251
|
Abstract
Perhaps the biggest single task facing a bacterial cell is to divide into daughter cells that contain the normal complement of chromosomes. Recent technical and conceptual breakthroughs in bacterial cell biology, combined with the flood of genome sequence information and the excellent genetic tools in several model systems, have shed new light on the mechanism of prokaryotic cell division. There is good evidence that in most species, a molecular machine, organized by the tubulin-like FtsZ protein, assembles at the site of division and orchestrates the splitting of the cell. The determinants that target the machine to the right place at the right time are beginning to be understood in the model systems, but it is still a mystery how the machine actually generates the constrictive force necessary for cytokinesis. Moreover, although some cell division determinants such as FtsZ are present in a broad spectrum of prokaryotic species, the lack of FtsZ in some species and different profiles of cell division proteins in different families suggests that there are diverse mechanisms for regulating cell division.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 6431 Fannin, Houston, Texas 77030, USA.
| |
Collapse
|
252
|
Yaoi T, Laksanalamai P, Jiemjit A, Kagawa HK, Alton T, Trent JD. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 2000; 275:936-45. [PMID: 10973825 DOI: 10.1006/bbrc.2000.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif.
Collapse
Affiliation(s)
- T Yaoi
- NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | | | | | | | | |
Collapse
|
253
|
Marrec-Fairley M, Piette A, Gallet X, Brasseur R, Hara H, Fraipont C, Ghuysen JM, Nguyen-Distèche M. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol 2000; 37:1019-31. [PMID: 10972821 DOI: 10.1046/j.1365-2958.2000.02054.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The class B M1-V577 penicillin-binding protein (PBP) 3 of Escherichia coli consists of a M1-L39 membrane anchor (bearing a cytosolic tail) that is linked via a G40-S70 intervening peptide to an R71-I236 non-catalytic module (containing the conserved motifs 1-3) itself linked via motif 4 to a D237-V577 catalytic module (containing the conserved motifs 5-7 of the penicilloyl serine transferases superfamily). It has been proposed that during cell septation the peptidoglycan crosslinking activity of the acyl transferase module of PBP3 is regulated by the associated M1-I236 polypeptide itself in interaction with other components of the divisome. The fold adopted by the R71-V577 polypeptide of PBP3 has been modelled by reference to the corresponding R76-S634 polypeptide of the class B Streptococcus pneumoniae PBP2x. Based on these data and the results of site-directed mutagenesis of motifs 1-3 and of peptide segments of high amphiphilicity (identified from hydrophobic moment plots), the M1-I236 polypeptide of PBP3 appears to be precisely designed to work in the way proposed. The membrane anchor and the G40-S70 sequence (containing the G57-Q66 peptide segment) upstream from the non-catalytic module have the information ensuring that PBP3 undergoes proper insertion within the divisome at the cell septation site. Motif 1 and the I74-L82 overlapping peptide segment, motif 2 and the H160-G172 overlapping peptide segment, and the G188-D197 motif 3 are located at or close to the intermodule junction. They contain the information ensuring that PBP3 folds correctly and the acyl transferase catalytic centre adopts the active configuration. The E206-V217 peptide segment is exposed at the surface of the non-catalytic module. It has the information ensuring that PBP3 fulfils its cell septation activity within the fully complemented divisome.
Collapse
Affiliation(s)
- M Marrec-Fairley
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, B6, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
Bacterial cell division depends on the formation of a cytokinetic ring structure, the Z-ring. The bacterial tubulin homologue FtsZ is required for Z-ring formation. FtsZ assembles into various polymeric forms in vitro, indicating a structural role in the septum of bacteria. We have used recombinant FtsZ1 protein from M. jannaschii to produce helical tubes and sheets with high yield using the GTP analogue GMPCPP [guanylyl-(alpha,beta)-methylene-diphosphate]. The sheets appear identical to the previously reported Ca++-induced sheets of FtsZ from M. jannaschii that were shown to consist of 'thick'-filaments in which two protofilaments run in parallel. Tubes assembled either in Ca++ or in GMPCPP contain filaments whose dimensions indicate that they could be equivalent to the 'thick'-filaments in sheets. Some tubes are hollow but others are filled by additional protein density. Helical FtsZ tubes differ from eukaryotic microtubules in that the filaments curve around the filament axis with a pitch of approximately 430 A for Ca++-induced tubes or 590 - 620 A for GMPCPP. However, their assembly in vitro as well-ordered polymers over distances comparable to the inner circumference of a bacterium may indicate a role in vivo. Their size and stability make them suitable for use in motility assays.
Collapse
Affiliation(s)
- J Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
255
|
Hale CA, Rhee AC, de Boer PA. ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 2000; 182:5153-66. [PMID: 10960100 PMCID: PMC94664 DOI: 10.1128/jb.182.18.5153-5166.2000] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA(-) cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor.
Collapse
Affiliation(s)
- C A Hale
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | | | |
Collapse
|
256
|
Kuhn I, Peng L, Bedu S, Zhang CC. Developmental regulation of the cell division protein FtsZ in Anabaena sp. strain PCC 7120, a cyanobacterium capable of terminal differentiation. J Bacteriol 2000; 182:4640-3. [PMID: 10913101 PMCID: PMC94639 DOI: 10.1128/jb.182.16.4640-4643.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocysts are terminally differentiated cells devoted to nitrogen fixation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. We show here that the cell division protein FtsZ is present in vegetative cells but undetectable in heterocysts. These results provide a first rational explanation for the inability of mature heterocysts to undergo cell division.
Collapse
Affiliation(s)
- I Kuhn
- Unité d'Immuotechnologie et Microbiologie Moléculaire, Ecole Supérieure de Biotechnologie de Strasbourg, Université Louis Pasteur de Strasbourg, 67400 Illkirch, France
| | | | | | | |
Collapse
|
257
|
Osteryoung KW. Organelle fission. Crossing the evolutionary divide. PLANT PHYSIOLOGY 2000; 123:1213-1216. [PMID: 10938340 PMCID: PMC1539268 DOI: 10.1104/pp.123.4.1213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- K W Osteryoung
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
258
|
Gomez JE, Bishai WR. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 2000; 97:8554-9. [PMID: 10880571 PMCID: PMC26986 DOI: 10.1073/pnas.140225297] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A study of potential mycobacterial regulatory genes led to the isolation of the Mycobacterium smegmatis whmD gene, which encodes a homologue of WhiB, a Streptomyces coelicolor protein required for sporulation. Unlike its Streptomyces homologue, WhmD is essential in M. smegmatis. The whmD gene could be disrupted only in the presence of a plasmid supplying whmD in trans. A plasmid that allowed chemically regulated expression of the WhmD protein was used to generate a conditional whmD mutant. On withdrawal of the inducer, the conditional whmD mutant exhibited irreversible, filamentous, branched growth with diminished septum formation and aberrant septal placement, whereas WhmD overexpression resulted in growth retardation and hyperseptation. Nucleic acid synthesis and levels of the essential cell division protein FtsZ were unaltered by WhmD deficiency. Together, these phenotypes indicate a role for WhmD in mycobacterial septum formation and cell division.
Collapse
Affiliation(s)
- J E Gomez
- Departments of Molecular Microbiology and Immunology, International Health, and Medicine, Center for Tuberculosis Research, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
259
|
Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 2000; 19:3179-91. [PMID: 10880432 PMCID: PMC313961 DOI: 10.1093/emboj/19.13.3179] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, FtsZ, a homologue of eukaryotic tubulins, and ZipA, a membrane-anchored protein that binds to FtsZ, are two essential components of the septal ring structure that mediates cell division. Recent data indicate that ZipA is involved in the assembly of the ring by linking FtsZ to the cytoplasmic membrane and that the ZipA-FtsZ interaction is mediated by their C-terminal domains. We present the X-ray crystal structures of the C-terminal FtsZ-binding domain of ZipA and a complex between this domain and a C-terminal fragment of FtsZ. The ZipA domain is a six-stranded beta-sheet packed against three alpha-helices and contains the split beta-alpha-beta motif found in many RNA-binding proteins. The uncovered side of the sheet incorporates a shallow hydrophobic cavity exposed to solvent. In the complex, the 17-residue FtsZ fragment occupies this entire cavity of ZipA and binds as an extended beta-strand followed by alpha-helix. An alanine-scanning mutagenesis analysis of the FtsZ fragment was also performed, which shows that only a small cluster of the buried FtsZ side chains is critical in binding to ZipA.
Collapse
Affiliation(s)
- L Mosyak
- Biological Chemistry, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
White EL, Ross LJ, Reynolds RC, Seitz LE, Moore GD, Borhani DW. Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol 2000; 182:4028-34. [PMID: 10869082 PMCID: PMC94589 DOI: 10.1128/jb.182.14.4028-4034.2000] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coli and purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90 degrees light scattering. The mycobacterial protein reaches maximum polymerization much more slowly ( approximately 10 min) than E. coli FtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg(2+) and GTP. The minimum concentration of FtsZ needed for polymerization is 3 microM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2, 3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate+ ++ (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.
Collapse
Affiliation(s)
- E L White
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35205, USA.
| | | | | | | | | | | |
Collapse
|
261
|
Francis F, Ramirez-Arcos S, Salimnia H, Victor C, Dillon JR. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 2000; 251:141-51. [PMID: 10876091 DOI: 10.1016/s0378-1119(00)00200-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A cluster of genes involved in cell division and cell wall (dcw) biosynthesis was identified in Neisseria gonorrhoeae using genomic analysis and through verification of gene order by polymerase chain reaction (PCR) analysis. The gonococcal dcw cluster consists of 17 genes, in the order 5'-mraZ-mraW-ftsI-murE-hyp1-murF- mraY-hyp2-murD-ftsW-murG-murC-ddl -ft sQ-ftsA-ftsZ-hyp3-3'. The gene organization of the dcw cluster of N. gonorrhoeae is more similar to that observed in Gram-negative rods such as Escherichia coli and Haemophilus influenzae than in Gram-positive bacteria. The cluster is characterized by several intergenic spaces. Compared with E. coli, two genes, ftsL and envA, are absent in the gonococcal dcw cluster and three hypothetical genes are novel to the cluster. The cluster is flanked by two transcriptional terminators consisting of paired neisserial uptake sequences and also includes four internal terminators, three of which are paired neisserial uptake sequences. We also found that a repeated sequence on the gonococcal genome, commonly called a Correia element, acts as the fourth transcriptional terminator. All termination sequences were shown to be fully functional by using reverse transcription PCR experiments. Transcriptional start sites upstream of ftsQ, ftsA and ftsZ were determined by primer extension and six promoters were identified; three promoters were located upstream of ftsZ in the intergenic space, two were upstream of ftsA within ftsQ and one was upstream of ftsQ within ddl. Some of these promoters were preferentially used under anaerobic conditions. The location of these promoters differed from those described in E. coli indicating dissimilar transcriptional regulation.
Collapse
Affiliation(s)
- F Francis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | | | |
Collapse
|
262
|
Gullbrand B, Nordström K. FtsZ ring formation without subsequent cell division after replication runout in Escherichia coli. Mol Microbiol 2000; 36:1349-59. [PMID: 10931285 DOI: 10.1046/j.1365-2958.2000.01949.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report, we have investigated cell division after inhibition of initiation of chromosome replication in Escherichia coli. In a culture grown to the stationary phase, cells containing more than one chromosome were able to divide some time after restart of growth, under conditions not allowing initiation of chromosome replication. This shows that there is no requirement for cell division to take place within a certain time after initiation of chromosome replication. Continued growth without initiation of replication resulted in filamented cells that generally did not have any constrictions. Interestingly, FtsZ rings were formed in a majority of these cells as they reached a certain cell length. These rings appeared and were maintained for some time at the cell quarter positions on both sides of the centrally localized nucleoid. These results confirm previous findings that cell division sites are formed independently of chromosome replication and indicate that FtsZ ring assembly is dependent on cell size rather than on the capacity of the cell to divide. Disruption of the mukB gene caused a significant increase in the region occupied by DNA after the replication runout, consistent with a role of MukB in chromosome condensation. The aberrant nucleoid structure was accompanied by a shift in FtsZ ring positioning, indicating an effect of the nucleoid on the positioning of the FtsZ ring. A narrow cell length interval was found, under and over which primarily central and non-central FtsZ rings, respectively, were observed. This finding correlates well with the previously observed oscillatory movement of MinC and MinD in short and long cells.
Collapse
Affiliation(s)
- B Gullbrand
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
263
|
Edwards DH, Thomaides HB, Errington J. Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J 2000; 19:2719-27. [PMID: 10835369 PMCID: PMC212753 DOI: 10.1093/emboj/19.11.2719] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Bacillus subtilis divIVA gene encodes a coiled-coil protein that shows weak similarity to eukaryotic tropomyosins. The protein is targeted to the sites of cell division and mature cell poles where, in B.subtilis, it controls the site specificity of cell division. Although clear homologues of DivIVA are present only in Gram-positive bacteria, and its role in division site selection is not conserved in the Gram-negative bacterium, Escherichia coli, a DivIVA-green fluorescent protein (GFP) fusion was targeted accurately to division sites and retained at the cell pole in this organism. Remarkably, the same fusion protein was also targeted to nascent division sites and growth zones in the fission yeast Schizosaccharomyces pombe, mimicking the localization of the endogenous tropomyosin-like cell division protein Cdc8p, and F-actin. The results show that a targeting signal for division sites is conserved across the eukaryote-prokaryote divide.
Collapse
Affiliation(s)
- D H Edwards
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
264
|
Katis VL, Wake RG, Harry EJ. Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J Bacteriol 2000; 182:3607-11. [PMID: 10852898 PMCID: PMC101979 DOI: 10.1128/jb.182.12.3607-3611.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 03/24/2000] [Indexed: 11/20/2022] Open
Abstract
Using immunofluorescence microscopy, we have examined the dependency of localization among three Bacillus subtilis division proteins, FtsZ, DivIB, and DivIC, to the division site. DivIC is required for DivIB localization. However, DivIC localization is dependent on DivIB only at high growth temperatures, at which DivIB is essential for division. FtsZ localization is required for septal recruitment of DivIB and DivIC, but FtsZ can be recruited independently of DivIB. These localization studies suggest a more specific role for DivIB in division, involving interaction with DivIC.
Collapse
Affiliation(s)
- V L Katis
- Department of Biochemistry, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
265
|
Abstract
Recent findings indicate that the dynamin GTPase helps to divide animal and fungal mitochondria, and that the tubulin-like FtsZ GTPase is involved in division of, not only most bacteria, but also chloroplasts and probably mitochondria of unicellular eukaryotes.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, 77030, USA. margolin@utmmg. med.uth.tmc.edu
| |
Collapse
|
266
|
Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 2000; 10:507-16. [PMID: 10801439 DOI: 10.1016/s0960-9822(00)00466-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.
Collapse
Affiliation(s)
- K S Colletti
- Department of Biochemistry, University of Nevada, Reno, 89557, USA
| | | | | | | | | | | |
Collapse
|
267
|
Sievers J, Errington J. The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol Microbiol 2000; 36:846-55. [PMID: 10844672 DOI: 10.1046/j.1365-2958.2000.01895.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FtsL is a small bitopic membrane protein required for vegetative cell division and sporulation in Bacillus subtilis. We investigated its localization by fluorescence microscopy using a green fluorescent protein (GFP) fusion. GFP-FtsL was localized at mid-cell in vegetative cells and at the asymmetric septum in sporulating cells. We also show that FtsL forms a ring-like structure at the division site and that it remains localized at mid-cell during the whole septation process. By yeast two-hybrid analysis and non-denaturing polyacrylamide gel electrophoresis (PAGE) with purified proteins, FtsL was found to interact with another membrane-bound division protein, the FtsL-like DivIC protein.
Collapse
Affiliation(s)
- J Sievers
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
268
|
|
269
|
Rivas G, López A, Mingorance J, Ferrándiz MJ, Zorrilla S, Minton AP, Vicente M, Andreu JM. Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. J Biol Chem 2000; 275:11740-9. [PMID: 10766796 DOI: 10.1074/jbc.275.16.11740] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial cell division protein FtsZ from Escherichia coli has been purified with a new calcium precipitation method. The protein contains one GDP and one Mg(2+) bound, it shows GTPase activity, and requires GTP and Mg(2+) to polymerize into long thin filaments at pH 6.5. FtsZ, with moderate ionic strength and low Mg(2+) concentrations, at pH 7.5, is a compact and globular monomer. Mg(2+) induces FtsZ self-association into oligomers, which has been studied by sedimentation equilibrium over a wide range of Mg(2+) and FtsZ concentrations. The oligomer formation mechanism is best described as an indefinite self-association, with binding of an additional Mg(2+) for each FtsZ monomer added to the growing oligomer, and a slight gradual decrease of the affinity of addition of a protomer with increasing oligomer size. The sedimentation velocity of FtsZ oligomer populations is compatible with a linear single-stranded arrangement of FtsZ monomers and a spacing of 4 nm. It is proposed that these FtsZ oligomers and the polymers formed under assembly conditions share a similar axial interaction between monomers (like in the case of tubulin, the eukaryotic homolog of FtsZ). Similar mechanisms may apply to FtsZ assembly in vivo, but additional factors, such as macromolecular crowding, nucleoid occlusion, or specific interactions with other cellular components active in septation have to be invoked to explain FtsZ assembly into a division ring.
Collapse
Affiliation(s)
- G Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Lucet I, Feucht A, Yudkin MD, Errington J. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J 2000; 19:1467-75. [PMID: 10747015 PMCID: PMC310216 DOI: 10.1093/emboj/19.7.1467] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SpoIIE is a bifunctional protein with two critical roles in the establishment of cell fate in Bacillus subtilis. First, SpoIIE is needed for the normal formation of the asymmetrically positioned septum that forms early in sporulation and separates the mother cell from the prespore compartment. Secondly, SpoIIE is essential for the activation of the first compartment-specific transcription factor sigma(F) in the prespore. After initiation of sporulation, SpoIIE localizes to the potential asymmetric cell division sites near one or both cell poles. Localization of SpoIIE was shown to be dependent on the essential cell division protein FtsZ. To understand how SpoIIE is targeted to the asymmetric septum we have now analysed its interaction with FtsZ in vitro. Using the yeast two-hybrid system and purified FtsZ, and full-length and truncated SpoIIE proteins, we demonstrate that the two proteins interact directly and that domain II and possibly domain I of SpoIIE are required for the interaction. Moreover, we show that SpoIIE interacts with itself and suggest that this self-interaction plays a role in assembly of SpoIIE into the division machinery.
Collapse
Affiliation(s)
- I Lucet
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU
| | | | | | | |
Collapse
|
271
|
Daniel RA, Errington J. Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 2000; 36:278-89. [PMID: 10792716 DOI: 10.1046/j.1365-2958.2000.01857.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell division in most eubacteria is driven by an assembly of about eight conserved division proteins. These proteins form a ring structure that constricts in parallel with the formation of the division septum. Here, we show that one of the division proteins, FtsL, is highly unstable. We also show that the protein is targeted to the ring structure and that targeting occurs in concert with the recruitment of several other membrane-associated division proteins. FtsL stability is further reduced in the absence of DivIB protein (probably homologous to E. coli FtsQ) at high temperature, suggesting that DivIB is involved in the control of FtsL turnover. The reduced stability of FtsL may explain the temperature dependence of divIB mutants, because their phenotype can be suppressed by overexpression of FtsL. The results provide new insights into the roles of the FtsL and DivIB proteins in bacterial cell division.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
272
|
Martı Nez B, Rodrı Guez A, Suárez JE. Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):949-955. [PMID: 10784053 DOI: 10.1099/00221287-146-4-949] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Addition of lactococcin 972 to exponentially growing sensitive cultures of Lactococcus lactis resulted in cell elongation and widening. Thin sections revealed that septum invagination was blocked. Cell growth progressed until most cells showed equatorial constriction and even initial deposition of material at the septum ring, although cell division did not proceed any further. The increase in the incorporation of labelled precursors into the cell wall shifted from an exponential to a linear mode in treated cultures, subsequently being arrested. Gross degeneration of the cells was observed prior to cell death, followed by slow lysis of the culture. In contrast, stationary-phase cultures remained unaffected.
Collapse
Affiliation(s)
- Beatriz Martı Nez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain1
| | - Ana Rodrı Guez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain1
| | - Juan E Suárez
- Departamento de Biologı́a Funcional, Area de Microbiologı́a, Universidad de Oviedo, 33006-Oviedo, Asturias, Spain2
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain1
| |
Collapse
|
273
|
Abstract
Formation of the bacterial division septum is catalyzed by a number of essential proteins that assemble into a ring structure at the future division site. Assembly of proteins into the cytokinetic ring appears to occur in a hierarchial order that is initiated by the FtsZ protein, a structural and functional analog of eukaryotic tubulins. Placement of the division site at its correct location in Escherichia coli requires a division inhibitor (MinC), that is responsible for preventing septation at unwanted sites near the cell poles, and a topological specificity protein (MinE), that forms a ring at midcell and protects the midcell site from the division inhibitor. However, the mechanism responsible for identifying the position of the midcell site or the polar sites used for spore septum formation is still unclear. Regulation of the division process and its coordination with other cell cycle events, such as chromosome replication, are poorly understood. However, a protein has been identified in Caulobacter (CtrA) that regulates both the initiation of chromosome regulation and the transcription of ftsZ, and that may play an important role in the coordination process.
Collapse
Affiliation(s)
- L Rothfield
- Department of Microbiology, University of Connecticut Health Center, Farmington 06032, USA.
| | | | | |
Collapse
|
274
|
Scheffers DJ, den Blaauwen T, Driessen AJ. Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Mol Microbiol 2000; 35:1211-9. [PMID: 10712701 DOI: 10.1046/j.1365-2958.2000.01791.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FtsZ, a tubulin homologue, forms a cytokinetic ring at the site of cell division in prokaryotes. The ring is thought to consist of polymers that assemble in a strictly GTP-dependent way. GTP, but not guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), has been shown to induce polymerization of FtsZ, whereas in vitro Ca2+ is known to inhibit the GTP hydrolysis activity of FtsZ. We have studied FtsZ dynamics at limiting GTP concentrations in the presence of 10 mM Ca2+. GTP and its non-hydrolysable analogue GTP-gamma-S bind FtsZ with similar affinity, whereas the non-hydrolysable analogue guanylyl-imidodiphosphate (GMP-PNP) is a poor substrate. Preformed FtsZ polymers can be stabilized by GTP-gamma-S and are destabilized by GDP. As more than 95% of the nucleotide associated with the FtsZ polymer is in the GDP form, it is concluded that GTP hydrolysis by itself does not trigger FtsZ polymer disassembly. Strikingly, GTP-gamma-S exchanges only a small portion of the FtsZ polymer-bound GDP. These data suggest that FtsZ polymers are stabilized by a small fraction of GTP-containing FtsZ subunits. These subunits may be located either throughout the polymer or at the polymer ends, forming a GTP cap similar to tubulin.
Collapse
Affiliation(s)
- D J Scheffers
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
275
|
Bernander R, Poplawski A, Grogan DW. Altered patterns of cellular growth, morphology, replication and division in conditional-lethal mutants of the thermophilic archaeon Sulfolobus acidocaldarius. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):749-757. [PMID: 10746779 DOI: 10.1099/00221287-146-3-749] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As a basis for studing the essential cellular processes of hyperthermophilic archaea, thermosensitive mutants of Sulfolobus acidocaldarius were isolated and characterized. Exponential-phase liquid cultures were shifted to the nonpermissive temperature and growth, viability, and distributions of cell mass and DNA content were measured as a function of time after the shift. The observed phenotypes demonstrate that chromosome replication, nucleoid organization, nucleoid partition and cell division, which normally are tightly co-ordinated during cellular growth, can be inhibited or uncoupled by mutation in this hyperthermophilic archaeon.
Collapse
Affiliation(s)
- Rolf Bernander
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden1
| | - Andrzej Poplawski
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden1
| | - Dennis W Grogan
- Department of Biological Sciences, PO Box 210006, University of Cincinnati, Cincinnati, OH 45221-0006, USA2
| |
Collapse
|
276
|
Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI. Mitochondrial FtsZ in a chromophyte alga. Science 2000; 287:1276-9. [PMID: 10678836 DOI: 10.1126/science.287.5456.1276] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A homolog of the bacterial cell division gene ftsZ was isolated from the alga Mallomonas splendens. The nuclear-encoded protein (MsFtsZ-mt) was closely related to FtsZs of the alpha-proteobacteria, possessed a mitochondrial targeting signal, and localized in a pattern consistent with a role in mitochondrial division. Although FtsZs are known to act in the division of chloroplasts, MsFtsZ-mt appears to be a mitochondrial FtsZ and may represent a mitochondrial division protein.
Collapse
Affiliation(s)
- P L Beech
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, 221 Burwood Highway, Melbourne, 3125, Australia.
| | | | | | | | | | | | | |
Collapse
|
277
|
Lewis PJ, Thaker SD, Errington J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 2000; 19:710-8. [PMID: 10675340 PMCID: PMC305609 DOI: 10.1093/emboj/19.4.710] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using fusions of green fluorescent protein to subunits of RNA polymerase (RNAP) and ribosomes, we have investigated the subcellular localization of the transcriptional and translational machinery in the bacterium Bacillus subtilis. Unexpectedly, we found that RNAP resides principally within the nucleoid. Conversely, ribosomes localized almost exclusively outside the nucleoid, concentrating particularly towards sites of cell division. This zonal localization was not dependent on cell division and is probably due, at least in part, to exclusion from the nucleoid. Dual labelling of RNAP and ribosomes was used to confirm the spatial separation of the two processes. We conclude that, even in the absence of a nuclear membrane, transcription and translation occur predominantly in separate functional domains. At higher growth rates, concentrations of RNAP developed, probably representing the sites of rRNA synthesis. These may represent a further spatial specialization, possibly equivalent to the eukaryotic nucleolus.
Collapse
Affiliation(s)
- P J Lewis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
278
|
Perez AR, Abanes-De Mello A, Pogliano K. SpoIIB localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in bacillus subtilis. J Bacteriol 2000; 182:1096-108. [PMID: 10648537 PMCID: PMC94387 DOI: 10.1128/jb.182.4.1096-1108.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulges into the mother cell, similar to the situation in spoIID, spoIIM, and spoIIP mutants. However, unlike the sporangia of those three mutants, spoIIB mutant sporangia are able to complete engulfment; indeed, by time-lapse microscopy, sporangia with prominent bulges were found to complete engulfment. Electron micrographs showed that in spoIIB mutant sporangia the dissolution of septal peptidoglycan is delayed and spatially unregulated and that the engulfing membranes migrate around the remaining septal peptidoglycan. These results demonstrate that mother cell membranes will move around septal peptidoglycan that has not been completely degraded and suggest that SpoIIB facilitates the rapid and spatially regulated dissolution of septal peptidoglycan. In keeping with this proposal, a SpoIIB-myc fusion protein localized to the sporulation septum during its biogenesis, discriminating between the site of active septal biogenesis and the unused potential division site within the same cell.
Collapse
Affiliation(s)
- A R Perez
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | |
Collapse
|
279
|
Brown WJ, Rockey DD. Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect Immun 2000; 68:708-15. [PMID: 10639437 PMCID: PMC97196 DOI: 10.1128/iai.68.2.708-715.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of chlamydial cell division has not been thoroughly investigated. The lack of detectable peptidoglycan and the absence of an FtsZ homolog within chlamydiae suggest an unusual mechanism for the division process. Our laboratory has identified an antigen (SEP antigen) localized to a ring-like structure at the apparent septum within dividing chlamydial reticulate bodies (RB). Antisera directed against SEP show similar patterns of antigen distribution in Chlamydia trachomatis and Chlamydia psittaci RB. In contrast to localization in RB, SEP in elementary bodies appears diffuse and irregular, suggesting that the distribution of the antigen is developmental-stage specific. Treatment of chlamydiae with inhibitors of peptidoglycan synthesis or culture of chlamydiae in medium lacking tryptophan leads to the formation of nondividing, aberrant RB. Staining of aberrant RB with anti-SEP reveals a marked redistribution of the antigen. Within C. trachomatis-infected cells, ampicillin treatment leads to high levels of SEP accumulation at the periphery of aberrant RB, while in C. psittaci, treatment causes SEP to localize to distinct punctate sites within the bacteria. Aberrancy produced via tryptophan depletion results in a different pattern of SEP distribution. In either case, the reversal of aberrant formation results in the production of normal RB and a redistribution of SEP to the apparent plane of bacterial division. Collectively these studies identify a unique chlamydial-genus-common and developmental-stage-specific antigen that may be associated with RB division.
Collapse
Affiliation(s)
- W J Brown
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | |
Collapse
|
280
|
Poplawski A, Gullbrand B, Bernander R. The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring. Gene 2000; 242:357-67. [PMID: 10721730 DOI: 10.1016/s0378-1119(99)00517-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sequenced the ftsZ gene region of the halophilic archaeon Haloferax mediterranei and mapped the transcription start sites for the ftsZ gene. The gene encoded a 363-amino-acid long FtsZ protein with a predicted molecular mass of 38 kDa and an isoelectric point of 4.2. A high level of similarity to the FtsZ protein of Haloferax volcanii was apparent, with 97 and 90% identity at the amino acid and nucleotide levels, respectively. Structural conservation at the protein level was shown by visualization of the FtsZ ring structure in H. mediterranei cells using an antiserum raised against FtsZ of H. volcanii. FtsZ rings were observed in cells in different stages of division, including cells with pleomorphic shapes and cells that appeared to be undergoing asymmetric division. Cells were also observed that displayed constriction-like invaginations in the absence of an FtsZ ring, indicating that morphological data are not sufficient to determine whether pleomorphic Haloferax cells are undergoing cell division. Both the upstream and downstream gene order in the ftsZ region was found to be conserved within the genus Haloferax. Furthermore, the downstream gene order, which includes the secE and nusG genes, is conserved in almost all euryarchaea sequenced to date. The secE and nusG genes are likely to be transcriptionally and translationally coupled in Haloferax, and this co-expression may have been a selective force that has contributed to keeping the gene cluster intact.
Collapse
Affiliation(s)
- A Poplawski
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Sweden
| | | | | |
Collapse
|
281
|
Affiliation(s)
- L Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
282
|
Ghigo JM, Beckwith J. Cell division in Escherichia coli: role of FtsL domains in septal localization, function, and oligomerization. J Bacteriol 2000; 182:116-29. [PMID: 10613870 PMCID: PMC94247 DOI: 10.1128/jb.182.1.116-129.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, nine essential cell division proteins are known to localize to the division septum. FtsL is a 13-kDa bitopic membrane protein with a short cytoplasmic N-terminal domain, a membrane-spanning segment, and a periplasmic domain that has a repeated heptad motif characteristic of leucine zippers. Here, we identify the requirements for FtsL septal localization and function. We used green fluorescent protein fusions to FtsL proteins where domains of FtsL had been exchanged with analogous domains from either its Haemophilus influenzae homologue or the unrelated MalF protein to show that both the membrane-spanning segment and the periplasmic domain of FtsL are required for localization to the division site. Mutagenesis of the periplasmic heptad repeat motif severely impaired both localization and function as well as the ability of FtsL to drive the formation of sodium dodecyl sulfate-resistant multimers in vitro. These results are consistent with the predicted propensity of the FtsL periplasmic domain to adopt a coiled-coiled structure. This coiled-coil motif is conserved in all gram-negative and gram-positive FtsL homologues identified so far. Our data suggest that most of the FtsL molecule is a helical coiled coil involved in FtsL multimerization.
Collapse
Affiliation(s)
- J M Ghigo
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 1300), 75724 Paris Cedex 15, France.
| | | |
Collapse
|
283
|
Daniel RA, Harry EJ, Errington J. Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 2000; 35:299-311. [PMID: 10652091 DOI: 10.1046/j.1365-2958.2000.01724.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the role of the penicillin-binding protein PBP 2B in cell division of Bacillus subtilis. We have shown that depletion of the protein results in an arrest in division, but that this arrest is slow, probably because the protein is relatively stable. PBP 2B-depleted filaments contained, at about their mid-points, structures resembling partially formed septa, into which most, if not all, of the division proteins had assembled. Although clearly deficient in wall material, membrane invagination seemed to continue, indicating that membrane and wall ingrowth can be uncoupled. At other potential division sites along the filaments, no visible ingrowths were observed, although FtsZ rings assembled at regular intervals. Thus, PBP 2B is apparently required for both the initiation of division and continued septal ingrowth. Immunofluorescence microscopy showed that the protein is recruited to the division site. The pattern of localization suggested that this recruitment occurs continually during septal ingrowth. During sporulation, PBP 2B was present transiently in the asymmetrical septum of sporulating cells, and its availability may play a role in the regulation of sporulation septation.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
284
|
Lu C, Reedy M, Erickson HP. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 2000; 182:164-70. [PMID: 10613876 PMCID: PMC94253 DOI: 10.1128/jb.182.1.164-170.2000] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsZ assembles in vitro into protofilaments that can adopt two conformations-the straight conformation, which can assemble further into two-dimensional protofilament sheets, and the curved conformation, which forms minirings about 23 nm in diameter. Here, we describe the structure of FtsZ tubes, which are a variation of the curved conformation. In the tube the curved protofilament forms a shallow helix with a diameter of 23 nm and a pitch of 18 or 24 degrees. We suggest that this shallow helix is the relaxed structure of the curved protofilament in solution. We provide evidence that GTP favors the straight conformation while GDP favors the curved conformation. In particular, exclusively straight protofilaments and protofilament sheets are assembled in GMPCPP, a nonhydrolyzable GTP analog, or in GTP following chelation of Mg, which blocks GTP hydrolysis. Assembly in GDP produces exclusively tubes. The transition from straight protofilaments to the curved conformation may provide a mechanism whereby the energy of GTP hydrolysis is used to generate force for the constriction of the FtsZ ring in cell division.
Collapse
Affiliation(s)
- C Lu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
285
|
Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci U S A 1999; 96:14819-24. [PMID: 10611296 PMCID: PMC24731 DOI: 10.1073/pnas.96.26.14819] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positioning of the Z ring at the midcell site in Escherichia coli is assured by the min system, which masks polar sites through topological regulation of MinC, an inhibitor of division. To study how MinC inhibits division, we have generated a MalE-MinC fusion that retains full biological activity. We find that MalE-MinC interacts with FtsZ and prevents polymerization without inhibiting FtsZ's GTPase activity. MalE-MinC19 has reduced ability to inhibit division, reduced affinity for FtsZ, and reduced ability to inhibit FtsZ polymerization. These results, along with MinC localization, suggest that MinC rapidly oscillates between the poles of the cell to destabilize FtsZ filaments that have formed before they mature into polar Z rings.
Collapse
Affiliation(s)
- Z Hu
- Department of Microbiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
286
|
Carballès F, Bertrand C, Bouché JP, Cam K. Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 1999; 34:442-50. [PMID: 10564486 DOI: 10.1046/j.1365-2958.1999.01605.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genes rcsC and rcsB form a two-component system in which rcsC encodes the sensor element and rcsB the regulator. In Escherichia coli, the system positively regulates the expression of the capsule operon, cps, and of the cell division gene ftsZ. We report the identification of the promoter and of the sequences required for rcsB-dependent stimulation of ftsZ expression. The promoter, ftsA1p, located in the ftsQ coding sequence, co-regulates ftsA and ftsZ. The sequences required for rcsB activity are immediately adjacent to this promoter.
Collapse
Affiliation(s)
- F Carballès
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
287
|
Quisel JD, Lin DC, Grossman AD. Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 1999; 4:665-72. [PMID: 10619014 DOI: 10.1016/s1097-2765(00)80377-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In B. subtilis, the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) regulate the initiation of sporulation. Soj is a negative regulator of sporulation gene expression, and Spo0J antagonizes Soj function. Using fusions of Soj to green fluorescent protein, we found that Soj localized near the cell poles and upon entry into stationary phase oscillated from pole to pole. In the absence of Spo0J, Soj was associated predominantly with DNA. By in vivo cross-linking and immunoprecipitation, we found that Soj physically associates with developmentally regulated promoters, and this association increased in the absence of Spo0J. These results show that Soj switches localization and function depending on the chromosome partitioning protein Spo0J. We further show that mutations in the Soj ATPase domain disrupt localization and function and render Soj insensitive to regulation by Spo0J.
Collapse
MESH Headings
- Adenosine Triphosphatases/antagonists & inhibitors
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Bacillus subtilis/cytology
- Bacillus subtilis/genetics
- Bacillus subtilis/growth & development
- Bacillus subtilis/metabolism
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cell Polarity
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/metabolism
- Conserved Sequence
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- Microscopy, Fluorescence
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/metabolism
- Sigma Factor
- Spores, Bacterial/cytology
- Spores, Bacterial/genetics
- Spores, Bacterial/growth & development
- Spores, Bacterial/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- J D Quisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
288
|
Sciochetti SA, Piggot PJ, Sherratt DJ, Blakely G. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 1999; 181:6053-62. [PMID: 10498718 PMCID: PMC103633 DOI: 10.1128/jb.181.19.6053-6062.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ripX gene encodes a protein that has 37 and 44% identity with the XerC and XerD site-specific recombinases of Escherichia coli. XerC and XerD are hypothesized to act in concert at the dif site to resolve dimeric chromosomes formed by recombination during replication. Cultures of ripX mutants contained a subpopulation of unequal-size cells held together in long chains. The chains included anucleate cells and cells with aberrantly dense or diffuse nucleoids, indicating a chromosome partitioning failure. This result is consistent with RipX having a role in the resolution of chromosome dimers in B. subtilis. Spores contain a single uninitiated chromosome, and analysis of germinated, outgrowing spores showed that the placement of FtsZ rings and septa is affected in ripX strains by the first division after the initiation of germination. The introduction of a recA mutation into ripX strains resulted in only slight modifications of the ripX phenotype, suggesting that chromosome dimers can form in a RecA-independent manner in B. subtilis. In addition to RipX, the CodV protein of B. subtilis shows extensive similarity to XerC and XerD. The RipX and CodV proteins were shown to bind in vitro to DNA containing the E. coli dif site. Together they functioned efficiently in vitro to catalyze site-specific cleavage of an artificial Holliday junction containing a dif site. Inactivation of codV alone did not cause a discernible change in phenotype, and it is speculated that RipX can substitute for CodV in vivo.
Collapse
Affiliation(s)
- S A Sciochetti
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
289
|
Ghuysen JM, Goffin C. Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 1999; 43:2339-44. [PMID: 10508003 PMCID: PMC89479 DOI: 10.1128/aac.43.10.2339] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J M Ghuysen
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6, Université de Liège, B-4000 Sart Tilman (Liège), Belgium.
| | | |
Collapse
|
290
|
Raskin DM, de Boer PA. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 1999; 181:6419-24. [PMID: 10515933 PMCID: PMC103778 DOI: 10.1128/jb.181.20.6419-6424.1999] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By inhibiting FtsZ ring formation near the cell ends, the MinC protein plays a critical role in proper positioning of the division apparatus in Escherichia coli. MinC activity requires that of MinD, and the MinE peptide provides topological specificity by suppressing MinC-MinD-mediated division inhibition specifically at the middle of the cell. We recently presented evidence that MinE not only accumulates in an FtsZ-independent ring structure at the cell's middle but also imposes a unique dynamic localization pattern upon MinD in which the latter accumulates alternately in either one of the cell halves in what appears to be a rapidly oscillating membrane association-dissociation cycle. Here we show that functional green fluorescent protein-MinC displays a very similar oscillatory behavior which is dependent on both MinD and MinE and independent of FtsZ. The results support a model in which MinD recruits MinC to its site of action and in which FtsZ ring assembly at each of the cell ends is blocked in an intermittent and alternate fashion.
Collapse
Affiliation(s)
- D M Raskin
- Department of Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
291
|
Hu Z, Lutkenhaus J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 1999; 34:82-90. [PMID: 10540287 DOI: 10.1046/j.1365-2958.1999.01575.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Placement of the Z ring at midcell in Escherichia coli is assured by the action of the min system, which blocks usage of potential division sites that exist at the cell poles. This activity of min is achieved through the action of an inhibitor of division, MinC, that is activated by MinD and topologically regulated by MinE. In this study, we have used a functional GFP-MinC fusion to monitor the location of MinC. We find that GFP-MinC is a cytoplasmic protein in the absence of the other Min proteins. The addition of MinD, a peripheral membrane protein that interacts with MinC, results in GFP-MinC appearing on the membrane. In the presence of both MinD and MinE, GFP-MinC oscillates rapidly between the halves of the cell. Thus, MinC is positioned by the other Min products, but in a dynamic manner so that it is in position to inhibit Z ring assembly away from midcell.
Collapse
Affiliation(s)
- Z Hu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
292
|
Maier SK, Scherer S, Loessner MJ. Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol 1999; 65:3942-9. [PMID: 10473399 PMCID: PMC99724 DOI: 10.1128/aem.65.9.3942-3949.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 06/17/1999] [Indexed: 11/20/2022] Open
Abstract
We investigated the cellular mechanisms that led to growth inhibition, morphological changes, and lysis of Bacillus cereus WSBC 10030 when it was challenged with a long-chain polyphosphate (polyP). At a concentration of 0.1% or higher, polyP had a bacteriocidal effect on log-phase cells, in which it induced rapid lysis and reductions in viable cell counts of up to 3 log units. The cellular debris consisted of empty cell wall cylinders and polar caps, suggesting that polyP-induced lysis was spatially specific. This activity was strictly dependent on active growth and cell division, since polyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by polyP. Similar observations were made with B. cereus spores; 0.1% polyP inhibited spore germination and outgrowth, and a higher concentration (1.0%) was even sporocidal. Supplemental divalent metal ions (Mg(2+) and Ca(2+)) could almost completely block and reverse the antimicrobial activity of polyP; i. e., they could immediately stop lysis and reinitiate rapid cell division and multiplication. Interestingly, a sublethal polyP concentration (0.05%) led to the formation of elongated cells (average length, 70 microm) after 4 h of incubation. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation within the filaments. Exposure to divalent cations resulted in instantaneous formation and growth of ring-shaped edges of invaginating septal walls. After approximately 30 min, septation was complete, and cell division resumed. We frequently observed a minicell-like phenotype and other septation defects, which were probably due to hyperdivision activity after cation supplementation. We propose that polyP may have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. It is tempting to speculate that polyP, because of its metal ion-chelating nature, indirectly blocks the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype.
Collapse
Affiliation(s)
- S K Maier
- Institut für Mikrobiologie, Forschungszentrum für Milch und Lebensmittel Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | | | | |
Collapse
|
293
|
Kukekova AV, Malinin AY, Ayala JA, Borchsenius SN. Characterization of Acholeplasma laidlawii ftsZ gene and its gene product. Biochem Biophys Res Commun 1999; 262:44-9. [PMID: 10448065 DOI: 10.1006/bbrc.1999.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ftsZ gene was found among representatives of all bacterial groups. FtsZ protein is an essential component of cell division ring. Contraction of this cytoskeleton-like ring is believed to be the universal way of bacterial division. Acholeplasma laidlawii possesses all features of the minimal mycoplasma cell and some traits of cell-wall bacteria and seems to be a promising object for study of basic principles of the bacterial division process. We cloned an A. laidlawii chromosomal fragment containing ftsZ gene and two flanking orf which also were identified. A. laidlawii FtsZ protein has been determined with polyclonal antibodies raised in rabbit. It was demonstrated that ftsZ gene of A. laidlawii could be expressed in E. coli cells. We also revealed that A. laidlawii FtsZ had a low similarity to proteins of Mycoplasma genitalium and M. pneumoniae. The comparison of FtsZ structures may be used for investigation of bacterial phylogenetic relations.
Collapse
Affiliation(s)
- A V Kukekova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | | | | | | |
Collapse
|
294
|
Levin PA, Kurtser IG, Grossman AD. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci U S A 1999; 96:9642-7. [PMID: 10449747 PMCID: PMC22263 DOI: 10.1073/pnas.96.17.9642] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1999] [Accepted: 06/16/1999] [Indexed: 11/18/2022] Open
Abstract
During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. We have identified a regulator of FtsZ ring formation in Bacillus subtilis. This protein, EzrA, modulates the frequency and position of FtsZ ring formation. The loss of ezrA resulted in cells with multiple FtsZ rings located at polar as well as medial sites. Moreover, the critical concentration of FtsZ required for ring formation was lower in ezrA null mutants than in wild-type cells. EzrA was associated with the cell membrane and also colocalized with FtsZ to the nascent septal site. We propose that EzrA interacts either with FtsZ or with one of its binding partners to promote depolymerization.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
295
|
Abstract
The cell reproduction cycle of parasitic wall-free bacteria, mycoplasma, is reviewed. DNA replication of Mycoplasma capricolum starts at a fixed site neighboring the dnaA gene and proceeds to both directions after a short arrest in one direction. The initiation frequency fits to the slow speed of replication fork and DNA content is set constant. The replicated chromosomes migrate to one and three quarters of cell length before cell division to ensure delivery of the replicated DNA to daughter cells. The cell reproduction is based on binary fission but a branch is formed when DNA replication is inhibited. Mycoplasma pneumoniae has a terminal structure, designated as an attachment organelle, responsible for both host cell adhesion and gliding motility. Behavior of the organelle in a cell implies coupling of organelle formation to the cell reproduction cycle. Several proteins coded in three operons are delivered sequentially to a position neighboring the previous organelle and a nascent one is formed. One of the duplicated attachment organelles migrates to the opposite pole of the cell before cell division. It is becoming clear that mycoplasmas have specialized cell reproduction cycles adapted to the limited genome information and parasitic life.
Collapse
Affiliation(s)
- M Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | |
Collapse
|
296
|
Dassain M, Leroy A, Colosetti L, Carolé S, Bouché JP. A new essential gene of the 'minimal genome' affecting cell division. Biochimie 1999; 81:889-95. [PMID: 10572302 DOI: 10.1016/s0300-9084(99)00207-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete sequencing of bacterial genomes has offered new opportunities for the identification of essential genes involved in the control and progression of the cell cycle. For this purpose, we have disrupted ten E. coli genes belonging to the so-called 'minimal genome'. One of these genes, yihA, was necessary for normal cell division. The yihA gene possesses characteristic GTPase motifs and its homologues are present in eukaryotes, archaea and most prokaryotes. Depletion of YihA protein led to a severe reduction in growth rate and to extensive filamentation, with a block beyond the stage of nucleoid segregation. Filamentation was correlated with reduced FtsZ levels and could be specifically suppressed by overexpression of ftsQI, ftsA and ftsZ, and to some extent by ftsZ alone. We hypothesize that YihA, like the Era GTPase, may participate in a checkpoint mechanism that ensures a correct coordination of cell cycle events.
Collapse
Affiliation(s)
- M Dassain
- Laboratoire de Microbiologie et de Génétique Cellulaire du CNRS, 118, route de Narbonne, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
297
|
Yu XC, Margolin W, Gonzalez-Garay ML, Cabral F. Vinblastine induces an interaction between FtsZ and tubulin in mammalian cells. J Cell Sci 1999; 112 ( Pt 14):2301-11. [PMID: 10381386 DOI: 10.1242/jcs.112.14.2301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli cell division protein FtsZ was expressed in Chinese hamster ovary cells, where it formed a striking array of dots that were independent of the mammalian cytoskeleton. Although FtsZ appears to be a bacterial homolog of tubulin, its expression had no detectable effects on the microtubule network or cell growth. However, treatment of the cells with vinblastine at concentrations that caused microtubule disassembly rapidly induced a network of FtsZ filaments that grew from and connected the dots, suggesting that the dots are an active storage form of FtsZ. Cells producing FtsZ also exhibited vinblastine- and calcium-resistant tubulin polymers that colocalized with the FtsZ network. The FtsZ polymers could be selectively disassembled, indicating that the two proteins were not copolymerized. The vinblastine effects were readily reversible by washing out the drug or by treating the cells with the vinblastine competitor, maytansine. These results demonstrate that FtsZ assembly can occur in the absence of bacterial chaperones or cofactors, that FtsZ and tubulin do not copolymerize, and that tubulin-vinblastine complexes have an enhanced ability to interact with FtsZ.
Collapse
Affiliation(s)
- X C Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
298
|
Marston AL, Errington J. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 1999; 33:84-96. [PMID: 10411726 DOI: 10.1046/j.1365-2958.1999.01450.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial cell division commences with the assembly of the tubulin-like protein, FtsZ, at midcell to form a ring. Division site selection in rod-shaped bacteria is mediated by MinC and MinD, which form a division inhibitor. Bacillus subtilis DivIVA protein ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at midcell. We have examined the localization of MinC protein and show that it is targeted to midcell and retained at the mature cell poles. This localization is reminiscent of the pattern previously described for MinD. Localization of MinC requires both early (FtsZ) and late (PbpB) division proteins, and it is completely dependent on MinD. The effects of a divIVA mutation on localization of MinC now suggest that the main role of DivIVA is to retain MinCD at the cell poles after division, rather than recruitment to nascent division sites. By overexpressing minC or minD, we show that both proteins are required to block division, but that only MinD needs to be in excess of wild-type levels. The results suggest a mechanism whereby MinD is required both to pilot MinC to the cell poles and to constitute a functional division inhibitor.
Collapse
Affiliation(s)
- A L Marston
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
299
|
RayChaudhuri D. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J 1999; 18:2372-83. [PMID: 10228152 PMCID: PMC1171320 DOI: 10.1093/emboj/18.9.2372] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.
Collapse
Affiliation(s)
- D RayChaudhuri
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
300
|
Abstract
The 40 kDa protein FtsZ is a major septum-forming component of bacterial cell division. Early during cytokinesis at midcell, FtsZ forms a cytokinetic ring that constricts as septation progresses. FtsZ has a high propensity to polymerize in vitro into various structures, including sheets and filaments, in a GTP-dependent manner. Together with limited sequence homology, the occurrence of the tubulin signature motif in FtsZ and a similar three-dimensional structure, this leads to the conclusion that FtsZ is the bacterial tubulin homologue. We have polymerized FtsZ1 from Methanococcus jannaschii in the presence of millimolar concentrations of Ca2+ ions to produce two-dimensional crystals of plane group P2221. Most of the protein precipitates and forms filaments approximately 23.0 nm in diameter. A three-dimensional reconstruction of tilted micrographs of FtsZ sheets in negative stain between 0 and 60 degrees shows protofilaments of FtsZ running along the sheet axis. Pairs of parallel FtsZ protofilaments associate in an antiparallel fashion to form a two-dimensional sheet. The antiparallel arrangement is believed to generate flat sheets instead of the curved filaments seen in other FtsZ polymers. Together with the subunit spacing along the protofilament axis, a fitting of the FtsZ crystal structure into the reconstruction suggests a protofilamant structure very similar to that of tubulin protofilaments.
Collapse
Affiliation(s)
- J Löwe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH,
| | | |
Collapse
|