251
|
Davidson TB, Lee A, Hsu M, Sedighim S, Orpilla J, Treger J, Mastall M, Roesch S, Rapp C, Galvez M, Mochizuki A, Antonios J, Garcia A, Kotecha N, Bayless N, Nathanson D, Wang A, Everson R, Yong WH, Cloughesy TF, Liau LM, Herold-Mende C, Prins RM. Expression of PD-1 by T Cells in Malignant Glioma Patients Reflects Exhaustion and Activation. Clin Cancer Res 2018; 25:1913-1922. [PMID: 30498094 DOI: 10.1158/1078-0432.ccr-18-1176] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/27/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most common primary malignant tumor in the central nervous system. Our recent preclinical work has suggested that PD-1/PD-L1 plays an important immunoregulatory role to limit effective antitumor T-cell responses induced by active immunotherapy. However, little is known about the functional role that PD-1 plays on human T lymphocytes in patients with malignant glioma.Experimental Design: In this study, we examined the immune landscape and function of PD-1 expression by T cells from tumor and peripheral blood in patients with malignant glioma. RESULTS We found several differences between PD-1+ tumor-infiltrating lymphocytes (TIL) and patient-matched PD-1+ peripheral blood T lymphocytes. Phenotypically, PD-1+ TILs exhibited higher expression of markers of activation and exhaustion than peripheral blood PD-1+ T cells, which instead had increased markers of memory. A comparison of the T-cell receptor variable chain populations revealed decreased diversity in T cells that expressed PD-1, regardless of the location obtained. Functionally, peripheral blood PD-1+ T cells had a significantly increased proliferative capacity upon activation compared with PD-1- T cells. CONCLUSIONS Our evidence suggests that PD-1 expression in patients with glioma reflects chronically activated effector T cells that display hallmarks of memory and exhaustion depending on its anatomic location. The decreased diversity in PD-1+ T cells suggests that the PD-1-expressing population has a narrower range of cognate antigen targets compared with the PD-1 nonexpression population. This information can be used to inform how we interpret immune responses to PD-1-blocking therapies or other immunotherapies.
Collapse
Affiliation(s)
- Tom B Davidson
- Department of Pediatrics, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Alexander Lee
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Melody Hsu
- Department of Pediatrics, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Shaina Sedighim
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Joey Orpilla
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Janet Treger
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Max Mastall
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Mildred Galvez
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Aaron Mochizuki
- Department of Pediatrics, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Joseph Antonios
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Alejandro Garcia
- Department of Medicine/Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Nikesh Kotecha
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Nicholas Bayless
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Anthony Wang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Richard Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Robert M Prins
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California. .,Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
252
|
Pack AD, Collins MH, Rosenberg CS, Tarleton RL. Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection. PLoS Pathog 2018; 14:e1007410. [PMID: 30419010 PMCID: PMC6258465 DOI: 10.1371/journal.ppat.1007410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection is characterized by chronic parasitism of non-lymphoid tissues and is rarely eliminated despite potent adaptive immune responses. This failure to cure has frequently been attributed to a loss or impairment of anti-T. cruzi T cell responses over time, analogous to the T cell dysfunction described for other persistent infections. In this study, we have evaluated the role of CD8+ T cells during chronic T. cruzi infection (>100 dpi), with a focus on sites of pathogen persistence. Consistent with repetitive antigen exposure during chronic infection, parasite-specific CD8+ T cells from multiple organs expressed high levels of KLRG1, but exhibit a preferential accumulation of CD69+ cells in skeletal muscle, indicating recent antigen encounter in a niche for T. cruzi persistence. A significant proportion of CD8+ T cells in the muscle also produced IFNγ, TNFα and granzyme B in situ, an indication of their detection of and functional response to T. cruzi in vivo. CD8+ T cell function was crucial for the control of parasite burden during chronic infection as exacerbation of parasite load was observed upon depletion of this population. Attempts to improve T cell function by blocking PD-1 or IL-10, potential negative regulators of T cells, failed to increase IFNγ and TNFα production or to enhance T. cruzi clearance. These results highlight the capacity of the CD8+ T cell population to retain essential in vivo function despite chronic antigen stimulation and support a model in which CD8+ T cell dysfunction plays a negligible role in the ability of Trypanosoma cruzi to persist in mice. The parasite Trypanosoma cruzi establishes lifelong infections in humans and other mammals, leading to severe cardiac and gastrointestinal complications known as Chagas disease. Although the factors that enable T. cruzi persistence remain undefined, in this and many other infection models, pathogen persistence has been attributed to the exhaustion of the immune system, particularly of CD8+ T cells. Here, we show that the inability of hosts to fully resolve T. cruzi infection is not a result of immune exhaustion and that in fact the T. cruzi-specific CD8+ T cell population remains highly competent and actively suppresses parasite outgrowth throughout the chronic infection. These results demonstrate that compromised immunity is not the eventual outcome of all chronic infections and suggest that T. cruzi, and perhaps other pathogens, may employ alternative strategies to subvert immune clearance in the presence of highly functional pathogen-specific effectors. These findings also suggest that interventions to inhibit immune regulatory pathways or to otherwise boost existing immune responses in such infections, will have limited benefit.
Collapse
Affiliation(s)
- Angela D. Pack
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H. Collins
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S. Rosenberg
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
253
|
Krishna S, Ulrich P, Wilson E, Parikh F, Narang P, Yang S, Read AK, Kim-Schulze S, Park JG, Posner M, Wilson Sayres MA, Sikora A, Anderson KS. Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8 + T Cells in Head and Neck Cancer. Cancer Res 2018; 78:6159-6170. [PMID: 30154146 DOI: 10.1158/0008-5472.can-18-0163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Human papillomavirus subtype 16 (HPV16) is the primary cause of an increasing number of head and neck squamous cell carcinomas (HNSCC), providing strong rationale for T-cell immune therapies against HPV+ HNSCC. Here we assess immunogenicity of HPV16-specific CD8+ T cells (CTL) and characterize HPV-specific mechanisms of T-cell dysfunction. We identified 16 strong and 29 moderately immunogenic CTL-epitopes from HPV16 E2, E6, and E7 antigens restricted by 12 common HLA class I alleles. E2-specific CTL-reactivity was higher in patients with HPV+ HNSCC than in healthy controls (>3-fold; P = 0.026). Patient-derived E2, E6, and E7 peripheral CTLs exhibited heterogeneity in dysfunctional phenotypes. Immunogenomic analyses of 119 HNSCC transcriptomes revealed high T-cell infiltration and dysfunction in HPV+ HNSCC and correlation of HPV antigen expression with T-cell exhaustion gene signatures. Indoleamine 2,3-dioxygenase (IDO-1) was strongly expressed in HPV+ HNSCC versus HPV- HNSCC (P = 0.001) and correlated with E7 expression (R 2 = 0.84; P = 0.033). Combination treatment with PD-1 blockade and IDO-1 inhibition overcame profound CTL-dysfunction, enhancing HPV+ HNSCC sensitivity to CTL-cytotoxicity in vitro (up to 10-fold in E7-CTLs, P = 0.011). Our findings implicate mechanisms of T-cell escape in HPV+ HNSCC, wherein high tumoral HPV-antigen load results in high expression of immune dysfunction genes on tumor cells (e.g., IDO-1), and dysfunction of HPV-specific CTLs (e.g., E7, E2-CTLs). The HPV16 CTL-epitopes identified in this study, in combination with blockade of HPV+ HNSCC-specific PD-1/IDO-1 checkpoints, may be useful for targeted immunotherapy.Significance: This study evaluates the HPV antigen T-cell immunogenicity role of inhibitory receptors and other exhaustion markers in the cytotoxic function of HPV antigen-specific CTLs and identifies combined inhibition of PD-1/IDO-1 as a strategy to enhance CTL targeting of HPV+ HNSCC. Cancer Res; 78(21); 6159-70. ©2018 AACR.
Collapse
Affiliation(s)
- Sri Krishna
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Peaches Ulrich
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Eric Wilson
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona
| | - Falguni Parikh
- Department of Otolaryngology and Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Pooja Narang
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Shanshan Yang
- Biodesign Institute Bioinformatics Core Facility, Arizona State University, Tempe, Arizona
| | - Amelia K Read
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Jin G Park
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona
| | - Marshall Posner
- Tisch Cancer institute, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Andrew Sikora
- Department of Otolaryngology and Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Karen S Anderson
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona.
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
254
|
Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, Freeman SS, Reuben A, Hoover PJ, Villani AC, Ivanova E, Portell A, Lizotte PH, Aref AR, Eliane JP, Hammond MR, Vitzthum H, Blackmon SM, Li B, Gopalakrishnan V, Reddy SM, Cooper ZA, Paweletz CP, Barbie DA, Stemmer-Rachamimov A, Flaherty KT, Wargo JA, Boland GM, Sullivan RJ, Getz G, Hacohen N. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell 2018; 175:998-1013.e20. [PMID: 30388456 PMCID: PMC6641984 DOI: 10.1016/j.cell.2018.10.038] [Citation(s) in RCA: 1246] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/07/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Apyrase/antagonists & inhibitors
- Apyrase/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Humans
- Immunotherapy/methods
- Leukocyte Common Antigens/antagonists & inhibitors
- Leukocyte Common Antigens/immunology
- Melanoma/immunology
- Melanoma/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- T Cell Transcription Factor 1/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Keren Yizhak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Stacey L Bjorgaard
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - John P Ray
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Carl G de Boer
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Russell W Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - David J Lieb
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Michal Barzily-Rokni
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Biomedical Informatics, HMS, Boston, MA, USA
| | - Alexandre Reuben
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Hoover
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Brigham & Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Elena Ivanova
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Andrew Portell
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amir R Aref
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Jean-Pierre Eliane
- Department of Pathology, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Marc R Hammond
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Hans Vitzthum
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Shauna M Blackmon
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA
| | - Bo Li
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Virology, Harvard Medical School, Boston, MA, USA
| | | | - Sangeetha M Reddy
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cloud P Paweletz
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - David A Barbie
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | | | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, HMS, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA.
| |
Collapse
|
255
|
Pando A, Reagan JL, Nevola M, Fast LD. Induction of anti-leukemic responses by stimulation of leukemic CD3+ cells with allogeneic stimulator cells. Exp Hematol Oncol 2018; 7:25. [PMID: 30323982 PMCID: PMC6172765 DOI: 10.1186/s40164-018-0118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023] Open
Abstract
Background Immunotherapeutic protocols have focused on identification of stimuli that induce effective anti-leukemic immune responses. One potent immune stimulus is the encounter with allogeneic cells. Our group previously showed that the infusion of haploidentical donor white blood cells (1-2 × 108 CD3+ cells/kg) into patients with refractory hematological malignancies induced responses of varying magnitude in over half of the patients. Because donor cells were eliminated within 2 weeks in these patients, it is presumed that the responses of recipient lymphocytes were critically important in achieving prolonged anti-leukemic responses. Methods The role of patient CD3+ cells in anti-leukemic responses was examined by isolating peripheral blood mononuclear cells from newly diagnosed leukemic patients. Immunophenotyping was performed on these peripheral blood mononuclear cells. CD3+ cells were isolated from the peripheral blood mononuclear cells and tested for their ability to proliferate and lyse autologous leukemic cells when stimulated with unrelated allogeneic cells. Results Allostimulated CD3+ cells effectively generated cytolytic responses to autologous CD3-cells in 11/21 patients. Increased numbers of CD4+ cells expressing high levels of granzyme A, B and perforin and CD8+CD39+ cells were found in nonresponsive CD3+ cells. Conclusions These results indicate that CD3+ cells from leukemic patients are capable of generating anti-leukemic responses when stimulated with unrelated allogeneic cells. This model can be used to identify approaches using alloreactive responses by patient lymphocytes to enhance in vivo anti-leukemic responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Martha Nevola
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Loren D Fast
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| |
Collapse
|
256
|
Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. T cell exhaustion implications during transplantation. Immunol Lett 2018; 202:52-58. [PMID: 30130559 DOI: 10.1016/j.imlet.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Exhaustion of lymphocyte function, particularly T cell exhaustion, due to prolonged exposure to a high load of foreign antigen is commonly seen during chronic viral infection as well as antitumor immune responses. This phenomenon has been associated with a determined molecular mechanism and phenotypic manifestations on the cell surface. In spite of investigation of exhaustion, mostly about CD8 responses toward viral infections, recent studies have reported that chronic exposure to antigen may develop exhaustion in CD4 + T cells, B cells, and NK cells. Little is known with respect to lymphocyte exhaustion during transplantation and its effect on aberrant anti-graft responses. Through a same mechanobiology observed during chronic exposure of foreign viral antigens, alloantigen persistence mediated by allograft could develop a favorable circumstance for exhaustion of T cells responding to allograft. However, to achieve better manipulation approaches of this event to reduce the complications during transplantation, we need to be armed with a bulk of knowledge with regard to quality and quantity of T cell exhaustion occurring in various allografts, the kinetics of exhaustion development, the impression of immunosuppressive agents on the exhaustion, and the influence of exhaustion on graft survival and immune tolerance.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Soltanzadeh-Yamchi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
257
|
Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, Goodall CP, Blair TC, Fox BA, McDermott JE, Chang SC, Grunkemeier G, Leidner R, Bell RB, Weinberg AD. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018; 9:2724. [PMID: 30006565 PMCID: PMC6045647 DOI: 10.1038/s41467-018-05072-0] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Identifying tumor antigen-specific T cells from cancer patients has important implications for immunotherapy diagnostics and therapeutics. Here, we show that CD103+CD39+ tumor-infiltrating CD8 T cells (CD8 TIL) are enriched for tumor-reactive cells both in primary and metastatic tumors. This CD8 TIL subset is found across six different malignancies and displays an exhausted tissue-resident memory phenotype. CD103+CD39+ CD8 TILs have a distinct T-cell receptor (TCR) repertoire, with T-cell clones expanded in the tumor but present at low frequencies in the periphery. CD103+CD39+ CD8 TILs also efficiently kill autologous tumor cells in a MHC-class I-dependent manner. Finally, higher frequencies of CD103+CD39+ CD8 TILs in patients with head and neck cancer are associated with better overall survival. Our data thus describe an approach for detecting tumor-reactive CD8 TILs that will help define mechanisms of existing immunotherapy treatments, and may lead to future adoptive T-cell cancer therapies. Identifying and enumerating tumor-specific CD8 T cells are important for assessing cancer prognosis and therapy efficacy. Here the authors show that CD39 and CD103 mark a subset of tumor-infiltrating CD8 T cells that are tumor-reactive and exhibit characteristics of exhausted or tissue-resident memory T cells.
Collapse
Affiliation(s)
- Thomas Duhen
- AgonOx, Inc., 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA.
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Ryan Montler
- AgonOx, Inc., 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Jake Moses
- AgonOx, Inc., 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Tarsem Moudgil
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Noel F de Miranda
- Department of Pathology, Leiden University Medical Center, P1-43, LUMC, Albinusdreef 2, 2333, Leiden, The Netherlands
| | - Cheri P Goodall
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Tiffany C Blair
- AgonOx, Inc., 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Computational Biology and Bioinformatics Group, MSIN: J4-33, 902 Battelle Boulevard, PO Box 999, Richland, WA, 99352, USA
| | - Shu-Ching Chang
- Medical Data Research Center, Providence Saint Joseph's Health, 9205 SW Barnes Road, Portland, OR, 97225, USA
| | - Gary Grunkemeier
- Medical Data Research Center, Providence Saint Joseph's Health, 9205 SW Barnes Road, Portland, OR, 97225, USA
| | - Rom Leidner
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Richard Bryan Bell
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA
| | - Andrew D Weinberg
- AgonOx, Inc., 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA. .,Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan Street 2N35, Portland, OR, 97213, USA.
| |
Collapse
|
258
|
Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, Luong T, Tsochatzis EA, Thorburn D, Pinzani M. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 2018; 68:172-186. [PMID: 29328499 DOI: 10.1002/hep.29782] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - Francesca Saffioti
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Clinical and Experimental Medicine, Division of Clinical and Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Davide Roccarina
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Matteo Rosselli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Andrew Hall
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - TuVinh Luong
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Emmanuel A Tsochatzis
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Douglas Thorburn
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
259
|
Mazouz S, Boisvert M, Shoukry NH, Lamarre D. Reversing immune dysfunction and liver damage after direct-acting antiviral treatment for hepatitis C. CANADIAN LIVER JOURNAL 2018; 1:78-105. [DOI: 10.3138/canlivj.1.2.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
The introduction of small molecules targeting viral functions has caused a paradigm shift in hepatitis C virus (HCV) treatment. Administration of these direct-acting antivirals (DAAs) achieves a complete cure in almost all treated patients with short-duration therapy and minimal side effects. Although this is a major improvement over the previous pegylated interferon plus ribavirin (PEG-IFNα/RBV) standard-of-care treatment for HCV, remaining questions address several aspects of the long-term benefits of DAA therapy. Interferon (IFN)-based treatment with successful outcome was associated with substantial reduction in liver disease–related mortality. However, emerging data suggest a complex picture and several confounding factors that influence the effect of both IFN-based and DAA therapies on immune restoration and limiting liver disease progression. We review current knowledge of restoration of innate and HCV-specific immune responses in DAA-mediated viral elimination in chronic HCV infection, and we identify future research directions to achieve long-term benefits in all cured patients and reduce HCV-related liver disease morbidity and mortality.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
260
|
Shoukry NH. Hepatitis C Vaccines, Antibodies, and T Cells. Front Immunol 2018; 9:1480. [PMID: 30002657 PMCID: PMC6031729 DOI: 10.3389/fimmu.2018.01480] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
The development of vaccines that protect against persistent hepatitis C virus (HCV) infection remain a public health priority. The broad use of highly effective direct-acting antivirals (DAAs) is unlikely to achieve HCV elimination without vaccines that can limit viral transmission. Two vaccines targeting either the antibody or the T cell response are currently in preclinical or clinical trials. Next-generation vaccines will likely involve a combination of these two strategies. This review summarizes the state of knowledge about the immune protective role of HCV-specific antibodies and T cells and the current vaccine strategies. In addition, it discusses the potential efficacy of vaccination in DAA-cured individuals. Finally, it summarizes the challenges to vaccine development and the collaborative efforts required to overcome them.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
261
|
A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 2018; 24:994-1004. [PMID: 29892065 PMCID: PMC6110381 DOI: 10.1038/s41591-018-0057-z] [Citation(s) in RCA: 820] [Impact Index Per Article: 117.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Evidence from mouse chronic viral infection models suggests that CD8+ T cell subsets characterized by distinct expression levels of the receptor PD-1 diverge in their state of exhaustion and potential for reinvigoration by PD-1 blockade. However, it remains unknown whether T cells in human cancer adopt a similar spectrum of exhausted states based on PD-1 expression levels. We compared transcriptional, metabolic and functional signatures of intratumoral CD8+ T lymphocyte populations with high (PD-1T), intermediate (PD-1N) and no PD-1 expression (PD-1-) from non-small-cell lung cancer patients. PD-1T T cells showed a markedly different transcriptional and metabolic profile from PD-1N and PD-1- lymphocytes, as well as an intrinsically high capacity for tumor recognition. Furthermore, while PD-1T lymphocytes were impaired in classical effector cytokine production, they produced CXCL13, which mediates immune cell recruitment to tertiary lymphoid structures. Strikingly, the presence of PD-1T cells was strongly predictive for both response and survival in a small cohort of non-small-cell lung cancer patients treated with PD-1 blockade. The characterization of a distinct state of tumor-reactive, PD-1-bright lymphocytes in human cancer, which only partially resembles that seen in chronic infection, provides potential avenues for therapeutic intervention.
Collapse
|
262
|
Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018; 557:575-579. [PMID: 29769722 DOI: 10.1038/s41586-018-0130-2] [Citation(s) in RCA: 958] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/18/2018] [Indexed: 02/08/2023]
Abstract
Various forms of immunotherapy, such as checkpoint blockade immunotherapy, are proving to be effective at restoring T cell-mediated immune responses that can lead to marked and sustained clinical responses, but only in some patients and cancer types1-4. Patients and tumours may respond unpredictably to immunotherapy partly owing to heterogeneity of the immune composition and phenotypic profiles of tumour-infiltrating lymphocytes (TILs) within individual tumours and between patients5,6. Although there is evidence that tumour-mutation-derived neoantigen-specific T cells play a role in tumour control2,4,7-10, in most cases the antigen specificities of phenotypically diverse tumour-infiltrating T cells are largely unknown. Here we show that human lung and colorectal cancer CD8+ TILs can not only be specific for tumour antigens (for example, neoantigens), but also recognize a wide range of epitopes unrelated to cancer (such as those from Epstein-Barr virus, human cytomegalovirus or influenza virus). We found that these bystander CD8+ TILs have diverse phenotypes that overlap with tumour-specific cells, but lack CD39 expression. In colorectal and lung tumours, the absence of CD39 in CD8+ TILs defines populations that lack hallmarks of chronic antigen stimulation at the tumour site, supporting their classification as bystanders. Expression of CD39 varied markedly between patients, with some patients having predominantly CD39- CD8+ TILs. Furthermore, frequencies of CD39 expression among CD8+ TILs correlated with several important clinical parameters, such as the mutation status of lung tumour epidermal growth factor receptors. Our results demonstrate that not all tumour-infiltrating T cells are specific for tumour antigens, and suggest that measuring CD39 expression could be a straightforward way to quantify or isolate bystander T cells.
Collapse
|
263
|
Raczkowski F, Rissiek A, Ricklefs I, Heiss K, Schumacher V, Wundenberg K, Haag F, Koch-Nolte F, Tolosa E, Mittrücker HW. CD39 is upregulated during activation of mouse and human T cells and attenuates the immune response to Listeria monocytogenes. PLoS One 2018; 13:e0197151. [PMID: 29742141 PMCID: PMC5942830 DOI: 10.1371/journal.pone.0197151] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
The ectoenzymes CD39 and CD73 degrade extracellular ATP to adenosine. ATP is released by stressed or damaged cells and provides pro-inflammatory signals to immune cells through P2 receptors. Adenosine, on the other hand, suppresses immune cells by stimulating P1 receptors. Thus, CD39 and CD73 can shape the quality of immune responses. Here we demonstrate that upregulation of CD39 is a consistent feature of activated conventional CD4+ and CD8+ T cells. Following stimulation in vitro, CD4+ and CD8+ T cells from human blood gained surface expression of CD39 but displayed only low levels of CD73. Activated human T cells from inflamed joints largely presented with a CD39+CD73— phenotype. In line, in spleens of mice with acute Listeria monocytogenes, listeria-specific CD4+ and CD8+ T cells acquired a CD39+CD73— phenotype. To test the function of CD39 in control of bacterial infection, CD39-deficient (CD39-/-) mice were infected with L. monocytogenes. CD39-/- mice showed better initial control of L. monocytogenes, which was associated with enhanced production of inflammatory cytokines. In the late stage of infection, CD39-/- mice accumulated more listeria-specific CD8+ T cells in the spleen than wildtype animals suggesting that CD39 attenuates the CD8+ T-cell response to infection. In conclusion, our results demonstrate that CD39 is upregulated on conventional CD4+ and CD8+ T cells at sites of acute infection and inflammation, and that CD39 dampens responses to bacterial infection.
Collapse
Affiliation(s)
- Friederike Raczkowski
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Ricklefs
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten Heiss
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira Wundenberg
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
264
|
Gangaplara A, Martens C, Dahlstrom E, Metidji A, Gokhale AS, Glass DD, Lopez-Ocasio M, Baur R, Kanakabandi K, Porcella SF, Shevach EM. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog 2018; 14:e1006985. [PMID: 29672594 PMCID: PMC5929570 DOI: 10.1371/journal.ppat.1006985] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/01/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/β receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity. Type I interferons (IFNs) play a predominant role in the immune response to infectious pathogens. The cellular targets of IFNs have been difficult to dissect because of the ubiquitous expression of the type I interferon receptor (IFNAR). The immune response of mice to lymphocytic choriomeningitis virus (LCMV) is one of the major models for analyzing the action of IFNs. Regulatory T cells (Tregs) have been implicated in the control of LCMV and it has been proposed that IFN may influence their function. The major goal of this study was to define the contribution of IFN signaling on Treg function during different stages LCMV infection. Tregs from mice with selective deletion of IFNAR manifested enhanced suppressive activity during acute/chronic LCMV infection resulting in increased CD8 T cell anergy, defective generation of memory T cells and persistence of virus. Similar effects of IFNAR signaling in Tregs were seen in a tumor model. We identified a unique set of genes in Tregs modulated by IFN signaling that may contribute to the enhanced suppressive function of IFNAR deficient Tregs. IFNs play a beneficial role during acute/chronic viral infections not only by contributing to viral clearance but also by attenuating the function of Tregs.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Arenaviridae Infections/drug therapy
- Arenaviridae Infections/immunology
- Arenaviridae Infections/metabolism
- Arenaviridae Infections/virology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/virology
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Interferon Type I/pharmacology
- Interferon-gamma/metabolism
- Lymphocytic Choriomeningitis/drug therapy
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/drug effects
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/virology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Craig Martens
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Amina Metidji
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- The Francis Crick Institute, London, United Kingdom
| | - Ameya S. Gokhale
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Deborah D. Glass
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Maria Lopez-Ocasio
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel Baur
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Kishore Kanakabandi
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Stephen F. Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
265
|
Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE. T-cell Dysfunction in Glioblastoma: Applying a New Framework. Clin Cancer Res 2018; 24:3792-3802. [PMID: 29593027 DOI: 10.1158/1078-0432.ccr-18-0047] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
A functional, replete T-cell repertoire is an integral component to adequate immune surveillance and to the initiation and maintenance of productive antitumor immune responses. Glioblastoma (GBM), however, is particularly adept at sabotaging antitumor immunity, eliciting severe T-cell dysfunction that is both qualitative and quantitative. Understanding and countering such dysfunction are among the keys to harnessing the otherwise stark potential of anticancer immune-based therapies. Although T-cell dysfunction in GBM has been long described, newer immunologic frameworks now exist for reclassifying T-cell deficits in a manner that better permits their study and reversal. Herein, we divide and discuss the various T-cell deficits elicited by GBM within the context of the five relevant categories: senescence, tolerance, anergy, exhaustion, and ignorance. Categorization is appropriately made according to the molecular bases of dysfunction. Likewise, we review the mechanisms by which GBM elicits each mode of T-cell dysfunction and discuss the emerging immunotherapeutic strategies designed to overcome them. Clin Cancer Res; 24(16); 3792-802. ©2018 AACR.
Collapse
Affiliation(s)
- Karolina I Woroniecka
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristen E Rhodin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristin A Keith
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
266
|
Canale FP, Ramello MC, Montes CL. CD39 as a marker of pathogenic CD8+ T cells in cancer and other chronic inflammatory diseases. Oncoscience 2018; 5:65-66. [PMID: 29854871 PMCID: PMC5978445 DOI: 10.18632/oncoscience.404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/21/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Fernando Pablo Canale
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina
| | - María Cecilia Ramello
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Carolina Lucía Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
267
|
Mohme M, Schliffke S, Maire CL, Rünger A, Glau L, Mende KC, Matschke J, Gehbauer C, Akyüz N, Zapf S, Holz M, Schaper M, Martens T, Schmidt NO, Peine S, Westphal M, Binder M, Tolosa E, Lamszus K. Immunophenotyping of Newly Diagnosed and Recurrent Glioblastoma Defines Distinct Immune Exhaustion Profiles in Peripheral and Tumor-infiltrating Lymphocytes. Clin Cancer Res 2018; 24:4187-4200. [DOI: 10.1158/1078-0432.ccr-17-2617] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/24/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
|
268
|
Del Mar Valenzuela-Membrives M, Perea-García F, Sanchez-Palencia A, Ruiz-Cabello F, Gómez-Morales M, Miranda-León MT, Galindo-Angel I, Fárez-Vidal ME. Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget 2018; 7:71608-71619. [PMID: 27689405 PMCID: PMC5342105 DOI: 10.18632/oncotarget.12264] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023] Open
Abstract
Immune cell infiltration is a common feature of many human solid tumors. Innate and adaptative immune systems contribute to tumor immunosurveillance. We investigated whether tumors evade immune surveillance by inducing states of tolerance and/or through the inability of some immune subpopulations to effectively penetrate tumor nests. Immunohistochemistry and flow cytometry analysis were used to study the composition and distribution of immune subpopulations in samples of peripheral blood, tumor tissue (TT), adjacent tumor tissue (ATT), distant non-tumor tissue (DNTT), cancer nests, cancer stroma, and invasive margin in 61 non-small-cell lung cancer (NSCLC) patients. A significantly higher percentage of T and B cells and significantly lower percentage of NK cells were detected in TT than in DNTT. Memory T cells (CD4+CD45RO+, CD8+CD45RO+) and activated T cells (CD8+DR+) were more prevalent in TT. Alongside this immune activation, the percentage of T cells with immunosuppressive activity was higher in TT than in DNTT. B- cells were practically non-existent in tumor nests and were preferentially located in the invasive margin. The dominant NK cell phenotype in peripheral blood and DNTT was the cytotoxic phenotype (CD56+ CD16+), while the presence of these cells was significantly decreased in ATT and further decreased in TT. Finally, the immunologic response differed between adenocarcinoma and squamous cell carcinoma and according to the tumor differentiation grade. These findings on the infiltration of innate and adaptative immune cells into tumors contribute to a more complete picture of the immune reaction in NSCLC.
Collapse
Affiliation(s)
| | - Francisco Perea-García
- Institute for Biomedical Research, Virgen de las Nieves University Hospital, Granada, Spain
| | - Abel Sanchez-Palencia
- Department of Thoracic Surgery, Virgen de las Nieves University Hospital, Granada, Spain
| | - Francisco Ruiz-Cabello
- Institute for Biomedical Research, Virgen de las Nieves University Hospital, Granada, Spain
| | | | - María Teresa Miranda-León
- Department of Statistics and Operative Research, School of Medicine, University of Granada, Granada, Spain
| | | | - María Esther Fárez-Vidal
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
269
|
Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, Elsamadicy AA, Cui X, Koyama S, Jackson C, Hansen LJ, Johanns TM, Sanchez-Perez L, Chandramohan V, Yu YRA, Bigner DD, Giles A, Healy P, Dranoff G, Weinhold KJ, Dunn GP, Fecci PE. T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Clin Cancer Res 2018; 24:4175-4186. [PMID: 29437767 DOI: 10.1158/1078-0432.ccr-17-1846] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/02/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Purpose: T-cell dysfunction is a hallmark of glioblastoma (GBM). Although anergy and tolerance have been well characterized, T-cell exhaustion remains relatively unexplored. Exhaustion, characterized in part by the upregulation of multiple immune checkpoints, is a known contributor to failures amid immune checkpoint blockade, a strategy that has lacked success thus far in GBM. This study is among the first to examine, and credential as bona fide, exhaustion among T cells infiltrating human and murine GBM.Experimental Design: Tumor-infiltrating and peripheral blood lymphocytes (TILs and PBLs) were isolated from patients with GBM. Levels of exhaustion-associated inhibitory receptors and poststimulation levels of the cytokines IFNγ, TNFα, and IL2 were assessed by flow cytometry. T-cell receptor Vβ chain expansion was also assessed in TILs and PBLs. Similar analysis was extended to TILs isolated from intracranial and subcutaneous immunocompetent murine models of glioma, breast, lung, and melanoma cancers.Results: Our data reveal that GBM elicits a particularly severe T-cell exhaustion signature among infiltrating T cells characterized by: (1) prominent upregulation of multiple immune checkpoints; (2) stereotyped T-cell transcriptional programs matching classical virus-induced exhaustion; and (3) notable T-cell hyporesponsiveness in tumor-specific T cells. Exhaustion signatures differ predictably with tumor identity, but remain stable across manipulated tumor locations.Conclusions: Distinct cancers possess similarly distinct mechanisms for exhausting T cells. The poor TIL function and severe exhaustion observed in GBM highlight the need to better understand this tumor-imposed mode of T-cell dysfunction in order to formulate effective immunotherapeutic strategies targeting GBM. Clin Cancer Res; 24(17); 4175-86. ©2018 AACRSee related commentary by Jackson and Lim, p. 4059.
Collapse
Affiliation(s)
- Karolina Woroniecka
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristen Rhodin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Hanna Kemeny
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Cosette Dechant
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - S Harrison Farber
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Aladine A Elsamadicy
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Xiuyu Cui
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Shohei Koyama
- Department of Medical Oncology and Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Christina Jackson
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Landon J Hansen
- Department of Pharmacology and Molecular Cancer Biology, Duke University, Durham, North Carolina
| | - Tanner M Johanns
- Division of Medical Oncology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - Yen-Rei Andrea Yu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Amber Giles
- Neuro-oncology Division, National Institutes of Health, Bethesda, Maryland
| | - Patrick Healy
- Department of Biostatistics, Duke University, Durham, North Carolina
| | - Glenn Dranoff
- Department of Medical Oncology and Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Kent J Weinhold
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Gavin P Dunn
- Department of Neurological Surgery, Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, Missouri
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
270
|
Fisicaro P, Boni C, Barili V, Laccabue D, Ferrari C. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming. Curr Opin Virol 2018; 30:1-8. [PMID: 29414066 DOI: 10.1016/j.coviro.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/04/2017] [Accepted: 01/12/2018] [Indexed: 02/08/2023]
Abstract
HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
271
|
Barnes E. Unravelling the fate of functional PD1+ T cells in chronic viral hepatitis. J Clin Invest 2018; 128:573-576. [PMID: 29309052 PMCID: PMC5785249 DOI: 10.1172/jci99035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection can be managed clinically with nucleos(t)ide therapy, which suppresses viral replication; however, these drugs must often be used long term, as they are unable to fully eliminate the virus. For many patients, discontinuation of treatment results in viral resurgence and hepatic flare, and there is not a reliable way to identify those individuals that can be successfully taken off nucleos(t)ide therapy. In this issue of the JCI, Rivino and colleagues report on their use of a multipronged approach to investigate potential biomarkers indicative of HBV-infected patients who can safely stop nucleos(t)ide therapy. The authors identified a population of HBV-specific, PD1-positive T cells that was present in HBV-infected patients who successfully discontinued treatment without hepatic flare, but not in those that developed flare upon treatment cessation. Together, these results support the concept that PD1+ cells may play an important role in viral control, the further evaluation of this T cell subset in preventing hepatic flare, and the development of assays to better detect this PD1+ T cell population in HBV-infected patients on nucleos(t)ide therapy.
Collapse
|
272
|
Ravimohan S, Tamuhla N, Nfanyana K, Ni H, Steenhoff AP, Gross R, Weissman D, Bisson GP. Elevated Pre-Antiretroviral Therapy CD39+CD8+ T Cell Frequency Is Associated With Early Mortality in Advanced Human Immunodeficiency Virus/Tuberculosis Co-infection. Clin Infect Dis 2018; 64:1453-1456. [PMID: 28203772 DOI: 10.1093/cid/cix155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Correlates of death soon after antiretroviral therapy (ART) initiation remain unclear. We investigated the association between expression of CD39, a novel immune exhaustion marker, and early mortality in patients with human immunodeficiency virus/tuberculosis co-infection. Elevated pre-ART CD39+CD8+ T cell frequency was independently associated with mortality within 6 months of ART initiation.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Department of Medicine, Division of Infectious Diseases and.,Botswana-UPenn Partnership, Gaborone
| | | | | | - Houping Ni
- Department of Medicine, Division of Infectious Diseases and
| | - Andrew P Steenhoff
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.,Botswana-UPenn Partnership, Gaborone.,Children's Hospital of Philadelphia, Pennsylvania, and
| | - Robert Gross
- Department of Medicine, Division of Infectious Diseases and.,Botswana-UPenn Partnership, Gaborone.,Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Drew Weissman
- Department of Medicine, Division of Infectious Diseases and.,Botswana-UPenn Partnership, Gaborone
| | - Gregory P Bisson
- Department of Medicine, Division of Infectious Diseases and.,Botswana-UPenn Partnership, Gaborone.,Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
273
|
ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 2018; 92:JVI.01748-17. [PMID: 29118125 DOI: 10.1128/jvi.01748-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and β chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.
Collapse
|
274
|
|
275
|
Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, Tosello Boari J, Del Castillo A, Ledesma M, Sedlik C, Piaggio E, Gruppi A, Acosta Rodríguez EA, Montes CL. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8 + T Cells. Cancer Res 2018; 78:115-128. [PMID: 29066514 DOI: 10.1158/0008-5472.can-16-2684] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 04/10/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ecto-nucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNγ production by responder CD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNγ, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induce CD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule on CD8+ T cells, with implications for defining a biomarker of T-cell dysfunction and a target for immunotherapeutic intervention.Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function. Cancer Res; 78(1); 115-28. ©2017 AACR.
Collapse
Affiliation(s)
- Fernando P Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - María C Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Nicolás Núñez
- SiRIC TransImm, Translational Immunotherapy Team, Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
| | - Cintia L Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Sabrina N Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | | | | | - Christine Sedlik
- SiRIC TransImm, Translational Immunotherapy Team, Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Eliane Piaggio
- SiRIC TransImm, Translational Immunotherapy Team, Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Eva A Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Carolina L Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
276
|
Cicin-Sain L, Arens R. Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection. Trends Microbiol 2017; 26:498-509. [PMID: 29249600 DOI: 10.1016/j.tim.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Virology, Medical School Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany.
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
277
|
Hosie L, Pachnio A, Zuo J, Pearce H, Riddell S, Moss P. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 + T-Cell Repertoire in Older People. Front Immunol 2017; 8:1776. [PMID: 29312307 PMCID: PMC5732243 DOI: 10.3389/fimmu.2017.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection elicits a strong T-cell immune response, which increases further during aging in a process termed "memory inflation." CMV downregulates the expression of HLA-A and HLA-B on the surface of infected cells to limit presentation of viral peptides to T-cells although HLA-C is relatively spared as it also engages with inhibitory killer immunoglobulin receptor receptors and therefore reduces lysis by natural killer cells. We investigated the magnitude and functional properties of CMV-specific CD8+ T-cells specific for 10 peptides restricted by HLA-C in a cohort of 53 donors between the age of 23 and 91 years. This was achieved via peptide stimulation of PBMCs followed by multicolor flow cytometry. Three peptides, derived from proteins generated in the immediate-early period of viral replication and restricted by HLA-Cw*0702, elicited strong immune responses, which increased substantially with age such that the average aggregate response represented 37% of the CD8+ T-cell pool within donors above 70 years of age. Remarkably, a single response represented 70% of the total CD8+ T-cell pool within a 91-year-old donor. HLA-Cw*0702-restricted CD8+ T-cell responses were immunodominant over HLA-A and HLA-B-restricted CMV-specific responses and did not show features of exhaustion such as PD-1 or CD39 expression. Indeed, such CTL exhibit a polyfunctional cytokine profile with co-expression of IFN-γ and TNF-α and a strong cytotoxic phenotype with intracellular expression of perforin and granzymeB. Functionally, HLA-Cw*0702-restricted CTL show exceptionally high avidity for cognate peptide-HLA and demonstrate very early and efficient recognition of virally infected cells. These observations indicate that CD8+ T-cells restricted by HLA-C play an important role in the control of persistent CMV infection and could represent a novel opportunity for CD8+ T-cell therapy of viral infection within immunosuppressed patients. In addition, the findings provide further evidence for the importance of HLA-C-restricted T-cells in the control of chronic viral infection.
Collapse
Affiliation(s)
- Louise Hosie
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Hayden Pearce
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
278
|
Abstract
Despite the success of anti-programmed cell death protein 1 (PD1), anti-PD1 ligand 1 (PDL1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) therapies in advanced cancer, a considerable proportion of patients remain unresponsive to these treatments (known as innate resistance). In addition, one-third of patients relapse after initial response (known as adaptive resistance), which suggests that multiple non-redundant immunosuppressive mechanisms coexist within the tumour microenvironment. A major immunosuppressive mechanism is the adenosinergic pathway, which now represents an attractive new therapeutic target for cancer therapy. Activation of this pathway occurs within hypoxic tumours, where extracellular adenosine exerts local suppression through tumour-intrinsic and host-mediated mechanisms. Preclinical studies in mice with adenosine receptor antagonists and antibodies have reported favourable antitumour immune responses with some definition of the mechanism of action. Currently, agents targeting the adenosinergic pathway are undergoing first-in-human clinical trials as single agents and in combination with anti-PD1 or anti-PDL1 therapies. In this Review, we describe the complex interplay of adenosine and adenosine receptors in the development of primary tumours and metastases and discuss the merits of targeting one or more components that compose the adenosinergic pathway. We also review the early clinical data relating to therapeutic agents inhibiting the adenosinergic pathway.
Collapse
Affiliation(s)
- Dipti Vijayan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| | - Arabella Young
- Diabetes Center, University of California, San Francisco, California 94143, USA
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia
| |
Collapse
|
279
|
Kaczanowska S, Joseph AM, Guo J, Tsai AK, Lasola JJ, Younger K, Zhang Y, Gonzales CV, Davila E. A Synthetic CD8α:MyD88 Coreceptor Enhances CD8 + T-cell Responses to Weakly Immunogenic and Lowly Expressed Tumor Antigens. Cancer Res 2017; 77:7049-7058. [PMID: 29055013 DOI: 10.1158/0008-5472.can-17-0653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
T cell-based immunotherapies are a promising approach for patients with advanced cancers. However, various obstacles limit T-cell efficacy, including suboptimal T-cell receptor (TCR) activation and an immunosuppressive tumor environment. Here, we developed a fusion protein by linking CD8α and MyD88 (CD8α:MyD88) to enhance CD8+ T-cell responses to weakly immunogenic and poorly expressed tumor antigens. CD8α:MyD88-engineered T cells exhibited increased proliferation and expression of effector and costimulatory molecules in a tumor antigen-dependent manner. These effects were accompanied by elevated activation of TCR and Toll-like receptor signaling-related proteins. CD8α:MyD88-expressing T cells improved antitumor responses in mice. Enhanced antitumor activity was associated with a unique tumor cytokine/chemokine signature, improved T-cell infiltration, reduced markers of T-cell exhaustion, elevated levels of proteins associated with antigen presentation, and fewer macrophages with an immunosuppressive phenotype in tumors. Given these observations, CD8α:MyD88 represents a unique and versatile approach to help overcome immunosuppression and enhance T-cell responses to tumor antigens. Cancer Res; 77(24); 7049-58. ©2017 AACR.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Ann Mary Joseph
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Jitao Guo
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Alexander K Tsai
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Jackline Joy Lasola
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Kenisha Younger
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Yuji Zhang
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Epidemiology and Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Cruz Velasco Gonzales
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eduardo Davila
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland. .,Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland
| |
Collapse
|
280
|
Goronzy JJ, Weyand CM. Successful and Maladaptive T Cell Aging. Immunity 2017; 46:364-378. [PMID: 28329703 DOI: 10.1016/j.immuni.2017.03.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Throughout life, the T cell system adapts to shifting resources and demands, resulting in a fundamentally restructured immune system in older individuals. Here we review the cellular and molecular features of an aged immune system and discuss the trade-offs inherent to these adaptive mechanisms. Processes include homeostatic proliferation that maintains compartment size at the expense of partial loss in stemness and incomplete differentiation and the activation of negative regulatory programs, which constrain effector T cell expansion and prevent increasing oligoclonality but also interfere with memory cell generation. We propose that immune failure occurs when adaptive strategies developed by the aging T cell system fail and also discuss how, in some settings, the programs associated with T cell aging culminates in a maladaptive response that directly contributes to chronic inflammatory disease.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
281
|
Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann PS, King EV, Thomas GJ, Sanchez-Elsner T, Vijayanand P, Ottensmeier CH. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol 2017; 18:940-950. [PMID: 28628092 PMCID: PMC6036910 DOI: 10.1038/ni.3775] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
Therapies that boost the anti-tumor responses of cytotoxic T lymphocytes (CTLs) have shown promise; however, clinical responses to the immunotherapeutic agents currently available vary considerably, and the molecular basis of this is unclear. We performed transcriptomic profiling of tumor-infiltrating CTLs from treatment-naive patients with lung cancer to define the molecular features associated with the robustness of anti-tumor immune responses. We observed considerable heterogeneity in the expression of molecules associated with activation of the T cell antigen receptor (TCR) and of immunological-checkpoint molecules such as 4-1BB, PD-1 and TIM-3. Tumors with a high density of CTLs showed enrichment for transcripts linked to tissue-resident memory cells (TRM cells), such as CD103, and CTLs from CD103hi tumors displayed features of enhanced cytotoxicity. A greater density of TRM cells in tumors was predictive of a better survival outcome in lung cancer, and this effect was independent of that conferred by CTL density. Here we define the 'molecular fingerprint' of tumor-infiltrating CTLs and identify potentially new targets for immunotherapy.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/mortality
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/mortality
- Female
- Gene Expression Profiling
- Head and Neck Neoplasms/immunology
- Hepatitis A Virus Cellular Receptor 2/genetics
- Humans
- Immunologic Memory/immunology
- Immunotherapy
- Integrin alpha Chains/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Middle Aged
- Prognosis
- Programmed Cell Death 1 Receptor/genetics
- Receptors, Antigen, T-Cell/genetics
- Squamous Cell Carcinoma of Head and Neck
- Survival Rate
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
Collapse
Affiliation(s)
- Anusha-Preethi Ganesan
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Division of Pediatric Hematology Oncology, Rady Children's Hospital, University of California San Diego, San Diego, California, USA
| | - James Clarke
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oliver Wood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eva M Garrido-Martin
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Serena J Chee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Toby Mellows
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | | | - Divya Singh
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
| | - Grégory Seumois
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
| | - Aiman Alzetani
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Edwin Woo
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Peter S Friedmann
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Emma V King
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| |
Collapse
|
282
|
Abstract
As the rate-limiting enzyme in ATP/ADP–AMP–adenosine pathway, CD39 would be a novel checkpoint inhibitor target in preventing adenosine-triggered immune-suppressive effect. In addition, CD39hi Tregs, but not CD25hi Tregs, exhibit sustained Foxp3 levels and functional abilities, indicating it could represent a new specific marker of Tregs. Similarly, inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Far from conclusive, present research revealed that CD39 also dephosphorylated and thus inactivated self- and pathogen-associated phosphoantigens of Vγ9Vδ2 T cells, which may be the most promising subpopulation for cellular vaccine. CD39 is also tightly related to Th17 cells and can be regarded as a Th17 cells marker. In this review, we focus on present research of CD39 ectoenzyme and provide insights into its clinical application.
Collapse
Affiliation(s)
- Hai Zhao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Bo
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Obstetrics & Gynecology, Pediatric Diseases, and Birth Defects of the Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
283
|
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide and is the main cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Although the newly developed direct-acting antivirals (DAAs) have transformed the treatment of HCV infection, controlling HCV infection on a global scale remains a challenge because of the high cost, low resistance barrier of DAAs and lack of HCV vaccine. The host immune responses associated with HCV infection, especially HCV-specific T cellular immunity, determine the outcome of HCV infection: either acute or chronic infection. It is important to fully interpret the immunopathogenesis of HCV infection and consequently to exploit effective strategies to eliminate HCV. Here, we review the current progress in HCV immunology, which will deepen our understanding of the spectrum of HCV infection and immunity in humans.
Collapse
Affiliation(s)
- Jijing Shi
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China
| | - Yuanyuan Li
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China
| | | | - Xuexiu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 460000, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China.
| |
Collapse
|
284
|
Jing W, Gershan JA, Blitzer GC, Palen K, Weber J, McOlash L, Riese M, Johnson BD. Adoptive cell therapy using PD-1 + myeloma-reactive T cells eliminates established myeloma in mice. J Immunother Cancer 2017. [PMID: 28642819 PMCID: PMC5477110 DOI: 10.1186/s40425-017-0256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers. Methods PD-1+ and PD-1− T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro. In addition, the T cells were activated and expanded in culture and given to syngeneic myeloma-bearing mice as ACT. Results Myeloma-reactive T cells were enriched in the PD-1+ cell subset. Similar results were also observed in a mouse AML model. PD-1+ T cells from myeloma-bearing mice were found to be functional, they could be activated and expanded ex vivo, and they maintained their anti-myeloma reactivity after expansion. Adoptive transfer of ex vivo-expanded PD-1+ T cells together with a PD-L1 blocking antibody eliminated established myeloma in Rag-deficient mice. Both CD8 and CD4 T cell subsets were important for eradicating myeloma. Adoptively transferred PD-1+ T cells persisted in recipient mice and were able to mount an adaptive memory immune response. Conclusions These results demonstrate that PD-1 is a biomarker for functional myeloma-specific T cells, and that activated and expanded PD-1+ T cells can be effective as ACT for myeloma. Furthermore, this strategy could be useful for treating other hematologic cancers.
Collapse
Affiliation(s)
- Weiqing Jing
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Jill A Gershan
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Grace C Blitzer
- Medical Student, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Katie Palen
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - James Weber
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Laura McOlash
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Matthew Riese
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Bryon D Johnson
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
285
|
Brief Report: Increased Frequency of CD39+ CD56bright Natural Killer Cells in HIV-1 Infection Correlates With Immune Activation and Disease Progression. J Acquir Immune Defic Syndr 2017; 74:467-472. [PMID: 27930600 DOI: 10.1097/qai.0000000000001266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression pattern of the ectonucleotidases CD39 and CD73 on natural killer (NK) cells was examined in peripheral blood mononuclear cell of 61 HIV-1-infected patients. Increased frequencies of CD39CD56 NK cells were detectable in untreated HIV patients, which was associated with high viral load, low CD4 T-cell count, and CD8 T-cell activation. Additionally, levels of CD39 on NK cells were inducible by in vitro stimulation of NK cells, correlating with aryl hydrocarbon receptor and interleukin 10 expression. Here, we provide the first evidence of increased CD39CD56 NK cell frequencies during HIV infection, which might have consequences for NK cell function and HIV pathogenesis.
Collapse
|
286
|
Pallett LJ, Davies J, Colbeck EJ, Robertson F, Hansi N, Easom NJW, Burton AR, Stegmann KA, Schurich A, Swadling L, Gill US, Male V, Luong T, Gander A, Davidson BR, Kennedy PTF, Maini MK. IL-2 high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J Exp Med 2017; 214:1567-1580. [PMID: 28526759 PMCID: PMC5461007 DOI: 10.1084/jem.20162115] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/11/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
The liver provides a tolerogenic immune niche exploited by several highly prevalent pathogens as well as by primary and metastatic tumors. We have sampled healthy and hepatitis B virus (HBV)-infected human livers to probe for a subset of T cells specialized to overcome local constraints and mediate immunity. We characterize a population of T-betloEomesloBlimp-1hiHobitlo T cells found within the intrahepatic but not the circulating memory CD8 T cell pool expressing liver-homing/retention markers (CD69+CD103+ CXCR6+CXCR3+). These tissue-resident memory T cells (TRM) are preferentially expanded in patients with partial immune control of HBV infection and can remain in the liver after the resolution of infection, including compartmentalized responses against epitopes within all major HBV proteins. Sequential IL-15 or antigen exposure followed by TGFβ induces liver-adapted TRM, including their signature high expression of exhaustion markers PD-1 and CD39. We suggest that these inhibitory molecules, together with paradoxically robust, rapid, cell-autonomous IL-2 and IFNγ production, equip liver CD8 TRM to survive while exerting local noncytolytic hepatic immunosurveillance.
Collapse
Affiliation(s)
- Laura J Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Jessica Davies
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Emily J Colbeck
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Francis Robertson
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, England, UK
| | - Navjyot Hansi
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England, UK
| | - Nicholas J W Easom
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Kerstin A Stegmann
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Anna Schurich
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England, UK
| | - Victoria Male
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| | - TuVinh Luong
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, England, UK
| | - Amir Gander
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, England, UK
| | - Brian R Davidson
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, England, UK
| | - Patrick T F Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, England, UK
| |
Collapse
|
287
|
Khaja ASS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, Elkord E. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget 2017; 8:33159-33171. [PMID: 28388539 PMCID: PMC5464858 DOI: 10.18632/oncotarget.16565] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Immunosuppressive cells such as regulatory T cells (Tregs) have an ambiguous role in breast cancer prognosis, with studies reporting both positive and negative correlations between Treg infiltration and prognosis. This discrepancy could be due to the different immunosuppressive molecules present in these cells. In the present study, we phenotypically characterize different Treg subsets infiltrating the tumor microenvironment (TME), compared to adjacent normal tissue and peripheral blood of primary breast cancer (PBC) patients. We report that the majority of tumor-infiltrating CD4+ and CD8+ T cells have terminally exhaustive phenotype as assessed by CD39 and PD-1 expressions. We also show that Tregs are accumulated in breast TME compared to normal tissue. Further characterization of Tregs showed that these are mainly FoxP3+Helios+ and express high levels of CTLA-4 and PD-1. This preferential accumulation of FoxP3+Helios+ Treg subset with co-expression of different immune inhibitory molecules might have a negative effect on breast cancer prognosis. Taken together, our results suggest that breast tumor cells might utilize Tregs, and different suppressive pathways involving CD39, PD-1 and CTLA-4 molecules in creating an immune-subversive environment for them to survive, and a dual blockade of these immunosuppressive molecules might be considered as an effective method in breast cancer treatment.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Haytham El Salhat
- Oncology Department, Al Noor Hospital, Abu Dhabi, United Arab Emirates
- Surgery Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Issam Faour
- Surgery Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Navid Ul Haq
- Pathology Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
288
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
289
|
Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D'Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017; 545:60-65. [PMID: 28397821 DOI: 10.1038/nature22079] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
Despite the success of monotherapies based on blockade of programmed cell death 1 (PD-1) in human melanoma, most patients do not experience durable clinical benefit. Pre-existing T-cell infiltration and/or the presence of PD-L1 in tumours may be used as indicators of clinical response; however, blood-based profiling to understand the mechanisms of PD-1 blockade has not been widely explored. Here we use immune profiling of peripheral blood from patients with stage IV melanoma before and after treatment with the PD-1-targeting antibody pembrolizumab and identify pharmacodynamic changes in circulating exhausted-phenotype CD8 T cells (Tex cells). Most of the patients demonstrated an immunological response to pembrolizumab. Clinical failure in many patients was not solely due to an inability to induce immune reinvigoration, but rather resulted from an imbalance between T-cell reinvigoration and tumour burden. The magnitude of reinvigoration of circulating Tex cells determined in relation to pretreatment tumour burden correlated with clinical response. By focused profiling of a mechanistically relevant circulating T-cell subpopulation calibrated to pretreatment disease burden, we identify a clinically accessible potential on-treatment predictor of response to PD-1 blockade.
Collapse
Affiliation(s)
- Alexander C Huang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| | - Robert J Orlowski
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosemarie Mick
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bertram Bengsch
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sasikanth Manne
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Xu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Harmon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Josephine R Giles
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandon Wenz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Adamow
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Deborah Kuk
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina Carrera
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Phillip Wong
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Felix Quagliarello
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kurt D'Andrea
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristen E Pauken
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramin S Herati
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan P Staupe
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Suzanne McGettigan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shawn Kothari
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangeeth M George
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tara C Gangadhar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
290
|
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276:66-79. [PMID: 28258694 PMCID: PMC5702497 DOI: 10.1111/imr.12525] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.
Collapse
Affiliation(s)
- Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frederick S. Varn
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Chao Cheng
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
291
|
Abstract
BACKGROUND Assays of the abundance of immune cell populations in the tumor microenvironment promise to inform immune oncology research and the choice of immunotherapy for individual patients. We propose to measure the intratumoral abundance of various immune cell populations with gene expression. In contrast to IHC and flow cytometry, gene expression assays yield high information content from a clinically practical workflow. Previous studies of gene expression in purified immune cells have reported hundreds of genes showing enrichment in a single cell type, but the utility of these genes in tumor samples is unknown. We use co-expression patterns in large tumor gene expression datasets to evaluate previously reported candidate cell type marker genes lists, eliminate numerous false positives and identify a subset of high confidence marker genes. METHODS Using a novel statistical tool, we use co-expression patterns in 9986 samples from The Cancer Genome Atlas (TCGA) to evaluate previously reported cell type marker genes. We compare immune cell scores derived from these genes to measurements from flow cytometry and immunohistochemistry. We characterize the reproducibility of our cell scores in replicate runs of RNA extracted from FFPE tumor tissue. RESULTS We identify a list of 60 marker genes whose expression levels measure 14 immune cell populations. Cell type scores calculated from these genes are concordant with flow cytometry and IHC readings, show high reproducibility in replicate RNA samples from FFPE tissue and enable detailed analyses of the anti-tumor immune response in TCGA. In an immunotherapy dataset, they separate responders and non-responders early on therapy and provide an intricate picture of the effects of checkpoint inhibition. Most genes previously reported to be enriched in a single cell type have co-expression patterns inconsistent with cell type specificity. CONCLUSIONS Due to their concise gene set, computational simplicity and utility in tumor samples, these cell type gene signatures may be useful in future discovery research and clinical trials to understand how tumors and therapeutic intervention shape the immune response.
Collapse
|
292
|
Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, Shao X, Wu D, Ye J, Zhang T, Wang X, Qiu F, Yan J, Huang J. Tumor-infiltrating CD39 +γδTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 2017; 6:e1277305. [PMID: 28344891 DOI: 10.1080/2162402x.2016.1277305] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023] Open
Abstract
Tumor microenvironment (TME) promotes immune suppression through recruiting and expanding suppressive immune cells such as regulatory T cells (Tregs) to facilitate cancer progression. In this study, we identify a novel CD39+ γδTreg in human colorectal cancer (CRC). CD39+ γδTregs are the predominant regulatory T cells and have more potent immunosuppressive activity than CD4+ or CD8+ Tregs via the adenosine-mediated pathway but independent of TGF-β or IL-10. They also secrete cytokines including IL-17A and GM-CSF, which may chemoattract myeloid-derived suppressive cells (MDSCs), thus establishing an immunosuppressive network. We further demonstrate that tumor-derived TGF-β1 induces CD39+ γδT cells from paired normal colon tissues to produce more adenosine and become potent immunosuppressive T cells. Moreover, CD39+ γδTreg infiltration is positively correlated with TNM stage and other unfavorable clinicopathological features, implicating that CD39+ γδTregs are one of the key players in establishment of immunosuppressive TME in human CRC that may be critical for tumor immunotherapy.
Collapse
Affiliation(s)
- Guoming Hu
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Wu
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pu Cheng
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Zhen Wang
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuyan Yu
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Xuan Shao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Tao Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Xiaochen Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University , Hangzhou, China
| | - Fuming Qiu
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville , Louisville, KY, USA
| | - Jian Huang
- Cancer Institute, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
293
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
294
|
T‐cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol 2016; 94:935-942. [DOI: 10.1038/icb.2016.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
295
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
296
|
Healy ZR, Murdoch DM. OMIP-036: Co-inhibitory receptor (immune checkpoint) expression analysis in human T cell subsets. Cytometry A 2016; 89:889-892. [PMID: 27623134 DOI: 10.1002/cyto.a.22938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, North Carolina.
| | - David M Murdoch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, North Carolina
| |
Collapse
|
297
|
Hwang S, Cobb DA, Bhadra R, Youngblood B, Khan IA. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med 2016; 213:1799-818. [PMID: 27481131 PMCID: PMC4995081 DOI: 10.1084/jem.20151995] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)-susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell-intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- SuJin Hwang
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Dustin A Cobb
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037 Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908
| | - Rajarshi Bhadra
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Imtiaz A Khan
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
298
|
An evaluation of CD39 as a novel immunoregulatory mechanism invoked by COPD. Hum Immunol 2016; 77:916-920. [PMID: 27430193 DOI: 10.1016/j.humimm.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/23/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are characterized by increased pulmonary and systemic inflammation and commonly caused by bacterial and/or viral infection. Little is known about the T-cell dysregulation in AECOPD that promotes these outcomes. CD39 is an ectonucleotidase able to hydrolyse adenosine triphosphate to create adenosine that may inhibit T-cell responses in patients with AECOPD. Here T-cell expression of CD39 measured by flow cytometry was higher in AECOPD patients than stable COPD patients or healthy controls. Higher expression of CD39 was associated with higher levels of plasma soluble tumor necrosis factor receptor but lower interferon-γ (IFNγ) levels in supernatants from staphylococcal enterotoxin-B stimulated peripheral blood mononuclear cells. This links increased expression of CD39 with systemic inflammation and impaired T-cell responses (e.g. IFNγ). The blockade of CD39 pathways may be a novel approach to the control of AECOPD, reducing the dependency on antibiotics.
Collapse
|
299
|
Abstract
Hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) are responsible for most cases of viral hepatitis. Infection by each type of virus results in a different typical natural disease course and clinical outcome that are determined by virological and immunological factors. HCV tends to establish a chronic persistent infection, whereas HAV does not. HBV is effectively controlled in adults, although it persists for a lifetime after neonatal infection. In this Review, we discuss the similarities and differences in immune responses to and immunopathogenesis of HAV, HBV and HCV infections, which may explain the distinct courses and outcomes of each hepatitis virus infection.
Collapse
|
300
|
Hoffmann M, Pantazis N, Martin GE, Hickling S, Hurst J, Meyerowitz J, Willberg CB, Robinson N, Brown H, Fisher M, Kinloch S, Babiker A, Weber J, Nwokolo N, Fox J, Fidler S, Phillips R, Frater J, SPARTAC and CHERUB Investigators. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection. PLoS Pathog 2016; 12:e1005661. [PMID: 27415828 PMCID: PMC4945085 DOI: 10.1371/journal.ppat.1005661] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital, St. Gallen, Switzerland
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology & Medical Statistics, Athens University Medical School, Athens, Greece
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Genevieve E. Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Stephen Hickling
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Christian B. Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Martin Fisher
- Brighton and Sussex University Hospitals, Brighton, United Kingdom
| | - Sabine Kinloch
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Abdel Babiker
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Jonathan Weber
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Rodney Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|