251
|
Kaleağasıoğlu F, Berger MR. SIBLINGs and SPARC families: Their emerging roles in pancreatic cancer. World J Gastroenterol 2014; 20:14747-14759. [PMID: 25356037 PMCID: PMC4209540 DOI: 10.3748/wjg.v20.i40.14747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a considerably poor prognosis with a 5-year survival probability of less than 5% when all stages are combined. Pancreatic cancer is characterized by its dense stroma, which is involved in the critical interplay with the tumor cells throughout tumor progression and furthermore, creates a barrier restricting efficient penetration of therapeutics. Alterations in a large number of genes are reflected by a limited number of signaling pathways, which are potential targets. Understanding more about the molecular basis of this devastating cancer type regarding tumor microenvironment, distinct subpopulations of cells, epithelial-to-mesenchymal transition and inflammation will lead to the development of various targeted therapies for controlling tumor growth and metastasis. In this complex scenario of pancreatic cancer, especially members of the “small integrin binding ligand N-linked glycoproteins” (SIBLINGs) and “secreted protein acidic and rich in cysteine” (SPARC) families have emerged due to their prominent roles in properties including proliferation, differentiation, apoptosis, adhesion, migration, angiogenesis, wound repair and regulation of extracellular matrix remodeling. SIBLINGs consist of five members, which include osteopontin (OPN), bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. The SPARC family of modular extracellular proteins is comprised of SPARC/osteonectin (ON) and SPARC-like 1 (hevin); secreted modular calcium binding proteins; testicans and follistatin-like protein. In this review, we especially focus on OPN and ON, elaborating on their special and growing importance in pancreatic cancer diagnosis and prognosis.
Collapse
|
252
|
Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett 2014; 356:721-32. [PMID: 25449434 DOI: 10.1016/j.canlet.2014.10.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Excessive matrix production by pancreatic stellate cells promotes local growth and metastasis of pancreatic ductal adenocarcinoma and provides a barrier for drug delivery. Collagen type V is a fibrillar, regulatory collagen up-regulated in the stroma of different malignant tumors. Here we show that collagen type V is expressed by pancreatic stellate cells in the stroma of pancreatic ductal adenocarcinoma and affects the malignant phenotype of various pancreatic cancer cell lines by promoting adhesion, migration and viability, also after treatment with chemotherapeutic drugs. Pharmacological and antibody-mediated inhibition of β1-integrin signaling abolishes collagen type V-induced effects on pancreatic cancer cells. Ablation of collagen type V secretion of pancreatic stellate cells by siRNA reduces invasion and proliferation of pancreatic cancer cells and tube formation of endothelial cells. Moreover, stable knock-down of collagen type V in pancreatic stellate cells reduces metastasis formation and angiogenesis in an orthotopic mouse model of ductal adenocarcinoma. In conclusion, paracrine loops involving cancer and stromal elements and mediated by collagen type V promote the malignant phenotype of pancreatic ductal adenocarcinoma and underline the relevance of epithelial-stromal interactions in the progression of this aggressive neoplasm.
Collapse
|
253
|
Schober M, Jesenofsky R, Faissner R, Weidenauer C, Hagmann W, Michl P, Heuchel RL, Haas SL, Löhr JM. Desmoplasia and chemoresistance in pancreatic cancer. Cancers (Basel) 2014; 6:2137-54. [PMID: 25337831 PMCID: PMC4276960 DOI: 10.3390/cancers6042137] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) occurs mainly in people older than 50 years of age. Although great strides have been taken in treating PDAC over the past decades its incidence nearly equals its mortality rate and it was quoted as the 4th leading cause of cancer deaths in the U.S. in 2012. This review aims to focus on research models and scientific developments that help to explain the extraordinary resistance of PDAC towards current therapeutic regimens. Furthermore, it highlights the main features of drug resistance including mechanisms promoted by cancer cells or cancer stem cells (CSCs), as well as stromal cells, and the acellular components surrounding the tumor cells—known as peritumoral desmoplasia—that affects intra-tumoral drug delivery. Finally, therapeutic concepts and avenues for future research are suggested, based on the topics discussed.
Collapse
Affiliation(s)
- Marvin Schober
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Ralf Jesenofsky
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Ralf Faissner
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Cornelius Weidenauer
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Wolfgang Hagmann
- Lung Cancer, Genomics/Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69121, Germany.
| | - Patrick Michl
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Rainer L Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| | - Stephan L Haas
- Gastrocentrum, Karolinska University Hospital, Stockholm, Stockholm 141 86, Sweden.
| | - J-Matthias Löhr
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| |
Collapse
|
254
|
Abstract
A recent article in Cell shows that vitamin D receptor activation reprograms reactive stroma in the tumor microenvironment to a less inflammatory, quiescent state and is associated with increased drug retention, tumor response, and survival in pancreatic cancer models. Stroma reprogramming, as opposed to ablation, may emerge as a new treatment paradigm.
Collapse
Affiliation(s)
- David R Rowley
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
255
|
Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas 2014; 43:1032-41. [PMID: 24991971 DOI: 10.1097/mpa.0000000000000159] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Knowledge of risk factors for development of pancreatic ductal adenocarcinoma (PDAC) is limited. To clarify the background condition of the pancreas for the development of PDAC, we analyzed pancreatic histological changes in noncancerous lesion specimens after pancreatectomy in PDAC patients. METHODS Seventy-six patients with PDAC were enrolled in this study. The PDAC was in the pancreatic head in 37 patients, in the body in 31, and in the tail in 8. No patients had a history of clinical chronic pancreatitis. As controls, 98 patients without PDAC were enrolled. The following parameters were examined: fibrosis, fatty degeneration, and inflammatory cell infiltration. More than 5% of fatty degeneration in the specimen, more than 10% of fibrosis, and more than 5% of inflammatory cell infiltration were considered positive changes. RESULTS Pancreatectomy specimens showed a higher ratio of positive change in fibrosis (86% vs 42%), fatty degeneration (72% vs 44%), and inflammatory cell infiltration (14% vs 3%) than control samples. Multivariate analyses demonstrated that each histological change was a significant, independent determinant for PDAC. CONCLUSIONS Our study demonstrated that cryptogenic pancreatic inflammation with fatty changes represents an important predisposing factor for PDAC. Screening for subclinical chronic pancreatitis in healthy populations may enable the detection of PDAC at an early stage.
Collapse
|
256
|
Bi Y, Li J, Ji B, Kang N, Yang L, Simonetto DA, Kwon JH, Kamath M, Cao S, Shah V. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2791-802. [PMID: 25111230 PMCID: PMC4188870 DOI: 10.1016/j.ajpath.2014.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P) is produced by sphingosine kinase 1 and is implicated in tumor growth, although the mechanisms remain incompletely understood. Pancreatic stellate cells (PSCs) reside within the tumor microenvironment and may regulate tumor progression. We hypothesized that S1P activates PSCs to release paracrine factors, which, in turn, increase cancer cell invasion and growth. We used a combination of human tissue, in vitro, and in vivo studies to mechanistically evaluate this concept. Sphingosine kinase 1 was overexpressed in human pancreatic tissue, especially within tumor cells. S1P activated PSCs in vitro and conditioned medium from S1P-stimulated PSCs, increased pancreatic cancer cell migration, and invasion, which was dependent on S1P2, ABL1 (alias c-Abl) kinase, and matrix metalloproteinase-9. In vivo studies showed that pancreatic cancer cells co-implanted with S1P2 receptor knockdown PSCs led to less cancer growth and metastasis in s.c. and orthotopic pancreatic cancer models compared with control PSCs. Pancreatic cancer cell-derived S1P activates PSCs to release paracrine factors, including matrix metalloproteinase-9, which reciprocally promotes tumor cell migration and invasion in vitro and cancer growth in vivo.
Collapse
Affiliation(s)
- Yan Bi
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jiachu Li
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoan Ji
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ningling Kang
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Liu Yang
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Douglas A Simonetto
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jung H Kwon
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marielle Kamath
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sheng Cao
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
257
|
Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: A conspiracy theory. World J Gastroenterol 2014; 20:11216-11229. [PMID: 25170206 PMCID: PMC4145760 DOI: 10.3748/wjg.v20.i32.11216] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is characterised by a prominent desmoplastic/stromal reaction that has received little attention until recent times. Given that treatments focusing on pancreatic cancer cells alone have failed to significantly improve patient outcome over many decades, research efforts have now moved to understanding the pathophysiology of the stromal reaction and its role in cancer progression. In this regard, our Group was the first to identify the cells (pancreatic stellate cells, PSCs) that produced the collagenous stroma of pancreatic cancer and to demonstrate that these cells interacted closely with cancer cells to facilitate local tumour growth and distant metastasis. Evidence is accumulating to indicate that stromal PSCs may also mediate angiogenesis, immune evasion and the well known resistance of pancreatic cancer to chemotherapy and radiotherapy. This review will summarise current knowledge regarding the critical role of pancreatic stellate cells and the stroma in pancreatic cancer biology and the therapeutic approaches being developed to target the stroma in a bid to improve the outcome of this devastating disease.
Collapse
|
258
|
Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun 2014; 40:40-7. [PMID: 24650449 PMCID: PMC4102665 DOI: 10.1016/j.bbi.2014.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer.
Collapse
|
259
|
Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer 2014; 50:2570-82. [PMID: 25091797 DOI: 10.1016/j.ejca.2014.06.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis. To date patient outcomes have not improved principally due to the limited number of patients suitable for surgical resections and the radiation and chemotherapy resistance of these tumours. In the last decade, a failure of conventional therapies has forced researchers to re-examine the environment of PDAC. The tumour environment has been demonstrated to consist of an abundance of stroma containing many cells but predominantly pancreatic stellate cells (PSCs). Recent research has focused on understanding the interaction between PSCs and PDAC cells in vitro and in vivo. It is believed that the interaction between these cells is responsible for supporting tumour growth, invasion and metastasis and creating the barrier to delivery of chemotherapeutics. Novel approaches which focus on the interactions between PDAC and PSCs which sustain the tumour microenvironment may achieve significant patient benefits. This manuscript reviews the current evidence regarding PSCs, their interaction with PDAC cells and the potential implication this may have for future therapies. METHODS A PubMed search was carried out for the terms 'pancreas cancer' OR 'pancreatic cancer', AND 'pancreatic stellate cells', NOT 'hepatic stellate cells'. All studies were screened and assessed for their eligibility and manuscripts exploring the relationship between PSCs and PDAC were included. The studies were subdivided into in vitro and in vivo groups. RESULTS One hundred and sixty-six manuscripts were identified and reduced to seventy-three in vitro and in vivo studies for review. The manuscripts showed that PDAC cells and PSCs interact with each other to enhance proliferation, reduce apoptosis and increase migration and invasion of cancer cells. The pathways through which they facilitate these actions provide potential targets for future novel therapies. CONCLUSION There is accumulating evidence supporting the multiple roles of PSCs in establishing the tumour microenvironment and supporting the survival of PDAC. To further validate these findings there is a need for greater use of physiologically relevant models of pancreatic cancer in vitro such as three dimensional co-cultures and the use of orthotopic and genetically engineered murine (GEM) models in vivo.
Collapse
Affiliation(s)
- Jonathan Haqq
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom.
| | - Lynne M Howells
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Matthew S Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Will P Steward
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
260
|
Abstract
Intratumoral hypoxia is a common feature of solid tumors. Recent advances in cancer biology indicate that hypoxia is not only a consequence of unrestrained tumor growth, but also plays an active role in promoting tumor progression, malignancy, and resistance to therapy. Hypoxia signaling is mediated by the hypoxia-inducible factors (HIFs), which are not only stabilized under hypoxia, but also by activated oncogenes or inactivated tumor suppressors under normoxia. Hypoxia is a prominent feature of the tumor microenvironment of pancreatic tumors, also characterized by the presence of a fibrotic reaction that promotes, and is also modulated by, hypoxia. As the mechanisms by which hypoxia signaling impacts invasion and metastasis in pancreatic cancer are being elucidated, hypoxia is emerging as a key determinant of pancreatic cancer malignancy as well as an important target for therapy. Herein we present an overview of recent advances in the understanding of the impact that hypoxia has in pancreatic cancer invasion and metastasis.
Collapse
Affiliation(s)
- Angela Yuen
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Begoña Díaz
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
261
|
Elsner A, Lange F, Fitzner B, Heuschkel M, Krause BJ, Jaster R. Distinct antifibrogenic effects of erlotinib, sunitinib and sorafenib on rat pancreatic stellate cells. World J Gastroenterol 2014; 20:7914-7925. [PMID: 24976727 PMCID: PMC4069318 DOI: 10.3748/wjg.v20.i24.7914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study if three clinically available small molecule kinase inhibitors (SMI), erlotinib, sunitinib and sorafenib, exert antifibrogenic effects on pancreatic stellate cells (PSC) and analyze the basis of their action.
METHODS: Cultured rat PSC were exposed to SMI. Cell proliferation and viability were assessed employing 5-bromo-2’-deoxyuridine incorporation assay and flow cytometry, respectively. 2-Deoxy-2-[18F] fluoroglucose (18F-FDG) uptake was measured to study metabolic activity. Exhibition of the myofibroblastic PSC phenotype was monitored by immunofluorescence analysis of α-smooth muscle actin (α-SMA) expression. Levels of mRNA were determined by real-time PCR, while protein expression and phosphorylation were analyzed by immunoblotting. Transforming growth factor-β1 (TGF-β1) levels in culture supernatants were quantified by ELISA.
RESULTS: All three SMI inhibited cell proliferation and 18F-FDG uptake in a dose-dependent manner and without significant cytotoxic effects. Furthermore, additive effects of the drugs were observed. Immunoblot analysis showed that sorafenib and sunitib, but not erlotinib, efficiently blocked activation of the AKT pathway, while all three drugs displayed little effect on phosphorylation of ERK1/2. Cells treated with sorafenib or sunitinib expressed less interleukin-6 mRNA as well as less collagen type 1 mRNA and protein. Sorafenib was the only drug that also upregulated the expression of matrix metalloproteinase-2 and reduced the secretion of TGF-β1 protein. All three drugs showed insignificant or discordant effects on the mRNA and protein levels of α-SMA.
CONCLUSION: The tested SMI, especially sorafenib, exert inhibitory effects on activated PSC, which should be further evaluated in preclinical studies.
Collapse
|
262
|
Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W, Lei J, Ma J, Wang X, Lv S, Han L, Li W, Guo J, Guo K, Zhang D, Wu E, Xie K. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res 2014; 20:4326-38. [PMID: 24947933 DOI: 10.1158/1078-0432.ccr-13-3426] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Pancreatic cancer is characterized by stromal desmoplasia and perineural invasion (PNI). We sought to explore the contribution of pancreatic stellate cells (PSC) activated by paracrine Sonic Hedgehog (SHH) in pancreatic cancer PNI and progression. EXPERIMENTAL DESIGN In this study, the expression dynamics of SHH were examined via immunohistochemistry, real-time PCR, and Western blot analysis in a cohort of carcinomatous and nonneoplastic pancreatic tissues and cells. A series of in vivo and in vitro assays was performed to elucidate the contribution of PSCs activated by paracrine SHH signaling in pancreatic cancer PNI and progression. RESULTS We show that SHH overexpression in tumor cells is involved in PNI in pancreatic cancer and is an important marker of biologic activity of pancreatic cancer. Moreover, the overexpression of SHH in tumor cells activates the hedgehog pathway in PSCs in the stroma instead of activating tumor cells. These activated PSCs are essential for the promotion of pancreatic cancer cell migration along nerve axons and nerve outgrowth to pancreatic cancer cell colonies in an in vitro three-dimensional model of nerve invasion in cancer. Furthermore, the coimplantation of PSCs activated by paracrine SHH induced tumor cell invasion of the trunk and nerve dysfunction along sciatic nerves and also promoted orthotropic xenograft tumor growth, metastasis, and PNI in in vivo models. CONCLUSIONS These results establish that stromal PSCs activated by SHH paracrine signaling in pancreatic cancer cells secrete high levels of PNI-associated molecules to promote PNI in pancreatic cancer.
Collapse
Affiliation(s)
- Xuqi Li
- Departments of Hepatobiliary Surgery, General Surgery, and
| | | | | | | | - Han Liu
- Departments of Hepatobiliary Surgery
| | | | | | - Jiguang Ma
- Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiu Wang
- Departments of Hepatobiliary Surgery
| | | | - Liang Han
- Departments of Hepatobiliary Surgery
| | - Wei Li
- Departments of Hepatobiliary Surgery
| | - Jian Guo
- Departments of Hepatobiliary Surgery
| | - Kun Guo
- Departments of Hepatobiliary Surgery
| | | | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | - Keping Xie
- Department of Gastroenterology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
263
|
Pomianowska E, Sandnes D, Grzyb K, Schjølberg AR, Aasrum M, Tveteraas IH, Tjomsland V, Christoffersen T, Gladhaug IP. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. BMC Cancer 2014; 14:413. [PMID: 24912820 PMCID: PMC4084579 DOI: 10.1186/1471-2407-14-413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/20/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. METHODS Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [(3)H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [(3)H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. RESULTS Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. CONCLUSIONS The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors.
Collapse
Affiliation(s)
- Ewa Pomianowska
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Dagny Sandnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Aasa R Schjølberg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Aasrum
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingun H Tveteraas
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vegard Tjomsland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ivar P Gladhaug
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| |
Collapse
|
264
|
Kato M, Watabe K, Tsujii M, Funahashi T, Shimomura I, Takehara T. Adiponectin inhibits murine pancreatic cancer growth. Dig Dis Sci 2014; 59:1192-6. [PMID: 24801685 DOI: 10.1007/s10620-014-3175-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adiponectin is an adipose tissue-derived secretory hormone whose plasma concentrations are lower in obese individuals. Obesity is a risk factor for the development and growth of pancreatic cancer, and hypoadiponectinemia was suggested to be involved in the growth of Pan02 murine pancreatic cancer cells that were inoculated into the flanks of congenitally obese mice. AIM The aim of this study was to clarify the role of adiponectin in the growth of pancreatic cancer cells. METHODS We examined the effect of adiponectin on the growth of Pan02 cells using recombinant adiponectin and adiponectin knockout mice. RESULTS The in vitro treatment of Pan02 cells with adiponectin inhibited cellular proliferation that was accompanied by increased apoptosis and caspase-3 and caspase-7 activities. Transplantation of Pan02 cells into the pancreas of knockout mice resulted in a larger tumor volume with fewer terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells compared with wild-type mice. CONCLUSIONS The results indicate that adiponectin directly suppresses the proliferation of Pan02 cells.
Collapse
Affiliation(s)
- Motohiko Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
265
|
Patel MB, Pothula SP, Xu Z, Lee AK, Goldstein D, Pirola RC, Apte MV, Wilson JS. The role of the hepatocyte growth factor/c-MET pathway in pancreatic stellate cell-endothelial cell interactions: antiangiogenic implications in pancreatic cancer. Carcinogenesis 2014; 35:1891-900. [PMID: 24876152 DOI: 10.1093/carcin/bgu122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activated cancer-associated human pancreatic stellate cells (CAhPSCs, which produce the collagenous stroma of pancreatic cancer [PC]) are known to play a major role in PC progression. Apart from inducing cancer cell proliferation and migration, CAhPSCs have also been implicated in neoangiogenesis in PC. However, the mechanisms mediating the observed angiogenic effects of CAhPSCs are unknown. A candidate pathway that may be involved in this process is the hepatocyte growth factor (HGF)/c-MET pathway and its helper molecule, urokinase-type plasminogen activator (uPA). This study investigated the effects of CAhPSC secretions on endothelial cell function in the presence and absence of HGF, c-MET and uPA inhibitors. HGF levels in CAhPSC secretions were quantified using ELISA. CAhPSC secretions were then incubated with human microvascular endothelial cells (HMEC-1) and angiogenesis assessed by quantifying HMEC-1 tube formation and proliferation. CAhPSC-secreted HGF significantly increased HMEC-1 tube formation and proliferation; notably, these effects were downregulated by inhibition of HGF, its receptor c-MET and uPA. Phosphorylation of p38 mitogen-activated protein kinase was downregulated during inhibition of the HGF/c-MET pathway, whereas phosphatidylinositol-3 kinase and ERK1/2 remained unaffected. Our studies have shown for the first time that CAhPSCs induce proliferation and tube formation of HMEC-1 and that the HGF/c-MET pathway plays a major role in this induction. Given that standard antiangiogenic treatment targeting vascular endothelial growth factor has had limited success in the clinical setting, the findings of the current study provide strong support for a novel, alternative antiangiogenic approach targeting the HGF/c-MET and uPA pathways in PC.
Collapse
Affiliation(s)
- Mishaal B Patel
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Alexandra K Lee
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia.
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| |
Collapse
|
266
|
Cabrera MC, Tilahun E, Nakles R, Diaz-Cruz ES, Charabaty A, Suy S, Jackson P, Ley L, Slack R, Jha R, Collins SP, Haddad N, Kallakury BVS, Schroeder T, Pishvaian MJ, Furth PA. Human Pancreatic Cancer-Associated Stellate Cells Remain Activated after in vivo Chemoradiation. Front Oncol 2014; 4:102. [PMID: 24847445 PMCID: PMC4023027 DOI: 10.3389/fonc.2014.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibrotic reaction or desmoplasia and complex involvement of the surrounding tumor microenvironment. Pancreatic stellate cells are a key mediator of the pancreatic matrix and they promote progression and invasion of pancreatic cancer by increasing cell proliferation and offering protection against therapeutic interventions. Our study utilizes human tumor-derived pancreatic stellate cells (HTPSCs) isolated from fine needle aspirates of pancreatic cancer tissue from patients with locally advanced, unresectable pancreatic adenocarcinoma before and after treatment with full-dose gemcitabine plus concurrent hypo-fractionated stereotactic radiosurgery. We show that HTPSCs survive in vivo chemotherapy and radiotherapy treatment and display a more activated phenotype post-therapy. These data support the idea that stellate cells play an essential role in supporting and promoting pancreatic cancer and further research is needed to develop novel treatments targeting the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- M Carla Cabrera
- National Cancer Informatics Program, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA ; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Estifanos Tilahun
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Rebecca Nakles
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Edgar S Diaz-Cruz
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Pharmaceutical Sciences, College of Pharmacy, Belmont University , Nashville, TN , USA
| | - Aline Charabaty
- Department of Gastroenterology, Georgetown University , Washington, DC , USA
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Radiation Medicine, Georgetown University , Washington, DC , USA
| | - Patrick Jackson
- Department of Surgery, Georgetown University , Washington, DC , USA
| | - Lisa Ley
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Rebecca Slack
- Department of Biostatistics, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Reena Jha
- Department of Radiology, Georgetown University , Washington, DC , USA
| | - Sean P Collins
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Radiation Medicine, Georgetown University , Washington, DC , USA
| | - Nadim Haddad
- Department of Gastroenterology, Georgetown University , Washington, DC , USA
| | - Bhaskar V S Kallakury
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Pathology, Georgetown University , Washington, DC , USA
| | - Timm Schroeder
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Stem Cell Dynamics , Neuherberg , Germany ; Department of Biosystems Science and Engineering, ETH Zurich , Basel , Switzerland
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Gastroenterology, Georgetown University , Washington, DC , USA ; Division of Hematology/Oncology, Department of Medicine, Georgetown University , Washington, DC , USA
| | - Priscilla A Furth
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Division of Hematology/Oncology, Department of Medicine, Georgetown University , Washington, DC , USA
| |
Collapse
|
267
|
McCarroll JA, Naim S, Sharbeen G, Russia N, Lee J, Kavallaris M, Goldstein D, Phillips PA. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front Physiol 2014; 5:141. [PMID: 24782785 PMCID: PMC3988387 DOI: 10.3389/fphys.2014.00141] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Joshua A McCarroll
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
268
|
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014; 69-70:1-18. [PMID: 24613390 DOI: 10.1016/j.addr.2014.02.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Abstract
Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed.
Collapse
|
269
|
Hamada S, Masamune A, Shimosegawa T. Inflammation and pancreatic cancer: disease promoter and new therapeutic target. J Gastroenterol 2014; 49:605-17. [PMID: 24292163 DOI: 10.1007/s00535-013-0915-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Chronic inflammation has a certain impact on the carcinogenesis of the digestive organs. The characteristic tissue structure of pancreatic cancer, desmoplasia, results from inflammatory processes induced by cancer cells and stromal cells. Concerning the progression of pancreatic cancer, recent research has clarified the pivotal role of tumor-stromal interaction, which promotes the development of an invasive phenotype of cancer and provides survival advantages against chemotherapeutic agents or immune surveillance. Tumor stromal cells such as pancreatic stellate cells and immune cells establish a microenvironment that protects cancer cells through complex interactions. The microenvironment of pancreatic cancer acts as a niche for pancreatic cancer stem cells from which therapy-resistance and disease recurrence develop. Inhibition of the stromal functions or restoration of the immune reaction against cancer cells has therapeutic benefits that enhance the efficacy of conventional therapies. Some of the recent advances in this field are now under evaluation in clinical settings, but many problems must be overcome to establish a radical therapy for pancreatic cancer. This review summarizes current knowledge about the tumor-promoting stromal functions, immune system modulation and therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi Aobaku, Sendai, Miyagi, 980-8574, Japan,
| | | | | |
Collapse
|
270
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
271
|
Wilson JS, Pirola RC, Apte MV. Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression. Front Physiol 2014; 5:52. [PMID: 24592240 PMCID: PMC3924046 DOI: 10.3389/fphys.2014.00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is a devastating disease with an unacceptably high mortality to incidence ratio. Traditional therapeutic approaches such as surgery in combination with chemo- or radiotherapy have had limited efficacy in improving the outcome of this disease. Up until just under a decade ago, the prominent desmoplastic reaction which is a characteristic of the majority of pancreatic ductal adenocarcinomas (PDAC) had been largely ignored. However, since the identification of the pancreatic stellate cell (PSC) as the key cell responsible for the production of the collagenous stroma in PDAC, increasing attention has been paid to the role of the stromal reaction in pancreatic cancer pathobiology. There is now compelling evidence that PSCs interact not only with cancer cells themselves, but with several other cell types in the stroma (endothelial cells, immune cells, and possibly neuronal cells) to promote cancer progression. This review summarizes current knowledge in the field about the influence of PSCs and the stromal microenvironment on cancer behavior and discusses novel therapeutic approaches which reflect an increasing awareness amongst clinicians and researchers that targeting cancer cells alone is no longer sufficient to improve patient outcome and that combinatorial treatments targeting the stroma as well as the cancer cells will be required to change the clinical course of this disease.
Collapse
Affiliation(s)
- Jeremy S Wilson
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South Wales Liverpool, NSW, Australia ; Ingham Institute for Applied Medical Research Liverpool, NSW, Australia
| | - Romano C Pirola
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South Wales Liverpool, NSW, Australia ; Ingham Institute for Applied Medical Research Liverpool, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South Wales Liverpool, NSW, Australia ; Ingham Institute for Applied Medical Research Liverpool, NSW, Australia
| |
Collapse
|
272
|
Lei J, Huo X, Duan W, Xu Q, Li R, Ma J, Li X, Han L, Li W, Sun H, Wu E, Ma Q. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett 2014; 347:129-38. [PMID: 24513179 DOI: 10.1016/j.canlet.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
Abstract
Recent advances indicating a key role of microenvironment for tumor progression, we investigated the role of PSCs and hypoxia in pancreatic cancer aggressiveness, and examined the potential protective effect of α-mangostin on hypoxia-driven pancreatic cancer progression. Our data indicate that hypoxic PSCs exploit their oxidative stress due to hypoxia to secrete soluble factors favouring pancreatic cancer invasion. α-Mangostin suppresses hypoxia-induced PSC activation and pancreatic cancer cell invasion through the inhibition of HIF-1α stabilization and GLI1 expression. Increased generation of hypoxic ROS is responsible for HIF-1α stabilization and GLI1 upregulation. Therefore, α-mangostin may be beneficial in preventing hypoxia-induced pancreatic cancer progression.
Collapse
Affiliation(s)
- Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xiongwei Huo
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rong Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Jiguang Ma
- Department of Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Hao Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
273
|
Gong H, Wu TT, Clarke EM. Pathway-gene identification for pancreatic cancer survival via doubly regularized Cox regression. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 1:S3. [PMID: 24565114 PMCID: PMC4080266 DOI: 10.1186/1752-0509-8-s1-s3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Recent global genomic analyses identified 69 gene sets and 12 core signaling pathways genetically altered in pancreatic cancer, which is a highly malignant disease. A comprehensive understanding of the genetic signatures and signaling pathways that are directly correlated to pancreatic cancer survival will help cancer researchers to develop effective multi-gene targeted, personalized therapies for the pancreatic cancer patients at different stages. A previous work that applied a LASSO penalized regression method, which only considered individual genetic effects, identified 12 genes associated with pancreatic cancer survival. Results In this work, we integrate pathway information into pancreatic cancer survival analysis. We introduce and apply a doubly regularized Cox regression model to identify both genes and signaling pathways related to pancreatic cancer survival. Conclusions Four signaling pathways, including Ion transport, immune phagocytosis, TGFβ (spermatogenesis), regulation of DNA-dependent transcription pathways, and 15 genes within the four pathways are identified and verified to be directly correlated to pancreatic cancer survival. Our findings can help cancer researchers design new strategies for the early detection and diagnosis of pancreatic cancer.
Collapse
|
274
|
Wartha K, Herting F, Hasmann M. Fit-for purpose use of mouse models to improve predictivity of cancer therapeutics evaluation. Pharmacol Ther 2014; 142:351-61. [PMID: 24412280 DOI: 10.1016/j.pharmthera.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED Preclinical animal models are useful tools to better understand tumor initiation and progression and to predict the activity of an anticancer agent in the clinic. Ideally, these models should recapitulate the biological characteristics of the tumor and of the related tumor microenvironment (e.g. vasculature, immune cells) in patients. Even if several examples of translational success have been reported it is a matter of fact that clinical trials in oncology often fail to meet their primary endpoints despite encouraging preclinical data. For this reason, there is an increasing need of improved and more predictive models. This review aims to give an overview on existing mouse models for preclinical evaluation of cancer therapeutics and their applicability. Different types of mouse models commonly used for the evaluation of cancer therapeutics are described and considerations for a "fit-for purpose" application of these models for the evaluation of different cancer therapeutics dependent on their mode of action are outlined. Furthermore, considerations for study design and data interpretation to translatability of findings into the clinics are given. CONCLUSION Detailed knowledge of the molecular/biological properties of the respective model, diligent experimental setup, and awareness of its limitations are indispensable prerequisites for the successful translational use of animal models.
Collapse
Affiliation(s)
- K Wartha
- Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany.
| | - F Herting
- Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Hasmann
- Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
275
|
Nobis M, McGhee EJ, Herrmann D, Magenau A, Morton JP, Anderson KI, Timpson P. Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adh Migr 2014; 8:478-86. [PMID: 25482620 PMCID: PMC4594577 DOI: 10.4161/19336918.2014.970004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/20/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
Optimising response to tyrosine kinase inhibitors in cancer remains an extensive field of research. Intravital imaging is an emerging tool, which can be used in drug discovery to facilitate and fine-tune maximum drug response in live tumors. A greater understanding of intratumoural delivery and pharmacodynamics of a drug can be obtained by imaging drug target-specific fluorescence resonance energy transfer (FRET) biosensors in real time. Here, we outline our recent work using a Src-FRET biosensor as a readout of Src activity to gauge optimal tyrosine kinase inhibition in response to dasatinib treatment regimens in vivo. By simultaneously monitoring both the inhibition of Src using FRET imaging, and the modulation of the surrounding extracellular matrix using second harmonic generation (SHG) imaging, we were able to show enhanced drug penetrance and delivery to live pancreatic tumors. We discuss the implications of this dual intravital imaging approach in the context of altered tumor-stromal interactions, while summarising how this approach could be applied to assess other combination strategies or tyrosine kinase inhibitors in a preclinical setting.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - Ewan J McGhee
- The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre; Cancer Division; St. Vincent's Clinical School; Faculty of Medicine; University of New South Wales; Sydney, Australia
| | - Astrid Magenau
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre; Cancer Division; St. Vincent's Clinical School; Faculty of Medicine; University of New South Wales; Sydney, Australia
| | - Jennifer P Morton
- The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - Kurt I Anderson
- The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre; Cancer Division; St. Vincent's Clinical School; Faculty of Medicine; University of New South Wales; Sydney, Australia
| |
Collapse
|
276
|
Tang D, Zhang J, Yuan Z, Gao J, Wang S, Ye N, Li P, Gao S, Miao Y, Wang D, Jiang K. Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma. PLoS One 2014; 9:e90476. [PMID: 24595374 PMCID: PMC3942444 DOI: 10.1371/journal.pone.0090476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Galectin-1, a member of carbohydrate-binding proteins with a polyvalent function on tumor progression, was found strongly expressed in pancreatic satellite cells (PSCs), which partner in crime with cancer cells and promote the development of pancreatic ductal adenocarcinoma (PDAC). We evaluated the effects of PSCs derived Galectin-1 on the progression of PDAC, as well as the tumor establishment and development in mouse xenografts. METHODS The relationship between immunohistochemistry staining intensity of Galectin-1 and clinicopathologic variables were assessed in 66 PDAC tissues, 18 chronic pancreatitis tissues and 10 normal controls. The roles of PSCs isolated from PDAC and normal pancreas on the proliferative activity, MMP2 and MMP9 expression, and the invasion of CFPAC-1 in the co-cultured system, as well as on the tumor establishment and development in mouse xenografts by mixed implanting with CFPAC-1 subcutaneously were evaluated. RESULTS Galectin-1 expression was gradually increased from normal pancreas (negative), chronic pancreatitis (weak) to PDAC (strong), in which Galectin-1 expression was also increased from well, moderately to poorly differentiated PDAC. Galectin-1 staining intensity of pancreatic cancer tissue was associated with increase in tumor size, lymph node metastasis, perineural invasion and differentiation and UICC stage, and served as the independent prognostic indicator of poor survival of pancreatic cancer. In vitro and in vivo experiments indicated that TGF-β1 upregulated Galectin-1 expression in PSCs, which could further promotes the proliferative activity, MMP2 and MMP9 expression, and invasion of pancreatic cancer cells, as well as the tumor establishment and growth. CONCLUSION Galectin-1 expression in stromal cells of pancreatic cancer suggests that this protein plays a role in the promotion of cancer cells invasion and metastasis and provides a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Jingqiu Zhang
- Department of Digestive System, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Zhongxu Yuan
- Department of General Surgery, Anhui no. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Jun Gao
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Sen Wang
- College of Clinical Medicine, Nanjing Medical University (the First Affiliated Hospital of Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Nianyuan Ye
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Ping Li
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Sujun Gao
- Department of Digestive System, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Yi Miao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
- * E-mail: (DW); (KJ)
| | - Kuirong Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (DW); (KJ)
| |
Collapse
|
277
|
Hamada S, Masamune A, Shimosegawa T. Novel therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer. Front Physiol 2013; 4:331. [PMID: 24273517 PMCID: PMC3822297 DOI: 10.3389/fphys.2013.00331] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 12/24/2022] Open
Abstract
Therapy-resistance and postoperative recurrence are causes of the poor prognosis in pancreatic cancer. Conventional therapies have a limited impact on the control of pancreatic cancer, resulting in the rapid re-growth of the tumor. The indispensable role of tumor-stromal interaction, which acts as a defender of cancer cells and enhances malignant potential, is being uncovered now. For example, specific signaling pathways for desmoplasia induction have been identified, such as sonic hedgehog (Shh) or connective tissue growth factor (CTGF), whose inhibition causes desmoplasia depletion and therapeutic advantages at least in in vivo mouse models of pancreatic cancer. Revolutions in drug delivery methods have led to the establishment of novel chemotherapeutic regimens, with better patient survival. Furthermore, mechanisms of immunosuppression in the pancreatic cancer-bearing host were clarified by the identification of myeloid-derived suppressor cells (MDSCs), which also promote disease progression. Strategies to target these components of the tumor stroma revealed certain anticancer effects in vitro and in vivo, suggesting the possibility of stroma-targeting therapy. Suppression of the stromal cell function increases the sensitivity of pancreatic cancer cells to therapeutic intervention. Further study will clarify the complex nature of the tumor microenvironment, the targeting of which has the potential to improve clinical outcome.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Miyagi, Japan
| | | | | |
Collapse
|
278
|
Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br J Cancer 2013; 110:409-20. [PMID: 24201748 PMCID: PMC3899756 DOI: 10.1038/bjc.2013.706] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 01/05/2023] Open
Abstract
Background: Pancreatic stellate cells (PSCs) promote metastasis as well as local growth of pancreatic cancer. However, the factors mediating the effect of PSCs on pancreatic cancer cells have not been clearly identified. Methods: We used a modified Boyden chamber assay as an in vitro model to investigate the role of PSCs in migration of Panc1 and UlaPaCa cells and to identify the underlying mechanisms. Results: PSC supernatant (PSC-SN) dose-dependently induced the trans-migration of Panc1 and UlaPaCa cells, mainly via haptokinesis and haptotaxis, respectively. In contrast to poly-L-lysine or fibronectin, collagen I resembled PSC-SN with respect to its effect on cancer cell behaviours, including polarised morphology, facilitated adhesion, accelerated motility and stimulated trans-migration. Blocking antibodies against integrin α2/β1 subunits significantly attenuated PSC-SN- or collagen I-promoted cell trans-migration and adhesion. Moreover, both PSC-SN and collagen I induced the formation of F-actin and focal adhesions in cells, which was consistent with the constantly enhanced phosphorylation of focal adhesion kinase (FAK, Tyr397). Inhibition of FAK function by an inhibitor or small interference RNAs significantly diminished the effect of PSC-SN or collagen I on haptotaxis/haptokinesis of pancreatic cancer cells. Conclusion: Collagen I is the major mediator for PSC-SN-induced haptokinesis of Panc1 and haptotaxis of UlaPaCa by activating FAK signalling via binding to integrin α2β1.
Collapse
|
279
|
Hamada S, Masamune A, Shimosegawa T. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction. Front Physiol 2013; 4:318. [PMID: 24198790 PMCID: PMC3814547 DOI: 10.3389/fphys.2013.00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also affect cancer cell function. PSCs induce epithelial-mesenchymal transition and cancer stem cell (CSC)-related phenotypes in pancreatic cancer cells by activating multiple signaling pathways. In addition, pancreatic cancer cells and PSCs recruit myeloid-derived suppressor cells which attenuate the immune reaction against pancreatic cancer cells. As a result, pancreatic cancer cells become refractory against conventional therapies. The formation of the CSC-niche by stromal cells facilitates postoperative recurrence, re-growth of therapy-resistant tumors and distant metastasis. Conventional therapies targeting cancer cells alone have failed to conquer pancreatic cancer, but targeting the stromal cells and immune cells in animal experiments has provided evidence of improved therapeutic responses. A combination of novel strategies altering stromal cell functions could contribute to improving the pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Japan
| | | | | |
Collapse
|
280
|
Abstract
OBJECTIVES CD105 expression correlates with prognosis for several cancers. However, its significance in pancreatic cancer is unclear. METHODS We analyzed CD105 expression in resected pancreatic cancer tissue and pancreatic cancer cell lines, compared the properties of CD105(+) and CD105(-) cells using quantitative RT-PCR and migration assays, and evaluated the relationship between CD105(+) cells and pancreatic stellate cells (PSCs). RESULTS Immunohistochemistry showed that the frequency of CD105 expression was higher in pancreatic cancer than that in normal tissue(8% vs 0%, respectively). In flow cytometry, CD105 was expressed in pancreatic cancer cells, whereas weak CD105 expression was detected in normal pancreatic ductal epithelial cells. Quantitative RT-PCR showed that E-cadherin mRNA expression was suppressed and vimentin mRNA was overexpressed in CD105(+) cells (P < 0.05). Migration of CD105(+) cancer cells was strongly enhanced (more than that of CD105(+) cells) in coculture with PSCs (P < 0.05). CD105 expression did not correlate to clinicopathologic characteristics or the Kaplan-Meier survival analysis. CONCLUSIONS Suppression of an epithelial marker and over expression of a mesenchymal marker suggest that epithelial-mesenchymal transition is induced in CD105(+) pancreatic cancer cells. CD105(+) pancreatic cancer cell migration is strongly enhanced by PSCs, suggesting that these cells play a role in the pancreatic cancer microenvironment.
Collapse
|
281
|
Gong H. Analysis of intercellular signal transduction in the tumor microenvironment. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 3:S5. [PMID: 24555417 PMCID: PMC3852214 DOI: 10.1186/1752-0509-7-s3-s5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Recent cancer studies revealed, the interaction between pancreatic cancer cells and pancreatic stellate cells is of importance in the cancer progression. The activation of stellate cells is mediated by some growth factors and cytokines secreted by the cancer cells. In turn, the activated stellate cells will synthesize and secrete multiple growth factors to continuously stimulate the growth of surrounding cancer cells through paracrine pathways. The mechanism behind the evolution of stellate cells from quiescent state to a cancer-associated phenotype is still not well understood. Results To systematically investigate the interaction between cancer cells and stellate cells, we constructed a multicellular discrete value model, which is composed of several intracellular and intercellular signaling pathways that are frequently mutated in the pancreatic cancer, to study the cell cycle progression and angiogenesis. We, then, introduced and applied a formal verification technique, Symbolic Model Checking, to automatically analyze the cells' proliferation, angiogenesis and apoptosis in the proposed signal transduction model of tumor microenvironment. Conclusions Our studies predicted some important temporal logic properties and dynamic behaviors in the pancreatic cancer cells and stellate cells. The verification technique identified several signaling components, including the RAS, RAGE, AKT, IKK, DVL, RB and PTEN, whose mutation or loss of function can promote cell growth and inhibit apoptosis, some of which have been confirmed by existing experiments. Our formal studies demonstrated that, the bidirectional interaction between cancer cells and stellate cells could significantly increase cell proliferation, inhibit apoptosis, induce tumor angiogenesis, and promote cancer metastasis.
Collapse
|
282
|
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2013; 343:147-55. [PMID: 24141189 DOI: 10.1016/j.canlet.2013.09.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Thomas B Brunner
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK; Department of Radiation Oncology, University Hospitals Freiburg, Robert-Koch-Straße 3, 79106 Freiburg, Germany.
| |
Collapse
|
283
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013; 288:32517-32527. [PMID: 24089530 DOI: 10.1074/jbc.m113.488387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
284
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013. [PMID: 24089530 DOI: 10.074/jbc.m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
285
|
Celesti G, Di Caro G, Bianchi P, Grizzi F, Marchesi F, Basso G, Rahal D, Delconte G, Catalano M, Cappello P, Roncalli M, Zerbi A, Montorsi M, Novelli F, Mantovani A, Allavena P, Malesci A, Laghi L. Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. Br J Cancer 2013; 109:2424-33. [PMID: 24084767 PMCID: PMC3817321 DOI: 10.1038/bjc.2013.565] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In pancreatic ductal adenocarcinoma (PDAC), fractalkine receptor CX3CR1 contributes to perineural invasion (PNI). We investigated whether CX3CR1 expression occurs early in PDAC and correlates with tumour features other than PNI. METHODS We studied CX3CR1 and CX3CL1 expression by immunohistochemistry in 104 human PDAC and coexisting Pancreatic Intraepithelial Neoplasia (PanIN), and in PdxCre/LSL-Kras(G12D) mouse model of PDAC. CX3CR1 expression in vitro was studied by a spheroid model, and in vivo by syngenic mouse graft of tumour cells. RESULTS In total, 56 (53.9%) PDAC expressed CX3CR1, 70 (67.3%) CX3CL1, and 45 (43.3%) both. CX3CR1 expression was independently associated with tumour glandular differentiation (P=0.005) and PNI (P=0.01). Pancreatic Intraepithelial Neoplasias were more frequently CX3CR1+ (80.3%, P<0.001) and CX3CL1+ (86.8%, P=0.002) than matched cancers. The survival of PDAC patients was better in those with CX3CR1+ tumour (P=0.05). Mouse PanINs were also CX3CR1(+) and -CL1(+). In vitro, cytokines significantly increased CX3CL1 but not CX3CR1 expression. Differently, CX3CR1 was upregulated in tumour spheroids, and in vivo only in well-differentiated tumours. CONCLUSION Tumour differentiation, rather than inflammatory signalling, modulates CX3CR1 expression in PanINs and PDAC. CX3CR1 expression pattern suggests its early involvement in PDAC progression, outlining a potential target for interfering with the PanIN transition to invasive cancer.
Collapse
Affiliation(s)
- G Celesti
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni, 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Rebours V, Albuquerque M, Sauvanet A, Ruszniewski P, Lévy P, Paradis V, Bedossa P, Couvelard A. Hypoxia pathways and cellular stress activate pancreatic stellate cells: development of an organotypic culture model of thick slices of normal human pancreas. PLoS One 2013; 8:e76229. [PMID: 24098783 PMCID: PMC3786955 DOI: 10.1371/journal.pone.0076229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 12/28/2022] Open
Abstract
Pancreatic stellate cells (PSC) are involved in fibrogenesis and oncogenesis by modulating the extracellular matrix.
Collapse
Affiliation(s)
- Vinciane Rebours
- Pancreatology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
- * E-mail:
| | - Miguel Albuquerque
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
- Pathology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
| | - Alain Sauvanet
- Pancreatic Surgery Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
| | - Philippe Ruszniewski
- Pancreatology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
| | - Philippe Lévy
- Pancreatology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
| | - Valérie Paradis
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
- Pathology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
| | - Pierre Bedossa
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
- Pathology Department, Beaujon Hospital, AP-HP, Paris-Diderot University, Clichy, France
| | - Anne Couvelard
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
- Pathology Department, Bichat Hospital, AP-HP, Paris-Diderot University, Paris, France
| |
Collapse
|
287
|
Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunetti AE, Simone G, Nardulli P, Santini D, Aieta M, Delcuratolo S, Silvestris N. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci 2013; 14:19731-62. [PMID: 24084722 PMCID: PMC3821583 DOI: 10.3390/ijms141019731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Antonella Licchetta
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University of Verona, Verona 37121, Italy; E-Mail:
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Anna Elisabetta Brunetti
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Gianni Simone
- Histopathology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Patrizia Nardulli
- Hospital Pharmacy Unit - National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome 00199, Italy; E-Mail:
| | - Michele Aieta
- Medical Oncology Unit - CROB-IRCCS, 85028, Rionero in Vulture, Potenza 85100, Italy; E-Mail:
| | - Sabina Delcuratolo
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, Bari 70124, Italy
| |
Collapse
|
288
|
Abstract
PURPOSE OF REVIEW This review intends to describe recent studies on pancreatic tumor-associated stroma and potential opportunities and limitations to its targeting. RECENT FINDINGS One of the defining features of pancreatic cancer is extensive desmoplasia, or an inflammatory, fibrotic reaction. Carcinoma cells live in this complex microenvironment which is comprised of extracellular matrix (ECM), diffusible growth factors, cytokines and a variety of nonepithelial cell types including endothelial cells, immune cells, fibroblasts, myofibroblasts and stellate cells. In addition to the heterogeneity noted in the nonneoplastic cells within the tumor microenvironment, it has also been recognized that neoplastic cancer cells themselves are heterogeneous, and include a subpopulation of stem-cell like cells within tumors termed cancer stem cells. Due to the failure of current therapeutics to improve outcomes in patients with pancreatic cancer, new therapeutic avenues targeting different components of the tumor microenvironment are being investigated. In this review article, we will focus on recent studies regarding the function of the tumor stroma in pancreatic cancer and therapeutic treatments that are being advanced to target the stroma as a critical part of tumor management. SUMMARY Recent studies have shed new light on the contribution of the pancreatic cancer fibroinflammatory stroma to pancreatic cancer biology. Additional studies are needed to better define its full contribution to tumor behavior and how to best understand the optimal ways to develop therapies that counteract its pro-neoplastic properties.
Collapse
Affiliation(s)
- Meghna Waghray
- Departments of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
| | - Malica Yalamanchili
- Departments of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
| | - Marina Pasca di Magliano
- Departments of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
- Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
| | - Diane M. Simeone
- Departments of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
- Translational Oncology Program, University of Michigan Medical Center, Ann Arbor, Michigan, 48109
| |
Collapse
|
289
|
Shields MA, Ebine K, Sahai V, Kumar K, Siddiqui K, Hwang RF, Grippo PJ, Munshi HG. Snail cooperates with KrasG12D to promote pancreatic fibrosis. Mol Cancer Res 2013; 11:1078-87. [PMID: 23761168 PMCID: PMC3778055 DOI: 10.1158/1541-7786.mcr-12-0637] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Patients with pancreatic cancer, which is characterized by an extensive collagen-rich fibrotic reaction, often present with metastases. A critical step in cancer metastasis is epithelial-to-mesenchymal transition (EMT), which can be orchestrated by the Snail family of transcription factors. To understand the role of Snail (SNAI1) in pancreatic cancer development, we generated transgenic mice expressing Snail in the pancreas. Because chronic pancreatitis can contribute to pancreatic cancer development, Snail-expressing mice were treated with cerulein to induce pancreatitis. Although significant tissue injury was observed, a minimal difference in pancreatitis was seen between control and Snail-expressing mice. However, because Kras mutation is necessary for tumor development in mouse models of pancreatic cancer, we generated mice expressing both mutant Kras(G12D) and Snail (Kras(+)/Snail(+)). Compared with control mice (Kras(+)/Snai(-)), Kras(+)/Snail(+) mice developed acinar ectasia and more advanced acinar-to-ductal metaplasia. The Kras(+)/Snail(+) mice exhibited increased fibrosis, increased phosphorylated Smad2, increased TGF-β2 expression, and activation of pancreatic stellate cells. To further understand the mechanism by which Snail promoted fibrosis, we established an in vitro model to examine the effect of Snail expression in pancreatic cancer cells on stellate cell collagen production. Snail expression in pancreatic cancer cells increased TGF-β2 levels, and conditioned media from Snail-expressing pancreatic cancer cells increased collagen production by stellate cells. Additionally, inhibiting TGF-β signaling in stellate cells attenuated the conditioned media-induced collagen production by stellate cells. Together, these results suggest that Snail contributes to pancreatic tumor development by promoting fibrotic reaction through increased TGF-β signaling. IMPLICATIONS Expression of the EMT regulator Snail in the context of mutant Kras provides new insight into pancreatic cancer progression.
Collapse
Affiliation(s)
- Mario A Shields
- Northwestern University Feinberg School of Medicine, Lurie Building, Room 3-117, 303 E. Superior Street, Chicago, IL 60611.
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Kadera BE, Li L, Toste PA, Wu N, Adams C, Dawson DW, Donahue TR. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 2013; 8:e71978. [PMID: 23991015 PMCID: PMC3750050 DOI: 10.1371/journal.pone.0071978] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/07/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is projected to rise to the second leading cause of U.S. cancer-related deaths by 2020. Novel therapeutic targets are desperately needed. MicroRNAs (miRs) are small noncoding RNAs that function by suppressing gene expression and are dysregulated in cancer. miR-21 is overexpressed in PDAC tumor cells (TC) and is associated with decreased survival, chemoresistance and invasion. Dysregulation of miR regulatory networks in PDAC tumor-associated fibroblasts (TAFs) have not been previously described. In this study, we show that miR-21 expression in TAFs promotes TC invasion. METHODS In-situ hybridization for miR-21 was performed on the 153 PDAC patient UCLA tissue microarray and 23 patient-matched lymph node metastases. Stromal and TC histoscores were correlated with clinicopathologic parameters by univariate and multivariate Cox regression. miR-21 positive cells were further characterized by immunofluorescence for mesenchymal/epithelial markers. For in vitro studies, TAFs were isolated from freshly resected human PDAC tumors by the outgrowth method. miR-21 was overexpressed/inhibited in fibroblasts and then co-cultured with GFP-MiaPaCa TCs to assess TC invasion in modified Boyden chambers. RESULTS miR-21 was upregulated in TAFs of 78% of tumors, and high miR-21 significantly correlated with decreased overall survival (P = 0.04). Stromal miR-21 expression was also significantly associated with lymph node invasion (P = 0.004), suggesting that it is driving TC spread. Co-immunofluorescence revealed that miR-21 colocalized with peritumoral fibroblasts expressing α-smooth muscle actin. Moreover, expression of miR-21 in primary TAFs correlated with miR-21 in TAFs from patient-matched LN metastases; evidence that PDAC tumor cells induce TAFs to express miR-21. miR-21 expression in TAFs and TCs promotes invasion of TCs and is inhibited with anti-miR-21. CONCLUSIONS miR-21 expression in PDAC TAFs is associated with decreased overall survival and promotes TC invasion. Anti-miR-21 may represent a novel therapeutic strategy for dual targeting of both tumor and stroma in PDAC.
Collapse
Affiliation(s)
- Brian E. Kadera
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Luyi Li
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Paul A. Toste
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nanping Wu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Curtis Adams
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy R. Donahue
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
291
|
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144:1210-9. [PMID: 23622130 PMCID: PMC3729446 DOI: 10.1053/j.gastro.2012.11.037] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease, and patient outcomes have not improved in decades. Treatments that target tumor cells have largely failed. This could be because research has focused on cancer cells and the influence of the stroma on tumor progression has been largely ignored. The focus of pancreatic cancer research began to change with the identification of pancreatic stellate cells, which produce the pancreatic tumor stroma. There is compelling in vitro and in vivo evidence for the influence of pancreatic stellate cells on pancreatic cancer development; several recent preclinical studies have reported encouraging results with approaches designed to target pancreatic stellate cells and the stroma. We review the background and recent advances in these areas, along with important areas of future research that could improve therapy.
Collapse
Affiliation(s)
- Minoti V. Apte
- Pancreatic Research Groups,Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Jeremy S. Wilson
- Pancreatic Research Groups,Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Aurelia Lugea
- Pancreatic Research Groups,Department of Veterans Affairs and University of California, Los Angeles, California
| | - Stephen J. Pandol
- Pancreatic Research Groups,Department of Veterans Affairs and University of California, Los Angeles, California,Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
292
|
Masamune A, Hamada S, Kikuta K, Takikawa T, Miura S, Nakano E, Shimosegawa T. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol 2013; 48:602-9. [PMID: 23477656 DOI: 10.3109/00365521.2013.777776] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is accumulating evidence that pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, promote the progression of pancreatic cancer. The interactions between PSCs and pancreatic cancer have attracted substantial attention as a novel therapeutic target for the treatment of pancreatic cancer. We examined here the effects of olmesartan, an angiotensin II type I receptor blocker, on pancreatic cancer-associated fibrosis using a subcutaneous tumor model developed by co-injection of pancreatic cancer cells with PSCs in nude mice. Co-injection of pancreatic cancer cells AsPC-1 with PSCs increased the size of tumors compared with AsPC-1 cells alone. Olmesartan administrated at 10 mg/kg in drinking water inhibited the growth of subcutaneous tumors derived from the co-injection, but not those derived from mono-injection. This effect was accompanied by decreased expression of α-smooth muscle actin (a marker of activated PSCs) and collagen deposition. The inhibitory effect of olmesartan was also observed even if it was administrated after significant development of subcutaneous tumors. In addition, olmesartan decreased cell growth and type I collagen production in PSCs in vitro. These results suggest that olmesartan inhibited the growth of tumors by targeting stellate cell activities, and that olmesartan might be useful as an anti-fibrosis therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
293
|
Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res 2013; 73:3927-37. [PMID: 23633481 DOI: 10.1158/0008-5472.can-12-4479] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts [also known as pancreatic stellate cells (PSC)] and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here, we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived interleukin (IL)-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
294
|
Tamburrino A, Piro G, Carbone C, Tortora G, Melisi D. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy. Front Pharmacol 2013; 4:56. [PMID: 23641216 PMCID: PMC3639407 DOI: 10.3389/fphar.2013.00056] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21st century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype.
Collapse
Affiliation(s)
- Anna Tamburrino
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, Università degli studi di Verona Verona, Italy
| | | | | | | | | |
Collapse
|
295
|
Penheiter AR, Dingli D, Bender CE, Russell SJ, Carlson SK. Monitoring the initial delivery of an oncolytic measles virus encoding the human sodium iodide symporter to solid tumors using contrast-enhanced computed tomography. J Gene Med 2013; 14:590-7. [PMID: 23015290 DOI: 10.1002/jgm.2670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We aimed to determine the feasibility of monitoring viral delivery and initial distribution to solid tumors using iodinated contrast agent and micro-computed tomography (CT). METHODS Human BxPC-3 pancreatic tumor xenografts were established in nude mice. An oncolytic measles virus with an additional transcriptional unit encoding the sodium iodide symporter (NIS), as a reporter for viral infection, was mixed with a 1:10 dilution of Omnipaque 300 (GE Healthcare, Milwaukee, WI, USA) contrast agent and injected directly into tumors. Mice were imaged with micro-CT immediately before and after injection to determine the location of contrast agent/virus mixture. Mice were imaged again on day 3 after injection with micro-single-photon emission CT/CT to determine the location of NIS-mediated (99m) TcO(4) transport. RESULTS A 1:10 dilution of Omnipaque had no effect on viral infectivity or cell viability in vitro and was more than adequate for CT imaging of the intratumoral injectate distribution. The volume of tumor coverage with initial CT contrast agent and the 3-day postinfection measurement of virally infected tumor volume were significantly correlated. Additionally, regions of the tumor that did not receive contrast agent from the initial injection were largely devoid of viral infection at early time points. CONCLUSIONS Contrast-enhanced viral delivery enables a rapid and accurate prediction of the initial viral distribution within a solid tumor. This technique should enable real-time monitoring of viral propagation from initially infected tumor regions to adjacent tumor regions.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
296
|
Charo C, Holla V, Arumugam T, Hwang R, Yang P, Dubois RN, Menter DG, Logsdon CD, Ramachandran V. Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas 2013; 42:467-74. [PMID: 23090667 PMCID: PMC3600062 DOI: 10.1097/mpa.0b013e318264d0f8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Pancreatic stellate cells are source of dense fibrotic stroma, a constant pathological feature of chronic pancreatitis and pancreatic adenocarcinoma. We observed correlation between levels of cyclooxygenase 2 (COX-2) and its product prostaglandin E2 (PGE2) and the extent of pancreatic fibrosis. The aims of this study were to delineate the effects of PGE2 on immortalized human pancreatic stellate cells (HPSCs) and to identify the receptor involved. METHODS Immunohistochemistry, reverse transcription-polymerase chain reaction and quantitative reverse transcription-polymerase chain reaction were used to assess COX-2, extracellular matrix, and matrix metalloproteinase gene expression. Eicosanoid profile was determined by liquid chromatography-tandem mass spectrometry. Human pancreatic stellate cell proliferation was assessed by MTS assay, migration by Boyden chamber assay, and invasion using an invasion chamber. Transient silencing was obtained by small interfering RNA. RESULTS Human pancreatic stellate cells express COX-2 and synthesize PGE2. Prostaglandin E2 stimulated HPSC proliferation, migration, and invasion and stimulated expression of both extracellular matrix and matrix metalloproteinase genes. Human pancreatic stellate cells expressed all 4 EP receptors. Only blocking the EP4 receptor resulted in abrogation of PGE2-mediated HPSC activation. Specificity of EP4 for the effects of PGE2 on stellate cells was confirmed using specific antagonists. CONCLUSIONS Our data indicate that PGE2 regulates pancreatic stellate cell profibrotic activities via EP4 receptor, thus suggesting EP4 receptor as useful therapeutic target for pancreatic cancer to reduce desmoplasia.
Collapse
Affiliation(s)
- Chantale Charo
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Vijaykumar Holla
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX
| | | | - Rosa Hwang
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX
| | - Peiying Yang
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Raymond N. Dubois
- Department of Cancer Biology and Gastrointestinal Oncology, UT MD Anderson Cancer Center, Houston, TX
| | - David G. Menter
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Craig D. Logsdon
- Department of Cancer Biology and Medical Oncology, UT MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
297
|
Scarlett CJ. Contribution of bone marrow derived cells to the pancreatic tumor microenvironment. Front Physiol 2013; 4:56. [PMID: 23531764 PMCID: PMC3607802 DOI: 10.3389/fphys.2013.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is a complex, aggressive, and heterogeneous malignancy driven by the multifaceted interactions within the tumor microenvironment. While it is known that the tumor microenvironment accommodates many cell types, each playing a key role in tumorigenesis, the major source of these stromal cells is not well-understood. This review examines the contribution of bone marrow-derived cells (BMDC) to pancreatic carcinogenesis, with respect to their role in constituting the tumor microenvironment. In particular, their role in supporting fibrosis, immunosuppression, and neovascularization will be discussed.
Collapse
Affiliation(s)
- Christopher J Scarlett
- Food Bioactives and Pancreatic Cancer Biology Group, School of Environmental and Life Sciences, University of Newcastle Ourimbah, NSW, Australia ; Cancer Research Program, Garvan Institute of Medical Research Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
298
|
Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, Jiang K, Miao Y. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer 2013; 132:993-1003. [PMID: 22777597 DOI: 10.1002/ijc.27715] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors with poor prognosis due to extremely high malignancy, low rate of eligibility for surgical resection and chemoradiation resistance. Increasing evidence indicate that the interaction between activated pancreatic stellate cells (PSCs) and PDAC cells plays an important role in the development of PDAC. By producing high levels of cytokines, chemotactic factors, growth factors and excessive extracellular matrix (ECM), PSCs create desmoplasia and a hypoxic microenvironment that promote the initiation, development, evasion of immune surveillance, invasion, metastasis and resistance to chemoradiation of PDAC. Therefore, targeting the interaction between PSCs and PDAC cells may represent a novel therapeutic approach to advanced PDAC, especially therapies that target PSCs of the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Subei People's Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Paracrine Activation of Chemokine Receptor CCR9 Enhances The Invasiveness of Pancreatic Cancer Cells. CANCER MICROENVIRONMENT 2013; 6:241-5. [PMID: 23371851 DOI: 10.1007/s12307-013-0130-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
Abstract
Chemokine receptors mediate cancer progression and metastasis. We have previously examined chemokine receptor CCR9 expression in pancreatic cancer. Here, our objective was to evaluate pancreatic stellate cells (PSCs) as a source of CCL25, the CCR9 ligand, and as an activator of CCL25-CCR9 signaling in pancreatic cancer cells. CCL25 and CCR9 expression levels in human pancreatic cancer tissues and normal human pancreas were assessed by immunohistochemsitry. In vitro secretion of CCL25 in PSCs and PANC-1 cells was verified by enzyme-linked immunosorbent assay. Pancreatic cancer cell invasion was measured using a modified Boyden chamber assay with CCL25, PSC secreted proteins, and PANC-1 secreted proteins as the chemoattractant. There was immunostaining for CCR9 expression in human pancreatic tumor tissues, but not in normal pancreatic tissue. CCL25 expression was absent in the normal pancreatic tissue sample, but was observed in cancer cells and in the stromal cells surrounding the tumor. In vitro, both PANC-1 cells and PSCs secreted CCL25. In an invasion assay, exposure to CCL25, PSC- and PANC-1-conditioned media significantly increased the invasiveness of PANC-1 cells. Inclusion of a CCR9-neutralizing antibody in the invasion assay blocked the increase in invading cells elicited by the chemoattractants. Our studies show that pancreatic cancer invasiveness is enhanced by autocrine and paracrine stimulation of CCR9. PSCs in the tumor microenvironment appear to contribute to paracrine activation of CCR9. Investigations into CCR9 as a potential therapeutic target in pancreatic cancer must consider cancer cell autocrine signaling and also paracrine signaling from interactions in the tumor microenvironment.
Collapse
|
300
|
Iovanna JL, Marks DL, Fernandez-Zapico ME, Urrutia R. Mechanistic insights into self-reinforcing processes driving abnormal histogenesis during the development of pancreatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1078-86. [PMID: 23375449 DOI: 10.1016/j.ajpath.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/16/2012] [Accepted: 12/24/2012] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma, one of the most feared lethal and painful diseases, is increasing in incidence. The poor prognosis of pancreatic ductal adenocarcinoma-affected patients primarily is owing to our inability to develop effective therapies. Mechanistic studies of genetic, epigenetic, and cell-to-cell signaling events are providing clues to molecular pathways that can be targeted in an attempt to cure this disease. The current review article seeks to draw inferences from available mechanistic knowledge to build a theoretical framework that can facilitate these approaches. This conceptual model considers pancreatic cancer as a tissue disease rather than an isolated epithelial cell problem, which develops and progresses in large part as a result of three positive feedback loops: i) genetic and epigenetic changes in epithelial cells modulate their interaction with mesenchymal cells to generate a dynamically changing process of abnormal histogenesis, which drives more changes; ii) the faulty tissue architecture of neoplastic lesions results in unsynchronized secretion of signaling molecules by cells, which generates an environment that is poor in oxygen and nutrients; and iii) the increased metabolic needs of rapidly dividing cells serve as an evolutionary pressure for them to adapt to this adverse microenvironment, leading to the emergence of resistant clones. We discuss how these concepts can guide mechanistic studies, as well as aid in the design of novel experimental therapeutics.
Collapse
Affiliation(s)
- Juan L Iovanna
- Cancer Research Center of Marseille, Inserm U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|