251
|
Koopman R, Beelen M, Stellingwerff T, Pennings B, Saris WHM, Kies AK, Kuipers H, van Loon LJC. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 2007; 293:E833-42. [PMID: 17609259 DOI: 10.1152/ajpendo.00135.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to assess the impact of coingestion of various amounts of carbohydrate combined with an ample amount of protein intake on postexercise muscle protein synthesis rates. Ten healthy, fit men (20 +/- 0.3 yr) were randomly assigned to three crossover experiments. After 60 min of resistance exercise, subjects consumed 0.3 g x kg(-1) x h(-1) protein hydrolysate with 0, 0.15, or 0.6 g x kg(-1) x h(-1) carbohydrate during a 6-h recovery period (PRO, PRO + LCHO, and PRO + HCHO, respectively). Primed, continuous infusions with L-[ring-(13)C(6)]phenylalanine, L-[ring-(2)H(2)]tyrosine, and [6,6-(2)H(2)]glucose were applied, and blood and muscle samples were collected to assess whole body protein turnover and glucose kinetics as well as protein fractional synthesis rate (FSR) in the vastus lateralis muscle over 6 h of postexercise recovery. Plasma insulin responses were significantly greater in PRO + HCHO compared with PRO + LCHO and PRO (18.4 +/- 2.9 vs. 3.7 +/- 0.5 and 1.5 +/- 0.2 U.6 h(-1) x l(-1), respectively, P < 0.001). Plasma glucose rate of appearance (R(a)) and disappearance (R(d)) increased over time in PRO + HCHO and PRO + LCHO, but not in PRO. Plasma glucose R(a) and R(d) were substantially greater in PRO + HCHO vs. both PRO and PRO + LCHO (P < 0.01). Whole body protein breakdown, synthesis, and oxidation rates, as well as whole body protein balance, did not differ between experiments. Mixed muscle protein FSR did not differ between treatments and averaged 0.10 +/- 0.01, 0.10 +/- 0.01, and 0.11 +/- 0.01%/h in the PRO, PRO + LCHO, and PRO + HCHO experiments, respectively. In conclusion, coingestion of carbohydrate during recovery does not further stimulate postexercise muscle protein synthesis when ample protein is ingested.
Collapse
Affiliation(s)
- René Koopman
- Department of Movement Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Raj DSC, Adeniyi O, Dominic EA, Boivin MA, McClelland S, Tzamaloukas AH, Morgan N, Gonzales L, Wolfe R, Ferrando A. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis. Am J Physiol Endocrinol Metab 2007; 292:E1534-42. [PMID: 17264222 DOI: 10.1152/ajpendo.00599.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.
Collapse
Affiliation(s)
- Dominic S C Raj
- Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5271, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Frøsig C, Sajan MP, Maarbjerg SJ, Brandt N, Roepstorff C, Wojtaszewski JFP, Kiens B, Farese RV, Richter EA. Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiol 2007; 582:1289-301. [PMID: 17540697 PMCID: PMC2075270 DOI: 10.1113/jphysiol.2007.136614] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was approximately 80% higher (N = 12, P < 0.05) in previously exercised muscle, measured during a euglycaemic-hyperinsulinaemic clamp (100 microU ml(-1)). Insulin increased (P < 0.05) both insulin receptor substrate (IRS)-1 and IRS-2 associated phosphatidylinositol (PI)-3 kinase activity and led to increased (P < 0.001) phosphorylation of Akt on Ser(473) and Thr(308) in skeletal muscle. Interestingly, in response to prior exercise IRS-2-associated PI-3 kinase activity was higher (P < 0.05) both at basal and during insulin stimulation. This coincided with correspondingly altered phosphorylation of the extracellular-regulated protein kinase 1/2 (ERK 1/2), p70S6 kinase (P70S6K), eukaryotic elongation factor 2 (eEF2) kinase and eEF2. aPKC was similarly activated by insulin in rested and exercised muscle, without detectable changes in aPKC Thr(410) phosphorylation. However, when adding phosphatidylinositol-3,4,5-triphosphate (PIP3), the signalling product of PI-3 kinase, to basal muscle homogenates, aPKC was more potently activated (P = 0.01) in previously exercised muscle. Collectively, this study shows that endurance-type exercise interacts with insulin signalling to peptide chain elongation. Although protein turnover was not evaluated, this suggests that capacity for protein synthesis after acute endurance-type exercise may be improved. Furthermore, endurance exercise increased the responsiveness of aPKC to PIP3 providing a possible link to improved insulin-stimulated glucose uptake after exercise.
Collapse
Affiliation(s)
- Christian Frøsig
- Copenhagen Muscle Research Centre, Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, 13, Universitetsparken, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
Currently our society is faced with the challenge of understanding the biological basis for the epidemics of obesity and many chronic diseases, including Type 2 diabetes. Physical inactivity increases the relative risk of coronary artery disease by 45%, stroke by 60%, hypertension by 30%, and osteoporosis by 59%. Moreover, physical inactivity is cited as an actual cause of chronic disease by the US Centers of Disease Control. Physical activity was obligatory for survival for the Homo genus for hundreds of thousands of years. This review will present evidence that suggests that metabolic pathways selected during the evolution of the human genome are inevitably linked to physical activity. Furthermore, as with many other environmental interactions, cycles of physical activity and inactivity interact with genes resulting in a functional outcome appropriate for the environment. However, as humans are less physically active, there is a maladaptive response that leads to metabolic dysfunction and many chronic diseases. How and why these interactions occur are fundamental questions in biology. Finally, a perspective to future research in physical inactivity-gene interaction is presented. This information is necessary to provide the molecular evidence required to further promote the primary prevention of chronic diseases through physical activity, identify those molecules that will allow early disease detection, and provide society with the molecular information needed to counter the current strategy of adding physical inactivity into our lives.
Collapse
Affiliation(s)
- Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Health Activity Center, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Center, University of Missouri, Columbia, Missouri
| | - Simon J. Lees
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Health Activity Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
255
|
Rodriguez NR, Vislocky LM, Gaine PC. Dietary protein, endurance exercise, and human skeletal-muscle protein turnover. Curr Opin Clin Nutr Metab Care 2007; 10:40-5. [PMID: 17143053 DOI: 10.1097/mco.0b013e3280115e3b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Whereas diet and exercise have been shown to influence whole-body protein utilization, little is known about the impact of these factors on skeletal-muscle protein turnover. We highlight the role of dietary protein in modulating skeletal-muscle protein turnover in response to endurance exercise. Effects of endurance exercise on skeletal-muscle protein metabolism are presented and the influence of habitual protein intake on exercise-related protein responses is discussed. RECENT FINDINGS Skeletal-muscle protein turnover increases in response to endurance exercise training and following a single endurance exercise bout. Nutritional supplementation postexercise favorably affects skeletal-muscle protein synthesis and demonstrates amino acid availability as pivotal to the skeletal-muscle synthetic response following exercise. The level of habitual protein intake influences postexercise skeletal-muscle protein turnover. SUMMARY Dietary protein and exercise are powerful stimuli affecting protein turnover. Since variation in habitual protein intake influences skeletal-muscle protein turnover postexercise, investigations are needed to determine what role protein intake has in regulating skeletal-muscle protein metabolism. Long-term, well controlled diet and exercise intervention studies are essential for clarification of the relation between protein intake, endurance exercise, and skeletal-muscle protein turnover. Studies designed to characterize this relationship should be attentive to habitual macronutrient and energy intakes.
Collapse
Affiliation(s)
- Nancy R Rodriguez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.
| | | | | |
Collapse
|
256
|
Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 2006; 291:E745-54. [PMID: 16705054 PMCID: PMC2804964 DOI: 10.1152/ajpendo.00271.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.05), intermediate (ID, 0.15), or high (HD, 0.30 mUxmin(-1)x100 ml(-1)) doses. Insulin was infused locally to induce muscle hyperinsulinemia within the physiological range while minimizing the systemic effects. Protein and amino acid kinetics across the leg were assessed using stable isotopes and muscle biopsies. The LD did not affect phenylalanine delivery to the muscle (-9 +/- 18% change over baseline), muscle protein synthesis (16 +/- 26%), breakdown, or net balance. The ID increased (P < 0.05) phenylalanine delivery (+63 +/- 38%), muscle protein synthesis (+157 +/- 54%), and net protein balance, with no change in breakdown. The HD did not change phenylalanine delivery (+12 +/- 11%) or muscle protein synthesis (+9 +/- 19%), and reduced muscle protein breakdown (-17 +/- 15%), thus improving net muscle protein balance but to a lesser degree than the ID. Changes in muscle protein synthesis were strongly associated with changes in muscle blood flow and phenylalanine delivery and availability. In conclusion, physiological hyperinsulinemia promotes muscle protein synthesis as long as it concomitantly increases muscle blood flow, amino acid delivery and availability.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
257
|
Abstract
Muscle plays a central role in whole-body protein metabolism by serving as the principal reservoir for amino acids to maintain protein synthesis in vital tissues and organs in the absence of amino acid absorption from the gut and by providing hepatic gluconeogenic precursors. Furthermore, altered muscle metabolism plays a key role in the genesis, and therefore the prevention, of many common pathologic conditions and chronic diseases. Nonetheless, the maintenance of adequate muscle mass, strength, and metabolic function has rarely, if ever, been targeted as a relevant endpoint of recommendations for dietary intake. It is therefore imperative that factors directly related to muscle mass, strength, and metabolic function be included in future studies designed to demonstrate optimal lifestyle behaviors throughout the life span, including physical activity and diet.
Collapse
Affiliation(s)
- Robert R Wolfe
- University of Texas Medical Branch, Department of Surgery and Shriners Burns Hospital, Metabolism Unit, Galveston, TX 77550, USA.
| |
Collapse
|
258
|
Abstract
In this article we review some of our recent work concerning the effects of nutrition and exercise on protein synthesis and signal transduction in human musculoskeletal tissues. A great deal of new information is being generated by the application of recently refined techniques for measuring protein turnover. The field remains one that is largely descriptive but increasingly we are beginning to discern mechanisms underlying lean tissue maintenance, growth and wasting especially as multidisciplinary tools are applied to its study. Several types of exercise and nutrition are potent stimuli for protein synthesis in skeletal muscle. By contrast, collagen in the extracellular matrix in muscle and tendon appears to be mechanically but not nutritionally sensitive. The rates of collagen turnover in a variety of tissues are sufficiently high to account for a sizeable proportion of whole body protein turnover. One of the most recent surprises is the high turnover rate of human bone collagen and its anabolic response to feeding. As our understanding of the normal physiology of these processes advances, we become better able to construct testable hypotheses concerning the effects of ageing and disease on the musculoskeletal mass. Current evidence suggests that one of the major problems with loss of muscle during ageing is an inability of the tissue to respond adequately to increased availability of nutrients.
Collapse
|
259
|
Abstract
PURPOSE OF REVIEW The loss of skeletal muscle with injury or critical illness can be dramatic. This review emphasizes the importance of skeletal muscle as a metabolic reserve. Changes in protein metabolism with bed rest alone and during physiological stress are discussed. Nutritional and hormonal interventions that ameliorate the loss of skeletal muscle are highlighted. RECENT FINDINGS The loss of skeletal muscle that occurs with inactivity alone can be prevented by nutritional supplementation with an essential amino acid formula. Bed rest with accompanying hypercortisolemia produces a threefold greater loss of skeletal muscle than bed rest alone. Essential amino acids stimulate muscle anabolism during acute hypercortisolemia; however, their effects during chronic hypercortisolemia must be explored. SUMMARY Skeletal muscle loss with trauma or critical illness is due in great part to the interaction of bed rest (muscular inactivity) and stress (hypercortisolemia). Younger individuals respond to nutritional and pharmacological interventions during bed rest alone. Given a lower relative lean mass in the elderly and the importance of skeletal muscle as a metabolic reserve during stress, it is understandable that clinical outcomes are worse in older patients. Countermeasures to the loss of skeletal muscle, especially in the stressed patient, must be developed.
Collapse
Affiliation(s)
- Arny A Ferrando
- Department of Surgery, University of Texas Medical Branch, Shrine Hospital for Children, Galveston, Texas 77550, USA.
| | | | | |
Collapse
|
260
|
Candow DG, Chilibeck PD, Facci M, Abeysekara S, Zello GA. Protein supplementation before and after resistance training in older men. Eur J Appl Physiol 2006; 97:548-56. [PMID: 16767436 DOI: 10.1007/s00421-006-0223-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2006] [Indexed: 12/25/2022]
Abstract
We determined the effects of protein supplementation immediately before (PRO-B) and after (PRO-A) resistance training (RT; 12 weeks) in older men (59-76 years), and whether this reduces deficits in muscle mass and strength compared to younger men (18-40 years). Older men were randomized to PRO-B (0.3 g/kg protein before RT + placebo after RT, n=9), PRO-A (placebo before + protein after RT, n=10), or PLA (placebo before and after RT, n=10). Lean tissue mass, muscle thickness of the elbow, knee, and ankle flexors and extensors, and leg and bench press strength were measured before and after RT and compared to databases of younger subjects (n=22-60). Myofibrillar protein degradation (3-methylhistidine) and bone resorption (cross-linked N-telopeptides) were also measured before and after RT. Lean tissue mass, muscle thickness (except ankle dorsi flexors), and strength increased with training (P<0.05), with little difference between groups. There were no changes in 3-methylhistidine or cross-linked N-telopeptides. Before RT, all measures were lower in the older compared to younger groups (P<0.05), except for elbow extensor muscle thickness. Following training, muscle thickness of the elbow flexors and ankle dorsi flexors and leg press strength were no longer different than the young, and elbow extensor muscle thickness was greater in the old men (P<0.05). Supplementation with protein before or after training has no effect on muscle mass and strength in older men. RT was sufficient to overcome deficits in muscle size of the elbow flexors and ankle dorsi flexors and leg press strength in older compared to younger men.
Collapse
Affiliation(s)
- Darren G Candow
- School of Human Kinetics, Laurentian University, Sudbury, ON, Canada
| | | | | | | | | |
Collapse
|
261
|
Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc 2006; 38:667-74. [PMID: 16679981 DOI: 10.1249/01.mss.0000210190.64458.25] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Previous studies have examined the response of muscle protein to resistance exercise and nutrient ingestion. Net muscle protein synthesis results from the combination of resistance exercise and amino acid intake. No study has examined the response of muscle protein to ingestion of protein in the context of a food. This study was designed to determine the response of net muscle protein balance following resistance exercise to ingestion of nutrients as components of milk. METHOD Three groups of volunteers ingested one of three milk drinks each: 237 g of fat-free milk (FM), 237 g of whole milk (WM), and 393 g of fat-free milk isocaloric with the WM (IM). Milk was ingested 1 h following a leg resistance exercise routine. Net muscle protein balance was determined by measuring amino acid balance across the leg. RESULTS Arterial concentrations of representative amino acids increased in response to milk ingestion. Threonine balance and phenylalanine balance were both > 0 following milk ingestion. Net amino acid uptake for threonine was 2.8-fold greater (P < 0.05) for WM than for FM. Mean uptake of phenylalanine was 80 and 85% greater for WM and IM, respectively, than for FM, but not statistically different. Threonine uptake relative to ingested was significantly (P < 0.05) higher for WM (21 +/- 6%) than FM (11 +/- 5%), but not IM (12 +/- 3%). Mean phenylalanine uptake/ingested also was greatest for WM, but not significantly. CONCLUSIONS Ingestion of milk following resistance exercise results in phenylalanine and threonine uptake, representative of net muscle protein synthesis. These results suggest that whole milk may have increased utilization of available amino acids for protein synthesis.
Collapse
Affiliation(s)
- Tabatha A Elliot
- Metabolism Unit, Shriners Hospitals for Children and Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
262
|
Wilson J, Wilson GJ. Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr 2006; 3:7-27. [PMID: 18500966 PMCID: PMC2129150 DOI: 10.1186/1550-2783-3-1-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 04/18/2006] [Indexed: 11/25/2022] Open
Abstract
In recent years an explosion of research papers concerning protein consumption has been published. The need to consolidate this information has become critical from both practical and future research standpoints. For this reason, the following paper presents an in depth analysis of contemporary issues in protein requirements and consumption for resistance trained athletes. Specifically, the paper covers: 1.) protein requirements for resistance trained athletes; 2.) the effect of the digestion rate of protein on muscular protein balance; 3.) the optimal timing of protein intake relative to exercise; 4.) the optimal pattern of protein ingestion, relative to how an individual should consume their protein throughout a 24 hour period, and what sources are utilized during this time frame; 5.) protein composition and its interaction with measures of protein balance and strength performance; 6.) the combination of protein and carbohydrates on plasma insulin levels and protein balance; 7.) the efficacy of protein supplements and whole food protein sources. Our goal is to provide the reader with practical information in optimizing protein intake as well as for provision of sound advice to their clients. Finally, special care was taken to provide future research implications.
Collapse
Affiliation(s)
- Jacob Wilson
- California State University East Bay, Hayward, CA.
| | | |
Collapse
|
263
|
Yamaoka I, Doi M, Nakayama M, Ozeki A, Mochizuki S, Sugahara K, Yoshizawa F. Intravenous administration of amino acids during anesthesia stimulates muscle protein synthesis and heat accumulation in the body. Am J Physiol Endocrinol Metab 2006; 290:E882-8. [PMID: 16352675 DOI: 10.1152/ajpendo.00333.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was conducted to determine the contribution of muscle protein synthesis to the prevention of anesthesia-induced hypothermia by intravenous administration of an amino acid (AA) mixture. We examined the changes of intraperitoneal temperature (Tcore) and the rates of protein synthesis (K(s)) and the phosphorylation states of translation initiation regulators and their upstream signaling components in skeletal muscle in conscious (Nor) or propofol-anesthetized (Ane) rats after a 3-h intravenous administration of a balanced AA mixture or saline (Sal). Compared with Sal administration, the AA mixture administration markedly attenuated the decrease in Tcore in rats during anesthesia, whereas Tcore in the Nor-AA group became slightly elevated during treatment. Stimulation of muscle protein synthesis resulting from AA administration was observed in each case, although K(s) remained lower in the Ane-AA group than in the Nor-Sal group. AA administration during anesthesia significantly increased insulin concentrations to levels approximately 6-fold greater than in the Nor-AA group and enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and ribosomal protein S6 protein kinase relative to all other groups and treatments. The alterations in the Ane-AA group were accompanied by hyperphosphorylation of protein kinase B and the mammalian target of rapamycin (mTOR). These results suggest that administration of an AA mixture during anesthesia stimulates muscle protein synthesis via insulin-mTOR-dependent activation of translation initiation regulators caused by markedly elevated insulin and, thereby, facilitates thermal accumulation in the body.
Collapse
Affiliation(s)
- Ippei Yamaoka
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Naruto, Tokushima 772-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
264
|
Børsheim E, Kobayashi H, Traber DL, Wolfe RR. Compartmental distribution of amino acids during hemodialysis-induced hypoaminoacidemia. Am J Physiol Endocrinol Metab 2006; 290:E643-52. [PMID: 16278248 DOI: 10.1152/ajpendo.00267.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular concentrations of essential amino acids (EAA) in muscle are maintained relatively constant under a variety of conditions. However, the effect of a decrease in blood amino acid concentrations on intracellular concentrations is not clear. Similarly, the relation between intracellular and interstitial concentrations has not been determined in this circumstance. Thus the aim of this study was to determine the effect of hypoaminoacidemia on intracellular, interstitial, and plasma concentrations of EAA and the mechanisms responsible for the respective changes. Twelve normal pigs were investigated before and during 120 min of hemodialysis by use of stable-isotope tracer methodology, microdialysis technique, and muscle biopsies. During hemodialysis, there was a decrease in the interstitial fluid concentrations of phenylalanine, leucine, alanine, and lysine that corresponded to their decrease in plasma concentration. Nonetheless, the intracellular concentrations of these amino acids were maintained at the basal levels throughout the entire period due principally to a reduction in the rate of incorporation of amino acids into protein that was approximately equivalent to the decrease in uptake from the plasma. In conclusion, intracellular concentrations of amino acids are regulated to maintain relatively constant values, even when plasma and interstitial concentrations fall as a consequence of hemodialysis.
Collapse
Affiliation(s)
- Elisabet Børsheim
- Metabolism Unit, Department of Surgery, Shriners Hospitals for Children/Galveston, and University of Texas Medical Branch, Galveston, Texas 77550, USA.
| | | | | | | |
Collapse
|
265
|
Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab 2006; 290:E731-8. [PMID: 16263770 DOI: 10.1152/ajpendo.00415.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We hypothesized a differential activation of the anabolic signaling proteins protein kinase B (PKB) and p70 S6 kinase (p70(S6K)) and subsequent differential stimulation of human muscle protein synthesis (MPS) after dynamic shortening or lengthening exercise. Eight healthy men [25 +/- 5 yr, BMI 26 +/- 3 kg/m(-2) (means +/- SD)] were studied before and after 12 min of repeated stepping up to knee height, and down again, while carrying 25% of their body weight, i.e., shortening exercise with the "up" leg and lengthening exercise with contralateral "down" leg. Quadriceps biopsies were taken before and 3, 6, and 24 h after exercise. After exercise, over 2 h before the biopsies, the subjects ingested 500 ml of water containing 45 g of essential amino acids and 135 g of sucrose. Rates of muscle protein synthesis were determined via incorporation over time of [1-(13)C]leucine (<or=6 h after exercise) or [1-(13)C]valine (21-24 h after exercise) and phosphorylation of signaling proteins by Western analysis. PKB and p70(S6K) phosphorylation increased approximately 3-fold after 3 h and remained elevated at 6 and 24 h. After exercise, rates of myofibrillar and sarcoplasmic protein synthesis were unchanged over the period including exercise and 3 h of recovery but had increased significantly at 6 (approximately 3.0- and 2.4-fold, respectively) and 24 h (approximately 3.2- and 2.0-fold, respectively), independently of the mode of exercise. Short-term dynamic exercise in either shortening or lengthening mode increases MPS at least as much as resistance exercise and is associated with long-term activation of PKB and p70(S6K).
Collapse
|
266
|
Abstract
Aging is associated with a progressive loss of muscle mass (sarcopenia), which increases the risks of injury and disability. Although the mechanisms of sarcopenia are not clearly elucidated, age-associated alterations in the muscle anabolic response to nutritional stimuli and a decline in protein intake may be significant contributing factors. The most recent findings regarding the role of nutritional intake on protein metabolism in the elderly will be reviewed. Specifically, aging is associated with changes in the muscle protein metabolism response to a meal, likely due to alterations in the response to endogenous hormones. Nonetheless, the older muscle is still able to respond to amino acids, mainly the essential and BCAAs, which have been shown to acutely stimulate muscle protein synthesis in older individuals. It is likely that this stimulatory effect of essential and BCAA is due to the direct effect of leucine on the initiation of mRNA translation, which is still present in older age, although it appears to be attenuated in aged animals. Recent data suggest that excess leucine may be able to overcome this age-related resistance of muscle proteins to leucine. For this reason, long-term essential amino acid supplementation may be a useful tool for the prevention and treatment of sarcopenia, particularly if excess leucine is provided in the supplement.
Collapse
|
267
|
Bell JA, Fujita S, Volpi E, Cadenas JG, Rasmussen BB. Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. Am J Physiol Endocrinol Metab 2005; 289:E999-1006. [PMID: 16030064 PMCID: PMC3192464 DOI: 10.1152/ajpendo.00170.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol.min(-1).100 g leg muscle(-1)) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 +/- 3% in the HE group but only 9 +/- 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 +/- 12 to 35 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 +/- 6 to 30 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and increased (P < 0.05) in the LE group (41 +/- 9 to 114 +/- 26 nmol.min(-1).100 g leg muscle(-1)). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.
Collapse
Affiliation(s)
- Jill A Bell
- Sealy Center on Aging & Stark Diabetes Center, Department of Physical Therapy, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | |
Collapse
|
268
|
Bolster DR, Pikosky MA, Gaine PC, Martin W, Wolfe RR, Tipton KD, Maclean D, Maresh CM, Rodriguez NR. Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise. Am J Physiol Endocrinol Metab 2005; 289:E678-83. [PMID: 15914508 DOI: 10.1152/ajpendo.00060.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This investigation evaluated the physiological impact of different dietary protein intakes on skeletal muscle protein synthesis postexercise in endurance runners. Five endurance-trained, male runners participated in a randomized, crossover design diet intervention, where they consumed either a low (0.8 g/kg; LP)-, moderate (1.8 g/kg; MP)-, or high (3.6 g/kg; HP)-protein diet for 4 wk. Diets were designed to be eucaloric with carbohydrate, fat, and protein approximating 60, 30, and 10%; 55, 30, and 15%; and 40, 30, and 30% for LP, MP, and HP, respectively. Substrate oxidation was assessed via indirect calorimetry at 3 wk of the dietary interventions. Mixed-muscle protein fractional synthetic rate (FSR) was measured after an endurance run (75 min at 70% V(O2 peak)) using a primed, continuous infusion of [(2)H(5)]phenylalanine. Protein oxidation increased with increasing protein intake, with each trial being significantly different from the other (P < 0.01). FSR after exercise was significantly greater for LP (0.083%/h) and MP (0.078%/h) than for HP (0.052%/h; P < 0.05). There was no difference in FSR between LP and MP. This is the first investigation to establish that habitual dietary protein intake in humans modulates skeletal muscle protein synthesis after an endurance exercise bout. Future studies directed at mechanisms by which level of protein intake influences skeletal muscle turnover are needed.
Collapse
Affiliation(s)
- Douglas R Bolster
- Dept. of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 2005; 568:283-90. [PMID: 16051622 PMCID: PMC1474760 DOI: 10.1113/jphysiol.2005.093708] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of the present investigation was to determine how fasted-state protein synthesis was affected, acutely, by resistance training. Eight men (24.8+/-1.7 years, body mass index=23.2+/-1.0 kg m-2; means+/-s.e.m.) undertook an 8 week programme of unilateral resistance exercise training (3 sessions week-1, progression from two to four sets; intensity was 80% of the subjects' single repetition maximum (1RM): knee extension and leg press). Following training, subjects underwent two primed constant infusions of l-[ring-13C6]phenylalanine to determine mixed and myofibrillar muscle protein synthesis (MPS) at rest and 12 h after an acute bout of resistance exercise at the same exercise intensity--each leg 80% of 1RM. Biopsies (vastus lateralis) were taken to measure incorporation of labelled phenylalanine into mixed and myofibrillar skeletal muscle proteins and yield fractional MPS. Training resulted in significant dynamic strength gains that were greater (P<0.001) in the trained leg. Hypertrophy of type IIa and IIx fibres (P<0.05) was observed following training. After training, resting mixed MPS rate was elevated (+48%; P<0.05). Acutely, resistance exercise stimulated mixed MPS only in the untrained leg (P<0.05). Myofibrillar MPS was unchanged at rest following training (P=0.61). Myofibrillar MPS increased after resistance exercise (P<0.05), but was not different between the trained and untrained legs (P=0.36). We observed divergent changes in resting mixed versus myofibrillar protein synthesis with training. In addition, resistance training modified the acute response of MPS to resistance exercise by dampening the increased synthesis of non-myofibrillar proteins while maintaining the synthesis of myofibrillar proteins.
Collapse
Affiliation(s)
- Paul L Kim
- Department of Kinesiology, IWC AB116, McMaster University, 1280 Main Street W., Hamilton, ON, Canada L8S 4K1
| | | | | |
Collapse
|
270
|
Abstract
Resistance exercise has been shown to elicit a significant acute hormonal response. It appears that this acute response is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy. Anabolic hormones such as testosterone and the superfamily of growth hormones (GH) have been shown to be elevated during 15-30 minutes of post-resistance exercise providing an adequate stimulus is present. Protocols high in volume, moderate to high in intensity, using short rest intervals and stressing a large muscle mass, tend to produce the greatest acute hormonal elevations (e.g. testosterone, GH and the catabolic hormone cortisol) compared with low-volume, high-intensity protocols using long rest intervals. Other anabolic hormones such as insulin and insulin-like growth factor-1 (IGF-1) are critical to skeletal muscle growth. Insulin is regulated by blood glucose and amino acid levels. However, circulating IGF-1 elevations have been reported following resistance exercise presumably in response to GH-stimulated hepatic secretion. Recent evidence indicates that muscle isoforms of IGF-1 may play a substantial role in tissue remodelling via up-regulation by mechanical signalling (i.e. increased gene expression resulting from stretch and tension to the muscle cytoskeleton leading to greater protein synthesis rates). Acute elevations in catecholamines are critical to optimal force production and energy liberation during resistance exercise. More recent research has shown the importance of acute hormonal elevations and mechanical stimuli for subsequent up- and down-regulation of cytoplasmic steroid receptors needed to mediate the hormonal effects. Other factors such as nutrition, overtraining, detraining and circadian patterns of hormone secretion are critical to examining the hormonal responses and adaptations to resistance training.
Collapse
Affiliation(s)
- William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, 06269, USA.
| | | |
Collapse
|
271
|
Kerksick CM, Leutholtz B. Nutrient administration and resistance training. J Int Soc Sports Nutr 2005; 2:50-67. [PMID: 18500951 PMCID: PMC2129163 DOI: 10.1186/1550-2783-2-1-50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/11/2005] [Indexed: 11/10/2022] Open
Abstract
Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. 123 After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.13 Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Sport Nutrition Laboratory, Center for Exercise, Nutrition and Preventive Health Research, Department of Health, Human Performance and Recreation, Baylor University.
| | | |
Collapse
|
272
|
Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab 2005; 288:E1153-9. [PMID: 15572656 DOI: 10.1152/ajpendo.00387.2004] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine whether there were differences in the extent and time course of skeletal muscle myofibrillar protein synthesis (MPS) and muscle collagen protein synthesis (CPS) in human skeletal muscle in an 8.5-h period after bouts of maximal muscle shortening (SC; average peak torque = 225 +/- 7 N.m, means +/- SE) or lengthening contractions (LC; average peak torque = 299 +/- 18 N.m) with equivalent work performed in each mode. Eight healthy young men (21.9 +/- 0.6 yr, body mass index 24.9 +/- 1.3 kg/m2) performed 6 sets of 10 maximal unilateral LC of the knee extensors on an isokinetic dynamometer. With the contralateral leg, they then performed 6 sets of maximal unilateral SC with work matched to the total work performed during LC (10.9 +/- 0.7 vs. 10.9 +/- 0.8 kJ, P = 0.83). After exercise, the participants consumed small intermittent meals to provide 0.1 g.kg(-1).h(-1) of protein and carbohydrate. Prior exercise elevated MPS above rest in both conditions, but there was a more rapid rise after LC (P < 0.01). The increases (P < 0.001) in CPS above rest were identical for both SC and LC and likely represent a remodeling of the myofibrillar basement membrane. Therefore, a more rapid rise in MPS after maximal LC could translate into greater protein accretion and muscle hypertrophy during chronic resistance training utilizing maximal LC.
Collapse
Affiliation(s)
- Daniel R Moore
- Dept. of Kinesiology, Exercise Metabolism Research Group, McMaster Univ., 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| | | | | | | | | |
Collapse
|
273
|
Sheffield-Moore M, Paddon-Jones D, Sanford AP, Rosenblatt JI, Matlock AG, Cree MG, Wolfe RR. Mixed muscle and hepatic derived plasma protein metabolism is differentially regulated in older and younger men following resistance exercise. Am J Physiol Endocrinol Metab 2005; 288:E922-9. [PMID: 15644460 DOI: 10.1152/ajpendo.00358.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine whether exercise-induced muscle protein turnover alters the subsequent production of hepatically derived acute-phase plasma proteins, and whether age affects how these proteins are regulated. We measured arteriovenous (a-v) balance and the synthesis of mixed muscle protein, albumin (A) and fibrinogen (F) before exercise (REST) and from the beginning of exercise to 10, 60, and 180 min following a single bout of moderate-intensity leg extension exercise (POST-EX) in postabsorptive untrained older (n = 6) and younger (n = 6) men using L-[ring-2H5]phenylalanine (Phe). Subjects performed 6 sets of 8 repetitions of leg extension at 80% of their 1-RM (one-repetition maximum). All data are presented as the difference from REST (Delta from REST at 10, 60, and 180 min POST-EX). Mixed muscle fractional synthesis rate (FSR-M) increased significantly from the beginning of exercise until 10 min POST-EX in the older men (DeltaFSR-M: 0.044%/h), whereas FSR-M in the younger men was not elevated until 180 min POST-EX (DeltaFSR-M: 0.030%/h). FSR-A and FSR-F increased at all POST-EX periods in the older men (DeltaFSR-A = 10 min: 1.90%/day; 60 min: 2.72%/day; 180 min: 2.78%/day; DeltaFSR-F = 10 min: 1.00%/day; 60 min: 3.01%/day; 180 min: 3.73%/day). No change occurred in FSR-A in the younger men, but FSR-F was elevated from the beginning of exercise until 10 and 180 min POST-EX (10 min: 3.07%/day and 180 min: 3.96%/day). Net balance of Phe was positive in the older men in the immediate POST-EX period. Our data indicate that mixed muscle and hepatic derived protein synthesis is differentially regulated in younger and older men in response to a single bout of moderate-intensity leg extension exercise. Moreover, our data suggest that with age may come a greater need to salvage or make available amino acids from exercise-induced muscle protein breakdown to mount an acute-phase response.
Collapse
Affiliation(s)
- M Sheffield-Moore
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | | | | | | | |
Collapse
|
274
|
Koopman R, Wagenmakers AJM, Manders RJF, Zorenc AHG, Senden JMG, Gorselink M, Keizer HA, van Loon LJC. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab 2005; 288:E645-53. [PMID: 15562251 DOI: 10.1152/ajpendo.00413.2004] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of L-[ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 +/- 19% and +77 +/- 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial (P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials (P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 +/- 0.006 vs. 0.061 +/- 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 +/- 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.
Collapse
Affiliation(s)
- René Koopman
- Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Carroll CC, Fluckey JD, Williams RH, Sullivan DH, Trappe TA. Human soleus and vastus lateralis muscle protein metabolism with an amino acid infusion. Am J Physiol Endocrinol Metab 2005; 288:E479-85. [PMID: 15507532 DOI: 10.1152/ajpendo.00393.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The calf muscles, compared with the thigh, are less responsive to resistance exercise in ambulatory and bed-rested individuals, apparently due to muscle-specific differences in protein metabolism. We chose to evaluate the efficacy of using amino acids to elevate protein synthesis in the soleus, because amino acids have been shown to have a potent anabolic effect in the vastus lateralis. Mixed muscle protein synthesis in the soleus and vastus lateralis was measured before and after infusion of mixed amino acids in 10 individuals (28 +/- 1 yr). Phosphorylation of ribosomal protein p70 S6 kinase (p70S6K; Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1; Thr37/46) was also evaluated at rest and after 3 h of amino acid infusion. Basal protein synthesis was similar (P = 0.126), and amino acids stimulated protein synthesis to a similar extent (P = 0.004) in the vastus lateralis (0.043 +/- 0.011%/h) and soleus (0.032 +/- 0.017%/h). Phosphorylation of p70S6K (P = 0.443) and 4E-BP1 (P = 0.192) was not increased in either muscle; however, the soleus contained more total (P = 0.002) and phosphorylated (P = 0.013) 4E-BP1 than the vastus lateralis. These data support the need for further study of amino acid supplementation as a means to compensate for the reduced effectiveness of calf resistance exercise in ambulatory individuals and those exposed to extended periods of unloading. The greater 4E-BP1 in the soleus suggests that there is a muscle-specific distribution of general translational initiation machinery in human skeletal muscle.
Collapse
Affiliation(s)
- Chad C Carroll
- Nutrition, Metabolism, and Exercise Laboratory, DWR Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
276
|
Deldicque L, Theisen D, Francaux M. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 2005; 94:1-10. [PMID: 15702344 DOI: 10.1007/s00421-004-1255-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2004] [Indexed: 01/29/2023]
Abstract
Resistance exercise disturbs skeletal muscle homeostasis leading to activation of catabolic and anabolic processes within the muscle cell. A current challenge of exercise biology is to describe the molecular mechanisms of regulation by which contractile activity stimulates net protein breakdown during exercise and net protein synthesis during recovery. Muscle growth is optimized by combining exercise and appropriate nutritional strategies, such as amino acid (AA) and carbohydrate ingestion. The effects are integrated at the level of one central regulatory protein, mTOR (mammalian target of rapamycin). mTOR is a complex protein integrating signals of the energetic status of the cell and environmental stimuli to control protein synthesis, protein breakdown and therefore cell growth. mTOR is known to be activated by insulin, and the mechanisms involved are well documented. The ways by which exercise and AA lead to mTOR activation remain partially unclear. Exercise and AA use different signalling pathways upstream of mTOR. Exercise seems to recruit partially the same pathway as insulin, whereas AA could act more directly on mTOR. During resistance exercise, the activity of mTOR could be acutely blunted by AMP-activated protein kinase (AMPK), thus inhibiting protein synthesis and enhancing AA availability for energy metabolism. During recovery, the inhibition of mTOR by AMPK is suppressed, and its activation is maximized by the presence of AA. There appears to be a requirement for a minimal concentration of plasma insulin to stimulate muscle protein synthesis in response to resistance exercise and AA ingestion.
Collapse
Affiliation(s)
- L Deldicque
- Institut d'Education Physique et de Réadaptation, Université catholique de Louvain, Belgium
| | | | | |
Collapse
|
277
|
Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM. Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol (1985) 2005; 98:1768-76. [PMID: 15640387 DOI: 10.1152/japplphysiol.01027.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed two studies to determine the effect of a resistive training program comprised of fast vs. slow isokinetic lengthening contractions on muscle fiber hypertrophy. In study I, we investigated the effect of fast (3.66 rad/s; Fast) or slow (0.35 rad/s; Slow) isokinetic high-resistance muscle lengthening contractions on muscle fiber and whole muscle cross-sectional area (CSA) of the elbow flexors was investigated in young men. Twelve subjects (23.8 +/- 2.4 yr; means +/- SD) performed maximal resistive lengthening isokinetic exercise with both arms for 8 wk (3 days/wk), during which they trained one arm at a Fast velocity while the contralateral arm performed an equivalent number of contractions at a Slow velocity. Before (Pre) and after (Post) the training, percutaneous muscle biopsies were taken from the midbelly of the biceps brachii and analyzed for fiber type and CSA. Type I muscle fiber size increased Pre to Post (P < 0.05) in both Fast and Slow arms. Type IIa and IIx muscle fiber CSA increased in both arms, but the increases were greater in the Fast- vs. the Slow-trained arm (P < 0.05). Elbow flexor CSA increased in Fast and Slow arms, with the increase in the Fast arm showing a trend toward being greater (P = 0.06). Maximum torque-generating capacity also increased to a greater degree (P < 0.05) in the Fast arm, regardless of testing velocity. In study II, we attempted to provide some explanation of the greater hypertrophy observed in study I by examining an indicator of protein remodeling (Z-line streaming), which we hypothesized would be greater in the Fast condition. Nine men (21.7 +/- 2.4 yr) performed an acute bout (n = 30, 3 sets x 10 repetitions/set) of maximal lengthening contractions at Fast and Slow velocities used in the training study. Biopsies revealed that Fast lengthening contractions resulted in more (185 +/- 1 7%; P < 0.01) Z-band streaming per millimeter squared muscle vs. the Slow arm. In conclusion, training using Fast (3.66 rad/s) lengthening contractions leads to greater hypertrophy and strength gains than Slow (0.35 rad/s) lengthening contractions. The greater hypertrophy seen in the Fast-trained arm (study I) may be related to a greater amount of protein remodeling (Z-band streaming; study II).
Collapse
Affiliation(s)
- Tim N Shepstone
- Exercise of Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
278
|
Ferrando AA, Raj D, Wolfe RR. Amino acid control of muscle protein turnover in renal disease. J Ren Nutr 2005; 15:34-8. [DOI: 10.1053/j.jrn.2004.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
279
|
Wilborn CD, Willoughby DS. The role of dietary protein intake and resistance training on Myosin heavy chain expression. J Int Soc Sports Nutr 2004; 1:27-34. [PMID: 18500947 PMCID: PMC2129160 DOI: 10.1186/1550-2783-1-2-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/15/2004] [Indexed: 11/10/2022] Open
Abstract
During resistance training the muscle undergoes many changes. Possibly the most profound and significant changes are those that occur in the muscles contractile proteins. Increases in these contractile proteins are one of the primary factors contributing to myofibrillar hypertrophy. The most abundant muscle protein is myosin, which comprises 25% of the total muscle protein. Due to the large amount of skeletal muscle that is composed of myosin, changes in this fiber may have profound effects on skeletal muscle size and strength. The myosin molecule is made up of 6 subunits, 2 very large heavy chains, and 4 smaller light chains. The myosin heavy chain (MHC) accounts for 25–30% of all muscle proteins making its size an important factor in skeletal muscle growth. In conjunction with resistance training, dietary protein intake must be adequate to illicit positive adaptations. Although many studies have evaluated the role of dietary protein intake on skeletal muscle changes, few have evaluated the MHC specifically. Research has clearly defined the need for dietary protein and resistance training to facilitate positive changes in skeletal muscle. The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain.
Collapse
Affiliation(s)
- Colin D Wilborn
- Exercise and Biochemical Nutrition Laboratory, Baylor University, Waco, TX.
| | | |
Collapse
|
280
|
Mittendorfer B, Andersen JL, Plomgaard P, Saltin B, Babraj JA, Smith K, Rennie MJ. Protein synthesis rates in human muscles: neither anatomical location nor fibre-type composition are major determinants. J Physiol 2004; 563:203-11. [PMID: 15611031 PMCID: PMC1665563 DOI: 10.1113/jphysiol.2004.077180] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In many animals the rate of protein synthesis is higher in slow-twitch, oxidative than fast-twitch, glycolytic muscles. To discover if muscles in the human body also show such differences, we measured [13C]leucine incorporation into proteins of anatomically distinct muscles of markedly different fibre-type composition (vastus lateralis, triceps, soleus) after an overnight fast and during infusion of a mixed amino acid solution (75 mg amino acids kg(-1) h(-1)) in nine healthy, young men. Type-1 fibres contributed 83 +/- 4% (mean +/-s.e.m.) of total fibres in soleus, 59 +/- 3% in vastus lateralis and 22 +/- 2% in triceps. The basal myofibrillar and sarcoplasmic protein fractional synthetic rates (FSR, % h(-1)) were 0.034 +/- 0.001 and 0.064 +/- 0.001 (soleus), 0.031 +/- 0.001 and 0.060 +/- 0.001 (vastus), and 0.027 +/- 0.001 and 0.055 +/- 0.001 (triceps). During amino acid infusion, myofibrillar protein FSR increased to 3-fold, and sarcoplasmic to 2-fold basal values (P < 0.001). The differences between muscles, although significant statistically (triceps versus soleus and vastus lateralis, P < 0.05), were within approximately 15%, biologically probably insignificant. The rates of collagen synthesis were not affected by amino acid infusion and varied by < 5% between muscles and experimental conditions.
Collapse
Affiliation(s)
- B Mittendorfer
- Washington University School of Medicine, Division of Geriatrics & Nutritional Sciences, 660 South Euclid Avenue; Campus Box 8031, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
281
|
Highstead RG, Tipton KD, Creson DL, Wolfe RR, Ferrando AA. Incidence of associated events during the performance of invasive procedures in healthy human volunteers. J Appl Physiol (1985) 2004; 98:1202-6. [PMID: 15563628 DOI: 10.1152/japplphysiol.01076.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic investigations often utilize arteriovenous sampling and muscle biopsy. These investigations represent some risk to the subject. We examined 369 studies performed in the General Clinical Research Center between January 1994 and May 2003 for events related to femoral catheterization and muscle biopsies. Incidents were further examined by age (younger: 18-59 yr, n=133; and older: 60-76 yr, n=28). There were no clinically defined major complications associated with either procedure. The incidence of femoral catheter repositioning or reinsertion was higher in the older group (25.5 vs. 9.7%). There was no difference in the incidence of premature removal of catheters, ecchymosis or hematoma, or the persistence of pain after discharge. The occurrence of all incidents did not increase with multiple catheterizations. Muscle biopsy was associated with infrequent ecchymosis or hematoma in both groups (1.1 and 3.6% in younger and older groups, respectively). Both procedures entail a small likelihood of a vagallike response (3.3% overall), resulting in nausea, dizziness, and rarely a loss of consciousness. These results indicate that, in skilled hands and a defined clinical setting, the incidents associated with femoral catheterization and muscle biopsy in healthy volunteers are reasonable and largely controllable.
Collapse
Affiliation(s)
- R Grant Highstead
- Metabolism Unit, Shriners Hospitals for Children, 815 Market St. Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
282
|
Prod'homme M, Balage M, Debras E, Farges MC, Kimball S, Jefferson L, Grizard J. Differential effects of insulin and dietary amino acids on muscle protein synthesis in adult and old rats. J Physiol 2004; 563:235-48. [PMID: 15513948 PMCID: PMC1665559 DOI: 10.1113/jphysiol.2004.068841] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential roles of insulin and dietary amino acids in the regulation of skeletal muscle protein synthesis were examined in adult and old rats. Animals were fed over 1 h with either a 25% or a 0% amino acid/protein meal. In each nutritional condition, postprandial insulin secretion was either maintained or blocked with diazoxide injections. Protein synthesis in gastrocnemius and soleus muscles was assessed in vivo using the flooding dose method. Insulin suppression decreased protein synthesis in both muscles irrespective of the nutritional condition and age of the rats. Moreover, reduced insulinaemia was associated with 4E-BP1 dephosphorylation, enhanced assembly of the 4E-BP1-eIF4E inactive complex and hypophosphorylation of eIF4E, p70S6k and protein kinase B, key intermediates in the regulation of translation initiation and protein synthesis. Old rats did not differ from adult rats. The lack of amino acids in the meal of insulin-suppressed rats did not result in any additional decrease in protein synthesis. In the presence of insulin secretion, dietary amino acid suppression significantly decreased gastrocnemius protein synthesis in adult but not in old rats. Amino acid suppression was associated with reduced phosphorylation of 4E-BP1 and p70S6k in adults. Along with protein synthesis, only the inhibition of p70S6k phosphorylation was abolished in old rats. We concluded that insulin is required for the regulation of muscle protein synthesis irrespective of age and that the effect of dietary amino acids is blunted in old rats.
Collapse
Affiliation(s)
- Magali Prod'homme
- Institut National de la Recherche Agronomique et Centre de Recherche en Nutrition Humaine d'Auvergne, Unité de Nutrition et Métabolisme Protéique, 63122 Saint Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
283
|
Durham WJ, Miller SL, Yeckel CW, Chinkes DL, Tipton KD, Rasmussen BB, Wolfe RR. Leg glucose and protein metabolism during an acute bout of resistance exercise in humans. J Appl Physiol (1985) 2004; 97:1379-86. [PMID: 15194677 DOI: 10.1152/japplphysiol.00635.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the responses of leg glucose and protein metabolism during an acute bout of resistance exercise. Seven subjects (5 men, 2 women) were studied at rest and during a strenuous lower body resistance exercise regimen consisting of ∼8 sets of 10 repetitions of leg press at ∼75% 1 repetition maximum and 8 sets of 8 repetitions of knee extensions at ∼80% 1 repetition maximum. l-[ ring-2H5]phenylalanine was infused throughout the study for measurement of phenylalanine rates of appearance, disappearance, protein synthesis, and protein breakdown across the leg. Femoral arterial and venous blood samples were collected at rest and during exercise for determination of leg blood flow, concentrations of glucose, lactate, alanine, glutamine, glutamate, leucine, and phenylalanine, and phenylalanine enrichments. Muscle biopsies were obtained at rest and immediately after exercise. Leg blood flow was nearly three times ( P < 0.009) higher and glucose uptake more than five times higher ( P = 0.009) during exercise than at rest. Leg lactate release was 86 times higher than rest during the exercise bout. Although whole body phenylalanine rate of appearance, an indicator of whole body protein breakdown, was reduced during exercise; leg phenylalanine rate of appearance, rate of disappearance, protein synthesis, and protein breakdown did not change. Arterial and venous alanine concentrations and glutamate uptake were significantly higher during exercise than at rest. We conclude that lower body resistance exercise potently stimulates leg glucose uptake and lactate release. In addition, muscle protein synthesis is not elevated during a bout of resistance exercise.
Collapse
Affiliation(s)
- William J Durham
- Metabolism Unit, Shriners Burns Hospital, Galveston, University of Texas, Galveston, Texas 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
284
|
Koopman R, Pannemans DLE, Jeukendrup AE, Gijsen AP, Senden JMG, Halliday D, Saris WHM, van Loon LJC, Wagenmakers AJM. Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. Am J Physiol Endocrinol Metab 2004; 287:E712-20. [PMID: 15165999 DOI: 10.1152/ajpendo.00543.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.
Collapse
Affiliation(s)
- René Koopman
- Department of Human Biology, Maastricht University, PO Box 616, 6200 MD, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL, Paddon-Jones D, Wolfe RR. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab 2004; 287:E513-22. [PMID: 15149953 DOI: 10.1152/ajpendo.00334.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regular aerobic exercise strongly influences muscle metabolism in elderly and young; however, the acute effects of aerobic exercise on protein metabolism are not fully understood. We investigated the effect of a single bout of moderate walking (45 min at approximately 40% of peak O2 consumption) on postexercise (POST-EX) muscle metabolism and synthesis of plasma proteins [albumin (ALB) and fibrinogen (FIB)] in untrained older (n = 6) and younger (n = 6) men. We measured muscle phenylalanine (Phe) kinetics before (REST) and POST-EX (10, 60, and 180 min) using l-[ring-2H5]phenylalanine infusion, femoral arteriovenous blood samples, and muscle biopsies. All data are presented as the difference from REST (at 10, 60, and 180 min POST-EX). Mixed muscle fractional synthesis rate (FSR) increased significantly at 10 min POST-EX in both the younger (0.0363%/h) and older men (0.0830%/h), with the younger men staying elevated through 60 min POST-EX (0.0253%/h). ALB FSR increased at 10 min POST-EX in the younger men only (2.30%/day), whereas FIB FSR was elevated in both groups through 180 min POST-EX (younger men = 4.149, older men = 4.107%/day). Muscle protein turnover was also increased, with increases in synthesis and breakdown in younger and older men. Phe rate of disappearance (synthesis) was increased in both groups at 10 min POST-EX and remained elevated through 60 min POST-EX in the older men. A bout of moderate-intensity aerobic exercise induces short-term increases in muscle and plasma protein synthesis in both younger and older men. Aging per se does not diminish the protein metabolic capacity of the elderly to respond to acute aerobic exercise.
Collapse
Affiliation(s)
- M Sheffield-Moore
- Department of Surgery, General Clinical Research Center, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston 77550, USA.
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Abstract
Participants in the sport of bodybuilding are judged by appearance rather than performance. In this respect, increased muscle size and definition are critical elements of success. The purpose of this review is to evaluate the literature and provide recommendations regarding macronutrient intake during both 'off-season' and 'pre-contest' phases. Body builders attempt to increase muscle mass during the off-season (no competitive events), which may be the great majority of the year. During the off-season, it is advantageous for the bodybuilder to be in positive energy balance so that extra energy is available for muscle anabolism. Additionally, during the off-season, adequate protein must be available to provide amino acids for protein synthesis. For 6-12 weeks prior to competition, body builders attempt to retain muscle mass and reduce body fat to very low levels. During the pre-contest phase, the bodybuilder should be in negative energy balance so that body fat can be oxidised. Furthermore, during the pre-contest phase, protein intake must be adequate to maintain muscle mass. There is evidence that a relatively high protein intake (approximately 30% of energy intake) will reduce lean mass loss relative to a lower protein intake (approximately 15% of energy intake) during energy restriction. The higher protein intake will also provide a relatively large thermic effect that may aid in reducing body fat. In both the off-season and pre-contest phases, adequate dietary carbohydrate should be ingested (55-60% of total energy intake) so that training intensity can be maintained. Excess dietary saturated fat can exacerbate coronary artery disease; however, low-fat diets result in a reduction in circulating testosterone. Thus, we suggest dietary fats comprise 15-20% of the body builders' off-season and pre-contest diets. Consumption of protein/amino acids and carbohydrate immediately before and after training sessions may augment protein synthesis, muscle glycogen resynthesis and reduce protein degradation. The optimal rate of carbohydrate ingested immediately after a training session should be 1.2 g/kg/hour at 30-minute intervals for 4 hours and the carbohydrate should be of high glycaemic index. In summary, the composition of diets for body builders should be 55-60% carbohydrate, 25-30% protein and 15-20% of fat, for both the off-season and pre-contest phases. During the off-season the diet should be slightly hyperenergetic (approximately 15% increase in energy intake) and during the pre-contest phase the diet should be hypoenergetic (approximately 15% decrease in energy intake).
Collapse
Affiliation(s)
- Charles P Lambert
- Nutrition, Metabolism, and Exercise Laboratory, Donald W. Reynolds Center on Aging, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
287
|
Biolo G, Ciocchi B, Lebenstedt M, Barazzoni R, Zanetti M, Platen P, Heer M, Guarnieri G. Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol 2004; 558:381-8. [PMID: 15131238 PMCID: PMC1664959 DOI: 10.1113/jphysiol.2004.066365] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Diminished muscular activity is associated with alterations of protein metabolism. The aim of this study was to evaluate the effect of short-term muscle inactivity on regulation of whole-body protein deposition during amino acid infusion to simulate an experimental postprandial state. We studied nine healthy young volunteers at the end of 14 day periods of strict bed rest and of controlled ambulation using a cross-over design. Subjects received a weight-maintaining diet containing 1 g protein kg(-1) day(-1). l[1-(13)C]leucine was used as a marker of whole-body protein kinetics in the postabsorptive state and during a 3 h infusion of an amino acid mixture (0.13 g amino acid (kg lean body mass)(-1) h(-1)). In the postabsorptive state, bed rest decreased (P < 0.05) the rate of leucine disposal (R(d)) to protein synthesis and tended to decrease leucine rate of appearance (R(a)) from proteolysis, whereas the rate of leucine oxidation did not change significantly. Amino acid infusion increased leucine R(d) to protein synthesis and oxidation and decreased leucine R(a) from proteolysis in both the bed rest and ambulatory conditions. Changes from basal in leucine R(d) to protein synthesis were lower (P < 0.05) during bed rest than those in the ambulatory period, whereas changes in leucine R(a) from proteolysis and oxidation were not significantly different. During amino acid infusion, net leucine deposition into body protein was 8 +/- 3% lower during bed rest than during the ambulatory phase. In conclusion, short-term bed rest leads to reduced stimulation of whole-body protein synthesis by amino acid administration. Results of this study were, in part, presented at the meeting, Experimental Biology, 2004, Washington DC.
Collapse
Affiliation(s)
- Gianni Biolo
- Clinica Medica, Ospedale di Cattinara, Strada di Fiume 447, Trieste 34149, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Abstract
A variety of dietary practices designed to enhance acute responses and chronic adaptations to resistance training have been examined with little consensus on the optimal nutritional approach for maximizing muscle and strength gains. From a scientific and practical perspective, the quantity, quality, and timing of nutrient ingestion around a workout are important factors to consider. Manipulation of exercise and nutritional variables can alter events that impact adaptations to training by a variety of mechanisms related to nutrient availability and uptake into tissues, hormonal secretion and interactions with receptors on target tissues, and gene transcription and translation of proteins that eventually impact protein, carbohydrate, and lipid metabolism. If the nutrition-mediated postresistance exercise change in any of these processes is of sufficient magnitude and duration, then over time an effect of muscle size, strength, and body composition is possible. To date, the majority of research has concentrated on providing carbohydrate alone or combined with protein before or after resistance exercise. Carbohydrate and protein intake significantly alters circulating metabolites and the hormonal milieu (i.e., insulin, testosterone, growth hormone, and cortisol), as well as the response of muscle protein and glycogen balance. The pathway of adaptation is proposed as a model to assist in integrating research findings from the current body of literature and future studies examining various diet and resistance exercise configurations.
Collapse
Affiliation(s)
- Jeff S Volek
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269-1110, USA.
| |
Collapse
|
289
|
Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab 2004; 286:E529-34. [PMID: 14665444 DOI: 10.1152/ajpendo.00258.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin has a well-recognized anabolic effect on muscle protein, yet critically ill, severely injured patients are often considered "resistant" to the action of insulin. The purpose of this study was to assess the in vivo effects of hyperinsulinemia on human skeletal muscle in severely injured patients. To accomplish this goal, 14 patients with burns encompassing >40% of their body surface area underwent metabolic evaluation utilizing isotopic dilution of phenylalanine, femoral artery and vein blood sampling, and sequential muscle biopsies of the leg. After baseline metabolic measurements were taken, insulin was infused into the femoral artery at 0.45 mIU.min(-1).100 ml leg volume(-1) to create a local hyperinsulinemia but with minimal systemic perturbations. Insulin administration increased femoral venous concentration of insulin (P < 0.01) but with only a 4% (insignificant) decrease in the arterial glucose concentration and a 7% (insignificant) decrease in the arterial concentration of phenylalanine. Extremity hyperinsulinemia significantly increased leg blood flow (P < 0.05) and the rate of muscle protein synthesis (P < 0.05). Neither the rate of muscle protein breakdown nor the rate of transmembrane transport of phenylalanine was significantly altered with extremity hyperinsulinemia. In conclusion, this study demonstrates that insulin directly stimulates muscle protein synthesis in severely injured patients.
Collapse
Affiliation(s)
- Dennis C Gore
- The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1172, USA.
| | | | | | | | | |
Collapse
|
290
|
Flakoll PJ, Judy T, Flinn K, Carr C, Flinn S. Postexercise protein supplementation improves health and muscle soreness during basic military training in marine recruits. J Appl Physiol (1985) 2004; 96:951-6. [PMID: 14657039 DOI: 10.1152/japplphysiol.00811.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated postexercise amino acid availability has been demonstrated to enhance muscle protein synthesis acutely, but the long-term impact of postexercise protein supplementation on variables such as health, muscle soreness, and function are unclear. Healthy male US Marine recruits from six platoons (US Marine Corps Base, Parris Island, SC; n = 387; 18.9 ± 0.1 yr, 74.7 ± 1.1 kg, 13.8 ± 0.4% body fat) were randomly assigned to three treatments within each platoon. Nutrients supplemented immediately postexercise during the 54-day basic training were either placebo (0 g carbohydrate, 0 g protein, 0 g fat), control (8, 0, 3), or protein supplement (8, 10, 3). Subjects and observers making measurements and data analysis were blinded to subject groupings. Compared with placebo and control groups, the protein-supplemented group had an average of 33% fewer total medical visits, 28% fewer visits due to bacterial/viral infections, 37% fewer visits due to muscle/joint problems, and 83% fewer visits due to heat exhaustion. Recruits experiencing heat exhaustion had greater body mass, lean, fat, and water losses. Muscle soreness immediately postexercise was reduced by protein supplementation vs. placebo and control groups on both days 34 and 54. Postexercise protein supplementation may not only enhance muscle protein deposition but it also has significant potential to positively impact health, muscle soreness, and tissue hydration during prolonged intense exercise training, suggesting a potential therapeutic approach for the prevention of health problems in severely stressed exercising populations.
Collapse
Affiliation(s)
- Paul J Flakoll
- Center for Designing Food to Improve Nutrition, Dept. of Food Science and Human Nutrition, Iowa State University, Ames 50011, USA.
| | | | | | | | | |
Collapse
|
291
|
Abstract
This review is divided into two parts, the first dealing with the cell and molecular biology of muscle in terms of growth and wasting and the second being an account of current knowledge of physiological mechanisms involved in the alteration of size of the human muscle mass. Wherever possible, attempts have been made to interrelate the information in each part and to provide the most likely explanation for phenomena that are currently only partially understood. The review should be of interest to cell and molecular biologists who know little of human muscle physiology and to physicians, physiotherapists, and kinesiologists who may be familiar with the gross behavior of human muscle but wish to understand more about the underlying mechanisms of change.
Collapse
Affiliation(s)
- Michael J Rennie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
292
|
Børsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol (1985) 2004; 96:674-8. [PMID: 14594866 DOI: 10.1152/japplphysiol.00333.2003] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of2H5- or13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO ( P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 ± 3 nmol·ml-1·100 ml leg-1before drink to an average of -4 ± 4 and 0 ± 3 nmol·ml-1·100 ml leg-1during the second and third hour after the drink, respectively ( P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.
Collapse
Affiliation(s)
- Elisabet Børsheim
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | | | | | | | |
Collapse
|
293
|
Raj DSC, Zager P, Shah VO, Dominic EA, Adeniyi O, Blandon P, Wolfe R, Ferrando A. Protein turnover and amino acid transport kinetics in end-stage renal disease. Am J Physiol Endocrinol Metab 2004; 286:E136-43. [PMID: 13129859 DOI: 10.1152/ajpendo.00352.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, and glutamine before and during HD in six ESRD patients. Data obtained from amino acid concentrations and enrichment in the artery, vein, and muscle compartments were used to calculate intracellular amino acid transport and muscle protein synthesis and catabolism. Fractional muscle protein synthesis (FSR) was estimated by the precursor product approach. Despite a significant decrease in the plasma concentrations of amino acids in the artery and vein during HD, the intracellular concentrations remained stable. Outward transport of the amino acids was significantly higher than the inward transport during HD. FSR increased during HD (0.0521 +/- 0.0043 vs. 0.0772 +/- 0.0055%/h, P < 0.01). Results derived from compartmental modeling indicated that both protein synthesis (118.3 +/- 20.6 vs. 146.5 +/- 20.6 nmol.min-1.100 ml leg-1, P < 0.01) and catabolism (119.8 +/- 18.0 vs. 174.0 +/- 14.2 nmol.min-1.100 ml leg-1, P < 0.01) increased during HD. However, the intradialytic increase in catabolism exceeded that of synthesis (57.8 +/- 13.8 vs. 28.0 +/- 8.5%, P < 0.05). Thus HD alters amino acid transport kinetics and increases protein turnover, with net increase in protein catabolism.
Collapse
Affiliation(s)
- Dominic S C Raj
- Division of Nephrology, University of New Mexico Health Sciences Center, 5th Floor, ACC, 2211 Lomas Boulevard NE, Albuquerque, NM 87131-5271, USA.
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 2003; 78:250-8. [PMID: 12885705 PMCID: PMC3192452 DOI: 10.1093/ajcn/78.2.250] [Citation(s) in RCA: 574] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nutritional supplementation may be used to treat muscle loss with aging (sarcopenia). However, if physical activity does not increase, the elderly tend to compensate for the increased energy delivered by the supplements with reduced food intake, which results in a calorie substitution rather than supplementation. Thus, an effective supplement should stimulate muscle anabolism more efficiently than food or common protein supplements. We have shown that balanced amino acids stimulate muscle protein anabolism in the elderly, but it is unknown whether all amino acids are necessary to achieve this effect. OBJECTIVE We assessed whether nonessential amino acids are required in a nutritional supplement to stimulate muscle protein anabolism in the elderly. DESIGN We compared the response of muscle protein metabolism to either 18 g essential amino acids (EAA group: n = 6, age 69 +/- 2 y; +/- SD) or 40 g balanced amino acids (18 g essential amino acids + 22 g nonessential amino acids, BAA group; n = 8, age 71 +/- 2 y) given orally in small boluses every 10 min for 3 h to healthy elderly volunteers. Muscle protein metabolism was measured in the basal state and during amino acid administration via L-[ring-(2)H(5)]phenylalanine infusion, femoral arterial and venous catheterization, and muscle biopsies. RESULTS Phenylalanine net balance (in nmol x min(-1). 100 mL leg volume(-1)) increased from the basal state (P < 0.01), with no differences between groups (BAA: from -16 +/- 5 to 16 +/- 4; EAA: from -18 +/- 5 to 14 +/- 13) because of an increase (P < 0.01) in muscle protein synthesis and no change in breakdown. CONCLUSION Essential amino acids are primarily responsible for the amino acid-induced stimulation of muscle protein anabolism in the elderly.
Collapse
Affiliation(s)
- Elena Volpi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA.
| | | | | | | | | |
Collapse
|
295
|
Abstract
PURPOSE OF REVIEW The delivery rate of amino acids to an organism significantly affects protein anabolism. The rate can be controlled by the type and the timing of feeding. Our aim was to bring new insights to the way they may act. RECENT FINDINGS During young and adult ages, when food supply is liberal, subjects can adapt to various modes of protein feeding. However, during food restriction, protein anabolism is favored when the delivery of amino acids is evenly distributed over the day, either with frequent meals, or through the use of slowly absorbed proteins like casein. In contrast, during aging, quickly absorbed protein sources become more efficient. During recovery after exercise, the timing of protein feeding after the end of exercise may or may not influence its anabolic effect, depending on the subject's age and the type of exercise. SUMMARY The synchronization of variations in anabolic capability with amino acid supply partly explains the effects of the type and timing of protein feeding. This effect is modulated by the amount of amino acids required to increase whole-body proteins and by the signaling properties of some amino acids to stimulate protein synthesis. Indeed, the anabolic effect of amino acids is determined by their interaction with other anabolic factors (other nutrients or physiological factors, whose efficiency is mainly related to their effect on protein degradation). It is clear that benefits can be obtained from adapted protein feeding patterns.
Collapse
Affiliation(s)
- Laurent Mosoni
- Protein Metabolism and Nutrition Unit, Inra, Theix, France.
| | | |
Collapse
|
296
|
Kobayashi H, Børsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR, Jefferson LS, Wolfe RR. Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am J Physiol Endocrinol Metab 2003; 284:E488-98. [PMID: 12556349 DOI: 10.1152/ajpendo.00094.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the effect of a hemodialysis-induced 40% reduction in plasma amino acid concentrations on rates of muscle protein synthesis and breakdown in normal swine. Muscle protein kinetics were measured by tracer methodology using [(2)H(5)]phenylalanine and [1-(13)C]leucine and analysis of femoral arterial and venous samples and tissue biopsies. Net amino acid release by muscle was accelerated during dialysis. Phenylalanine utilization for muscle protein synthesis was reduced from the basal value of 45 +/- 8 to 25 +/- 6 nmol x min(-1) x 100 ml leg(-1) between 30 and 60 min after start of dialysis and was stimulated when amino acids were replaced while dialysis continued. Muscle protein breakdown was unchanged. The signal for changes in synthesis appeared to be changes in plasma amino acid concentrations, as intramuscular concentrations remained constant throughout. The changes in muscle protein synthesis were accompanied by a reduction or stimulation, respectively, in the guanine nucleotide exchange activity of eukaryotic initiation factor (eIF)2B following hypoaminoacidemia vs. amino acid replacement. We conclude that a reduction in plasma amino acid concentrations below the normal basal value signals an inhibition of muscle protein synthesis and that corresponding changes in eIF2B activity suggest a possible role in mediating the response.
Collapse
Affiliation(s)
- Hisamine Kobayashi
- Department of Surgery, Shriners Burns Hospital, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 2003; 284:E76-89. [PMID: 12388164 DOI: 10.1152/ajpendo.00234.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine if the acute anabolic muscle response to resistance exercise and essential amino acids (EAA) reflects the response over 24 h. Seven subjects participated in the following two 24-h studies: 1) resting (REST) and 2) rest plus resistance exercise and consumption of EAA (ES). Net balance (NB) across the leg was determined for four amino acids. [(13)C(6)]phenylalanine was infused to determine mixed muscle fractional synthetic rate (FSR). Twenty-four-hour FSR was significantly greater for ES than for REST (P = 0.003). Exchange of phenylalanine across the leg was -194 +/- 74 (SE) mg for ES and -371 +/- 88 mg for REST (P = 0.07) over 24 h and 229 +/- 42 mg (ES) and 28 +/- 15 mg (REST; P < 0.01) over 3 h corresponding to exercise and EAA consumption for ES. The difference in phenylalanine exchange between REST and ES was not different for measurements over 24 and 3 h. Increases in NB during ES were primarily the result of increases in protein synthesis. Results for other amino acids were similar. The acute anabolic response of muscle to EAA intake and exercise is additive to the response at rest and thus reflects the 24-h response.
Collapse
Affiliation(s)
- Kevin D Tipton
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas 77550, USA.
| | | | | | | | | |
Collapse
|
298
|
Abstract
Space flight and the accompanying diminished muscular activity lead to a loss of body nitrogen and muscle function. These losses may affect crew capabilities and health in long-duration missions. Space flight alters protein metabolism such that the body is unable to maintain protein synthetic rates. A concomitant hypocaloric intake and altered anabolic/catabolic hormonal profiles may contribute to or exacerbate this problem. The inactivity associated with bedrest also reduces muscle and whole-body protein synthesis. For this reason, bedrest provides a good model for the investigation of potential exercise and nutritional countermeasures to restore muscle protein synthesis. We have demonstrated that minimal resistance exercise preserves muscle protein synthesis throughout bedrest. In addition, ongoing work indicates that an essential amino acid and carbohydrate supplement may ameliorate the loss of lean body mass and muscle strength associated with 28 d of bedrest. The investigation of inactivity-induced alterations in protein metabolism, during space flight or prolonged bedrest, is applicable to clinical populations and, in a more general sense, to the problems associated with the decreased activity that occur with aging.
Collapse
Affiliation(s)
- Arny A Ferrando
- Department of Surgery, University of Texas Medical Branch, and the Metabolism Unit, Shriners Hospital for Children, Galveston, Texas 77550, USA.
| | | | | |
Collapse
|
299
|
Børsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 2002; 283:E648-57. [PMID: 12217881 DOI: 10.1152/ajpendo.00466.2001] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tests the hypothesis that a dose of 6 g of orally administered essential amino acids (EAAs) stimulates net muscle protein balance in healthy volunteers when consumed 1 and 2 h after resistance exercise. Subjects received a primed constant infusion of L-[(2)H(5)]phenylalanine and L-[1-(13)C]leucine. Samples from femoral artery and vein and biopsies from vastus lateralis were obtained. Arterial EAA concentrations increased severalfold after drinks. Net muscle protein balance (NB) increased proportionally more than arterial AA concentrations in response to drinks, and it returned rapidly to basal values when AA concentrations decreased. Area under the curve for net phenylalanine uptake above basal value was similar for the first hour after each drink (67 +/- 17 vs. 77 +/- 20 mg/leg, respectively). Because the NB response was double the response to two doses of a mixture of 3 g of EAA + 3 g of nonessential AA (NEAA) (14), we conclude that NEAA are not necessary for stimulation of NB and that there is a dose-dependent effect of EAA ingestion on muscle protein synthesis.
Collapse
Affiliation(s)
- Elisabet Børsheim
- Metabolism Unit, Department of Surgery, Shriners Hospital for Children/Galveston, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | | | |
Collapse
|
300
|
Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol (1985) 2002; 93:1168-80. [PMID: 12183515 DOI: 10.1152/japplphysiol.00221.2002] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein synthesis in skeletal muscle is modulated in response to a variety of stimuli. Two stimuli receiving a great deal of recent attention are increased amino acid availability and exercise. Both of these effectors stimulate protein synthesis in part through activation of translation initiation. However, the full response of translation initiation and protein synthesis to either effector is not observed in the absence of a minimal concentration of insulin. The combination of insulin and either increased amino acid availability or endurance exercise stimulates translation initiation and protein synthesis in part through activation of the ribosomal protein S6 protein kinase S6K1 as well as through enhanced association of eukaryotic initiation factor eIF4G with eIF4E, an event that promotes binding of mRNA to the ribosome. In contrast, insulin in combination with resistance exercise stimulates translation initiation and protein synthesis through enhanced activity of a guanine nucleotide exchange protein referred to as eIF2B. In both cases, the amount of insulin required for the effects is low, and a concentration of the hormone that approximates that observed in fasting animals is sufficient for maximal stimulation. This review summarizes the results of a number of recent studies that have helped to establish our present understanding of the interactions of insulin, amino acids, and exercise in the regulation of protein synthesis in skeletal muscle.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|