251
|
Garcia-Recinos L, Burrowes PA, Dominguez-Bello M. The Skin Microbiota of Eleutherodactylus Frogs: Effects of Host Ecology, Phylogeny, and Local Environment. Front Microbiol 2019; 10:2571. [PMID: 31781069 PMCID: PMC6856660 DOI: 10.3389/fmicb.2019.02571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin microbiota has a potential protective role against diseases. However, the effects of environmental and host factors on symbiotic bacterial communities are not well understood. Caribbean frogs in the genus Eleutherodactylus represent a case of congeneric species that differ in ecological specialization by the process of adaptive radiation. For a small clade of Eleutherodactylus from Puerto Rico, we investigated the role of local environments, host species, and microhabitat in the composition of their skin microbiome. The potential congruence between microbial communities in hosts that are most closely related phylogenetically was also addressed. We hypothesized that the skin microbiota of Eleutherodactylus frogs would be mostly associated to microhabitat use, but also differ according to locality, and to a lesser extent to host species. To test this hypothesis, we swabbed the skin of a total of 98 adult individuals of seven Eleutherodactylus species distributed in two nearby localities in Puerto Rico, and sequenced the V4 region of the 16S rRNA gene. Results showed that locality had the greatest effect on determining skin bacterial communities of amphibian hosts, but this effect was stronger on the composition (based on presence/absence) than on its structure (based on sequence abundance). The most ecologically distinct host, E. cooki, and the generalist E. coqui presented, respectively, the most dissimilar and similar microbiota compared to other hosts. Host phylogeny showed a weak influence on skin microbiota. Results suggest that both local environment and ecological specialization are structuring the skin bacterial community in these Eleutherodactylus species, but that characteristics intrinsic to species may also render unique hosts the ability to maintain distinct microbiotas.
Collapse
Affiliation(s)
- Liza Garcia-Recinos
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Centro de Estudios Conservacionistas, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | | | - Maria Dominguez-Bello
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
252
|
Abstract
Diet and gut microbiome composition are important for health and nutrition in mammals, but how they covary in response to environmental change remains poorly understood—both because diet composition is rarely quantified precisely, and because studies of diet−microbiome linkages in captive animals may not accurately reflect the dynamics of natural communities. By analyzing diet−microbiome linkages in an assemblage of large mammalian herbivores in Kenya, we found that seasonal changes in diet and microbiome composition were strongly correlated within some populations, whereas other populations exhibited little temporal turnover in either diet or microbiome. Identifying mechanisms that generate species-specific variation in the sensitivity of the diet−microbiome nexus to environmental changes could help to explain differential population performance and food-web structure within ecological communities. A major challenge in biology is to understand how phylogeny, diet, and environment shape the mammalian gut microbiome. Yet most studies of nonhuman microbiomes have relied on relatively coarse dietary categorizations and have focused either on individual wild populations or on captive animals that are sheltered from environmental pressures, which may obscure the effects of dietary and environmental variation on microbiome composition in diverse natural communities. We analyzed plant and bacterial DNA in fecal samples from an assemblage of 33 sympatric large-herbivore species (27 native, 6 domesticated) in a semiarid East African savanna, which enabled high-resolution assessment of seasonal variation in both diet and microbiome composition. Phylogenetic relatedness strongly predicted microbiome composition (r = 0.91) and was weakly but significantly correlated with diet composition (r = 0.20). Dietary diversity did not significantly predict microbiome diversity across species or within any species except kudu; however, diet composition was significantly correlated with microbiome composition both across and within most species. We found a spectrum of seasonal sensitivity at the diet−microbiome nexus: Seasonal changes in diet composition explained 25% of seasonal variation in microbiome composition across species. Species’ positions on (and deviations from) this spectrum were not obviously driven by phylogeny, body size, digestive strategy, or diet composition; however, domesticated species tended to exhibit greater diet−microbiome turnover than wildlife. Our results reveal marked differences in the influence of environment on the degree of diet−microbiome covariation in free-ranging African megafauna, and this variation is not well explained by canonical predictors of nutritional ecology.
Collapse
|
253
|
Stothart MR, Palme R, Newman AEM. It's what's on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc Biol Sci 2019; 286:20192111. [PMID: 31640519 DOI: 10.1098/rspb.2019.2111] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbiome's capacity to shape the host phenotype and its mutability underlie theorization that the microbiome might facilitate host acclimation to rapid environmental change. However, when environmental change occurs, it is unclear whether resultant microbiome restructuring is proximately driven by this changing external environment or by the host's physiological response to this change. We leveraged urbanization to compare the ability of host environment (urban or forest) versus multi-scale biological measures of host hypothalamic-pituitary-adrenal (HPA) axis physiology (neutrophil : lymphocyte ratio, faecal glucocorticoid metabolites, hair cortisol) to explain variation in the eastern grey squirrel (Sciurus carolinensis) faecal microbiome. Urban and forest squirrels differed across all three of the interpretations of HPA axis activity we measured. Direct consideration of these physiological measures better explained greater phylogenetic turnover between squirrels than environment. This pattern was strongly driven by trade-offs between bacteria which specialize on metabolizing digesta versus host-derived nutrient sources. Drawing on ecological theory to explain patterns in intestinal bacterial communities, we conclude that although environmental change can affect the microbiome, it might primarily do so indirectly by altering host physiology. We demonstrate that the inclusion and careful consideration of dynamic, rather than fixed (e.g. sex), dimensions of host physiology are essential for the study of host-microbe symbioses at the micro-evolutionary scale.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1.,Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada T2N 4Z6
| | - Rupert Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Amy E M Newman
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1
| |
Collapse
|
254
|
A horizon scan of priorities for coastal marine microbiome research. Nat Ecol Evol 2019; 3:1509-1520. [PMID: 31636428 DOI: 10.1038/s41559-019-0999-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here, we evaluate the current state of knowledge on coastal marine microbiome research and identify key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research.
Collapse
|
255
|
Of microbes and mange: consistent changes in the skin microbiome of three canid species infected with Sarcoptes scabiei mites. Parasit Vectors 2019; 12:488. [PMID: 31619277 PMCID: PMC6796464 DOI: 10.1186/s13071-019-3724-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sarcoptic mange is a highly contagious skin disease caused by the ectoparasitic mite Sarcoptes scabiei. Although it afflicts over 100 mammal species worldwide, sarcoptic mange remains a disease obscured by variability at the individual, population and species levels. Amid this variability, it is critical to identify consistent drivers of morbidity, particularly at the skin barrier. Methods Using culture-independent next generation sequencing, we characterized the skin microbiome of three species of North American canids: coyotes (Canis latrans), red foxes (Vulpes vulpes) and gray foxes (Urocyon cinereoargenteus). We compared alpha and beta diversity between mange-infected and uninfected canids using the Kruskal–Wallis test and multivariate analysis of variance with permutation. We used analysis of composition of microbes and gneiss balances to perform differential abundance testing between infection groups. Results We found remarkably consistent signatures of microbial dysbiosis associated with mange infection. Across genera, mange-infected canids exhibited reduced microbial diversity, altered community composition and increased abundance of opportunistic pathogens. The primary bacteria comprising secondary infections were Staphylococcus pseudintermedius, previously associated with canid ear and skin infections, and Corynebacterium spp., previously found among the gut flora of S. scabiei mites and hematophagous arthropods. Conclusions This evidence suggests that sarcoptic mange infection consistently alters the canid skin microbiome and facilitates secondary bacterial infection, as seen in humans and other mammals infected with S. scabiei mites. These results provide valuable insights into the pathogenesis of mange at the skin barrier of North American canids and can inspire novel treatment strategies. By adopting a “One Health” framework that considers mites, microbes and the potential for interspecies transmission, we can better elucidate the patterns and processes underlying this ubiquitous and enigmatic disease.![]()
Collapse
|
256
|
Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, Ahmad MM, Burrell MJE, Soini HA, Novotny MV, Ketterson ED, Theis KR. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202978. [PMID: 31537652 DOI: 10.1242/jeb.202978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Symbiotic microbes that inhabit animal scent glands can produce volatile compounds used as chemical signals by the host animal. Though several studies have demonstrated correlations between scent gland bacterial community structure and host animal odour profiles, none have systematically demonstrated a causal relationship. In birds, volatile compounds in preen oil secreted by the uropygial gland serve as chemical cues and signals. Here, we tested whether manipulating the uropygial gland microbial community affects chemical profiles in the dark-eyed junco (Junco hyemalis). We found an effect of antibiotic treatment targeting the uropygial gland on both bacterial and volatile profiles. In a second experiment, we cultured bacteria from junco preen oil, and found that all of the cultivars produced at least one volatile compound common in junco preen oil, and that most cultivars produced multiple preen oil volatiles. In both experiments, we identified experimentally generated patterns in specific volatile compounds previously shown to predict junco reproductive success. Together, our data provide experimental support for the hypothesis that symbiotic bacteria produce behaviourally relevant volatile compounds within avian chemical cues and signals.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Samuel P Slowinski
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Osama Alian
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mikayla J E Burrell
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Helena A Soini
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
257
|
Baldo L, Riera JL, Salzburger W, Barluenga M. Phylogeography and Ecological Niche Shape the Cichlid Fish Gut Microbiota in Central American and African Lakes. Front Microbiol 2019; 10:2372. [PMID: 31681230 PMCID: PMC6803461 DOI: 10.3389/fmicb.2019.02372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Cichlid fishes, with their repeated colonization of lakes and subsequent radiations at different scales of phylogenetic and ecological diversification, offer an excellent model system to understand the factors shaping the host-gut microbiota association in nature. Here, we characterized the gut microbiota of the Amphilophus species complex from Central America (known as the Midas cichlid complex), encompassing 158 wild specimens (13 species) collected from seven Nicaraguan lakes, and combined these data with previously published data from two African lakes (spanning 29 species). Our aim was to comprehensively explore trends in microbiota variation and persistence along the large spatial and temporal scales of cichlid diversification (from the oldest radiation in L. Tanganyika, 9-12 My old, to young ones in Nicaraguan crater lakes, <0.5 My old), in allopatry and sympatry (within and across lakes), and across the range of dietary niches (from highly specialized to generalist feeders). Despite their extraordinary diversity, cichlids shared a remarkably conserved microbial taxonomic profile, which argues for a primary role of the host genetics in the assembly and maintenance of these microbial communities. Within this partly constrained microbiota profile, geographic isolation (continent and lake) represented the first level of discrimination. For the Midas cichlid, a partial congruency was found between host microbiota and genetic distances, suggesting that microbial communities have partly diversified along their cichlid phylogeographic history of crater lake colonization. In sympatry (within lakes), the young and poorly ecologically diversified cichlid assemblages of Central American lakes display largely unresolved gut microbiotas (in terms of both alpha and beta diversities), whereas the phylogenetically and ecologically diverse species found in African lakes showed greater microbial interspecific diversity. This pattern largely points to the level of habitat segregation, trophic niche overlap, and reproductive barriers as major modulators of the gut microbiota connectivity among sympatric species.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
258
|
Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. Virome heterogeneity and connectivity in waterfowl and shorebird communities. THE ISME JOURNAL 2019; 13:2603-2616. [PMID: 31239538 PMCID: PMC6775988 DOI: 10.1038/s41396-019-0458-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022]
Abstract
Models of host-microbe dynamics typically assume a single-host population infected by a single pathogen. In reality, many hosts form multi-species aggregations and may be infected with an assemblage of pathogens. We used a meta-transcriptomic approach to characterize the viromes of nine avian species in the Anseriformes (ducks) and Charadriiformes (shorebirds). This revealed the presence of 27 viral species, of which 24 were novel, including double-stranded RNA viruses (Picobirnaviridae and Reoviridae), single-stranded RNA viruses (Astroviridae, Caliciviridae, Picornaviridae), a retro-transcribing DNA virus (Hepadnaviridae), and a single-stranded DNA virus (Parvoviridae). These viruses comprise multi-host generalist viruses and those that are host-specific, indicative of both virome connectivity (host sharing) and heterogeneity (host specificity). Virome connectivity was apparent in two well described multi-host virus species -avian coronavirus and influenza A virus- and a novel Rotavirus species that were shared among some Anseriform species, while virome heterogeneity was reflected in the absence of viruses shared between Anseriformes and Charadriiformes, as well as differences in viral abundance and alpha diversity among species. Overall, we demonstrate complex virome structures across host species that co-exist in multi-species aggregations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| |
Collapse
|
259
|
Rudman SM, Greenblum S, Hughes RC, Rajpurohit S, Kiratli O, Lowder DB, Lemmon SG, Petrov DA, Chaston JM, Schmidt P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:20025-20032. [PMID: 31527278 PMCID: PMC6778213 DOI: 10.1073/pnas.1907787116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
| | | | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ozan Kiratli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Dallin B Lowder
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Skyler G Lemmon
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
260
|
Abstract
Microbial communities associated with animals exert powerful influences on host physiology, regulating metabolism and immune function, as well as complex host behaviors. The importance of host–microbiome interactions for maintaining homeostasis and promoting health raises evolutionarily complicated questions about how animals and their microbiomes have coevolved, and how these relationships affect the ways that animals interact with their environment. Here, we review the literature on the contributions of host factors to microbial community structure and corresponding influences of microbiomes on emergent host phenotypes. We focus in particular on animal behaviors as a basis for understanding potential roles for the microbiome in shaping host neurobiology.
Collapse
|
261
|
Rausch P, Rühlemann M, Hermes BM, Doms S, Dagan T, Dierking K, Domin H, Fraune S, von Frieling J, Hentschel U, Heinsen FA, Höppner M, Jahn MT, Jaspers C, Kissoyan KAB, Langfeldt D, Rehman A, Reusch TBH, Roeder T, Schmitz RA, Schulenburg H, Soluch R, Sommer F, Stukenbrock E, Weiland-Bräuer N, Rosenstiel P, Franke A, Bosch T, Baines JF. Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. MICROBIOME 2019; 7:133. [PMID: 31521200 PMCID: PMC6744666 DOI: 10.1186/s40168-019-0743-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/23/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.
Collapse
Affiliation(s)
- Philipp Rausch
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen Ø, Denmark
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Britt M. Hermes
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Shauni Doms
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hanna Domin
- Zoological Institute, Kiel University, Kiel, Germany
| | | | - Jakob von Frieling
- Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Kiel University, Kiel, Germany
| | | | - Marc Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Martin T. Jahn
- Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Cornelia Jaspers
- Kiel University, Kiel, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Kohar Annie B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | | | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten B. H. Reusch
- Kiel University, Kiel, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Thomas Roeder
- Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Ryszard Soluch
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Eva Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Botanical Institute, Kiel University, Kiel, Germany
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thomas Bosch
- Zoological Institute, Kiel University, Kiel, Germany
| | - John F. Baines
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
262
|
Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, Adamík P, Heneberg P, Porkert J. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. THE ISME JOURNAL 2019; 13:2363-2376. [PMID: 31127178 PMCID: PMC6775979 DOI: 10.1038/s41396-019-0438-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/12/2019] [Accepted: 05/03/2019] [Indexed: 11/12/2022]
Abstract
The functional relevance of microbiota is a key aspect for understanding host-microbiota interactions. Mammalian skin harbours a complex consortium of beneficial microorganisms known to provide health and immune-boosting advantages. As yet, however, little is known about functional microbial communities on avian feathers, including their co-evolution with the host and factors determining feather microbiota (FM) diversity. Using 16S rRNA profiling, we investigated how host species identity, phylogeny and geographic origin determine FM in free-living passerine birds. Moreover, we estimated the relative abundance of bacteriocin-producing bacteria (BPB) and keratinolytic feather damaging bacteria (FDB) and evaluated the ability of BPB to affect FM diversity and relative abundance of FDB. Host species identity was associated with feather bacterial communities more strongly than host geographic origin. FM functional properties differed in terms of estimated BPB and FDB relative abundance, with both showing interspecific variation. FM diversity was negatively associated with BPB relative abundance across species, whereas BPB and FDB relative abundance was positively correlated. This study provides the first thorough evaluation of antimicrobial peptides-producing bacterial communities inhabiting the feather integument, including their likely potential to mediate niche-competition and to be associated with functional species-specific feather microbiota in avian hosts.
Collapse
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic.
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Milica Požgayová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Kateřina Ševčíková
- Faculty of Science, Department of Zoology, Palacký University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Vojtěch Brlík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Peter Adamík
- Faculty of Science, Department of Zoology, Palacký University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Jiří Porkert
- Home address: Gočárova třída 542/12, 500 02, Hradec Králové, Czech Republic
| |
Collapse
|
263
|
Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:451-475. [PMID: 32733173 DOI: 10.1146/annurev-ecolsys-110617-062453] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animals are distinguished by having guts: organs that must extract nutrients from food while barring invasion by pathogens. Most guts are colonized by non-pathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have co-diversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary "addiction" whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely, to using them as food, to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| |
Collapse
|
264
|
Laviad-Shitrit S, Izhaki I, Lalzar M, Halpern M. Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Front Microbiol 2019; 10:1911. [PMID: 31481943 PMCID: PMC6711360 DOI: 10.3389/fmicb.2019.01911] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Waterbirds are ubiquitous and globally distributed. Yet, studies on wild waterbirds' gut microbiota are still rare. Our aim was to explore and compare the gut microbial community composition of wild waterbird species. Four wild waterbird species that are either wintering or all-year residents in Israel were studied: great cormorants, little egrets, black-crowned night herons and black-headed gulls. For each bird, three intestinal sections were sampled; anterior, middle and posterior. No significant differences were found among the microbiota compositions in the three intestine sections of each individual bird. Each waterbird species had a unique microbial composition. The gut microbiota of the black-headed gulls' fundamentally deviated from that of the other bird species, probably due to a very high abundance (58.8%) of the genus Catellicoccus (Firmicutes). Our results suggest a correlation between the waterbird species' phylogeny and their intestine microbial community hierarchical tree, which evinced phylosymbiosis. This recent coinage stands for eco-evolutionary patterns between the host phylogeny and its microbiota composition. We conclude that eco-evolutionary processes termed phylosymbiosis may occur between wild waterbird species and their gut microbial community composition.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon, Israel
| |
Collapse
|
265
|
Perez‐Lamarque B, Morlon H. Characterizing symbiont inheritance during host–microbiota evolution: Application to the great apes gut microbiota. Mol Ecol Resour 2019; 19:1659-1671. [DOI: 10.1111/1755-0998.13063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM PSL University Paris France
- Muséum national d'Histoire naturelleUMR 7205 CNRS‐MNHN‐UPMC‐EPHE “Institut de Systématique, Evolution, Biodiversité – ISYEB” Herbier National 16 rue Buffon Paris France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM PSL University Paris France
| |
Collapse
|
266
|
Carrier TJ, Dupont S, Reitzel AM. Geographic location and food availability offer differing levels of influence on the bacterial communities associated with larval sea urchins. FEMS Microbiol Ecol 2019; 95:5526217. [PMID: 31260050 DOI: 10.1093/femsec/fiz103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
Determining the factors underlying the assembly, structure, and diversity of symbiont communities remains a focal point of animal-microbiome research. Much of these efforts focus on taxonomic variation of microbiota within or between animal populations, but rarely test the proportional impacts of ecological components that may affect animal-associated microbiota. Using larvae from the sea urchin Strongylocentrotus droebachiensis from the Atlantic and Pacific Oceans, we test the hypothesis that, under natural conditions, inter-population differences in the composition of larval-associated bacterial communities are larger than intra-population variation due to a heterogeneous feeding environment. Despite significant differences in bacterial community structure within each S. droebachiensis larval population based on food availability, development, phenotype, and time, variation in OTU membership and community composition correlated more strongly with geographic location. Moreover, 20-30% of OTUs associated with larvae were specific to a single location while less than 10% were shared. Taken together, these results suggest that inter-populational variation in symbiont communities may be more pronounced than intra-populational variation, and that this difference may suggest that broad-scale ecological variables (e.g., across ocean basins) may mask smaller scale ecological variables (e.g., food availability).
Collapse
Affiliation(s)
- Tyler J Carrier
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, 45178 Sweden
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
267
|
Díaz-Sánchez S, Estrada-Peña A, Cabezas-Cruz A, de la Fuente J. Evolutionary Insights into the Tick Hologenome. Trends Parasitol 2019; 35:725-737. [PMID: 31331734 DOI: 10.1016/j.pt.2019.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
Recently, our knowledge of the composition and complexity of tick microbial communities has increased and supports microbial impact on tick biology. Results support a phylogenetic association between ticks and their microbiota across evolution; this is known as phylosymbiosis. Herein, using published datasets, we confirm the existence of phylosymbiosis between Ixodes ticks and their microbial communities. The strong phylosymbiotic signal and the phylogenetic structure of microbial communities associated with Ixodid ticks revealed that phylosymbiosis may be a widespread phenomenon in tick-microbiota evolution. This finding supports the existence of a species-specific tick hologenome with a largely unexplored influence on tick biology and pathogen transmission. These results may provide potential targets for the construction of paratransgenic ticks to control tick infestations and tick-borne diseases.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
268
|
Abstract
Phylosymbiosis is defined as microbial community relationships that recapitulate the phylogeny of hosts. As evidence for phylosymbiosis rapidly accumulates in different vertebrate and invertebrate holobionts, a central question is what evolutionary forces cause this pattern. We use intra- and interspecific gut microbiota transplants to test for evidence of selective pressures that contribute to phylosymbiosis. We leverage three closely related species of the parasitoid wasp model Nasonia that recently diverged between 0.4 and 1 million years ago: N. vitripennis, N. giraulti, and N. longicornis Upon exposure of germfree larvae to heat-inactivated microbiota from intra- or interspecific larvae, we measure larval growth, pupation rate, and adult reproductive capacity. We report three key findings: (i) larval growth significantly slows when hosts receive an interspecific versus intraspecific gut microbiota, (ii) marked decreases in pupation and resulting adult survival occur from interspecific gut microbiota exposure, and (iii) adult reproductive capacities including male fertility and longevity are unaffected by early life exposure to an interspecific microbiota. Overall, these findings reveal developmental and survival costs to Nasonia upon larval exposures to interspecific microbiota and provide evidence that selective pressures on phenotypes produced by host-microbiota interactions may underpin phylosymbiosis.IMPORTANCE Phylosymbiosis is an ecoevolutionary hypothesis and emerging pattern in animal-microbiota studies whereby the host phylogenetic relationships parallel the community relationships of the host-associated microbiota. A central prediction of phylosymbiosis is that closely related hosts exhibit a lower microbiota beta diversity than distantly related hosts. While phylosymbiosis has emerged as a widespread trend in a field often challenged to find trends across systems, two critical and understudied questions are whether or not phylosymbiosis is consequential to host biology and if adaptive evolutionary forces underpin the pattern. Here, using germfree rearing in the phylosymbiosis model Nasonia, we demonstrate that early life exposure to heat-inactivated microbiota from more distantly related species poses more severe developmental and survival costs than microbiota from closely related or the same species. This study advances a functional understanding of the consequences and potential selective pressures underpinning phylosymbiosis.
Collapse
|
269
|
Cooke I, Mead O, Whalen C, Boote C, Moya A, Ying H, Robbins S, Strugnell JM, Darling A, Miller D, Voolstra CR, Adamska M. Molecular techniques and their limitations shape our view of the holobiont. ZOOLOGY 2019; 137:125695. [PMID: 31759226 DOI: 10.1016/j.zool.2019.125695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022]
Abstract
It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.
Collapse
Affiliation(s)
- Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Oliver Mead
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Casey Whalen
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Chloë Boote
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Steven Robbins
- Australian Center for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, 4810, QLD, Australia; Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, 3083, Australia
| | - Aaron Darling
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Maja Adamska
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | | |
Collapse
|
270
|
Abstract
The communities of bacteria that reside within mammalian guts are deeply integrated with their hosts, but the impact of this gut microbiota on mammalian evolution remains poorly understood. Experimental transplantation of the gut microbiota between mouse species revealed that foreign gut microbiotas lowered the host growth rate and upregulated the expression of an immunomodulating cytokine. In addition, foreign gut microbiotas increased host liver sizes and attenuated sex-specific differences in host muscle and fat content. These results suggest that the house mouse has adapted to its species-specific gut microbiota. The gut microbial communities of mammals have codiversified with host species, and changes in the gut microbiota can have profound effects on host fitness. Therefore, the gut microbiota may drive adaptation in mammalian species, but this possibility is underexplored. Here, we show that the gut microbiota has codiversified with mice in the genus Mus over the past ∼6 million years, and we present experimental evidence that the gut microbiota has driven adaptive evolution of the house mouse, Mus musculusdomesticus. Phylogenetic analyses of metagenome-assembled bacterial genomic sequences revealed that gut bacterial lineages have been retained within and diversified alongside Mus species over evolutionary time. Transplantation of gut microbiotas from various Mus species into germfree M. m. domesticus showed that foreign gut microbiotas slowed growth rate and upregulated macrophage inflammatory protein in hosts. These results suggest adaptation by M. m. domesticus to its gut microbiota since it diverged from other Mus species. IMPORTANCE The communities of bacteria that reside within mammalian guts are deeply integrated with their hosts, but the impact of this gut microbiota on mammalian evolution remains poorly understood. Experimental transplantation of the gut microbiota between mouse species revealed that foreign gut microbiotas lowered the host growth rate and upregulated the expression of an immunomodulating cytokine. In addition, foreign gut microbiotas increased host liver sizes and attenuated sex-specific differences in host muscle and fat content. These results suggest that the house mouse has adapted to its species-specific gut microbiota.
Collapse
|
271
|
Xin J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, Zhong J, Ji Q. Comparing the Microbial Community in Four Stomach of Dairy Cattle, Yellow Cattle and Three Yak Herds in Qinghai-Tibetan Plateau. Front Microbiol 2019; 10:1547. [PMID: 31354656 PMCID: PMC6636666 DOI: 10.3389/fmicb.2019.01547] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Yak (Bos grunniens) is an unique ruminant species in the Qinghai-Tibetan Plateau (QTP). The ruminant gastrointestinal tract (GIT) microbiota is not only associated with the nutrients metabolism, but also contributes to the host’s local adaptation. Examining the microbiota between cattle and yak in different geography could improve our understanding about the role of microbiota in metabolism and adaptation. To this end, we compared the microbiota in rumen, reticulum, omasum, and abomasum of dairy cattle, yellow cattle, and three yak herds (WQ yak, SZ yak, and ZB yak) lived in different altitude, based on sequencing the bacterial 16S rRNA gene on Illumina Miseq. The bacterial diversity was significantly different among five breeds, whereas the difference among four stomach regions is limited. The phyla Bacteroidetes and Firmicutes were the dominated bacteria regardless of breeds and regions. The nonmetric multidimensional scaling (NMDS) results showed that the microbiota in dairy cattle, yellow cattle and WQ yak significantly differed from that in SZ yak and ZB yak for all four stomach compartments. Canonical correlation analysis revealed that Prevotella and Succiniclasticum spp. were abundant in dairy cattle, yellow cattle and WQ yak, whereas the Christensenellaceae R7 group and the Lachnospiraceae UCG 008 group were prevalent in SZ yak and ZB yak. Moreover, the microbiota in WQ yak was significantly different from that in SZ yak and ZB yak, which were characterized by the higher relative abundance Romboutsia spp., Eubacterium coprostanoligenes, Acetobacter spp., Mycoplasma spp., and Rikenellaceae RC9 group. Overall, these results improves our knowledge about the GIT microbiota composition of QTP ruminant.
Collapse
Affiliation(s)
- Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hanwen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiumei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
272
|
Dubé CE, Ky CL, Planes S. Microbiome of the Black-Lipped Pearl Oyster Pinctada margaritifera, a Multi-Tissue Description With Functional Profiling. Front Microbiol 2019; 10:1548. [PMID: 31333634 PMCID: PMC6624473 DOI: 10.3389/fmicb.2019.01548] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Elucidating the role of prokaryotic symbionts in mediating host physiology has emerged as an important area of research. Since oysters are the world’s most heavily cultivated bivalve molluscs, numerous studies have applied molecular techniques to understand the taxonomic and functional diversity of their associated bacteria. Here, we expand on this research by assessing the composition and putative functional profiles of prokaryotic communities from different organs/compartments of the black-lipped pearl oyster Pinctada margaritifera, a commercially important shellfish valued for cultured pearl production in the Pacific region. Seven tissues, in addition to mucous secretions, were targeted from P. margaritifera individuals: the gill, gonad, byssus gland, haemolymph, mantle, adductor muscle, mucus, and gut. Richness of bacterial Operational Taxonomic Units (OTUs) and phylogenetic diversity differed between host tissues, with mucous layers displaying the highest richness and diversity. This multi-tissues approach permitted the identification of consistent microbial members, together constituting the core microbiome of P. margaritifera, including Alpha- and Gammaproteobacteria, Flavobacteriia, and Spirochaetes. We also found a high representation of Endozoicimonaceae symbionts, indicating that they may be of particular importance to oyster health, survival and homeostasis, as in many other coral reef animals. Our study demonstrates that the microbial communities and their associated predicted functional profiles are tissue specific. Inferred physiological functions were supported by current physiological data available for the associated bacterial taxa specific to each tissue. This work provides the first baseline of microbial community composition in P. margaritifera, providing a solid foundation for future research into this commercially important species and emphasises the important effects of tissue differentiation in structuring the oyster microbiome.
Collapse
Affiliation(s)
- Caroline Eve Dubé
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| | - Chin-Long Ky
- Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia.,Ifremer, UMR 241, Centre du Pacifique, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes Pathogènes Environnements, Université de Montpellier, Montpellier, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| |
Collapse
|
273
|
Muletz-Wolz CR, Kurata NP, Himschoot EA, Wenker ES, Quinn EA, Hinde K, Power ML, Fleischer RC. Diversity and temporal dynamics of primate milk microbiomes. Am J Primatol 2019; 81:e22994. [PMID: 31219214 DOI: 10.1002/ajp.22994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/28/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
Abstract
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut-brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high-throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Naoko P Kurata
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
- The Graduate Center, The City University of New York, New York, New York
- Department of Ichthyology, American Museum of Natural History, New York, New York
| | - Elizabeth A Himschoot
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Elizabeth S Wenker
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Elizabeth A Quinn
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Michael L Power
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| |
Collapse
|
274
|
Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. MICROBIOME 2019; 7:79. [PMID: 31122279 PMCID: PMC6533770 DOI: 10.1186/s40168-019-0694-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
The skin constitutes the primary physical barrier between vertebrates and their external environment. Characterization of skin microorganisms is essential for understanding how a host evolves in association with its microbial symbionts, modeling immune system development, diagnosing illnesses, and exploring the origins of potential zoonoses that affect humans. Although many studies have characterized the human microbiome with culture-independent techniques, far less is known about the skin microbiome of other mammals, amphibians, birds, fish, and reptiles. The aim of this review is to summarize studies that have leveraged high-throughput sequencing to better understand the skin microorganisms that associate with members of classes within the subphylum Vertebrata. Specifically, links will be explored between the skin microbiome and vertebrate characteristics, including geographic location, biological sex, animal interactions, diet, captivity, maternal transfer, and disease. Recent literature on parallel patterns between host evolutionary history and their skin microbial communities, or phylosymbiosis, will also be analyzed. These factors must be considered when designing future microbiome studies to ensure that the conclusions drawn from basic research translate into useful applications, such as probiotics and successful conservation strategies for endangered and threatened animals.
Collapse
Affiliation(s)
- Ashley A Ross
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
- Present address: Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph, Ontario, N1G 2W1, Canada
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX, USA
| | - Josh D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
275
|
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun 2019; 10:2200. [PMID: 31097702 PMCID: PMC6522487 DOI: 10.1038/s41467-019-10191-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple factors modulate microbial community assembly in the vertebrate gut, though studies disagree as to their relative contribution. One cause may be a reliance on captive animals, which can have very different gut microbiomes compared to their wild counterparts. To resolve this disagreement, we analyze a new, large, and highly diverse animal distal gut 16 S rRNA microbiome dataset, which comprises 80% wild animals and includes members of Mammalia, Aves, Reptilia, Amphibia, and Actinopterygii. We decouple the effects of host evolutionary history and diet on gut microbiome diversity and show that each factor modulates different aspects of diversity. Moreover, we resolve particular microbial taxa associated with host phylogeny or diet and show that Mammalia have a stronger signal of cophylogeny. Finally, we find that environmental filtering and microbe-microbe interactions differ among host clades. These findings provide a robust assessment of the processes driving microbial community assembly in the vertebrate intestine.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Georg H Reischer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- ICC Interuniversity Cooperation Centre Water & Health, 1160, Vienna, Austria
| | - William Walters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany
| | - Nathalie Schuster
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany
| | - Andreas H Farnleitner
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- ICC Interuniversity Cooperation Centre Water & Health, 1160, Vienna, Austria
- Research Division Water Quality and Health, Karl Landsteiner University for Health Sciences, 3500, Krems an der Donau, Austria
| |
Collapse
|
276
|
Prussing C, Saavedra MP, Bickersmith SA, Alava F, Guzmán M, Manrique E, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE. Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Negl Trop Dis 2019; 13:e0007412. [PMID: 31091236 PMCID: PMC6538195 DOI: 10.1371/journal.pntd.0007412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential. We conducted a multi-level study of the larval ecology of Anophelinae mosquitoes in the peri-Iquitos region of Amazonian Peru, examining the environmental characteristics of the larval habitats of four species, comparing the larval microbiota among species and habitats, and placing Ny. darlingi larval habitats in the context of spatial heterogeneity in human malaria transmission. We collected Ny. darlingi, Nyssorhynchus rangeli (formerly Anopheles rangeli), Nyssorhynchus triannulatus s.l. (formerly Anopheles triannulatus s.l.), and Nyssorhynchus sp. nr. konderi (formerly Anopheles sp. nr. konderi) from natural and artificial water bodies throughout the rainy and dry seasons. We found that, consistent with previous studies in this region and in Brazil, the presence of Ny. darlingi was significantly associated with water bodies in landscapes with more recent deforestation and lower light intensity. Nyssorhynchus darlingi presence was also significantly associated with a lower vegetation index, other Anophelinae species, and emergent vegetation. Though they were collected in the same water bodies, the microbial communities of Ny. darlingi larvae were distinct from those of Ny. rangeli and Ny. triannulatus s.l., providing evidence either for a species-specific larval microbiome or for segregation of these species in distinct microhabitats within each water body. We demonstrated that houses with more reported malaria cases were located closer to Ny. darlingi larval habitats; thus, targeted control of these sites could help ameliorate malaria risk. The co-occurrence of Ny. darlingi larvae in water bodies with other putative malaria vectors increases the potential impact of larval source management in this region.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | | | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|
277
|
Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett 2019; 22:826-837. [DOI: 10.1111/ele.13240] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- S. C. L. Knowles
- Department of Life Sciences Imperial College London Silwood Park Campus Buckhurst Road Ascot Berkshire UK
- Department of Pathobiology and Population Sciences The Royal Veterinary College Hawkshead Lane Hatfield HerfordshireAL9 7TA UK
| | - R. M. Eccles
- Centre for Genomic Research Biosciences Building Crown Street Liverpool L69 7ZB UK
| | - L. Baltrūnaitė
- Nature Research Centre Akademijos Str. 2 LT–08412 Vilnius Lithuania
| |
Collapse
|
278
|
Brinker P, Fontaine MC, Beukeboom LW, Falcao Salles J. Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends Microbiol 2019; 27:480-488. [PMID: 30857919 DOI: 10.1016/j.tim.2019.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023]
Abstract
Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands; MIVEGEC, UMR IRD, CNRS, University of Montpellier, Montpellier, France
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| |
Collapse
|
279
|
Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelter AS. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019; 10:e01189-18. [PMID: 30837337 PMCID: PMC6401481 DOI: 10.1128/mbio.01189-18] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Collapse
Affiliation(s)
- Anthony Amend
- Department of Botany, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gaetan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - M H Gutiérrez
- Departamento de Oceanografía, Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik F Y Hom
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam C Jones
- Gordon and Betty Moore Foundation, Palo Alto, California, USA
| | - Maiko Kagami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Alisha Quandt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, Colorado, USA
| | | | - Mertixell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Jason Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - José Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
280
|
Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 2019; 10:992. [PMID: 30824706 PMCID: PMC6397258 DOI: 10.1038/s41467-019-08925-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022] Open
Abstract
Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernd Wemheuer
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, 4816, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jose M Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France
| |
Collapse
|
281
|
Sousa JAMD, Rocha EPC. Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci Rep 2019; 9:3149. [PMID: 30816246 PMCID: PMC6395636 DOI: 10.1038/s41598-019-39773-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
Microbial communities are shaped by bacteriophages through predation and lysogeny. A better understanding of the interactions between these processes across different types of environments is key to elucidate how phages mediate microbial competition and to design efficient phage therapies. We introduce an individual-based model (eVIVALDI) to investigate the role of environmental structure in the elimination of a population with a combined treatment of antibiotics and virulent phages, and in the invasion of a population of phage-sensitive bacteria by lysogens. We show that structured environments facilitate the emergence of double resistance, to antibiotics and phages, due to limited diffusion of phage particles and increased nutrient availability from dead cells. They also hinder phage amplification, thus decreasing the generation of phage genetic diversity and increasing the unpredictability of phage-bacteria arms-races. We used a machine learning approach to determine the variables most important for the invasion of sensitive populations by lysogens. They revealed that phage-associated traits and environmental structure are the key drivers of the process. Structured environments hinder invasions, and accounting for their existence improves the fit of the model to published in vivo experimental data. Our results underline environmental structure as key to understand in vivo phage-bacteria interactions.
Collapse
Affiliation(s)
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France
| |
Collapse
|
282
|
Tipton L, Darcy JL, Hynson NA. A Developing Symbiosis: Enabling Cross-Talk Between Ecologists and Microbiome Scientists. Front Microbiol 2019; 10:292. [PMID: 30842763 PMCID: PMC6391321 DOI: 10.3389/fmicb.2019.00292] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
Like all interactions, the success of cross-discipline collaborations relies on effective communication. Ecology offers theoretical frameworks and lexicons to study microbiomes. Yet some of the terms and concepts borrowed from ecology are being used discordantly by microbiome studies from their traditional definitions. Here we define some of the ecological terms and concepts as they are used in ecology and the study of microbiomes. Where applicable, we have provided the historical context of the terms, highlighted examples from microbiome studies, and considered the research methods involved. We divided these concepts into four sections: Biomes, Diversity, Symbiosis, and Succession. Biomes encompass the interactions within the biotic and abiotic features of an environment. This extends to the term "microbiome," derived from "biome," and includes an environment and all the microbes within it. Diversity encompasses patterns of species richness, abundance, and biogeography, all of which are important to understanding the distribution of microbiomes. Symbiosis emphasizes the relationships between organisms within a community. Symbioses are often misunderstood to be synonymous with mutualism. We discard that implication, in favor of a broader, more historically accurate definition which spans the continuum from parasitism to mutualism. Succession includes classical succession, alternative stable states, community assembly frameworks, and r/K-selection. Our hope is that as microbiome researchers continue to apply ecological terms, and as ecologists continue to gain interest in microbiomes, each will do so in a way that enables cross-talk between them. We recommend initiating these collaborations by using a common lexicon, from which new concepts can emerge.
Collapse
Affiliation(s)
- Laura Tipton
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - John L. Darcy
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Nicole A. Hynson
- Pacific Biosciences Research Center, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
283
|
O'Brien PA, Webster NS, Miller DJ, Bourne DG. Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. mBio 2019; 10:e02241-18. [PMID: 30723123 PMCID: PMC6428750 DOI: 10.1128/mbio.02241-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marine invertebrates often host diverse microbial communities, making it difficult to identify important symbionts and to understand how these communities are structured. This complexity has also made it challenging to assign microbial functions and to unravel the myriad of interactions among the microbiota. Here we propose to address these issues by applying evidence from model systems of host-microbe coevolution to complex marine invertebrate microbiomes. Coevolution is the reciprocal adaptation of one lineage in response to another and can occur through the interaction of a host and its beneficial symbiont. A classic indicator of coevolution is codivergence of host and microbe, and evidence of this is found in both corals and sponges. Metabolic collaboration between host and microbe is often linked to codivergence and appears likely in complex holobionts, where microbial symbionts can interact with host cells through production and degradation of metabolic compounds. Neutral models are also useful to distinguish selected microbes against a background population consisting predominately of random associates. Enhanced understanding of the interactions between marine invertebrates and their microbial communities is urgently required as coral reefs face unprecedented local and global pressures and as active restoration approaches, including manipulation of the microbiome, are proposed to improve the health and tolerance of reef species. On the basis of a detailed review of the literature, we propose three research criteria for examining coevolution in marine invertebrates: (i) identifying stochastic and deterministic components of the microbiome, (ii) assessing codivergence of host and microbe, and (iii) confirming the intimate association based on shared metabolic function.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| |
Collapse
|
284
|
Berg M, Monnin D, Cho J, Nelson L, Crits-Christoph A, Shapira M. TGFβ/BMP immune signaling affects abundance and function of C. elegans gut commensals. Nat Commun 2019; 10:604. [PMID: 30723205 PMCID: PMC6363772 DOI: 10.1038/s41467-019-08379-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023] Open
Abstract
The gut microbiota contributes to host health and fitness, and imbalances in its composition are associated with pathology. However, what shapes microbiota composition is not clear, in particular the role of genetic factors. Previous work in Caenorhabditis elegans defined a characteristic worm gut microbiota significantly influenced by host genetics. The current work explores the role of central regulators of host immunity and stress resistance, employing qPCR and CFU counts to measure abundance of core microbiota taxa in mutants raised on synthetic communities of previously-isolated worm gut commensals. This revealed a bloom, specifically of Enterobacter species, in immune-compromised TGFβ/BMP mutants. Imaging of fluorescently labeled Enterobacter showed that TGFβ/BMP-exerted control operated primarily in the anterior gut and depended on multi-tissue contributions. Enterobacter commensals are common in the worm gut, contributing to infection resistance. However, disruption of TGFβ/BMP signaling turned a normally beneficial Enterobacter commensal to pathogenic. These results demonstrate specificity in gene-microbe interactions underlying gut microbial homeostasis and highlight the pathogenic potential of their disruption.
Collapse
Affiliation(s)
- Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lydia Nelson
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Alex Crits-Christoph
- Graduate Group in Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Graduate Group in Microbiology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
285
|
Nesvorna M, Bittner V, Hubert J. The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation. MICROBIAL ECOLOGY 2019; 77:488-501. [PMID: 29967922 DOI: 10.1007/s00248-018-1224-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/24/2018] [Indexed: 05/09/2023]
Abstract
The effect of short-term nutrient deprivation was studied in five populations of the mite Tyrophagus putrescentiae with different microbiomes. The fresh weight, nutrient status, respiration, and population growth of the mites were observed for the five mite population-scale samples. The starvation caused the larvae and nymphs to be eliminated, resulting in a significant increase in the fresh weight of starved adult specimens. Three populations were negatively influenced by starvation, and the starved specimens were characterized by a decrease in nutrient status, respiration, and population growth. One population was not influenced or was slightly influenced by starvation, which had no effect on population growth or nutrient contents but caused a significant decrease in respiration. One population was positively influenced by starvation; the population growth increased in starved specimens, and starvation had no effect on respiration. Although starvation altered the bacterial profiles of the microbiomes, these differences were much smaller than those between the populations. The bacterial profiles of Staphylococcus, Bacillus, Kocuria, Brevibacterium, and unidentified Micrococcaceae and Enterobacteriaceae increased in starved specimens, whereas those of Bartonella and Solitalea-like genera were reduced in the starved mite populations. The profiles of the intracellular symbiont Cardinium decreased in the starved specimens, and the Wolbachia profile changes were dependent on the mite population. In mite populations, when the symbionts were rare, their profiles varied stochastically. Correlations between changes in the profiles of the bacterial taxa and mite fitness parameters, including nutrient status (lipids, proteins, saccharides, and glycogen contents), mite population growth, and respiration, were observed. Although the microbiomes were resistant to the perturbations caused by nutrition deficiency, the responses of the mites differed in terms of their population growth, respiration, and nutrient status.
Collapse
Affiliation(s)
- Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia
| | - Vaclav Bittner
- Department of Mathematics and Didactics of Mathematics, Faculty of Science, Humanities and Education, Technical University of Liberec, Voronezska 1329/13, CZ-460 01, Liberec, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6-Ruzyne, Czechia.
| |
Collapse
|
286
|
Li F, Hitch TCA, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. MICROBIOME 2019; 7:6. [PMID: 30642389 PMCID: PMC6332916 DOI: 10.1186/s40168-019-0618-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/03/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Microorganisms are responsible for fermentation within the rumen and have been reported to contribute to the variation in feed efficiency of cattle. However, to what extent the breed affects the rumen microbiome and its association with host feed efficiency is unknown. Here, rumen microbiomes of beef cattle (n = 48) from three breeds (Angus, Charolais, Kinsella composite hybrid) with high and low feed efficiency were explored using metagenomics and metatranscriptomics, aiming to identify differences between functional potentials and activities of same rumen microbiomes and to evaluate the effects of host breed and feed efficiency on the rumen microbiome. RESULTS Rumen metagenomes were more closely clustered together and thus more conserved among individuals than metatranscriptomes, suggesting that inter-individual functional variations at the RNA level were higher than those at the DNA level. However, while mRNA enrichment significantly increased the sequencing depth of mRNA and generated similar functional profiles to total RNA-based metatranscriptomics, it led to biased abundance estimation of several transcripts. We observed divergent rumen microbial composition (metatranscriptomic level) and functional potentials (metagenomic level) among three breeds, but differences in functional activity (metatranscriptomic level) were less apparent. Differential rumen microbial features (e.g., taxa, diversity indices, functional categories, and genes) were detected between cattle with high and low feed efficiency, and most of them were breed-specific. CONCLUSIONS Metatranscriptomes represent real-time functional activities of microbiomes and have the potential to better associate rumen microorganisms with host performances compared to metagenomics. As total RNA-based metatranscriptomics seem to avoid potential biases caused by mRNA enrichment and allow simultaneous use of rRNA for generation of compositional profiles, we suggest their use for linking the rumen microbiome with host phenotypes in future studies. However, if exploration of specific lowly expressed genes is desired, mRNA enrichment is recommended as it will enhance the resolution of mRNA. Finally, the differential microbial features observed between efficient and inefficient steers tended to be specific to breeds, suggesting that interactions between host breed genotype and the rumen microbiome contribute to the variations in feed efficiency observed. These breed-associated differences represent an opportunity to engineer specific rumen microbiomes through selective breeding of the hosts.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- The Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thomas C A Hitch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
287
|
Perofsky AC, Lewis RJ, Meyers LA. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. THE ISME JOURNAL 2019; 13:50-63. [PMID: 30108305 PMCID: PMC6299109 DOI: 10.1038/s41396-018-0251-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
The gut microbiomes of mammals appear to mirror their hosts' phylogeny, suggesting host-driven microbial community assembly. Yet, much of this evidence stems from comparative studies of distinct wild or captive populations that lack data for disentangling the relative influences of shared phylogeny and environment. Here, we present phylogenetic and multivariate analyses of gut microbiomes from six sympatric (i.e., co-occurring) mammal species inhabiting a 1-km2 area in western Madagascar-three lemur and three non-primate species-that consider genetic, dietary, and ecological predictors of microbiome functionality and composition. Host evolutionary history, indeed, appears to shape gut microbial patterns among both closely and distantly related species. However, we also find that diet-reliance on leaves versus fruit-is the best predictor of microbiome similarity among closely related lemur species, and that host substrate use-ground versus tree-constrains horizontal transmission via incidental contact with feces, with arboreal species harboring far more distinct communities than those of their terrestrial and semi-terrestrial counterparts.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Rebecca J Lewis
- Department of Anthropology, The University of Texas at Austin, Austin, TX, USA
| | - Lauren Ancel Meyers
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
288
|
Huitzil S, Sandoval-Motta S, Frank A, Aldana M. Modeling the Role of the Microbiome in Evolution. Front Physiol 2018; 9:1836. [PMID: 30618841 PMCID: PMC6307544 DOI: 10.3389/fphys.2018.01836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
There is undeniable evidence showing that bacteria have strongly influenced the evolution and biological functions of multicellular organisms. It has been hypothesized that many host-microbial interactions have emerged so as to increase the adaptive fitness of the holobiont (the host plus its microbiota). Although this association has been corroborated for many specific cases, general mechanisms explaining the role of the microbiota in the evolution of the host are yet to be understood. Here we present an evolutionary model in which a network representing the host adapts in order to perform a predefined function. During its adaptation, the host network (HN) can interact with other networks representing its microbiota. We show that this interaction greatly accelerates and improves the adaptability of the HN without decreasing the adaptation of the microbial networks. Furthermore, the adaptation of the HN to perform several functions is possible only when it interacts with many different bacterial networks in a specialized way (each bacterial network participating in the adaptation of one function). Disrupting these interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none of the networks the holobiont consists of can perform their respective functions. By considering the holobiont as a unit of selection and focusing on the adaptation of the host to predefined but arbitrary functions, our model predicts the need for specialized diversity in the microbiota. This structural and dynamical complexity in the holobiont facilitates its adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or even detrimental to the holobiont's evolution. To our knowledge, this is the first model in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem emerge as a result of coevolution. It also helps us understand the emergence of complex organisms, as they adapt more easily to perform multiple tasks than non-complex ones.
Collapse
Affiliation(s)
- Saúl Huitzil
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Sandoval-Motta
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Cátedras CONACyT, Mexico City, Mexico
| | - Alejandro Frank
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Member of El Colegio Nacional, Mexico City, Mexico
| | - Maximino Aldana
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
289
|
Finer-Scale Phylosymbiosis: Insights from Insect Viromes. mSystems 2018; 3:mSystems00131-18. [PMID: 30574559 PMCID: PMC6299154 DOI: 10.1128/msystems.00131-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses are the most abundant biological entity on the planet and interact with microbial communities with which they associate. The virome of animals is often dominated by bacterial viruses, known as bacteriophages or phages, which can (re)structure bacterial communities potentially vital to the animal host. Beta diversity relationships of animal-associated bacterial communities in laboratory and wild populations frequently parallel animal phylogenetic relationships, a pattern termed phylosymbiosis. However, little is known about whether viral communities also exhibit this eco-evolutionary pattern. Metagenomics of purified viruses from recently diverged species of Nasonia parasitoid wasps reared in the lab indicates for the first time that the community relationships of the virome can also exhibit complete phylosymbiosis. Therefore, viruses, particularly bacteriophages here, may also be influenced by animal evolutionary changes either directly or indirectly through the tripartite interactions among hosts, bacteria, and phage communities. Moreover, we report several new bacteriophage genomes from the common gut bacteria in Nasonia. Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern whereby the ecological relatedness (e.g., beta diversity relationships) of host-associated microbial communities parallels the phylogeny of the host species. Representing the most abundant biological entities on the planet and common members of the animal-associated microbiome, viruses can be influential members of host-associated microbial communities that may recapitulate, reinforce, or ablate phylosymbiosis. Here we sequence the metagenomes of purified viral communities from three different parasitic wasp Nasonia species, one cytonuclear introgression line of Nasonia, and the flour moth outgroup Ephestia kuehniella. Results demonstrate complete phylosymbiosis between the viral metagenome and insect phylogeny. Across all Nasonia contigs, 69% of the genes in the viral metagenomes are either new to the databases or uncharacterized, yet over 99% of the contigs have at least one gene with similarity to a known sequence. The core Nasonia virome spans 21% of the total contigs, and the majority of that core is likely derived from induced prophages residing in the genomes of common Nasonia-associated bacterial genera: Proteus, Providencia, and Morganella. We also assemble the first complete viral particle genomes from Nasonia-associated gut bacteria. Taken together, results reveal the first complete evidence for phylosymbiosis in viral metagenomes, new genome sequences of viral particles from Nasonia-associated gut bacteria, and a large set of novel or uncharacterized genes in the Nasonia virome. This work suggests that phylosymbiosis at the host-microbiome level will likely extend to the host-virome level in other systems as well. IMPORTANCE Viruses are the most abundant biological entity on the planet and interact with microbial communities with which they associate. The virome of animals is often dominated by bacterial viruses, known as bacteriophages or phages, which can (re)structure bacterial communities potentially vital to the animal host. Beta diversity relationships of animal-associated bacterial communities in laboratory and wild populations frequently parallel animal phylogenetic relationships, a pattern termed phylosymbiosis. However, little is known about whether viral communities also exhibit this eco-evolutionary pattern. Metagenomics of purified viruses from recently diverged species of Nasonia parasitoid wasps reared in the lab indicates for the first time that the community relationships of the virome can also exhibit complete phylosymbiosis. Therefore, viruses, particularly bacteriophages here, may also be influenced by animal evolutionary changes either directly or indirectly through the tripartite interactions among hosts, bacteria, and phage communities. Moreover, we report several new bacteriophage genomes from the common gut bacteria in Nasonia.
Collapse
|
290
|
Meanings, measurements, and musings on the significance of patterns in human microbiome variation. Curr Opin Genet Dev 2018; 53:43-52. [DOI: 10.1016/j.gde.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023]
|
291
|
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, Thurber RV, Zaneveld JR. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun 2018; 9:4921. [PMID: 30467310 PMCID: PMC6250698 DOI: 10.1038/s41467-018-07275-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
Scleractinian corals’ microbial symbionts influence host health, yet how coral microbiomes assembled over evolution is not well understood. We survey bacterial and archaeal communities in phylogenetically diverse Australian corals representing more than 425 million years of diversification. We show that coral microbiomes are anatomically compartmentalized in both modern microbial ecology and evolutionary assembly. Coral mucus, tissue, and skeleton microbiomes differ in microbial community composition, richness, and response to host vs. environmental drivers. We also find evidence of coral-microbe phylosymbiosis, in which coral microbiome composition and richness reflect coral phylogeny. Surprisingly, the coral skeleton represents the most biodiverse coral microbiome, and also shows the strongest evidence of phylosymbiosis. Interactions between bacterial and coral phylogeny significantly influence the abundance of four groups of bacteria–including Endozoicomonas-like bacteria, which divide into host-generalist and host-specific subclades. Together these results trace microbial symbiosis across anatomy during the evolution of a basal animal lineage. Associations between corals and symbiotic microorganisms could be driven by the environment or shared evolutionary history. Here, the authors examine relationships between coral phylogenies and associated microbiomes, finding evidence of phylosymbiosis in microbes from coral skeleton and tissue, but not mucus.
Collapse
Affiliation(s)
- F Joseph Pollock
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, State College, PA, 16802, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Styles Smith
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, State College, PA, 16802, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, State College, PA, 16802, USA.,Smithsonian Tropical Research Institute, Smithsonian Institution, 9100 Panama City PL, Washington, DC, 20521, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Jesse R Zaneveld
- Division of Biological Sciences, Bothell, School of Science, Technology, Engineering, and Mathematics, University of Washington, UWBB-277, Bothell, WA, 98011, USA.
| |
Collapse
|
292
|
Osmanovic D, Kessler DA, Rabin Y, Soen Y. Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole. Biol Direct 2018; 13:24. [PMID: 30621755 PMCID: PMC6889200 DOI: 10.1186/s13062-018-0224-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts. Results To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent (“detox”). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host’s offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria). Conclusions These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system. Reviewers This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman. Electronic supplementary material The online version of this article (10.1186/s13062-018-0224-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dino Osmanovic
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Yitzhak Rabin
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.,NYU-ECNU Institute of Physics at NYU, Shanghai, 200062, China
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel. .,Department of Physics, Massachusetts Institute of Technology (MIT), MA, 02139, Cambridge, USA.
| |
Collapse
|
293
|
Abstract
All multicellular organisms are colonized by microbes, but a gestalt study of the composition of microbiome communities and their influence on the ecology and evolution of their macroscopic hosts has only recently become possible. One approach to thinking about the topic is to view the host–microbiome ecosystem as a “holobiont”. Because natural selection acts on an organism’s realized phenotype, and the phenotype of a holobiont is the result of the integrated activities of both the host and all of its microbiome inhabitants, it is reasonable to think that evolution can act at the level of the holobiont and cause changes in the “hologenome”, or the collective genomic content of all the individual bionts within the holobiont. This relatively simple assertion has nevertheless been controversial within the microbiome community. Here, I provide a review of recent work on the hologenome concept of evolution. I attempt to provide a clear definition of the concept and its implications and to clarify common points of disagreement.
Collapse
Affiliation(s)
- J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
294
|
Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG. Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia. Genome Biol Evol 2018; 10:434-451. [PMID: 29351633 PMCID: PMC5793819 DOI: 10.1093/gbe/evy012] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The bacterial endosymbiont Wolbachia manipulates arthropod reproduction to facilitate its maternal spread through host populations. The most common manipulation is cytoplasmic incompatibility (CI): Wolbachia-infected males produce modified sperm that cause embryonic mortality, unless rescued by embryos harboring the same Wolbachia. The genes underlying CI, cifA and cifB, were recently identified in the eukaryotic association module of Wolbachia’s prophage WO. Here, we use transcriptomic and genomic approaches to address three important evolutionary facets of the cif genes. First, we assess whether or not cifA and cifB comprise a classic toxin–antitoxin operon in wMel and show that the two genes exhibit striking, transcriptional differences across host development. They can produce a bicistronic message despite a predicted hairpin termination element in their intergenic region. Second, cifA and cifB strongly coevolve across the diversity of phage WO. Third, we provide new domain and functional predictions across homologs within Wolbachia, and show that amino acid sequences vary substantially across the genus. Finally, we investigate conservation of cifA and cifB and find frequent degradation and loss of the genes in strains that no longer induce CI. Taken together, we demonstrate that cifA and cifB exhibit complex transcriptional regulation in wMel, provide functional annotations that broaden the potential mechanisms of CI induction, and report recurrent erosion of cifA and cifB in non-CI strains, thus expanding our understanding of the most widespread form of reproductive parasitism.
Collapse
Affiliation(s)
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington
| | | | - Andrew W Brooks
- Department of Biological Sciences, Vanderbilt University.,Vanderbilt Genetics Institute, Vanderbilt University
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University.,Vanderbilt Genetics Institute, Vanderbilt University.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University.,Department of Pathology, Microbiology and Immunology, Vanderbilt University
| | | |
Collapse
|
295
|
Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages. mBio 2018; 9:mBio.01877-18. [PMID: 30301859 PMCID: PMC6178617 DOI: 10.1128/mbio.01877-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis. Correlating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis and in vitro assays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.
Collapse
|
296
|
Miyokawa R, Tsuda T, Kanaya HJ, Kusumi J, Tachida H, Kobayakawa Y. Horizontal Transmission of Symbiotic Green Algae Between Hydra Strains. THE BIOLOGICAL BULLETIN 2018; 235:113-122. [PMID: 30358444 DOI: 10.1086/699705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some hydra strains belonging to the vulgaris group show a symbiotic relationship with green algae Chlorococcum sp. The symbiotic green algae can escape from the host polyps and can form swimming zoospores (which have two flagella) in culture solution. We observed that co-culture with the symbiotic polyps caused horizontal transmission of the symbionts into some non-symbiotic hydra strains that have no symbionts in nature and that belong not only to the vulgaris group but also to other hydra species groups. Although most of the horizontal transmission has ended in transient symbioses, a newly formed symbiosis between the symbiotic Chlorococcum sp. and strain 105 of Hydra vulgaris (Hydra magnipapillata) has been sustained for more than five years and has caused morphological and behavioral changes in the host polyps. We named this strain 105G. The asexual proliferation rate by budding increased under light conditions, although the feeding activity decreased and the polyp size was reduced in strain 105G. This new symbiosis between Chlorococcum sp. and strain 105G of H. vulgaris provides us with an intriguing research system for investigating the origin of symbiosis.
Collapse
|
297
|
Carthey AJR, Gillings MR, Blumstein DT. The Extended Genotype: Microbially Mediated Olfactory Communication. Trends Ecol Evol 2018; 33:885-894. [PMID: 30224089 DOI: 10.1016/j.tree.2018.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022]
Abstract
Microbes are now known to influence inter- and intraspecific olfactory signaling systems. They do so by producing metabolites that function as odorants. A unique attribute of such odorants is that they arise as a product of microbial-host interactions. These interactions need not be mutualistic, and indeed can be antagonistic. We develop an integrated ecoevolutionary model to explore microbially mediated olfactory communication and a process model that illustrates the various ways that microbial products might contribute to odorants. This novel approach generates testable predictions, including that selection to incorporate microbial products should be a common feature of infochemicals that communicate identity but not those that communicate fitness or quality. Microbes extend an individual's genotype, but also enhance vulnerability to environmental change.
Collapse
Affiliation(s)
- Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
298
|
Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota. mBio 2018; 9:mBio.01348-18. [PMID: 30206171 PMCID: PMC6134092 DOI: 10.1128/mbio.01348-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our understanding of mammalian evolution has become microbiome-aware. While emerging research links mammalian biodiversity and the gut microbiome, we lack insight into which microbes potentially impact mammalian evolution. Microbes common to diverse mammalian species may be strong candidates, as their absence in the gut may affect how the microbiome functionally contributes to mammalian physiology to adversely affect fitness. Identifying such conserved gut microbes is thus important to ultimately assessing the microbiome’s potential role in mammalian evolution. To advance their discovery, we developed an approach that identifies ancestrally related groups of microbes that distribute across mammals in a way that indicates their collective conservation. These conserved clades are presumed to have evolved a trait in their ancestor that matters to their distribution across mammals and which has been retained among clade members. We found not only that such clades do exist among mammals but also that they appear to be subject to natural selection and characterize human evolution. Our knowledge of how the gut microbiome relates to mammalian evolution benefits from the identification of gut microbial taxa that are unexpectedly prevalent or unexpectedly conserved across mammals. Such taxa enable experimental determination of the traits needed for such microbes to succeed as gut generalists, as well as those traits that impact mammalian fitness. However, the punctuated resolution of microbial taxonomy may limit our ability to detect conserved gut microbes, especially in cases in which broadly related microbial lineages possess shared traits that drive their apparent ubiquity across mammals. To advance the discovery of conserved mammalian gut microbes, we developed a novel ecophylogenetic approach to taxonomy that groups microbes into taxonomic units based on their shared ancestry and their common distribution across mammals. Applying this approach to previously generated gut microbiome data uncovered monophyletic clades of gut bacteria that are conserved across mammals. It also resolved microbial clades exclusive to and conserved among particular mammalian lineages. Conserved clades often manifest phylogenetic patterns, such as cophylogeny with their host, that indicate that they are subject to selective processes, such as host filtering. Moreover, this analysis identified variation in the rate at which mammals acquire or lose conserved microbial clades and resolved a human-accelerated loss of conserved clades. Collectively, the data from this study reveal mammalian gut microbiota that possess traits linked to mammalian phylogeny, point to the existence of a core set of microbes that comprise the mammalian gut microbiome, and clarify potential evolutionary or ecologic mechanisms driving the gut microbiome’s diversification throughout mammalian evolution.
Collapse
|
299
|
Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life? mSystems 2018; 3:e00097-18. [PMID: 30417109 PMCID: PMC6208643 DOI: 10.1128/msystems.00097-18] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Host-associated microbiota composition can be conserved over evolutionary time scales. Indeed, closely related species often host similar microbiota; i.e., the composition of their microbiota harbors a phylogenetic signal, a pattern sometimes referred to as "phylosymbiosis." Elucidating the origins of this pattern is important to better understand microbiota ecology and evolution. However, this is hampered by our lack of theoretical expectations and a comprehensive overview of phylosymbiosis prevalence in nature. Here, we use simulations to provide a simple expectation for when we should expect this pattern to occur and then review the literature to document the prevalence and strength of phylosymbiosis across the host tree of life. We demonstrate that phylosymbiosis can readily emerge from a simple ecological filtering process, whereby a given host trait (e.g., gut pH) that varies with host phylogeny (i.e., harbors a phylogenetic signal) filters preadapted microbes. We found marked differences between methods used to detect phylosymbiosis, so we proposed a series of practical recommendations based on using multiple best-performing approaches. Importantly, we found that, while the prevalence of phylosymbiosis is mixed in nature, it appears to be stronger for microbiotas living in internal host compartments (e.g., the gut) than those living in external compartments (e.g., the rhizosphere). We show that phylosymbiosis can theoretically emerge without any intimate, long-term coevolutionary mechanisms and that most phylosymbiosis patterns observed in nature are compatible with a simple ecological process. Deviations from baseline ecological expectations might be used to further explore more complex hypotheses, such as codiversification. IMPORTANCE Phylosymbiosis is a pattern defined as the tendency of closely related species to host microbiota whose compositions resemble each other more than host species drawn at random from the same tree. Understanding the mechanisms behind phylosymbiosis is important because it can shed light on rules governing the assembly of host-associated microbiotas and, potentially, their coevolutionary dynamics with hosts. For example, is phylosymbiosis a result of coevolution, or can it be generated by simple ecological filtering processes? Beyond qualitative theoretical models, quantitative theoretical expectations can provide new insights. For example, deviations from a simple baseline of ecological filtering may be used to test more-complex hypotheses (e.g., coevolution). Here, we use simulations to provide evidence that simple host-related ecological filtering can readily generate phylosymbiosis, and we contrast these predictions with real-world data. We find that while phylosymbiosis is widespread in nature, phylosymbiosis patterns are compatible with a simple ecological model in the majority of taxa. Internal compartments of hosts, such as the animal gut, often display stronger phylosymbiosis than expected from a purely ecological filtering process, suggesting that other mechanisms are also involved.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine M. Davis
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Loudon
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Waldan K. Kwong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Groussin
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura Wegener Parfrey
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
300
|
Li J, Zhan S, Liu X, Lin Q, Jiang J, Li X. Divergence of Fecal Microbiota and Their Associations With Host Phylogeny in Cervinae. Front Microbiol 2018; 9:1823. [PMID: 30214431 PMCID: PMC6125396 DOI: 10.3389/fmicb.2018.01823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal microbiota may shape the adaptation of their hosts to different habitats and lifestyles, thereby driving their evolutionary diversification. It remains unknown if gastrointestinal microbiota diverge in congruence with the phylogenetic relationships of their hosts. To evaluate the phylosymbiotic relationships, here we analyzed the compositions of fecal microbiota of seven Cervinae species raised in the Chengdu Zoo. All sampled animals were kept in the same environmental condition and fed identical fodder for years. Results showed that Firmicutes and Bacteroidetes were dominant in their fecal microbiota. Even though some bacteria (e.g., Ruminococcaceae) were found to be common in the feces of all investigated species, some genera (e.g., Sharpea and Succinivibrio) were only observed in animals with particular digestive systems. As for the intraspecies variations of microbial communities, only a few operational taxonomic units (OTUs) were shared among replicates of the same host species although they accounted for most of the total abundance. Correlation was observed between the fecal microbiota divergence and host phylogeny, but they were not congruent completely. This may shed new light on the coevolution of host species and their microbiota.
Collapse
Affiliation(s)
- Jiaying Li
- Key Laboratory of Environmental and Applied Microbiology - Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuanzhen Liu
- Chengdu Zoo, Chengdu Institute of Wildlife, Chengdu, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology - Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianping Jiang
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangzhen Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|