies existed suggesting that post-translational protein modifications may be common in L. braziliensis. Moreover, 20 hypothetical proteins were experimentally identified. Identified proteins were classified into 15 groups according to biological process. Among the proteins identified, approximately 40% have not been previously reported in a proteomic map of Leishmania. In addition, a number of potential virulence factors and drug targets were identified in this protein map, including some proteins associated with the metastatic phenotype. This study describes the first compilation of a proteomic reference map for L. braziliensis (pI 4-7, M(r) 10-130 kDa) and provides a very useful tool for comparative studies of strains isolated from patients presenting different clinical manifestations of leishmaniasis as well as a potential tool to identify markers for clinical diagnosis, therapeutics, and prognosis.
Collapse
Affiliation(s)
- Patricia Cuervo
- Departamento de Imunologia, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Souza RA, Henriques C, Alves-Ferreira M, Mendonça-Lima L, Degrave WM. Investigation of a protein expression profile by high-resolution bidimensional electrophoresis of Trypanosoma cruzi epimastigotes. Anal Biochem 2007; 365:144-6. [PMID: 17418799 DOI: 10.1016/j.ab.2007.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/20/2006] [Accepted: 01/10/2007] [Indexed: 11/16/2022]
Affiliation(s)
- R A Souza
- Laboratory for Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Department of Biochemistry and Molecular Biology, FIOCRUZ, 21040 900 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
294
|
Abstract
The kinetoplastids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi are causative agents of a diverse spectrum of human diseases: leishmaniasis, sleeping sickness and Chagas' disease, respectively. These protozoa possess digenetic life cycles that involve development in mammalian and insect hosts. It is generally accepted that temperature is a triggering factor of the developmental programme allowing the adaptation of the parasite to the mammalian conditions. The heat shock response is a general homeostatic mechanism that protects cells from the deleterious effects of environmental stresses, such as heat. This response is universal and includes the synthesis of the heat-shock proteins (HSPs). In this review, we summarize the salient features of the different HSP families and describe their main cellular functions. In parallel, we analyse the composition of these families in kinetoplastids according to literature data and our understanding of genome sequence data. The genome sequences of these parasites have been recently completed. The HSP families described here are: HSP110, HSP104, group I chaperonins, HSP90, HSP70, HSP40 and small HSPs. All these families are widely represented in these parasites. In particular, kinetoplastids possess an unprecedented number of members of the HSP70, HSP60 and HSP40 families, suggesting key roles for these HSPs in their biology.
Collapse
Affiliation(s)
- Cristina Folgueira
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
295
|
Piacenza L, Irigoín F, Alvarez M, Peluffo G, Taylor M, Kelly J, Wilkinson S, Radi R. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J 2007; 403:323-34. [PMID: 17168856 PMCID: PMC1874241 DOI: 10.1042/bj20061281] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2*-. Accelerated rates of mitochondrial O2*- production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2*- in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O(2)(*-) formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects.
Collapse
Affiliation(s)
- Lucía Piacenza
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Irigoín
- †Departamento de Histología y Embriología, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Alvarez
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Peluffo
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martin C. Taylor
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - John M. Kelly
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Shane R. Wilkinson
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Rafael Radi
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- To whom correspondence should be addressed (email )
| |
Collapse
|
296
|
Atayde VD, Cortez M, Souza R, da Silveira JF, Yoshida N. Expression and cellular localization of molecules of the gp82 family in Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun 2007; 75:3264-70. [PMID: 17438027 PMCID: PMC1932952 DOI: 10.1128/iai.00262-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A member of the Trypanosoma cruzi gp82 family, expressed on metacyclic trypomastigote surface and identified by monoclonal antibody (MAb) 3F6, plays a key role in host cell invasion. Apart from the gp82 defined by MAb 3F6, no information is available on members of this protein family. From cDNA clones encoding gp82 proteins sharing 59.1% sequence identity, we produced the recombinant proteins J18 and C03, the former containing and the latter lacking the epitope for MAb 3F6. Polyclonal antibodies to J18 and C03 proteins were generated and used, along with MAb 3F6, to analyze the expression and cellular localization of gp82 family members in metacyclic forms of CL and G strains, which belong to highly divergent genetic groups. By two-dimensional gel electrophoresis and immunoblotting, molecules of 82 to 86 kDa, focusing at pH 4.6 to 5.4, and molecules of 72 to 88 kDa, focusing at pH 4.9 to 5.7, were visualized in CL and G strains, respectively. Flow cytometry and microscopic analysis revealed in both strains similar expression of MAb 3F6-reactive gp82 in live and permeabilized parasites, indicating its surface localization. The reaction of live parasites of both strains with anti-J18 antibodies was weaker than with MAb 3F6 and was increased by permeabilization. Anti-C03 antibodies bound predominantly to flagellar components in permeabilized G strain parasites, but in the CL strain the flagellum was not the preferential target for these antibodies. Host cell invasion of metacyclic forms was inhibited by J18 protein, as well as by MAb 3F6 and anti-J18 antibodies, but not by C03 protein or anti-C03 antibodies.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862-6o andar, 04023-062 São Paulo, S.P., Brazil
| | | | | | | | | |
Collapse
|
297
|
Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton R, Orlando R. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res 2007; 5:3376-84. [PMID: 17137339 DOI: 10.1021/pr060364b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.
Collapse
Affiliation(s)
- James A Atwood
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Nardelli SC, Avila AR, Freund A, Motta MC, Manhães L, de Jesus TCL, Schenkman S, Fragoso SP, Krieger MA, Goldenberg S, Dallagiovanna B. Small-subunit rRNA processome proteins are translationally regulated during differentiation of Trypanosoma cruzi. EUKARYOTIC CELL 2006; 6:337-45. [PMID: 17158738 PMCID: PMC1797946 DOI: 10.1128/ec.00279-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We used differential display to select genes differentially expressed during differentiation of epimastigotes into metacyclic trypomastigotes in the protozoan parasite Trypanosoma cruzi. One of the selected clones had a sequence similar to that of the small-subunit (SSU) processome protein Sof1p, which is involved in rRNA processing. The corresponding T. cruzi protein, TcSof1, displayed a nuclear localization and is downregulated during metacyclogenesis. Heterologous RNA interference assays showed that depletion of this protein impaired growth but did not affect progression through the cell cycle, suggesting that ribosome synthesis regulation and the cell cycle are uncoupled in this parasite. Quantitative PCR (qPCR) assays of several SSU processome-specific genes in T. cruzi also showed that most of them were regulated posttranscriptionally. This process involves the accumulation of mRNA in the polysome fraction of metacyclic trypomastigotes, where TcSof1 cannot be detected. Metacyclic trypomastigote polysomes were purified and separated by sucrose gradient sedimentation. Northern blot analysis of the sucrose gradient fractions showed the association of TcSof1 mRNA with polysomes, confirming the qPCR data. The results suggest that the mechanism of regulation involves the blocking of translation elongation and/or termination.
Collapse
Affiliation(s)
- Sheila Cristina Nardelli
- Instituto de Biologia Molecular do Paraná, Rua Algacyr Munhoz Mader 3775, Curitiba 81350-010, Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Bernardes LSC, Kato MJ, Albuquerque S, Carvalho I. Synthesis and trypanocidal activity of 1,4-bis-(3,4,5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol. Bioorg Med Chem 2006; 14:7075-82. [PMID: 16908164 DOI: 10.1016/j.bmc.2006.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/23/2006] [Accepted: 07/01/2006] [Indexed: 11/22/2022]
Abstract
Chagas' disease is endemic in Central and South American countries. Specific chemotherapy with nifurtimox or benznidazole has been recommended for treatment of recent infection but they have limited efficacy. The natural products veraguensin (1) and grandisin (2) have shown potent in vitro activity against trypomastigote parasite (Y strain) with IC(50) 2.3 microM (1) and 3.7 microM (2). We report herein the synthesis and in vitro trypanocidal evaluation of symmetrical and unsymmetrical 1,4-diaryl-1,4-diol derivatives as potential trypanocidal analogs of natural compounds 1 and 2. Among the synthesized products, compounds 1,4-bis-(3,4,5-trimethoxyphenyl)-1,4-butanediol (6a) and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol (6b) showed better activity against Trypanosoma cruzi trypomastigotes with IC(50) 100 and 105 microM (Y strain), respectively, and 110 microM (Bolivia strain) for both compounds. However, the most active compound of this series was 1,4-bis-(3,4-dimethoxyphenyl)butane-1,4-dione (7b) with IC(50) 10 and 200 microM against Y and Bolivia strains, respectively.
Collapse
Affiliation(s)
- Lilian Sibelle Campos Bernardes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil
| | | | | | | |
Collapse
|
300
|
Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, Heiges M, Craven SH, Rosenberg CS, Collins MH, Sette A, Postan M, Tarleton RL. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog 2006; 2:e77. [PMID: 16879036 PMCID: PMC1526708 DOI: 10.1371/journal.ppat.0020077] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/26/2006] [Indexed: 01/30/2023] Open
Abstract
CD8+ T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial infections, little is known about the antigen specificity or the general development of effector and memory T-cell responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite peptides recognized by CD8+ T cells in T. cruzi–infected mice and humans. This analysis demonstrates that in both hosts the CD8+ T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi–infected mice, with more than 30% of the CD8+ T-cell response at the peak of infection specific for two major groups of trans-sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-parasite level. The authors of this paper conducted a broad screen to identify the major proteins in Trypanosoma cruzi, the causative agent of Chagas disease, that allow for detection and control of this intracellular pathogen by CD8+ T cells. This study is the first to show that a complex pathogen such as T. cruzi elicits a T-cell response focused on a few peptides, despite having a genome of >12,000 genes capable of encoding hundreds of thousands of potential target epitopes. The immunodominant CD8+ T-cell targets in both murine and human T. cruzi infection are almost exclusively peptides within multiple trans-sialidase proteins that are encoded by the large and diverse trans-sialidase gene family. trans-sialidase genes show great potential for variation, and the frequency of individual trans-sialidase epitopes appears to vary significantly in different parasite strains, giving rise to distinct patterns of T-cell responses to different T. cruzi isolates. The authors hypothesize that the massive expansion of this gene family under immunological pressure and the resulting variable expression of specific T-cell epitopes provides a mechanism of immune escape for T. cruzi.
Collapse
Affiliation(s)
- Diana L Martin
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - D. Brent Weatherly
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Susana A Laucella
- Instituto Nacional de Parasiologia Dr. Mario Fatala Chaben/Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán” (ANLIS/Malbran), Buenos Aires, Argentina
| | - Melissa A Cabinian
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Matthew T Crim
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Susan Sullivan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Mark Heiges
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sarah H Craven
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S Rosenberg
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H Collins
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California, United States of America
| | - Miriam Postan
- Instituto Nacional de Parasiologia Dr. Mario Fatala Chaben/Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán” (ANLIS/Malbran), Buenos Aires, Argentina
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|