251
|
Beltrán-Peña E, Aguilar R, Ortíz-López A, Dinkova TD, De Jiménez ES. Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. PHYSIOLOGIA PLANTARUM 2002; 115:291-297. [PMID: 12060248 DOI: 10.1034/j.1399-3054.2002.1150216.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin is known to stimulate protein synthesis in many plant tissues, but the mechanisms involved in this process are unknown. The present research inquires whether auxin might regulate selective translation of mRNAs by inducing S6 ribosomal protein phosphorylation on the 40S ribosomal subunit in maize (Zea mays L.). Maize embryonic axes auxin-stimulated by natural (IAA) or synthetic (Dicamba or 1-NAA) auxins, selectively increased ribosomal protein synthesis. This effect was not reproduced by auxin inactive analogue 2-NAA. Enhanced S6 ribosomal protein phosphorylation on the 40S ribosomal subunit was also observed after auxin stimulation, as measured by [32P] incorporation into this protein. This increment did not occur when stimulation was performed with the inactive auxin analogue. Further, increased recruitment into polysomes of two 5'TOP-like mRNAs, encoding for the initiation translation factor eIF-iso4E and the S6 ribosomal protein, was also found after auxin stimulation of maize axes. A positive correlation was established between the levels of S6 ribosomal protein phosphorylation and the S6 ribosomal protein transcript recruitment into polysomes by means of okadaic acid or heat shock application to maize axes. These data indicate that auxin stimulates S6 ribosomal protein phosphorylation on maize ribosomes, concomitant to the recruitment of specific mRNAs (5'TOP-like mRNAs) into polysomes for translation. It is proposed that by this mechanism auxin regulate the synthesis of specific proteins in maize tissues.
Collapse
Affiliation(s)
- Elda Beltrán-Peña
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, D. F. 045 0, Mexico
| | | | | | | | | |
Collapse
|
252
|
Katagiri H, Asano T, Yamada T, Aoyama T, Fukushima Y, Kikuchi M, Kodama T, Oka Y. Acyl-coenzyme A dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif. Mol Endocrinol 2002; 16:1049-59. [PMID: 11981039 DOI: 10.1210/mend.16.5.0831] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP, also termed vp165) is known to be localized on the GLUT4-containing vesicles and to be recruited to the plasma membrane after stimulation with insulin. The cytoplasmic region of IRAP contains two dileucine motifs and acidic regions, one of which (amino acid residues 55-82) is reportedly involved in retention of GLUT4-containing vesicles. The region of IRAP fused with glutathione-S-transferase [GST-IRAP(55-82)] was incubated with lysates from 3T3-L1 adipocytes, leading to identification of long-chain, medium-chain, and short-chain acyl-coenzyme A dehydrogenases (ACDs) as the proteins associated with IRAP. The association was nearly abolished by mutation of the dileucine motif of IRAP. Immunoblotting of fractions prepared from sucrose gradient ultracentrifugation and vesicles immunopurified with anti-GLUT4 antibody revealed these ACDs to be localized on GLUT4-containing vesicles. Furthermore, 3-mercaptopropionic acid and hexanoyl-CoA, inhibitors of long-chain and medium-chain ACDs, respectively, induced dissociation of long-chain acyl-coenzyme A dehydrogenase and/or medium-chain acyl-coenzyme A dehydrogenase from IRAP in vitro as well as recruitment of GLUT4 to the plasma membrane and stimulation of glucose transport activity in permeabilized 3T3-L1 adipocytes. These findings suggest that ACDs are localized on GLUT4-containing vesicles via association with IRAP in a manner dependent on its dileucine motif and play a role in retention of GLUT4-containing vesicles to an intracellular compartment.
Collapse
Affiliation(s)
- Hideki Katagiri
- Division of Molecular Metabolism and Diabetes, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
253
|
Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 2002; 282:E1092-101. [PMID: 11934675 DOI: 10.1152/ajpendo.00208.2001] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhanced protein synthesis in skeletal muscle after ingestion of a balanced meal in postabsorptive rats is mimicked by oral leucine administration. To assess the contribution of insulin to the protein synthetic response to leucine, food-deprived (18 h) male rats (approximately 200 g) were intravenously administered a primed-constant infusion of somatostatin (60 microg + 3 microg.kg(-1).h(-1)) or vehicle beginning 1 h before administration of leucine (1.35 g L-leucine/kg) or saline (control). Rats were killed 15, 30, 45, 60, or 120 min after leucine administration. Compared with controls, serum insulin concentrations were elevated between 15 and 45 min after leucine administration but returned to basal values by 60 min. Somatostatin maintained insulin concentrations at basal levels throughout the time course. Protein synthesis was increased between 30 and 60 min, and this effect was blocked by somatostatin. Enhanced assembly of the mRNA cap-binding complex (composed of eukaryotic initiation factors eIF4E and eIF4G) and hyperphosphorylation of the eIF4E-binding protein 1 (4E-BP1), the 70-kDa ribosomal protein S6 kinase (S6K1), and the ribosomal protein S6 (rp S6) were observed as early as 15 min and persisted for at least 60 min. Somatostatin attenuated the leucine-induced changes in 4E-BP1 and S6K1 phosphorylation and completely blocked the change in rp S6 phosphorylation but had no effect on eIF4G small middle dot eIF4E assembly. Overall, the results suggest that the leucine-induced enhancement of protein synthesis and the phosphorylation states of 4E-BP1 and S6K1 are facilitated by the transient increase in serum insulin. In contrast, assembly of the mRNA cap-binding complex occurs independently of increases in insulin and, by itself, is insufficient to stimulate rates of protein synthesis in skeletal muscle after leucine administration.
Collapse
Affiliation(s)
- Joshua C Anthony
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
254
|
Terruzzi I, Allibardi S, Bendinelli P, Maroni P, Piccoletti R, Vesco F, Samaja M, Luzi L. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms. Mol Cell Endocrinol 2002; 190:135-45. [PMID: 11997187 DOI: 10.1016/s0303-7207(02)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipids compete with glucose for utilization by the myocardium. Amino acids are an important energetic substrate in the heart but it is unknown whether they reduce glucose disposal. The molecular mechanisms by which lipids and amino acids impair insulin-mediated glucose disposal in the myocardium are unknown. We evaluated the effect of lipids and amino acids on the insulin stimulated glucose uptake in the isolated rat heart and explored the involved target proteins. The hearts were perfused with 16 mM glucose alone or with 6% lipid or 10% amino acid solutions at the rate of 15 ml/min. After 1 h of perfusion (basal period), insulin (240 nmol/l) was added and maintained for an additional hour. Both lipids and amino acids blocked the insulin effect on glucose uptake (P<0.01) and reduced the activity of the IRSs/PI 3-kinase/Akt/GSK3 axis leading to the activation of glucose transport and glycogen synthesis. Amino acids, but not lipids, increased the activity of the p70 S6 kinase leading to the stimulation of protein synthesis. Amino acids induce myocardial insulin resistance recruiting the same molecular mechanisms as lipids. Amino acids retain an insulin-like stimulatory effect on p70 S6 kinase, which is independent from the PI 3-Kinase downstream effectors.
Collapse
Affiliation(s)
- Ileana Terruzzi
- Dipartimento di Medicina, San Raffaele Scientific Institute, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Kamei R, Kitagawa Y, Kadokura M, Hattori F, Hazeki O, Ebina Y, Nishihara T, Oikawa S. Shikonin stimulates glucose uptake in 3T3-L1 adipocytes via an insulin-independent tyrosine kinase pathway. Biochem Biophys Res Commun 2002; 292:642-51. [PMID: 11922615 DOI: 10.1006/bbrc.2002.6714] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes is due to defects in both insulin action and secretion. In an attempt to discover small molecules that stimulate glucose uptake, similar to insulin, a cell-based glucose uptake screening assay was performed using 3T3-L1 adipocytes. Shikonin, a substance originally isolated from the root of the Chinese plant that has been used as an ointment for wound healing, was thus identified. Shikonin stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. Stimulation of glucose uptake was also observed in rat primary adipocytes and cardiomyocytes. Like insulin, shikonin-stimulated glucose uptake was inhibited by genistein, a tyrosine kinase inhibitor, and enhanced by vanadate, a tyrosine phosphatase inhibitor. However, in contrast to insulin, shikonin-stimulated glucose uptake was not strongly inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). In vitro phosphorylation analyses revealed that shikonin did not induce tyrosine phosphorylation of the insulin receptor, but significantly induced both Thr-308 and Ser-473 phosphorylation of Akt. Our results suggest that in 3T3-L1 adipocytes, shikonin action is not mediated primarily via the insulin receptor/PI3K pathway, but rather via another distinct tyrosine kinase-dependent pathway leading to glucose uptake involving Akt phosphorylation.
Collapse
Affiliation(s)
- Reiko Kamei
- Suntory Biomedical Research Limited, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, Jefferson LS. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 2002; 51:928-36. [PMID: 11916909 DOI: 10.2337/diabetes.51.4.928] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, food-deprived (18 h) control rats and rats with alloxan-induced diabetes were orally administered saline or the amino acid leucine to assess whether it regulates protein synthesis independently of a change in serum insulin concentrations. Immediately after leucine administration, diabetic rats were infused with insulin (0.0, 4.0, or 20 pmol small middle dot min(-1) small middle dot kg(-1)) for 1 h to examine the role of the hormone in the protein synthetic response to leucine. In control rats, leucine stimulated protein synthesis by 58% and increased phosphorylation of the translational repressor, eukaryotic initiation factor (eIF) 4E-binding protein (BP)-1, 4E-BP1, fivefold. Consequently, association of the mRNA cap-binding protein eukaryotic initiation factor (eIF)4E with 4E-BP1 was reduced to 50% of control values, and eIF4G*eIF4E complex assembly was increased 80%. Furthermore, leucine increased the phosphorylation of the 70-kDa ribosomal protein S6 (rp S6) and the ribosomal protein S6 kinase (S6K1). Diabetes attenuated protein synthesis compared with control rats. Nonetheless, in diabetic rats, leucine increased protein synthesis by 53% without concomitant changes in the phosphorylation of 4E-BP1 or S6K1. Skeletal muscle protein synthesis was stimulated in diabetic rats infused with insulin, but rates of synthesis remained less than values in nondiabetic controls that were administered leucine. Phosphorylation of 4E-BP1 and S6K1 was increased in diabetic rats infused with insulin in a dose-dependent manner, and the response was enhanced by leucine. The results suggest that leucine enhances protein synthesis in skeletal muscle through both insulin-dependent and -independent mechanisms. The insulin-dependent mechanism is associated with increased phosphorylation of 4E-BP1 and S6K1. In contrast, the insulin-independent effect on protein synthesis is mediated by an unknown mechanism.
Collapse
Affiliation(s)
- Joshua C Anthony
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Hunt DG, Ding Z, Ivy JL. Clenbuterol prevents epinephrine from antagonizing insulin-stimulated muscle glucose uptake. J Appl Physiol (1985) 2002; 92:1285-92. [PMID: 11842069 DOI: 10.1152/japplphysiol.01009.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the effects of chronic clenbuterol treatment on insulin-stimulated glucose uptake in the presence of epinephrine in isolated rat skeletal muscle. Insulin (50 microU/ml) increased glucose uptake in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles. In the presence of 24 nM epinephrine, insulin-stimulated glucose uptake was completely suppressed. This suppression of glucose uptake by epinephrine was accompanied by an increase in the intracellular concentration of glucose 6-phosphate and a decrease in insulin-receptor substrate-1-associated phosphatidylinositol 3-kinase (IRS-1/PI3-kinase) activity. Clenbuterol treatment had no direct effect on insulin-stimulated glucose uptake. However, after clenbuterol treatment, epinephrine was ineffective in attenuating insulin-stimulated muscle glucose uptake. This ineffectiveness of epinephrine to suppress insulin-stimulated glucose uptake occurred in conjunction with its inability to increase the intracellular concentration of glucose 6-phosphate and attenuate IRS-1/PI3-kinase activity. Results of this study indicate that the effectiveness of epinephrine to inhibit insulin-stimulated glucose uptake is severely diminished in muscle from rats pretreated with clenbuterol.
Collapse
Affiliation(s)
- Desmond G Hunt
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
258
|
Solomon CS, Goalstone ML. Dominant negative alpha-subunit of FTase inhibits effects of insulin and IGF-I in MCF-7 cells. Biochem Biophys Res Commun 2002; 291:458-65. [PMID: 11855811 DOI: 10.1006/bbrc.2002.6471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently designed a dominant negative (DN) farnesyltransferase (FTase)/geranyl-gerahyltransferase I (GGTase I) alpha-subunit that when expressed in vascular smooth muscle cells decreased insulin-stimulated phosphorylation of FTase, FTase activity, amounts of farnesylated p21Ras, DNA synthesis, and cell migration. Currently, we explored the inhibitory effects of DN FTase/GGTase I alpha-subunit in MCF-7 cells on IGF-1- and insulin-stimulated DNA synthesis and cell proliferation. Expression of the DN FTase/GGTase I alpha-subunit completely blocked IGF-1- and insulin-stimulated BrdU incorporation and cell count. DN FTase/GGTase I alpha-subunit inhibited insulin-stimulated phosphorylation of FTase/GGTase I alpha-subunit, FTase and GGTase I activity, and prenylation of p21Ras and RhoA. Expression of DN FTase/GGTase I alpha-subunit diminished IGF-1- and insulin-stimulated phosphorylation of ERK (extracellular signal-regulated kinase), but had no effect on IGF-1- and insulin-stimulated phosphorylation of Akt. Taken together, these data suggest that DN FTase/GGTase I alpha-subunit can assuage the mitogenic effects of IGF-1 and insulin on MCF-7 breast cancer cells.
Collapse
|
259
|
Avruch J, Belham C, Weng Q, Hara K, Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:115-54. [PMID: 11575164 DOI: 10.1007/978-3-642-56688-2_5] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Avruch
- Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
260
|
Mendez R, Welsh G, Kleijn M, Myers MG, White MF, Proud CG, Rhoads RE. Regulation of protein synthesis by insulin through IRS-1. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:49-93. [PMID: 11575167 DOI: 10.1007/978-3-642-56688-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R Mendez
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | |
Collapse
|
261
|
Abstract
Despite remarkable progress in dissecting the signaling pathways that are crucial for the metabolic effects of insulin, the molecular basis for the specificity of its cellular actions is not fully understood. One clue might lie in the spatial and temporal aspects of signaling. Recent evidence suggests that signaling molecules and pathways are localized to discrete compartments in cells by specific protein interactions. Also, the rapid termination of tyrosine or lipid phosphorylation by phosphatases or serine kinases might tightly control the strength of a signaling pathway, thus determining its effect on growth, differentiation and metabolism.
Collapse
Affiliation(s)
- Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-0650, USA.
| | | |
Collapse
|
262
|
Davidson RT, Arias EB, Cartee GD. Calorie restriction increases muscle insulin action but not IRS-1-, IRS-2-, or phosphotyrosine-PI 3-kinase. Am J Physiol Endocrinol Metab 2002; 282:E270-6. [PMID: 11788357 DOI: 10.1152/ajpendo.00232.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle insulin sensitivity improves with a moderate reduction in caloric intake. We studied possible mechanisms in calorie-restricted [CR: 60% ad libitum (AL) intake] compared with AL rats, utilizing a time-matched feeding protocol (3, 5, 10, or 20 days). Visceral fat mass was lower for CR vs. AL at 10 and 20 days, but insulin-stimulated muscle 3-O-methylglucose transport was higher in CR vs. AL rats only at 20 days. Fructose 6-phosphate (precursor for the hexosamine biosynthetic pathway, which has inverse relationship with insulin sensitivity) was reduced only at 3 days of CR. Insulin stimulation of insulin receptor substrate (IRS)-1-, IRS-2-, and antiphosphotyrosine-associated phosphatidylinositol 3-kinase (PI3K) was similar for CR and AL. A PI3K inhibitor, wortmannin, reduced insulin-stimulated 3-O-methylglucose transport to basal levels, regardless of diet. With brief time-matched CR, reduced visceral fat mass precedes increased insulin sensitivity; transient reduction in fructose 6-phosphate may trigger more persistent changes but does not coincide with enhanced insulin action; and PI3K is essential for insulin-stimulated 3-O-methylglucose transport in CR as well as AL rats, although insulin-stimulated PI3K is not significantly greater in CR compared with AL animals.
Collapse
Affiliation(s)
- Robert T Davidson
- Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
263
|
Jiang ZY, Chawla A, Bose A, Way M, Czech MP. A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J Biol Chem 2002; 277:509-15. [PMID: 11694514 DOI: 10.1074/jbc.m108280200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of intracellular glucose transporter 4 (GLUT4) to the plasma membrane of fat and muscle cells in response to insulin requires phosphatidylinositol (PI) 3-kinase as well as a proposed PI 3-kinase-independent pathway leading to activation of the small GTPase TC10. Here we show that in cultured adipocytes insulin causes acute cortical localization of the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related protein-3 (Arp3) as well as cortical F-actin polymerization by a mechanism that is insensitive to the PI 3-kinase inhibitor wortmannin. Expression of the dominant inhibitory N-WASP-DeltaWA protein lacking the Arp and actin binding regions attenuates the cortical F-actin rearrangements by insulin in these cells. Remarkably, the N-WASP-DeltaWA protein also inhibits insulin action on GLUT4 translocation, indicating dependence of GLUT4 recycling on N-WASP-directed cortical F-actin assembly. TC10 exhibits sequence similarity to Cdc42 and has been reported to bind N-WASP. We show the inhibitory TC10 (T31N) mutant, which abrogates insulin-stimulated GLUT4 translocation and glucose transport, also inhibits both cortical localization of N-WASP and F-actin formation in response to insulin. These findings reveal that N-WASP likely functions downstream of TC10 in a PI 3-kinase-independent insulin signaling pathway to mobilize cortical F-actin, which in turn promotes GLUT4 responsiveness to insulin.
Collapse
Affiliation(s)
- Zhen Y Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
264
|
Ciaraldi TP, Kong APS, Chu NV, Kim DD, Baxi S, Loviscach M, Plodkowski R, Reitz R, Caulfield M, Mudaliar S, Henry RR. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 2002; 51:30-6. [PMID: 11756319 DOI: 10.2337/diabetes.51.1.30] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetic subjects failing glyburide therapy were randomized to receive additional therapy with either metformin (2,550 mg/day) or troglitazone (600 mg/day) for 3-4 months. Biopsies of subcutaneous abdominal adipose tissue were obtained before and after therapy. Glycemic control was similar with both treatments. Metformin treatment increased insulin-stimulated whole-body glucose disposal rates by 20% (P < 0.05); the response to troglitazone was greater (44% increase, P < 0.01 vs. baseline, P < 0.05 vs. metformin). Troglitazone-treated subjects displayed a tendency toward weight gain (5 +/- 2 kg, P < 0.05), increased adipocyte size, and increased serum leptin levels. Metformin-treated subjects were weight-stable, with unchanged leptin levels and reduced adipocyte size (to 84 +/- 4% of control, P < 0.005). Glucose transport in isolated adipocytes from metformin-treated subjects was unaltered from pretreatment. Glucose transport in both the absence (321 +/- 134% of pre-Rx, P < 0.05) and presence of insulin (418 +/- 161%, P < 0.05) was elevated after troglitazone treatment. Metformin treatment had no effect on adipocyte content of GLUT1 or GLUT4 proteins. After troglitazone treatment, GLUT4 protein expression was increased twofold (202 +/- 42%, P < 0.05). Insulin-stimulated serine phosphorylation of Akt was augmented after troglitazone (170 +/- 34% of pre-Rx response, P < 0.05) treatment and unchanged by metformin. We conclude that the ability of troglitazone to upregulate adipocyte glucose transport, GLUT4 expression, and insulin signaling can contribute to its greater effect on whole-body glucose disposal.
Collapse
Affiliation(s)
- Theodore P Ciaraldi
- VA San Diego Healthcare System and the Department of Medicine, University of California, San Diego, California 92161, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Mauvais-Jarvis F, Ueki K, Fruman DA, Hirshman MF, Sakamoto K, Goodyear LJ, Iannacone M, Accili D, Cantley LC, Kahn CR. Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 2002. [DOI: 10.1172/jci0213305] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
266
|
Miyata Y, Okada K, Ishibashi S, Asano Y, Muto S. P-gp-induced modulation of regulatory volume increase occurs via PKC in mouse proximal tubule. Am J Physiol Renal Physiol 2002; 282:F65-76. [PMID: 11739114 DOI: 10.1152/ajprenal.0036.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the role of protein kinase C (PKC) in the P-glycoprotein (P-gp)-induced modulation of regulatory volume increase (RVI) in the isolated nonperfused proximal tubule S2 segments from mice lacking both mdr1a and mdr1b genes (KO) and wild-type (WT) mice. The hyperosmotic solution (500 mosmol/kgH(2)O) involving 200 mM mannitol activated PKC and elicited RVI in the tubules from KO mice but not from WT mice. The addition of the hyperosmotic solution including the PKC activator phorbol 12-myristate 13-acetate (PMA) to the tubules of the WT mice activated PKC and elicited RVI. The hyperosmotic solution in the presence of the P-gp inhibitors (verapamil or cyclosporin A) elicited RVI in the tubules from the WT mice but not from the KO mice. The PMA- and the P-gp inhibitors-induced RVI was abolished by cotreatment with the PKC inhibitors (staurosporine or calphostin C). In the tubules of the KO mice, the PKC inhibitors abolished RVI, but PMA did not. In the tubules of the WT mice, the microtubule disruptor (colchicine), the microfilament disruptor (cytochalasin B), the phosphatidylinositol 3-kinase (PI 3-kinase) blocker (wortmannin), but not another PI 3-kinase blocker (LY-294002), inhibited the PMA-induced RVI. In the tubules of the KO mice, colchicine, cytochalsin B, and wortmannin abolished RVI, but LY-294002 did not. We conclude that 1) in the mouse proximal tubule, P-gp-induced modulation of RVI occurs via PKC; and 2) the microtubule, microfilament, and wortmannin-sensitive, LY-294002-insensitive PI 3-kinase contribute to the PKC-induced RVI.
Collapse
Affiliation(s)
- Yukio Miyata
- Department of Nephrology, Jichi Medical School, Tochigi, 329-0498 Japan
| | | | | | | | | |
Collapse
|
267
|
Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276:48662-9. [PMID: 11598110 DOI: 10.1074/jbc.m105061200] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a variety of cell types, insulin stimulation elicits the rapid production of H(2)O(2), which causes the oxidative inhibition of protein-tyrosine phosphatases and enhances the tyrosine phosphorylation of proteins in the early insulin action cascade (Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001) J. Biol. Chem. 276, 21938-21942). In the present work, we explored the potential role of insulin-induced H(2)O(2) generation on downstream insulin signaling using diphenyleneiodonium (DPI), an inhibitor of cellular NADPH oxidase that blocks insulin-stimulated cellular H(2)O(2) production. DPI completely inhibited the activation of phosphatidylinositol (PI) 3'-kinase activity by insulin and reduced the insulin-induced activation of the serine kinase Akt by up to 49%; these activities were restored when H(2)O(2) was added back to cells that had been pretreated with DPI. Interestingly, the H(2)O(2)-induced activation of Akt was entirely mediated by upstream stimulation of PI 3'-kinase activity, since treatment of 3T3-L1 adipocytes with the PI 3'-kinase inhibitors wortmannin or LY294002 completely blocked the subsequent activation of Akt by exogenous H(2)O(2). Preventing oxidant generation with DPI also blocked insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane, providing further evidence for an oxidant signal in the regulation of the distal insulin-signaling cascade. Finally, in contrast to the cellular mechanism of H(2)O(2) generation by other growth factors, such as platelet-derived growth factor, we also found that insulin-stimulated cellular production of H(2)O(2) may occur through a unique pathway, independent of cellular PI 3'-kinase activity. Overall, these data provide insight into the physiological role of insulin-dependent H(2)O(2) generation, which is not only involved in the regulation of tyrosine phosphorylation events in the early insulin signaling cascade but also has important effects on the regulation of downstream insulin signaling, involving the activation of PI 3'-kinase, Akt, and ultimately cellular glucose transport in response to insulin.
Collapse
Affiliation(s)
- K Mahadev
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
268
|
Park JG, Bose A, Leszyk J, Czech MP. PYK2 as a mediator of endothelin-1/G alpha 11 signaling to GLUT4 glucose transporters. J Biol Chem 2001; 276:47751-4. [PMID: 11602570 DOI: 10.1074/jbc.c100524200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-1 (ET-1) signaling through G alpha(q/11) stimulates translocation of intracellular GLUT4 glucose transporters to the plasma membrane of 3T3-L1 adipocytes by an unknown mechanism that requires protein tyrosine phosphorylation and ADP-ribosylation factor 6 (ARF6) but is independent of phosphatidylinositol 3 (PI3)-kinase. In contrast, insulin action on this process requires PI3-kinase but not ARF6. Here we report the identification of two proteins selectively tyrosine-phosphorylated in response to ET-1 but not insulin: the Ca(2+)-activated tyrosine kinase PYK2 and its physiological substrate, the adhesion scaffold protein paxillin. Endogenous paxillin as well as expressed Myc-tagged PYK2 or a Myc-tagged kinase-deficient PYK2 protein were acutely directed to F-actin-rich adhesion sites from the adipocyte cytoplasm in response to ET-1 but not insulin. CADTK-related non-kinase (CRNK) is a dominant negative form of PYK2 containing the C-terminal portion of the protein, which binds paxillin but lacks the PYK2 autophosphorylation site (Tyr(402)). CRNK expression in 3T3-L1 adipocytes inhibited ET-1-mediated F-actin polymerization and translocation of Myc-tagged GLUT4-enhanced green fluorescent protein (EGFP) to the plasma membrane without disrupting insulin action on these processes. These data reveal the tyrosine kinase PYK2 as a required signaling element in the regulation of GLUT4 recycling in 3T3-L1 adipocytes by ET-1, whereas insulin signaling is directed through a different pathway.
Collapse
Affiliation(s)
- J G Park
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
269
|
Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T, Klip A. Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem 2001; 276:46079-87. [PMID: 11598141 DOI: 10.1074/jbc.m109093200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.
Collapse
Affiliation(s)
- R Somwar
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Mandarino LJ, Bonadonna RC, Mcguinness OP, Halseth AE, Wasserman DH. Regulation of Muscle Glucose Uptake In Vivo. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
271
|
Emkey R, Kahn CR. Molecular Aspects of Insulin Signaling. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
272
|
Nadler ST, Stoehr JP, Rabaglia ME, Schueler KL, Birnbaum MJ, Attie AD. Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am J Physiol Endocrinol Metab 2001; 281:E1249-54. [PMID: 11701440 DOI: 10.1152/ajpendo.2001.281.6.e1249] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin stimulates muscle and adipose tissue to absorb glucose through a signaling cascade that is incompletely understood. Insulin resistance, the inability of insulin to appropriately stimulate glucose uptake, is a hallmark of type 2 diabetes mellitus. The development of experimental systems that model human insulin resistance is important in elucidating the defects responsible for the development of type 2 diabetes. When two strains of mice, BTBR and C57BL/6J (B6), are crossed, the resultant male offspring (BtB6) demonstrate insulin resistance in muscle tissue. Here, we report an insulin resistance phenotype in adipose tissue from lean, nondiabetic BtB6 mice similar to that observed in human muscle. Adipocytes isolated from insulin-resistant male mice display 65% less insulin-stimulated glucose uptake compared with insulin-sensitive female mice. Similarly, adipocytes from insulin-resistant mice have diminished insulin-stimulated IRS-1 phosphorylation and phosphatidylinositol 3-kinase (PI3K) activation. However, normal activation of protein kinase B (Akt/PKB) by insulin is observed. Thus BtB6 mice demonstrate the dissociation of insulin-stimulated PI3K activity and Akt/PKB activation and represent a useful model to investigate the causes of insulin resistance in humans.
Collapse
Affiliation(s)
- S T Nadler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
273
|
Arkins S, Johnson RW, Minshall C, Dantzer R, Kelley KW. Immunophysiology: The Interaction of Hormones, Lymphohemopoietic Cytokines, and the Neuroimmune Axis. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
274
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
275
|
Foster LJ, Li D, Randhawa VK, Klip A. Insulin accelerates inter-endosomal GLUT4 traffic via phosphatidylinositol 3-kinase and protein kinase B. J Biol Chem 2001; 276:44212-21. [PMID: 11560920 DOI: 10.1074/jbc.m102964200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin enhances plasmalemmal-directed traffic of glucose transporter-4 (GLUT4), but it is unknown whether insulin regulates GLUT4 traffic through endosomal compartments. In L6 myoblasts expressing Myc-tagged GLUT4, insulin markedly stimulated the rate of GLUT4myc recycling. In myoblasts stimulated with insulin to maximize surface GLUT4myc levels, we followed the rates of surface-labeled GLUT4myc endocytosis and chased its intracellular distribution in space and time using confocal immunofluorescence microscopy. Surface-labeled GLUT4myc internalized rapidly (t(12) 3 min), reaching the early endosome by 2 min and the transferrin receptor-rich, perinuclear recycling endosome by 20 min. Upon re-addition of insulin, the t(12) of GLUT4 disappearance from the plasma membrane was unchanged (3 min), but strikingly, GLUT4myc reached the recycling endosome by 10 and left by 20 min. This effect of insulin was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002 or by transiently transfected dominant-negative phosphatidylinositol 3-kinase and protein kinase B mutants. In contrast, insulin did not alter the rate of arrival of rhodamine-labeled transferrin at the recycling endosome. These results reveal a heretofore unknown effect of insulin to accelerate inter-endosomal travel rates of GLUT4 and identify the recycling endosome as an obligatory stage in insulin-dependent GLUT4 recycling.
Collapse
Affiliation(s)
- L J Foster
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
276
|
Abstract
It is ten years since the publication of three papers describing the cloning of a new proto-oncogene serine/threonine kinase termed protein kinase B (PKB)/Akt. Key roles for this protein kinase in cellular processes such as glucose metabolism, cell proliferation, apoptosis, transcription and cell migration are now well established. The explosion of publications involving PKB/Akt in the past three years emphasizes the high level of current interest in this signalling molecule. This review focuses on tracing the characterization of this kinase, through the elucidation of its mechanism of regulation, to its role in regulating physiological and pathophysiological processes, to our current understanding of the biology of PKB/Akt, and prospects for the future.
Collapse
Affiliation(s)
- D P Brazil
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | |
Collapse
|
277
|
Sano R, Miki T, Suzuki Y, Shimada F, Taira M, Kanatsuka A, Makino H, Hashimoto N, Saito Y. Analysis of the insulin-sensitive phosphodiesterase 3B gene in type 2 diabetes. Diabetes Res Clin Pract 2001; 54:79-88. [PMID: 11640991 DOI: 10.1016/s0168-8227(01)00287-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We screened for mutations in the gene of insulin-sensitive phosphodiesterase 3B (PDE3B), which regulates antilipolytic actions of insulin via reduction of intracellular cyclic AMP levels, in Japanese patients with type 2 diabetes mellitus and lipoatrophic diabetes mellitus using single-stranded conformation polymorphism analysis and Southern analysis and investigated frequencies of variable number of tandem repeats. A silent polymorphism at the Arg463 codon (AGG-->AGA) in exon 4 was identified after examining all 16 exons and exon-intron splicing junctions of the gene. This polymorphism was found in 53 of 100 subjects with type 2 diabetes mellitus, 2 of 5 lipoatrophic diabetic patients and 24 of 50 control subjects, without any significant difference in allele frequency between groups. An EcoRI restriction fragment length polymorphism was identified in patients with type 2 diabetes mellitus and control subjects, again with no differences in occurrence. The allelic distribution of two polymorphic tandem repeats sequences in introns 5 and 12 of the gene did not differ significantly between patients with type 2 diabetes mellitus and control subjects. In conclusion, alterations in the PDE3B gene are unlikely to contribute importantly to the pathogenesis of type 2 diabetes mellitus or lipoatrophic diabetes mellitus in Japan.
Collapse
Affiliation(s)
- R Sano
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Abstract
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K. In the present work, using HTC-IR cells, we have found that insulin stimulation promotes the relocalization of Sam68 from the nucleus to the cytoplasm, and we have further studied the role of Sam68 in insulin receptor signaling complexes, by co-precipitating experiments. Thus, Sam68 is co-precipitated with p85 PI3K, IRS-1 and IR. The association of Sam68 with these complexes is mediated by the SH2 domains of PI3K. Moreover, we have found that Sam68 is a p120GAP associated protein after Tyr-phosphorylation by the IR. This association is mediated by the SH2 domains of GAP (preferentially the C-terminal SH2). Thus, Sam68 is linking p120GAP to PI3K signaling pathway. In fact, PI3K activity was increased in both anti-Sam68 and anti-GAP immmunoprecipitates upon insulin stimulation. We propose that the recruitment of the docking protein Sam68 to the PI3K pathway may serve to allow the association of other signaling molecules, i.e. p120GAP. In this way, these signaling complexes may modulate other signaling cascades of IR, such as p21Ras pathway.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville and Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009 Seville, Spain.
| | | |
Collapse
|
279
|
Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 2001; 276:38052-60. [PMID: 11498541 DOI: 10.1074/jbc.m106703200] [Citation(s) in RCA: 403] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acids have emerged as potent modulators of the mTOR/p70 S6 kinase pathway. The involvement of this pathway in the regulation of insulin-stimulated glucose transport was investigated in the present study. Acute exposure (1 h) to a balanced mixture of amino acids reduced insulin-stimulated glucose transport by as much as 55% in L6 muscle cells. The effect of amino acids was fully prevented by the specific mTOR inhibitor rapamycin. Time course analysis of insulin receptor substrate 1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity revealed that incubation with amino acids speeds up its time-dependent deactivation, leading to a dramatic suppression (-70%) of its activity after 30 min of insulin stimulation as compared with its maximal activation (5 min of stimulation). This accelerated deactivation of PI 3-kinase activity in amino acid-treated cells was associated with a concomitant and sustained increase in the phosphorylation of p70 S6 kinase. In marked contrast, inhibition of mTOR by rapamycin maintained PI 3-kinase maximally activated for up to 30 min. The marked inhibition of insulin-mediated PI 3-kinase activity by amino acids was linked to a rapamycin-sensitive increase in serine/threonine phosphorylation of IRS-1 and a decreased binding of the p85 subunit of PI 3-kinase to IRS-1. Furthermore, amino acids were required for the degradation of IRS-1 during long term insulin treatment. These results identify the mTOR/p70 S6 kinase signaling pathway as a novel modulator of insulin-stimulated glucose transport in skeletal muscle cells.
Collapse
Affiliation(s)
- F Tremblay
- Department of Physiology and Lipid Research Unit, Laval University Hospital Research Center, Ste-Foy, Québec G1V 4G2, Canada
| | | |
Collapse
|
280
|
Martín-Romero C, Sánchez-Margalet V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68. Cell Immunol 2001; 212:83-91. [PMID: 11748924 DOI: 10.1006/cimm.2001.1851] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. Thus, we have recently found that human leptin promotes stimulation and proliferation of human peripheral blood mononuclear cells. In the present work, we sought to study the mechanisms underlying these effects. First, we have assessed the presence of the long isoform of the human leptin receptor by RT-PCR. Next, we have studied tyrosine phosphorylation of cell proteins in response to leptin stimulation. We have found that leptin receptor, IRS-1 and the RNA-binding protein Sam68 are tyrosine phosphorylated upon leptin challenge in a dose-dependent manner. Moreover, tyrosine phosphorylation of IRS-1 and Sam68 promotes their association with p85, the regulatory subunit of PI3K, and this association leads to the stimulation of PI3K activity. On the other hand, the leptin-stimulated tyrosine phosphorylation of Sam68 mediates the dissociation from RNA as assessed by Sepharose-conjugated poly(U) binding. Finally, leptin receptor activation also triggers MAPK signaling pathway. Thus, leptin dose-dependently stimulates tyrosine and threonine phosphorylation of MAPK in mononuclear cells. In summary, the present work demonstrates the presence of the long isoform of the human leptin receptor in peripheral blood mononuclear cells and the activation of two signaling pathways, PI3K and MAPK. The effects on Sam68 phosphorylation may modulate its binding to RNA, although the physiological implications remain to be studied. These signal transduction pathways may mediate the described effects of human leptin on human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- C Martín-Romero
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, 41071-Seville, Spain
| | | |
Collapse
|
281
|
Watson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M, Macara IG, Saltiel AR, Pessin JE. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 2001; 154:829-40. [PMID: 11502760 PMCID: PMC2196453 DOI: 10.1083/jcb.200102078] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways.
Collapse
Affiliation(s)
- R T Watson
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Masuda-Robens J, Krymskaya VP, Qi H, Chou MM. Assays for monitoring p70 S6 kinase and RSK activation. Methods Enzymol 2001; 333:45-55. [PMID: 11400353 DOI: 10.1016/s0076-6879(01)33043-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Masuda-Robens
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
283
|
Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 2001; 281:E392-9. [PMID: 11440917 DOI: 10.1152/ajpendo.2001.281.2.e392] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) are insulin resistant secondary to a postbinding defect in insulin signaling. Sequential euglycemic glucose clamp studies at 40 and 400 mU. m(-2). min(-1) insulin doses with serial skeletal muscle biopsies were performed in PCOS and age-, weight-, and ethnicity-matched control women. Steady-state insulin levels did not differ, but insulin-mediated glucose disposal was significantly decreased in PCOS women (P < 0.05). Insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase (PI 3K) activity was significantly decreased in PCOS (n = 12) compared with control skeletal muscle (n = 8; P < 0.05). There was no significant difference in the abundance of IR, IRS-1, or the p85 regulatory subunit of PI 3K in PCOS (n = 14) compared with control (n = 12) muscle. The abundance of IRS-2 was significantly increased (P < 0.05) in PCOS skeletal muscle, suggesting a compensatory change. We conclude that there is a physiologically relevant defect in insulin receptor signaling in PCOS that is independent of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- A Dunaif
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
284
|
Feliers D, Duraisamy S, Faulkner JL, Duch J, Lee AV, Abboud HE, Choudhury GG, Kasinath BS. Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney Int 2001; 60:495-504. [PMID: 11473632 DOI: 10.1046/j.1523-1755.2001.060002495.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Altered regulation of signaling pathways may contribute to the pathogenesis of renal disease. We examined renal cortical signaling pathways in type 2 diabetes. METHODS The status of renal cortical signaling pathways was examined in control and db/db mice with type 2 diabetes in the early phase of diabetic nephropathy associated with renal matrix expansion and albuminuria. RESULTS Tyrosine phosphorylation of renal cortical proteins was increased in diabetic mice. Renal cortical activities of phosphatidylinositol 3-kinase (PI 3-kinase) in antiphosphotyrosine immunoprecipitates, Akt (PKB), and ERK1/2-type mitogen-activated protein (MAP) kinase activities were significantly augmented sixfold (P < 0.01), twofold (P < 0.0003), and sevenfold (P < 0.001), respectively, in diabetic mice compared with controls. A part of the increased renal cortical PI 3-kinase activity was due to insulin receptor activation, as PI 3-kinase activity associated with beta chain of the insulin receptor was increased nearly fourfold (P < 0.0235). Additionally, the kinase activity of the immunoprecipitated insulin receptor beta chain was augmented in the diabetic renal cortex, and tyrosine phosphorylation of the insulin receptor was increased. In the liver, activities of PI 3-kinase in the antiphosphotyrosine immunoprecipitates and Akt also were increased threefold (P < 0.05) and twofold (P < 0.0002), respectively. However, there was no change in the hepatic insulin receptor-associated PI 3-kinase activity. Additionally, the hepatic ERK1/2-type MAP kinase activity was inhibited by nearly 50% (P < 0.01). CONCLUSIONS These studies demonstrate that a variety of receptor signaling pathways are activated in the renal cortex of mice with type 2 diabetes, and suggest a role for augmented insulin receptor activity in nephropathy of type 2 diabetes.
Collapse
Affiliation(s)
- D Feliers
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Ono H, Katagiri H, Funaki M, Anai M, Inukai K, Fukushima Y, Sakoda H, Ogihara T, Onishi Y, Fujishiro M, Kikuchi M, Oka Y, Asano T. Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol 2001; 15:1411-22. [PMID: 11463863 DOI: 10.1210/mend.15.8.0684] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate the roles of PTEN (phosphatase and tensin homolog deleted on chromosome 10) in the regulation of 3-position phosphorylated phosphoinositide metabolism as well as insulin-induced Akt phosphorylation and glucose metabolism, wild-type PTEN and its phosphatase-dead mutant (C124S) with or without an N-terminal myristoylation tag were overexpressed in Sf-9 cells and 3T3-L1 adipocytes using baculovirus and adenovirus systems, respectively. When expressed in Sf-9 cells together with the p110alpha catalytic subunit of phosphoinositide 3-kinase, myristoylated PTEN markedly reduced the accumulations of both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate induced by p110alpha. In contrast, overexpression of the C124S mutants apparently increased these accumulations. In 3T3-L1 adipocytes, insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate were markedly suppressed by overexpression of wild-type PTEN with the N-terminal myristoylation tag, but not by that without the tag. On the contrary, the C124S mutants of PTEN enhanced insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. Interestingly, the phosphorylation level of Akt at Thr308 (Akt2 at Thr309), but not at Ser473 (Akt2 at Ser474), was revealed to correlate well with the accumulation of phosphatidylinositol 3,4,5-trisphosphate modified by overexpression of these PTEN proteins. Finally, insulin-induced increases in glucose transport activity were significantly inhibited by the overexpression of myristoylated wild-type PTEN, but were not enhanced by expression of the C124S mutant of PTEN. Therefore, in conclusion, 1) PTEN dephosphorylates both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate in vivo, and the C124S mutants interrupt endogenous PTEN activity in a dominant-negative manner. 2) The membrane targeting process of PTEN may be important for exerting its function. 3) Phosphorylations of Thr309 and Ser474 of Akt2 are regulated differently, and the former is regulated very sensitively by the function of PTEN. 4) The phosphorylation level of Ser474, but not that of Thr309, in Akt2 correlates well with insulin-stimulated glucose transport activity in 3T3-L1 adipocytes. 5) The activity of endogenous PTEN may not play a major role in the regulation of glucose transport activity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- H Ono
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Li D, Randhawa VK, Patel N, Hayashi M, Klip A. Hyperosmolarity reduces GLUT4 endocytosis and increases its exocytosis from a VAMP2-independent pool in l6 muscle cells. J Biol Chem 2001; 276:22883-91. [PMID: 11297538 DOI: 10.1074/jbc.m010143200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intracellular traffic of the glucose transporter 4 (GLUT4) in muscle cells remains largely unexplored. Here we make use of L6 myoblasts stably expressing GLUT4 with an exofacially directed Myc-tag (GLUT4myc) to determine the exocytic and endocytic rates of the transporter. Insulin caused a rapid (t(12) = 4 min) gain, whereas hyperosmolarity (0.45 m sucrose) caused a slow (t(12) = 20 min) gain in surface GLUT4myc molecules. With prior insulin stimulation followed by addition of hypertonic sucrose, the increase in surface GLUT4myc was partly additive. Unlike the effect of insulin, the GLUT4myc gain caused by hyperosmolarity was insensitive to wortmannin or to tetanus toxin cleavage of VAMP2 and VAMP3. Disappearance of GLUT4myc from the cell surface was rapid (t(12) = 1.5 min). Insulin had no effect on the initial rate of GLUT4myc internalization. In contrast, hyperosmolarity almost completely abolished GLUT4myc internalization. Surface GLUT4myc accumulation in response to hyperosmolarity was only partially blocked by inhibition of tyrosine kinases with erbstatin analog (erbstatin A) and genistein. However, neither inhibitor interfered with the ability of hyperosmolarity to block GLUT4myc internalization. We propose that hyperosmolarity increases surface GLUT4myc by preventing GLUT4 endocytosis and stimulating its exocytosis via a pathway independent of phosphatidylinositol 3-kinase activity and of VAMP2 or VAMP3. A tetanus toxin-insensitive v-SNARE such as TI-VAMP detected in these cells, might mediate membrane fusion of the hyperosmolarity-sensitive pool.
Collapse
Affiliation(s)
- D Li
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | | | | | | | | |
Collapse
|
287
|
Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 2001; 276:19800-6. [PMID: 11279172 DOI: 10.1074/jbc.m101087200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.
Collapse
Affiliation(s)
- M Fujishiro
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Fruchtman S, Gift B, Howes B, Borski R. Insulin-like growth factor-I augments prolactin and inhibits growth hormone release through distinct as well as overlapping cellular signaling pathways. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:237-42. [PMID: 11399455 DOI: 10.1016/s1096-4959(01)00315-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently discovered a new role for insulin-like growth factor-I (IGF-I) as a specific and direct stimulator of prolactin (PRL) release in addition to its recognized function as an inhibitor of growth hormone (GH) release and synthesis. Little is known of the mechanisms that transduce the actions of IGF-I on PRL and GH release in vertebrates. The present study was undertaken to determine the cellular pathways that mediate the disparate actions of IGF-I on PRL and GH release in hybrid striped bass (Morone saxatilis X M. chrysops). When regulating cellular function, IGF-I may activate two primary pathways, phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK). The specific MAPK inhibitor, PD98059, blocked IGF-I-evoked PRL release as well as GH release inhibition over an 18-20-h incubation. LY294002, a specific PI 3-K inhibitor, overcame IGF-I's inhibition of GH release but was ineffective in blocking PRL release stimulated by IGF-I. These studies suggest IGF-I disparately alters PRL and GH by activating distinct as well as overlapping signaling pathways central for mediating actions of growth factors on secretory activity as well as cell proliferation. These results further support a role for IGF-I as a physiological regulator of PRL and GH.
Collapse
Affiliation(s)
- S Fruchtman
- Department of Zoology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
| | | | | | | |
Collapse
|
289
|
Haber EP, Curi R, Carvalho CR, Carpinelli AR. Secreção da insulina: efeito autócrino da insulina e modulação por ácidos graxos. ACTA ACUST UNITED AC 2001. [DOI: 10.1590/s0004-27302001000300003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A insulina exerce um papel central na regulação da homeostase da glicose e atua de maneira coordenada em eventos celulares que regulam os efeitos metabólicos e de crescimento. A sub-unidade beta do receptor de insulina possui atividade tirosina quinase intrínseca. A autofosforilação do receptor, induzida pela insulina, resulta na fosforilação de substratos protéicos intracelulares, como o substrato-1 do receptor de insulina (IRS-1). O IRS-1 fosforilado associa-se a domínios SH2 e SH3 da enzima PI 3-quinase, transmitindo, desta maneira, o sinal insulínico. A insulina parece exercer feedback positivo na sua secreção, pela interação com seu receptor em células B pancreáticas. Alterações nos mecanismos moleculares da via de sinalização insulínica sugerem uma associação entre resistência à insulina e diminuição da secreção deste hormônio, semelhante ao observado em diabetes mellitus tipo 2. Uma das anormalidades associadas à resistência à insulina é a hiperlipidemia. O aumento do pool de ácidos graxos livres circulantes pode modular a atividade de enzimas e de proteínas que participam na exocitose da insulina. Essa revisão descreve também os possíveis mecanismos de modulação da secreção de insulina pelos ácidos graxos em ilhotas pancreáticas.
Collapse
|
290
|
Tsuji Y, Kaburagi Y, Terauchi Y, Satoh S, Kubota N, Tamemoto H, Kraemer FB, Sekihara H, Aizawa S, Akanuma Y, Tobe K, Kimura S, Kadowaki T. Subcellular localization of insulin receptor substrate family proteins associated with phosphatidylinositol 3-kinase activity and alterations in lipolysis in primary mouse adipocytes from IRS-1 null mice. Diabetes 2001; 50:1455-63. [PMID: 11375348 DOI: 10.2337/diabetes.50.6.1455] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To clarify the roles of insulin receptor substrate (IRS) family proteins in phosphatidylinositol (PI) 3-kinase activation and insulin actions in adipocytes, we investigated the intracellular localization of IRS family proteins and PI 3-kinase activation in response to insulin by fractionation of mouse adipocytes from wild-type and IRS-1 null mice. In adipocytes from wild-type mice, tyrosine-phosphorylated IRS-1 and IRS-2, which were found to associate with PI 3-kinase in response to insulin, were detected in the plasma membrane (PM) and low-density microsome (LDM) fractions. By contrast, tyrosine-phosphorylated IRS-3 (pp60), which was found to associate with PI 3-kinase, was predominantly localized in the PM fraction. In adipocytes from IRS-1-null mice, insulin-stimulated PI 3-kinase activity in anti-phosphotyrosine (alphaPY) immunoprecipitates in the LDM fraction was almost exclusively mediated via IRS-2 and was reduced to 25%; however, insulin-stimulated PI 3-kinase activity in the PM fraction was primarily mediated via IRS-3 and was reduced to 60%. To determine the potential functional impact of the distinct subcellular localization of IRSs and associating PI 3-kinase activity on adipocyte-specific metabolic actions, we examined lipolysis in IRS-1 null mice. The level of isoproterenol-induced lipolysis was increased 5.1-fold in adipocytes from IRS-1 null mice as compared with wild-type mice. Moreover, hormone-sensitive lipase (HSL) protein was increased 4.3-fold in adipocytes from IRS-1-null mice compared with wild-type mice, and HSL mRNA expression was also increased. The antilipolytic effect of insulin in IRS-1 null adipocytes, however, was comparable to that in wild-type mice. Thus, discordance between these two insulin actions as well as the transcriptional and translational effect (HSL mRNA and protein regulation) and the PM effect (antilipolysis) of insulin may be explained by distinct roles of both PI 3-kinase activity associated with IRS-1/IRS-2 and PI 3-kinase activity associated with IRS-3 in insulin actions related to their subcellular localization.
Collapse
Affiliation(s)
- Y Tsuji
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1. Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Lee-Kwon W, Johns DC, Cha B, Cavet M, Park J, Tsichlis P, Donowitz M. Constitutively active phosphatidylinositol 3-kinase and AKT are sufficient to stimulate the epithelial Na+/H+ exchanger 3. J Biol Chem 2001; 276:31296-304. [PMID: 11375999 DOI: 10.1074/jbc.m103900200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors and has been shown to be involved in regulation of stimulated exocytosis and endocytosis. One of the downstream signaling molecules activated by PI 3-kinase is the protein kinase Akt. Previous studies have indicated that PI 3-kinase is necessary for basal Na(+)/H(+) exchanger 3 (NHE3) transport and for fibroblast growth factor-stimulated NHE3 activity in PS120 fibroblasts. However, it is not known whether activation of PI 3-kinase is sufficient to stimulate NHE3 activity or whether Akt is involved in this PI 3-kinase effect. We used an adenoviral infection system to test the possibility that activation of PI 3-kinase or Akt alone is sufficient to stimulate NHE3 activity. This hypothesis was investigated in PS120 fibroblasts stably expressing NHE3 after somatic gene transfer using a replication-deficient recombinant adenovirus containing constitutively active catalytic subunit of PI 3-kinase or constitutively active Akt. The adenovirus construct used was engineered with an upstream ecdysone promoter to allow time-regulated expression. Adenoviral infection was nearly 100% at 48 h after infection. Forty-eight hours after infection (24 h after activation of the ecdysone promoter), PI 3-kinase and Akt amount and activity were increased. Increases in both PI 3-kinase activity and Akt activity stimulated NHE3 transport. In addition, a membrane-permeant synthetic 10-mer peptide that binds polyphosphoinositides and increases PI 3-kinase activity similarly enhanced NHE3 transport activity and also increased the percentage of NHE3 on the plasma membrane. The magnitudes of stimulation of NHE3 by constitutively active PI 3-kinase, PI 3-kinase peptide, and constitutively active Akt were similar to each other. These results demonstrate that activation of PI 3-kinase or Akt is sufficient to stimulate NHE3 transport activity in PS120/NHE3 cells.
Collapse
Affiliation(s)
- W Lee-Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
292
|
Abstract
Eukaryotic cell cycle progression is driven by an ordered array of phosphorylation events that are specifically catalyzed by members of CDK (cyclin-dependent kinase) family serine/threonine protein kinases, each consisting of a catalytic subunit CDK and a positive regulatory subunit cyclin. In mammalian somatic cells extracellular cues act mainly during the G1 phase to regulate the activity of D type cyclin-dependent CDKs, which, in turn, serve as key regulators of G1--S phase progression by phosphorylating and functionally inactivating the tumor suppressor retinoblastoma (Rb) protein. The small molecular weight G protein Ras has been implicated as a crucial molecule that transduces extracellular growth stimuli into intracellular signals. Recent studies, including our own, have demonstrated that maintained cellular Ras activity is required until late in the G1 phase for inactivation of the Rb protein and the G1/S transition and mediates both upregulation of cyclin D1 and downregulation of p27kip1 CDK inhibitor.
Collapse
Affiliation(s)
- N Takuwa
- Department of Physiology, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa City, 920-8640, Japan.
| | | |
Collapse
|
293
|
Abstract
Insulin resistance is defined as a clinical state in which a normal or elevated insulin level produces an attenuated biologic response. Specifically, the biologic response most studied is insulin-stimulated glucose disposal, yet the precise cellular mechanism responsible is not yet known. However, the presence of insulin resistance is observed many years before the onset of clinical hyperglycemia and the diagnosis of Type 2 diabetes. Insulin resistance at this stage appears to be significantly associated with a clustering of cardiovascular risk factors predisposing the individual to accelerated cardiovascular disease. An overview of insulin resistance and the associated clinical insulin resistant state will be discussed.
Collapse
Affiliation(s)
- W T Cefalu
- Department of Medicine, University of Vermont College of Medicine, Burlington 05405, USA.
| |
Collapse
|
294
|
Shigematsu S, Miller SL, Pessin JE. Differentiated 3T3L1 adipocytes are composed of heterogenous cell populations with distinct receptor tyrosine kinase signaling properties. J Biol Chem 2001; 276:15292-7. [PMID: 11278545 DOI: 10.1074/jbc.m009684200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various studies have demonstrated that the platelet-derived growth factor (PDGF) receptor in adipocytes can activate PI 3-kinase activity without affecting insulin-responsive glucose transporter (GLUT4) translocation. To investigate this phenomenon of receptor signaling specificity, we utilized single cell analysis to determine the cellular distribution and signaling properties of PDGF and insulin in differentiated 3T3L1 adipocytes. The insulin receptor was highly expressed in a large percentage of the cell population (>95%) that also expressed caveolin 2 and GLUT4 with very low levels of the PDGF receptor. In contrast, the PDGF receptor was only expressed in approximately 10% of the differentiated 3T3L1 cell population with relatively low levels of the insulin receptor, caveolin 2, and GLUT4. Consistent with this observation, insulin stimulated the phosphorylation of Akt in the caveolin 2- and GLUT4-positive cells, whereas PDGF primarily stimulated Akt phosphorylation in the caveolin 2- and GLUT4-negative cell population. Furthermore, transfection of the PDGF receptor in the insulin receptor-, GLUT4-, and caveolin 2-positive cells resulted in the ability of PDGF to stimulate GLUT4 translocation. These data demonstrate that differentiated 3T3L1 adipocytes are not a homogeneous population of cells, and the lack of PDGF receptor expression in the GLUT4-positive cell population accounts for the inability of the endogenous PDGF receptor to activate GLUT4 translocation.
Collapse
Affiliation(s)
- S Shigematsu
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
295
|
Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM. Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J Clin Invest 2001; 107:1193-202. [PMID: 11342583 PMCID: PMC209278 DOI: 10.1172/jci11753] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We recently reported that insulin and endothelin-1 (ET-1) can stimulate GLUT4 translocation via the heterotrimeric G protein G alpha q/11 and through PI3-kinase--mediated pathways in 3T3-L1 adipocytes. Because both hormones stimulate glucose transport through a common downstream pathway, we determined whether chronic ET-1 pretreatment would desensitize these cells to acute insulin signaling. We found that ET-1 pretreatment substantially inhibited insulin-stimulated 2-deoxyglucose uptake and GLUT4 translocation. Cotreatment with the ETA receptor antagonist BQ 610 prevented these effects, whereas inhibitors of G alpha i or G beta gamma were without effect. Chronic ET-1 treatment inhibited insulin-stimulated tyrosine phosphorylation of G alpha q/11 and IRS-1, as well as their association with PI3-kinase and blocked the activation of PI3-kinase activity and phosphorylation of AKT: In addition, chronic ET-1 treatment caused IRS-1 degradation, which could be blocked by inhibitors of PI3-kinase or p70 S6-kinase. Similarly, expression of a constitutively active G alpha q mutant, but not the wild-type G alpha q, led to IRS-1 degradation and inhibited insulin-stimulated phosphorylation of IRS-1, suggesting that the ET-1-induced decrease in IRS-1 depends on G alpha q/11 and PI3-kinase. Insulin-stimulated tyrosine phosphorylation of SHC was also reduced in ET-1 treated cells, resulting in inhibition of the MAPK pathway. In conclusion, chronic ET-1 treatment of 3T3-L1 adipocytes leads to heterologous desensitization of metabolic and mitogenic actions of insulin, most likely through the decreased tyrosine phosphorylation of the insulin receptor substrates IRS-1, SHC, and G alpha q/11.
Collapse
Affiliation(s)
- K I Ishibashi
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | | | |
Collapse
|
296
|
Ikeo S, Yamauchi K, Shigematsu S, Nakajima K, Aizawa T, Hashizume K. Differential effects of growth hormone and insulin-like growth factor I on human endothelial cell migration. Am J Physiol Cell Physiol 2001; 280:C1255-61. [PMID: 11287339 DOI: 10.1152/ajpcell.2001.280.5.c1255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of growth hormone (GH), insulin-like growth factor I (IGF-I), and endothelin-1 (ET-1) on endothelial cell migration and the underlying molecular mechanisms were explored using a human umbilical cord endothelial cell line, ECV304 cells, in vitro. Treatment of the cells with IGF-I or ET-1, but not GH, stimulated the cell migration. Interestingly, however, ET-1-induced, but not IGF-I-induced, migration of the cells was inhibited by GH. Both ET-1 and IGF-I caused activation of mitogen-activated protein kinase (MAPK) in the cells, and GH eliminated the MAPK activation produced by ET-1 but not that produced by IGF-I. On the other hand, migration of the cells was stimulated by protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate. ET-1 promoted PKC activity, and a PKC inhibitor, GF-109203X, blocked ET-1-induced cell migration. Although GH inhibited ET-1-induced cell migration and MAPK activity, it did not block ET-1-induced PKC activation. Thus ET-1 stimulation of endothelial cell migration appears to be mediated by PKC/MAPK pathway, and GH may inhibit the MAPK activation by ET-1 at the downstream of PKC.
Collapse
Affiliation(s)
- S Ikeo
- Department of Aging Medicine and Geriatrics, Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | | | | | | | | | | |
Collapse
|
297
|
Sung JY, Shin SW, Ahn YS, Chung KC. Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells. J Biol Chem 2001; 276:13858-66. [PMID: 11278709 DOI: 10.1074/jbc.m010610200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors bind to their specific receptors on the responsive cell surface and thereby initiate dramatic changes in the proliferation, differentiation, and survival of their target cells. In the present study we have examined the mechanism by which growth factor-induced signals are propagated to the nucleus, leading to the activation of transcription factor, cis-acting cAMP response element (CRE)-binding protein (CREB), in immortalized hippocampal progenitor cells (H19-7). During the differentiation of H19-7 cells by basic fibroblast growth factor (bFGF) a critical regulatory Ser(133) residue of CREB was phosphorylated followed by an increase of CRE-mediated gene transcription. Expression of S133A CREB mutants blocked the differentiation of H19-7 cells by bFGF. Although the kinetics of CREB phosphorylation by EGF was transient, bFGF induced a prolonged pattern of CREB phosphorylation. Interestingly, bFGF-induced CREB phosphorylation and subsequent CRE-mediated gene transcription is not likely to be mediated by any of previously known signaling pathways that lead to phosphorylation of CREB, such as mitogen-activated protein kinases, protein kinase A, protein kinase C, phosphatidylinositol 3-kinase-p70(S6K), calcium/calmodulin dependent protein kinase, and casein kinase 2. By using in vitro in gel kinase assay the presence of a novel 120-kDa bFGF-inducible CREB kinase was identified. These findings identify a new growth factor-activated signaling pathway that regulates gene expression at the CRE.
Collapse
Affiliation(s)
- J Y Sung
- Department of Pharmacology, Brain Research Institute, and Brain Korea 21 Projects for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
298
|
Huppertz C, Fischer BM, Kim YB, Kotani K, Vidal-Puig A, Slieker LJ, Sloop KW, Lowell BB, Kahn BB. Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem 2001; 276:12520-9. [PMID: 11278970 DOI: 10.1074/jbc.m011708200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UCP3 is a mitochondrial membrane protein expressed in humans selectively in skeletal muscle. To determine the mechanisms by which UCP3 plays a role in regulating glucose metabolism, we expressed human UCP3 in L6 myotubes by adenovirus-mediated gene transfer and in H(9)C(2) cardiomyoblasts by stable transfection with a tetracycline-repressible UCP3 construct. Expression of UCP3 in L6 myotubes increased 2-deoxyglucose uptake 2-fold and cell surface GLUT4 2.3-fold, thereby reaching maximally insulin-stimulated levels in control myotubes. Wortmannin, LY 294002, or the tyrosine kinase inhibitor genistein abolished the effect of UCP3 on glucose uptake, and wortmannin inhibited UCP3-induced GLUT4 cell surface recruitment. UCP3 overexpression increased phosphotyrosine-associated phosphoinositide 3-kinase (PI3K) activity 2.2-fold compared with control cells (p < 0.05). UCP3 overexpression increased lactate release 1.5- to 2-fold above control cells, indicating increased glucose metabolism. In H(9)C(2) cardiomyoblasts stably transfected with UCP3 under control of a tetracycline-repressible promotor, removal of doxycycline resulted in detectable levels of UCP3 at 12 h and 2.2-fold induction at 7 days compared with 12 h. In parallel, glucose transport increased 1.3- and 2-fold at 12 h and 7 days, respectively, and the stimulation was inhibited by wortmannin or genistein. p85 association with membranes was increased 5.5-fold and phosphotyrosine-associated PI3K activity 3.8-fold. In contrast, overexpression of UCP3 in 3T3-L1 adipocytes did not alter glucose uptake, suggesting tissue-specific effects of human UCP3. Thus, UCP3 stimulates glucose transport and GLUT4 translocation to the cell surface in cardiac and skeletal muscle cells by activating a PI3K dependent pathway.
Collapse
Affiliation(s)
- C Huppertz
- Diabetes Unit, Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexander-Bridges M. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 2001; 276:13402-10. [PMID: 11124266 DOI: 10.1074/jbc.m010042200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Caenorhabditis elegans, an insulin-like signaling pathway to phosphatidylinositol 3-kinase (PI 3-kinase) and AKT negatively regulates the activity of DAF-16, a Forkhead transcription factor. We show that in mammalian cells, C. elegans DAF-16 is a direct target of AKT and that AKT phosphorylation generates 14-3-3 binding sites and regulates the nuclear/cytoplasmic distribution of DAF-16 as previously shown for its mammalian homologs FKHR and FKHRL1. In vitro, interaction of AKT- phosphorylated DAF-16 with 14-3-3 prevents DAF-16 binding to its target site in the insulin-like growth factor binding protein-1 gene, the insulin response element. In HepG2 cells, insulin signaling to PI 3-kinase/AKT inhibits the ability of a GAL4 DNA binding domain/DAF-16 fusion protein to activate transcription via the insulin-like growth factor binding protein-1-insulin response element, but not the GAL4 DNA binding site, which suggests that insulin inhibits the interaction of DAF-16 with its cognate DNA site. Elimination of the DAF-16/1433 association by mutation of the AKT/14-3-3 sites in DAF-16, prevents 14-3-3 inhibition of DAF-16 DNA binding and insulin inhibition of DAF-16 function. Similarly, inhibition of the DAF-16/14-3-3 association by exposure of cells to the PI 3-kinase inhibitor LY294002, enhances DAF-16 DNA binding and transcription activity. Surprisingly constitutively nuclear DAF-16 mutants that lack AKT/14-3-3 binding sites also show enhanced DNA binding and transcription activity in response to LY294002, pointing to a 14-3-3-independent mode of regulation. Thus, our results demonstrate at least two mechanisms, one 14-3-3-dependent and the other 14-3-3-independent, whereby PI 3-kinase signaling regulates DAF-16 DNA binding and transcription function.
Collapse
Affiliation(s)
- C M Cahill
- Diabetes Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
300
|
Goalstone ML, Leitner JW, Berhanu P, Sharma PM, Olefsky JM, Draznin B. Insulin signals to prenyltransferases via the Shc branch of intracellular signaling. J Biol Chem 2001; 276:12805-12. [PMID: 11278505 DOI: 10.1074/jbc.m009443200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We assessed the roles of insulin receptor substrate-1 (IRS-1) and Shc in insulin action on farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) using Chinese hamster ovary (CHO) cells that overexpress wild-type human insulin receptors (CHO-hIR-WT) or mutant insulin receptors lacking the NPEY domain (CHO-DeltaNPEY) or 3T3-L1 fibroblasts transfected with adenoviruses that express the PTB or SAIN domain of IRS-1 and Shc, the pleckstrin homology (PH) domain of IRS-1, or the Src homology 2 (SH2) domain of Shc. Insulin promoted phosphorylation of the alpha-subunit of FTase and GGTase I in CHO-hIR-WT cells, but was without effect in CHO-DeltaNPEY cells. Insulin increased FTase and GGTase I activities and the amounts of prenylated Ras and RhoA proteins in CHO-hIR-WT (but not CHO-DeltaNPEY) cells. Overexpression of the PTB or SAIN domain of IRS-1 (which blocked both IRS-1 and Shc signaling) prevented insulin-stimulated phosphorylation of the FTase and GGTase I alpha-subunit activation of FTase and GGTase I and subsequent increases in prenylated Ras and RhoA proteins. In contrast, overexpression of the IRS-1 PH domain, which impairs IRS-1 (but not Shc) signaling, did not alter insulin action on the prenyltransferases, but completely inhibited the insulin effect on the phosphorylation of IRS-1 and on the activation of phosphatidylinositol 3-kinase and Akt. Finally, overexpression of the Shc SH2 domain completely blocked the insulin effect on FTase and GGTase I activities without interfering with insulin signaling to MAPK. These data suggest that insulin signaling from its receptor to the prenyltransferases FTase and GGTase I is mediated by the Shc pathway, but not the IRS-1/phosphatidylinositol 3-kinase pathway. Shc-mediated insulin signaling to MAPK may be necessary (but not sufficient) for activation of prenyltransferase activity. An additional pathway involving the Shc SH2 domain may be necessary to mediate the insulin effect on FTase and GGTase I.
Collapse
Affiliation(s)
- M L Goalstone
- Veterans Affairs Medical Center Research Service and the Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|