301
|
Martini P, Paracchini L, Caratti G, Mello-Grand M, Fruscio R, Beltrame L, Calura E, Sales G, Ravaggi A, Bignotti E, Odicino FE, Sartori E, Perego P, Katsaros D, Craparotta I, Chiorino G, Cagnin S, Mannarino L, Ceppi L, Mangioni C, Ghimenti C, D'Incalci M, Marchini S, Romualdi C. lncRNAs as Novel Indicators of Patients' Prognosis in Stage I Epithelial Ovarian Cancer: A Retrospective and Multicentric Study. Clin Cancer Res 2016; 23:2356-2366. [PMID: 27827314 DOI: 10.1158/1078-0432.ccr-16-1402] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Stage I epithelial ovarian cancer (EOC) represents about 10% of all EOCs and is characterized by good prognosis with fewer than 20% of patients relapsing. As it occurs less frequently than advanced-stage EOC, its molecular features have not been thoroughly investigated. We have demonstrated that in stage I EOC miR-200c-3p can predict patients' outcome. In the present study, we analyzed the expression of long non-coding RNAs (lncRNA) to enable potential definition of a non-coding transcriptional signature with prognostic relevance for stage I EOC.Experimental Design: 202 snap-frozen stage I EOC tumor biopsies, 47 of which relapsed, were gathered together from three independent tumor tissue collections and subdivided into a training set (n = 73) and a validation set (n = 129). Median follow up was 9 years. LncRNAs' expression profiles were correlated in univariate and multivariate analysis with overall survival (OS) and progression-free survival (PFS).Results: The expression of lnc-SERTAD2-3, lnc-SOX4-1, lnc-HRCT1-1, and PVT1 was associated in univariate and multivariate analyses with relapse and poor outcome in both training and validation sets (P < 0.001). Using the expression profiles of PVT1, lnc-SERTAD2-3, and miR-200c-3p simultaneously, it was possible to stratify patients into high and low risk. The OS for high- and low-risk individuals are 36 and 123 months, respectively (OR, 15.55; 95% confidence interval, 3.81-63.36).Conclusions: We have identified a non-coding transcriptional signature predictor of survival and biomarker of relapse for stage I EOC. Clin Cancer Res; 23(9); 2356-66. ©2016 AACR.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padova, Italy
| | - Lara Paracchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Giulia Caratti
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maurizia Mello-Grand
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Enrica Calura
- Department of Biology, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Antonella Ravaggi
- Division of Gynaecologic Oncology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Eliana Bignotti
- Division of Gynaecologic Oncology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Franco E Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Patrizia Perego
- Pathology Unit University of Milan-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Dionyssios Katsaros
- Azienda Ospedaliero-Universitaria Città della Salute, Presidio S Anna e Department of Surgical Science, Gynecology, University of Torino, Torino, Italy
| | - Ilaria Craparotta
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy.,C.R.I.B.I. Biotechnology Centre, University of Padova, Padova, Italy
| | - Laura Mannarino
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Lorenzo Ceppi
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | - Chiara Ghimenti
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| | - Sergio Marchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | | |
Collapse
|
302
|
Xu Y, Qiu M, Chen Y, Wang J, Xia W, Mao Q, Yang L, Li M, Jiang F, Xu L, Yin R. Long noncoding RNA, tissue differentiation-inducing nonprotein coding RNA is upregulated and promotes development of esophageal squamous cell carcinoma. Dis Esophagus 2016; 29:950-958. [PMID: 26833746 DOI: 10.1111/dote.12436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major causes of cancer death worldwide, especially in Eastern Asia. Due to the poor prognosis, it is necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recently, studies show that long noncoding RNAs (lncRNAs) have critical roles in diverse biological processes, including tumorigenesis. Increasing evidence indicates that some lncRNAs are widely involved in the development and progression of ESCC, such as HOTAIR, SPRY4-IT1 and POU3F3. An emerging lncRNA, tissue differentiation-inducing nonprotein coding RNA (TINCR), has been studied in human cutaneous squamous cell carcinoma and has critical biological function, but its role in ESCC remains unknown. Here, we evaluated the expression profile of TINCR and its biological function in ESCC. In a cohort of 56 patients, TINCR was significantly overexpressed in ESCC tissues compared with paired adjacent normal tissues. Further, in vitro silencing TINCR via small interfering RNA (siRNA) inhibited the proliferation, migration and invasion of ESCC cells. Meantime, siRNA treatment induced apoptosis and blocked the progression of cell cycle. Taken together, our study suggests that TINCR promotes proliferation, migration and invasion of ESCC cells, acting as a potential oncogene of ESCC.
Collapse
Affiliation(s)
- Y Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - M Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Y Chen
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - J Wang
- Department of Scientific Research, Nanjing Medical University, Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - W Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Q Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - L Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - M Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - F Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - L Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - R Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
303
|
Xing YH, Bai Z, Liu CX, Hu SB, Ruan M, Chen LL. Research progress of long noncoding RNA in China. IUBMB Life 2016; 68:887-893. [DOI: 10.1002/iub.1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yu-Hang Xing
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Zhiqiang Bai
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Shi-Bin Hu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Meihua Ruan
- Shanghai Information Center for Life Sciences; Chinese Academy of Sciences; Shanghai China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- School of Life Science; ShanghaiTech University; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
304
|
Song P, Ye LF, Zhang C, Peng T, Zhou XH. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene 2016; 592:8-14. [PMID: 27461945 DOI: 10.1016/j.gene.2016.07.055] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 02/08/2023]
Abstract
Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in several human malignant tumors, and its dysregulation was closed associated with tumor initiation, development and progression. Nevertheless, whether the aberrant expression of XIST in human nasopharyngeal carcinoma (NPC) is corrected with malignancy, metastasis or prognosis has not been elaborated. Here, we discovered that XIST was up-regulated in NPC tissues and higher expression of XIST contributed to a markedly poorer survival time. In addition, multivariate analysis demonstrated XIST was an independent risk factor for prognosis. XIST over-expression enhanced, while XIST silencing hampered the cell growth in NPC. Additionally, mechanistic analysis revealed that XIST up-regulated the expression of miR-34a-5p targeted gene E2F3 through acting as a competitive 'sponge' of miR-34a-5p. Taking all into account, we concluded that XIST functioned as an oncogene in NPC through up-regulating E2F3 in part through 'spongeing' miR-34a-5p.
Collapse
Affiliation(s)
- Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Lin-Feng Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Cen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Tao Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Xu-Hong Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
305
|
Xiao C, Wang C, Cheng S, Lai C, Zhang P, Wang Z, Zhang T, Zhang S, Liu R. The significance of low levels of LINC RP1130-1 expression in human hepatocellular carcinoma. Biosci Trends 2016; 10:378-385. [PMID: 27773892 DOI: 10.5582/bst.2016.01123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common neoplasms. Little progress has been made in the diagnosis and treatment of HCC and its prognosis remains poor. Studies have increasingly found that long non-coding RNA (lncRNA) is involved in the regulation of the occurrence and development of HCC. To investigate the diagnostic and prognostic value of lncRNA in HCC, the current study examined 25 lncRNAs with differing levels of expression (according to the fold change) in microarray databases. Expression of LINC RP1130-1 was found to be markedly down-regulated in 51 HCC tissues compared to matching adjacent non-tumor liver tissues. The pattern of expression and clinical significance of LINC RP1130-1 were examined in HCC. The area under the receiver operating characteristic (ROC) curve was 0.74 for LINC RP1130-1. The expression of LINC RP1130-1 was associated with clinical stage, the number of tumors, portal vein tumor thrombus (PVTT), and microvascular invasion (MVI). More importantly, patients with a low level of LINC RP1130-1 expression had a shorter recurrence-free survival (RFS) (n = 51, p < 0.05) than those with a high level of LINC RP1130-1 expression. Taken together, these findings indicate that a low level of LINC RP1130-1 expression in patients with HCC may be a powerful tumor biomarker, with potential clinical use in diagnosing and predicting the prognosis for patients with HCC.
Collapse
Affiliation(s)
- Chaohui Xiao
- Departments of Surgical Oncology, Chinese People's Liberation Army (PLA) General Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Jin X, Feng CY, Xiang Z, Chen YP, Li YM. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget 2016; 7:66455-66467. [PMID: 27677588 PMCID: PMC5341813 DOI: 10.18632/oncotarget.12186] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as "miRNA sponge". Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH.
Collapse
Affiliation(s)
- Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun-yan Feng
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zun Xiang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - You-ming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
307
|
Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1. Int J Mol Sci 2016; 17:ijms17101617. [PMID: 27669232 PMCID: PMC5085650 DOI: 10.3390/ijms17101617] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/03/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC)-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA) microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1) promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC.
Collapse
|
308
|
Wang J, Lei ZJ, Guo Y, Wang T, Qin ZY, Xiao HL, Fan LL, Chen DF, Bian XW, Liu J, Wang B. miRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 2016; 6:37852-70. [PMID: 26497997 PMCID: PMC4741970 DOI: 10.18632/oncotarget.5635] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are key cellular targets for effective cancer therapy, due to their critical roles in cancer progression and chemo/radio-resistance. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are important players in the biology of cancers. However, it remains unknown whether lncRNAs could be exploited to target CSCs. We report that large intergenic non-coding RNA p21 (lincRNA-p21) is a potent suppressor of stem-like traits of CSCs purified from both primary colorectal cancer (CRC) tissues and cell lines. A novel lincRNA-p21-expressing adenoviral vector, which was armed with miRNA responsive element (MRE) of miR-451 (Ad-lnc-p21-MRE), was generated to eliminate CRC CSCs. Integration of miR-451 MREs into the adenovirus efficiently delivered lincRNA-p21 into CSCs that contained low levels of miR-451. Moreover, lincRNA-p21 inhibited the activity of β-catenin signaling, thereby attenuating the viability, self-renewal, and glycolysis of CSCs in vitro. By limiting dilution and serial tumor formation assay, we demonstrated that Ad-lnc-p21-MRE significantly suppressed the self-renewal potential and tumorigenicity of CSCs in nude mice. Importantly, application of miR-451 MREs appeared to protect normal liver cells from off-target expression of lincRNA-p21 in both tumor-bearing and naïve mice. Taken together, these findings suggest that lncRNAs may be promising therapeutic molecules to eradicate CSCs and MREs of tumor-suppressor miRNAs, such as miR-451, may be exploited to ensure the specificity of CSC-targeting strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zeng-jie Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Tao Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhong-yi Qin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hua-liang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Li-lin Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dong-feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jia Liu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
309
|
Qu Z, Yuan CH, Yin CQ, Guan Q, Chen H, Wang FB. Meta-analysis of the prognostic value of abnormally expressed lncRNAs in hepatocellular carcinoma. Onco Targets Ther 2016; 9:5143-52. [PMID: 27574455 PMCID: PMC4994879 DOI: 10.2147/ott.s108599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many long noncoding RNAs (lncRNAs) have been reported to be abnormally expressed in hepatocellular carcinoma (HCC), and may have the potential to serve as prognostic markers. In this study, a meta-analysis was conducted to systematically evaluate the prognostic value of various lncRNAs in HCC. Eligible literatures were systematically collected from PubMed, Embase, Web of Science, and Cochrane Library (up to December 30, 2015). The main outcomes including overall survival, relapse-free survival, and disease-free survival were analyzed. Pooled hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated using random- or fixed-effects models. A total of 2,991 patients with HCC in People’s Republic of China from 27 studies were included in the analysis. The level of lncRNAs showed a significant association with clinical outcomes. Abnormally elevated lncRNA transcription level predicted poor overall survival (HR: 1.68, 95% CI: 1.20–2.34, P=0.002; I2=75.5%, P=0.000) and relapse-free survival (HR: 2.08, 95% CI: 1.65–2.61, P<0.001; I2=24.0%, P=0.215), while no association was observed with disease-free survival of HCC patients (HR: 1.39, 95% CI: 0.51–3.78, P=0.524; I2=81.3%, P=0.005). Subgroup analysis further showed that lncRNA transcription level was significantly associated with tumor size (relative risk [RR]: 1.19, 95% CI: 1.01–1.39, P=0.035), microvascular invasion (RR: 1.44, 95% CI: 1.10–1.89, P=0.009), and portal vein tumor thrombus (RR: 1.50, 95% CI: 1.03–2.20, P=0.036). Publication bias and sensitivity analysis further confirmed the stability of our results. Our present meta-analysis indicates that abnormal lncRNA transcription level may serve as a promising indicator for prognostic evaluation of patients with HCC in People’s Republic of China.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Chun-Hui Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chang-Qing Yin
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Qing Guan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Chen
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Fu-Bing Wang
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| |
Collapse
|
310
|
Qu Z, Yuan CH, Yin CQ, Guan Q, Chen H, Wang FB. Meta-analysis of the prognostic value of abnormally expressed lncRNAs in hepatocellular carcinoma. Onco Targets Ther 2016. [PMID: 27574455 DOI: 10.2147/ott] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many long noncoding RNAs (lncRNAs) have been reported to be abnormally expressed in hepatocellular carcinoma (HCC), and may have the potential to serve as prognostic markers. In this study, a meta-analysis was conducted to systematically evaluate the prognostic value of various lncRNAs in HCC. Eligible literatures were systematically collected from PubMed, Embase, Web of Science, and Cochrane Library (up to December 30, 2015). The main outcomes including overall survival, relapse-free survival, and disease-free survival were analyzed. Pooled hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated using random- or fixed-effects models. A total of 2,991 patients with HCC in People's Republic of China from 27 studies were included in the analysis. The level of lncRNAs showed a significant association with clinical outcomes. Abnormally elevated lncRNA transcription level predicted poor overall survival (HR: 1.68, 95% CI: 1.20-2.34, P=0.002; I (2)=75.5%, P=0.000) and relapse-free survival (HR: 2.08, 95% CI: 1.65-2.61, P<0.001; I (2)=24.0%, P=0.215), while no association was observed with disease-free survival of HCC patients (HR: 1.39, 95% CI: 0.51-3.78, P=0.524; I (2)=81.3%, P=0.005). Subgroup analysis further showed that lncRNA transcription level was significantly associated with tumor size (relative risk [RR]: 1.19, 95% CI: 1.01-1.39, P=0.035), microvascular invasion (RR: 1.44, 95% CI: 1.10-1.89, P=0.009), and portal vein tumor thrombus (RR: 1.50, 95% CI: 1.03-2.20, P=0.036). Publication bias and sensitivity analysis further confirmed the stability of our results. Our present meta-analysis indicates that abnormal lncRNA transcription level may serve as a promising indicator for prognostic evaluation of patients with HCC in People's Republic of China.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Chun-Hui Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chang-Qing Yin
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Qing Guan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Chen
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| | - Fu-Bing Wang
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University
| |
Collapse
|
311
|
Sun C, Li S, Zhang F, Xi Y, Wang L, Bi Y, Li D. Long non-coding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of miR-377-3p-E2F3 pathway. Oncotarget 2016; 7:51784-51814. [PMID: 27351135 PMCID: PMC5239515 DOI: 10.18632/oncotarget.10108] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 01/17/2023] Open
Abstract
Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in patients with NSCLC and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for hsa-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a ceRNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Shujun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, P. R. China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Yongyong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Yongyi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
312
|
Fang J, Sun CC, Gong C. Long noncoding RNA XIST acts as an oncogene in non-small cell lung cancer by epigenetically repressing KLF2 expression. Biochem Biophys Res Commun 2016; 478:811-7. [PMID: 27501756 DOI: 10.1016/j.bbrc.2016.08.030] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been identified as critical regulators in numerous types of cancers, including non-small cell lung cancer (NSCLC). X inactivate-specific transcript (XIST) has been found to be up-regulated and acts as an oncogene in gastric cancer and hepatocellular carcinoma, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Here, we identified XIST as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found that XIST is over-expressed in NSCLC, and its increased level is associated with shorter survival and poorer prognosis. Knockdown of XIST impaired NSCLC cells proliferation, migration and invasion in vitro, and repressed the tumorigenicity of NSCLC cells in vivo. Mechanistically, RNA immune-precipitation (RIP) and RNA pull-down experiment demonstrated that XIST could simultaneously interact with EZH2 to suppress transcription of its potential target KLF2. Additionally, rescue experiments revealed that XIST's oncogenic functions were partly depending on silencing KLF2 expression. Collectively, our findings expound how XIST over-expression endows an oncogenic function in NSCLC.
Collapse
Affiliation(s)
- Jing Fang
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, PR China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| | - Cheng Gong
- Department of General Surgery, ZhongNan Hospital of Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
313
|
Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Sci Rep 2016; 6:31093. [PMID: 27489122 PMCID: PMC4973264 DOI: 10.1038/srep31093] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays pivotal roles in cancer development. To date, only a small number of lncRNAs have been characterized at functional level. Here, we discovered a novel lncRNA termed GAS5-AS1 as a tumor suppressor in non-small cell lung cancer (NSCLC). The expression of GAS5-AS1 in NSCLC tumors was much lower than that in the adjacent normal lung tissues. The reduced GAS5-AS1 was significantly correlated with larger tumors, higher TNM stages, and lymph node metastasis in NSCLC patients. While ectopic expression or specific knockdown of GAS5-AS1 had no effect on proliferation, cell cycle progression, and apoptosis, it dramatically decreased or increased, respectively, NSCLC cell migration and invasion. Overexpression of GAS5-AS1 in NSCLC cells reduced a cohort of molecules (ZEB1, N-cadherin, Vimentin, and/or Snail1) critical for epithelial-mesenchymal transition (EMT). Furthermore, the DNA demethylating agent 5-aza-2-deoxycytidine failed to upregulate GAS5-AS1 in NSCLC cells, whereas the pan-HDAC inhibitors panobinostat and SAHA significantly induced GAS5-AS1 in a dose-dependent manner. In addition, GAS5-AS1 can be upregulated by specific knockdown of HDAC1 or HDAC3. Collectively, our data suggest that histone modifications play a major role leading to epigenetic silencing of GAS5-AS1 in NSCLC and subsequently promote tumor metastasis via upregulation of several key EMT markers.
Collapse
|
314
|
Yang XJ, Huang CQ, Peng CW, Hou JX, Liu JY. Long noncoding RNA HULC promotes colorectal carcinoma progression through epigenetically repressing NKD2 expression. Gene 2016; 592:172-178. [PMID: 27496341 DOI: 10.1016/j.gene.2016.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 01/06/2023]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been emerged as crucial regulators of human diseases and prognostic markers in numerous of cancers, including colorectal carcinoma (CRC). Here, we identified an oncogenetic lncRNA HULC, which may promote colorectal tumorigenesis. HULC has been found to be up-regulated and acts as oncogene in gastric cancer and hepatocellular carcinoma, but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. Here, we reported that HULC expression is also over-expressed in CRC, and its increased level is associated with poor prognosis and shorter survival. Knockdown of HULC impaired CRC cells proliferation, migration and invasion, and facilitated cell apoptosis in vitro, and inhibited tumorigenicity of CRC cells in vivo. Mechanistically, RNA immunoprecipitation (RIP) and RNA pull-down experiment demonstrated that HULC could simultaneously interact with EZH2 to repress underlying targets NKD2 transcription. In addition, rescue experiments determined that HULC oncogenic function is partly dependent on repressing NKD2. Taken together, our findings expound how HULC over-expression endows an oncogenic function in CRC.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chao-Qun Huang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chun-Wei Peng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin-Xuan Hou
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiu-Yang Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
315
|
Yu J, Han J, Zhang J, Li G, Liu H, Cui X, Xu Y, Li T, Liu J, Wang C. The long noncoding RNAs PVT1 and uc002mbe.2 in sera provide a new supplementary method for hepatocellular carcinoma diagnosis. Medicine (Baltimore) 2016; 95:e4436. [PMID: 27495068 PMCID: PMC4979822 DOI: 10.1097/md.0000000000004436] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver in adults worldwide. Several studies have demonstrated that long noncoding RNAs (lncRNAs) are involved in the development of various types of cancer, including HCC. These findings prompted us to examine the detectability of lncRNAs in blood samples from patients with HCC. In this study, we explored the expression levels of 31 cancer-related lncRNAs in sera from 71 HCC patients and 64 healthy individuals by reverse transcription and quantitative polymerase chain reaction (RT-qPCR). We found that 25 lncRNAs could be detected in the serum and that 7 had significantly different expression levels. A 2-lncRNA signature (PVT1 and uc002mbe.2) identified by stepwise regression showed potential as a diagnostic marker for HCC. The area under the receiver operating characteristic (ROC) curve was 0.764 (95% CI: 0.684-0.833). The sensitivity and specificity values of this serum 2-lncRNA signature for distinguishing HCC patients from the healthy group were 60.56% and 90.62%, respectively. The diagnostic ability of the combination of the serum 2-lncRNA signature with alpha-fetoprotein (AFP) was much greater than that of AFP alone. The expression levels of the 2 lncRNAs were associated with clinical parameters including tumor size, Barcelona Clinic Liver Cancer (BCLC) stage, and serum bilirubin.
Collapse
Affiliation(s)
- Jinyu Yu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Junqing Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Jian Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences
| | - Guanzhen Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Hui Liu
- Department of Gastroenterology
| | | | | | - Tao Li
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | | | - Chuanxi Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
- Correspondence: Chuanxi Wang, PhD, Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, 250021 China (e-mail: )
| |
Collapse
|
316
|
Abstract
Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.
Collapse
Affiliation(s)
- Anna Roth
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280 (B150), 69120, Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280 (B150), 69120, Heidelberg, Germany.
| |
Collapse
|
317
|
Häfner SJ, Talvard TG, Lund AH. Long noncoding RNAs in normal and pathological pluripotency. Semin Cell Dev Biol 2016; 65:1-10. [PMID: 27438587 DOI: 10.1016/j.semcdb.2016.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 11/29/2022]
Abstract
The striking similarities between pluripotent and cancer cells, such as immortality and increased stress resistance, have long been acknowledged. Numerous studies searched for and successfully identified common molecular players and pathways, thus providing an entirely new challenge and potential therapeutic angle by targeting cancer cells or a specific stem population of the tumor via pluripotency associated processes. However, these strategies have until now mainly been restricted to proteins. Nonetheless, it has become clear over the past decade that the overwhelming majority of the genome produces noncoding transcripts, many of which have proven both functional and crucial for key cellular processes, including stemness maintenance. Moreover, numerous long noncoding RNAs are deregulated in cancer, but little is known concerning their functions and molecular mechanisms. Consequently, it seems essential to integrate the noncoding transcripts into the picture of the stemness-cancer connection. Whereas a number of studies have addressed the expression of lncRNAs in cancer stem cells, no systematic approach has yet been undertaken to identify lncRNAs implicated in the maintenance of the embryonic stemness state that is hijacked by cancer cells. The aim of this review is to highlight long noncoding RNAs with shared functions in stemness and cancer and to outline the current state of a field in its infancy, the search for long noncoding transcripts in cancer stem cells.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Thomas G Talvard
- Dansk Fundamental Metrologi, Matematiktorvet 307, DK-2600, Lyngby, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
318
|
Fu M, Zou C, Pan L, Liang W, Qian H, Xu W, Jiang P, Zhang X. Long noncoding RNAs in digestive system cancers: Functional roles, molecular mechanisms, and clinical implications (Review). Oncol Rep 2016; 36:1207-18. [PMID: 27431376 DOI: 10.3892/or.2016.4929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as new players in various diseases including cancer. LncRNAs have been shown to play multifaceted roles in the development, progression, and metastasis of cancer. In this review, we highlight the lncRNAs that are critically involved in the pathogenesis of digestive system cancers (DSCs). We summarize the roles of the lncRNAs in DSCs and the underlying mechanisms responsible for their functions. The DSC-associated lncRNAs interact with a wide spectrum of molecules to regulate gene expression at transcriptional, post-transcriptional, and translational levels. We also provide new insights into the clinical significance of these lncRNAs, which are found to be closely associated with the aggressiveness of DSCs and could predict the prognosis of DSC patients. Moreover, lncRNAs have been suggested as promising therapeutic targets in DSCs. Therefore, better understanding of the functional roles of lncRNAs will provide new biomarkers for DSC diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Min Fu
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Chen Zou
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Lei Pan
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Wei Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Pengcheng Jiang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
319
|
Zhang S, Zhang G, Liu J. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS 2016; 124:649-58. [PMID: 27272214 DOI: 10.1111/apm.12555] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA PVT1 has been reported to be dysregulated and play vital roles in a variety of cancers. However, the functions and molecular mechanisms of PVT1 in cervical cancer remain unclear. The objective of this study was to investigate the expression, clinical significance, biological roles, and underlying functional mechanisms of PVT1 in cervical cancer. Our results revealed that PVT1 is upregulated in cervical cancer tissues. Enhanced expression of PVT1 is associated with larger tumor size, advanced International Federation of Gynecology and Obstetrics stage, and poor prognosis of cervical cancer patients. Using gain-of-function and loss-of-function approaches, we demonstrated that overexpression of PVT1 promotes cervical cancer cells proliferation, cell cycle progression and migration, and depletion of PVT1 inhibits cervical cancer cell proliferation, cell cycle progression, and migration. Mechanistically, we verified that PVT1 binds to EZH2, recruits EZH2 to the miR-200b promoter, increases histone H3K27 trimethylation level on the miR-200b promoter, and inhibits miR-200b expression. Furthermore, the effects of PVT1 on cervical cell proliferation and migration depend upon silencing of miR-200b. Taken together, our findings confirmed that PVT1 functions as an oncogene in cervical cancer and indicated that PVT1 is not only an important prognostic marker, but also a potential therapy target for cervical cancer.
Collapse
Affiliation(s)
- Shaorong Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guanli Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Jingying Liu
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong Province, China
| |
Collapse
|
320
|
Wang ZL, Li B, Piccolo SR, Zhang XQ, Li JH, Zhou H, Yang JH, Qu LH. Integrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types. Oncotarget 2016; 7:35044-55. [PMID: 27147563 PMCID: PMC5085208 DOI: 10.18632/oncotarget.9037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to contribute to tumorigenesis. However, surprisingly little is known about the comprehensive clinical and genomic characterization of lncRNAs across human cancer. In this study, we conducted comprehensive analyses for the expression profile, clinical outcomes, somatic copy number alterations (SCNAs) profile of lncRNAs in ~7000 clinical samples from 15 different cancer types. We identified significantly differentially expressed lncRNAs between tumor and normal tissues from each cancer. Notably, we characterized 47 lncRNAs which were extensively dysregulated in at least 10 cancer types, suggesting a conserved function in cancer development. We also analyzed the associations between lncRNA expressions and patient survival, and identified sets of lncRNAs that possessed significant prognostic values in specific cancer types. Our combined analysis of SCNA data and expression data uncovered 116 dysregulated lncRNAs are strikingly genomic altered across 15 cancer types, indicating their oncogenic potentials. Our study may lay the groundwork for future functional studies of lncRNAs and help facilitate the discovery of novel clinical biomarkers.
Collapse
Affiliation(s)
- Ze-Lin Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - Xiao-Qin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jun-Hao Li
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
321
|
Yuan Z, Yu X, Ni B, Chen D, Yang Z, Huang J, Wang J, Chen D, Wang L. Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/β-catenin signaling and predicts favorable prognosis. Int J Oncol 2016; 48:2675-2685. [PMID: 27035092 DOI: 10.3892/ijo.2016.3447] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/29/2016] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence reveals that long non-coding RNA (lncRNA) is essential for tumorigenesis and progression, but little is known about its roles and mechanisms in metastatic colorectal cancer (CRC). This study aimed to detect expression level and prognostic role of lncRNA‑CTD903 in CRC patients, which was selected based on one microarray data. The effects on cell invasion, migration and proliferation were investigated after silencing or overexpression of CTD903 in CRC cell lines. We also observed the EMT (epithelial-mesenchymal transition) phenomenon and effect on cell adhesion. The associations between CTD903 and EMT markers, such as E-cadherin, N-cadherin, β-catenin, ZEB1, ZO-1, Snail, and Twist, were determined by western blotting. Our results showed lncRNA-CTD903 expression was strongly upregulated in 115 CRC patients, comparing to adjacent normal tissues. CTD903 was proven to be an independent predicted factor of favorable prognosis in CRC patients by using multivariate Cox proportional hazards model. After knockdown of CTD903 in RKO and SW480, both cell invasion and migration increased, and cells exhibited EMT-like appearance, along with reduced adhering ability. Moreover, overexpression of CTD903 in DLD1 and HCT116 reversed these phenotypes. Furthermore, downregulation of CTD903 enhanced Wnt/β-catenin activation and subsequently increased transcription factors (Twist and Snail) expression, along with increased mesenchymal marker Vimentin and decreased epithelial marker ZO-1 level, while overexpressed CTD903 confirmed these associations. In conclusion, this study shows that LncRNA-CTD903 acts as a tumor suppressor in CRC and can inhibit cell invasion and migration through repressing Wnt/β-catenin signaling, which plays important roles in EMT and CRC metastasis.
Collapse
Affiliation(s)
- Zixu Yuan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Xihu Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Beibei Ni
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zihuan Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jintuan Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Dianke Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
322
|
Iden M, Fye S, Li K, Chowdhury T, Ramchandran R, Rader JS. The lncRNA PVT1 Contributes to the Cervical Cancer Phenotype and Associates with Poor Patient Prognosis. PLoS One 2016; 11:e0156274. [PMID: 27232880 PMCID: PMC4883781 DOI: 10.1371/journal.pone.0156274] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) is an lncRNA that has been designated as an oncogene due to its contribution to the phenotype of multiple cancers. Although the mechanism by which PVT1 influences disease processes has been studied in multiple cancer types, its role in cervical tumorigenesis remains unknown. Thus, the present study was designed to investigate the role of PVT1 in cervical cancer in vitro and in vivo. PVT1 expression was measured by quantitative PCR (qPCR) in 121 invasive cervical carcinoma (ICC) samples, 30 normal cervix samples, and cervical cell lines. Functional assays were carried out using both siRNA and LNA-mediated knockdown to examine PVT1's effects on cervical cancer cell proliferation, migration and invasion, apoptosis, and cisplatin resistance. Our results demonstrate that PVT1 expression is significantly increased in ICC tissue versus normal cervix and that higher expression of PVT1 correlates with poorer overall survival. In cervical cancer cell lines, PVT1 knockdown resulted in significantly decreased cell proliferation, migration and invasion, while apoptosis and cisplatin cytotoxicity were significantly increased in these cells. Finally, we show that PVT1 expression is augmented in response to hypoxia and immune response stimulation and that this lncRNA associates with the multifunctional and stress-responsive protein, Nucleolin. Collectively, our results provide strong evidence for an oncogenic role of PVT1 in cervical cancer and lend insight into potential mechanisms by which PVT1 overexpression helps drive cervical carcinogenesis.
Collapse
Affiliation(s)
- Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Samantha Fye
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Keguo Li
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Tamjid Chowdhury
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
323
|
Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, Su X, Peng L, Jiao B. NEAT1 is Required for Survival of Breast Cancer Cells Through FUS and miR-548. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:11-7. [PMID: 27147820 PMCID: PMC4849421 DOI: 10.4137/grsb.s29414] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows that long noncoding RNAs (lncRNAs) have important roles in the regulation of multiple cellular processes, including cell division, cell growth, and apoptosis, as well as cancer metastasis and neurological disease progression; however, the mechanism of how lncRNAs regulate these processes is not well established. In this study, we demonstrated that downregulating the expression of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in breast cancer cells inhibited cell growth and induced cell apoptosis. In addition, the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS/TLS) physically interacted with NEAT1, and reducing the expression of FUS/TLS also induced cell apoptosis. Multiple miRNAs were identified as regulators of NEAT1, but only overexpression of miR-548ar was able to decrease NEAT1 expression and promote apoptosis. These results indicate a novel interaction between NEAT1, miR-548ar-3p, and FUS and their role in the regulation of breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Hao Ke
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Limin Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xu Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiaosan Su
- Biomedical Research Center, the First Hospital of Kunming, Kunming, China
| | - Lingtao Peng
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
324
|
Xiong XD, Ren X, Cai MY, Yang JW, Liu X, Yang JM. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat 2016; 26:28-42. [PMID: 27180308 DOI: 10.1016/j.drup.2016.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a class of non-protein coding transcripts longer than 200 nucleotides that have aptitude for regulating gene expression at the transcriptional, post-transcriptional or epigenetic levels. In recent years, lncRNAs, which are believed to be the largest transcript class in the transcriptomes, have emerged as important players in a variety of biological processes. Notably, the identification and characterization of numerous lncRNAs in the past decade has revealed a role for these molecules in the regulation of cancer cell survival and death. It is likely that this class of non-coding RNA constitutes a critical contributor to the assorted known or/and unknown mechanisms of intrinsic or acquired drug resistance. Moreover, the expression of lncRNAs is altered in various patho-physiological conditions, including cancer. Therefore, lncRNAs represent potentially important targets in predicting or altering the sensitivity or resistance of cancer cells to various therapies. Here, we provide an overview on the molecular functions of lncRNAs, and discuss their impact and importance in cancer development, progression, and therapeutic outcome. We also provide a perspective on how lncRNAs may alter the efficacy of cancer therapy and the promise of lncRNAs as novel therapeutic targets for overcoming chemoresistance. A better understanding of the functional roles of lncRNA in cancer can ultimately translate to the development of novel, lncRNA-based intervention strategies for the treatment or prevention of drug-resistant cancer.
Collapse
Affiliation(s)
- Xing-Dong Xiong
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China; Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | - Xingcong Ren
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Meng-Yun Cai
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jay W Yang
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Xinguang Liu
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jin-Ming Yang
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
325
|
Sun J, Wang X, Fu C, Wang X, Zou J, Hua H, Bi Z. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol Biol Rep 2016; 43:427-36. [PMID: 27022737 DOI: 10.1007/s11033-016-3975-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs), a new class of RNAs with no protein-coding potential, have been reported to have crucial roles in the regulation of a variety of tumors. However, the functions and molecular mechanisms of lncRNAs to osteosarcoma are still largely unknown. The purpose of this study is to examine the expression, functions and molecular mechanisms of a new lncRNA FGFR3 antisense transcript 1 (FGFR3-AS1) in osteosarcoma. The expression of FGFR3-AS1 was examined by real-time quantitative PCR. The regulation of FGFR3 by FGFR3-AS1 was examined by RNase protection assay, real-time quantitative PCR, western blotting, and luciferase reporter assay. The effects of FGFR3-AS1 on osteosarcoma cell proliferation and cell cycle were determined by Cell Counting Kit-8, Ethynyl deoxyuridine incorporation assay and flow cytometry. FGFR3-AS1 was upregulated in osteosarcoma. Increased FGFR3-AS1 expression correlates with large tumor size, advanced Enneking stage, metastasis and poor survival. Through antisense pairing with FGFR3 3'UTR, FGFR3-AS1 increases FGFR3 mRNA stability and upregulates FGFR3 expression. The expression of FGFR3-AS1 and FGFR3 is positively correlated in osteosarcoma tissues. Knockdown of FGFR3-AS1 inhibits the proliferation and cell cycle progression of osteosarcoma cells in vitro. Moreover, knockdown of FGFR3-AS1 inhibits xenograft tumor growth of osteosarcoma cells in vivo. These data demonstrate the mechanisms of how antisense noncoding RNA regulate the expression of sense genes, and show the pivotal functions of FGFR3-AS1 in osteosarcoma.
Collapse
Affiliation(s)
- Jiabing Sun
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xuming Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Chunjiang Fu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Xiaoyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jilong Zou
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Hanbing Hua
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| |
Collapse
|
326
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
327
|
Zhang D, Cao C, Liu L, Wu D. Up-regulation of LncRNA SNHG20 Predicts Poor Prognosis in Hepatocellular Carcinoma. J Cancer 2016; 7:608-17. [PMID: 27053960 PMCID: PMC4820738 DOI: 10.7150/jca.13822] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
Recent studies indicated that long noncoding RNAs (lncRNAs) played important regulatory roles in carcinogenesis and cancer progression. However, the contribution of small nucleolar RNA host gene 20 (SNHG20) to cancer development remains largely unknown. The aim of the study is to investigate the expression of SNHG20 and its clinical significance in hepatocellular carcinoma (HCC). Our results showed that the expression of SNHG20 was remarkably up-regulated in HCC tissues compared with adjacent non-tumor liver tissues from 49 fresh HCC samples (cohort 1) detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR, P = 0.004). The results were confirmed in 144 formalin-fixed, paraffin-embedded HCC tissues (cohort 2) by in situ hybridization (ISH). Meanwhile, the expression of SNHG20 was associated with tumor size (P = 0.027 for cohort 1 and P = 0.046 for cohort 2) and clinical stage (P = 0.027 for cohort 1 and P = 0.028 for cohort 2). Importantly, patients with high expression of SNHG20 had a shorter overall survival (OS, P < 0.001) and disease-free survival (DFS, P < 0.001) than those with low expression of SNHG20. Univatiate and multivariate analysis showed that SNHG20 was a significant and independent prognostic predictor for OS of HCC patients (hazard ratio = 3.985, 95% CI = 1.981-8.017, P < 0.001). In addition, a total of 331 HCC patients' data from the Caner Genome Atlas project (TCGA) were used to validate our findings. Consistently, the results from TCGA HCC cohort demonstrated that SNHG20 were overexpressed in HCC tissues compared with non-tumor liver tissues (P < 0.001). Patients with higher expression levels of SNHG20 had poorer OS (P = 0.021) and DFS (P < 0.001). Functionally, knockdown of SNHG20 in SK-Hep-1 cells significantly inhibited cellular proliferation, migration, and invasion. In conclusion, SNHG20, up-regulated in patients with HCC, may serve as an independent prognostic predictor for HCC patients.
Collapse
Affiliation(s)
- Dongyan Zhang
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Chuanhui Cao
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Li Liu
- 2. Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Dehua Wu
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| |
Collapse
|
328
|
Wan L, Sun M, Liu GJ, Wei CC, Zhang EB, Kong R, Xu TP, Huang MD, Wang ZX. Long Noncoding RNA PVT1 Promotes Non-Small Cell Lung Cancer Cell Proliferation through Epigenetically Regulating LATS2 Expression. Mol Cancer Ther 2016; 15:1082-94. [PMID: 26908628 DOI: 10.1158/1535-7163.mct-15-0707] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/27/2016] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNA) are a novel class of transcripts with no protein coding capacity, but with diverse functions in cancer cell proliferation, apoptosis, and metastasis. The lncRNA PVT1 is 1,716 nt in length and located in the chr8q24.21 region, which also contains the myelocytomatosis (MYC) oncogene. Previous studies demonstrated that MYC promotes PVT1 expression in primary human cancers. However, the expression pattern and potential biologic function of PVT1 in non-small cell lung cancer (NSCLC) is still unclear. Here, we found that PVT1 was upregulated in 105 human NSCLC tissues compared with normal samples. High expression of PVT1 was associated with a higher tumor-node-metastasis stage and tumor size, as well as poorer overall survival. Functional analysis revealed that knockdown of PVT1 inhibited NSCLC cell proliferation and induced apoptosis both in vitro and in vivo RNA immunoprecipitation and chromatin immunoprecipitation assays demonstrated that PVT1 recruits EZH2 to the large tumor suppressor kinase 2 (LATS2) promoter and represses LATS2 transcription. Furthermore, ectopic expression of LATS2 increased apoptosis and repressed lung adenocarcinoma cell proliferation by regulating the Mdm2-p53 pathway. Taken together, our findings indicated that PVT1/EZH2/LATS2 interactions might serve as new target for lung adenocarcinoma diagnosis and therapy. Mol Cancer Ther; 15(5); 1082-94. ©2016 AACR.
Collapse
Affiliation(s)
- Li Wan
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China. Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, People's Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guo-Jian Liu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen-Chen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Er-Bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rong Kong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tong-Peng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming-De Huang
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, People's Republic of China
| | - Zhao-Xia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
329
|
Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics 2016; 291:1013-33. [PMID: 26885843 DOI: 10.1007/s00438-016-1179-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
It is well established that most of the human genome and those of other mammals and plants are transcribed into RNA without protein-coding capacity, which we define as non-coding RNA. From siRNA to microRNA, whose functions and features have been well characterized, non-coding RNAs have been a popular topic in life science research over the last decade. Long non-coding RNAs (lncRNAs), however, as a novel class of transcripts, are distinguished from these other small RNAs. Recent studies have revealed a diverse population of lncRNAs with different sizes and functions across different species. These populations are expressed dynamically and act as important regulators in a variety of biological processes, especially in gene expression. Nevertheless, the functions and mechanisms of most lncRNAs remain unclear. In this review, we present recent progress in the identification of lncRNAs, their functions and molecular mechanisms, their roles in human diseases, their potential diagnostic and therapeutic applications as well as newer technologies for identifying deregulated lncRNAs in disease tissues.
Collapse
Affiliation(s)
- Ruifang Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yuwen Su
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
330
|
Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, Meng Q, Zhou C, Liu F, Ma J, Sun S, Zheng J, Wang F. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016; 590:559-70. [PMID: 26801864 DOI: 10.1002/1873-3468.12078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 01/31/2023]
Abstract
In this study, we found that H19 is the most strongly differentially expressed long noncoding RNA (lncRNA) during liver development. H19 may inhibit the proliferation of fetal liver cells by blocking the interaction between heterogeneous nuclear ribonucleoprotein (hnRNP) U and actin, which results in gene transcriptional repression. Based on ChIP-seq analysis, we found that genes involved in the Wnt signaling pathway are enriched among hnRNP U-binding genes. Further investigation demonstrated that hnRNP U has opposing effects on cell proliferation and Wnt/β-catenin signaling pathway activity compared to H19 and that hnRNP U is very important in this process.
Collapse
Affiliation(s)
- Shaobing Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Xia Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yan Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jihang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinfeng Huang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Qingyang Meng
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Chuanchuan Zhou
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Feng Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinzhao Ma
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jiasheng Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| |
Collapse
|
331
|
Cui M, You L, Ren X, Zhao W, Liao Q, Zhao Y. Long non-coding RNA PVT1 and cancer. Biochem Biophys Res Commun 2016; 471:10-4. [DOI: 10.1016/j.bbrc.2015.12.101] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
|
332
|
Parasramka MA, Patel T. Long non-coding RNA regulation of liver cancer stem cell self-renewal offers new therapeutic targeting opportunities. Stem Cell Investig 2016; 3:1. [PMID: 27358893 DOI: 10.3978/j.issn.2306-9759.2016.01.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNA) are critical regulators of gene expression, and can reprogram the transcriptome to modulate cellular processes involved in cellular growth and differentiation, and thereby contribute to tumorigenesis. In addition to effects on tumor cell growth, survival and cell signaling, lncRNA can modulate cancer stem cell (CSC) behavior, including the expression of pluripotency factors. The identification of lncRNA that are mechanistically linked to cancer stem cell self-renewal and differentiation, or aberrant signaling pathways associated with tumor growth or progression, offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Mansi A Parasramka
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
333
|
Wang J, Shao N, Ding X, Tan B, Song Q, Wang N, Jia Y, Ling H, Cheng Y. Crosstalk between transforming growth factor-β signaling pathway and long non-coding RNAs in cancer. Cancer Lett 2016; 370:296-301. [DOI: 10.1016/j.canlet.2015.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/11/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
|
334
|
Chen X, Fan S, Song E. Noncoding RNAs: New Players in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:1-47. [PMID: 27376730 DOI: 10.1007/978-981-10-1498-7_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world of noncoding RNAs (ncRNAs) has gained widespread attention in recent years due to their novel and crucial potency of biological regulation. Noncoding RNAs play essential regulatory roles in a broad range of developmental processes and diseases, notably human cancers. Regulatory ncRNAs represent multiple levels of structurally and functionally distinct RNAs, including the best-known microRNAs (miRNAs), the complicated long ncRNAs (lncRNAs), and the newly identified circular RNAs (circRNAs). However, the mechanisms by which they act remain elusive. In this chapter, we will review the current knowledge of the ncRNA field, discussing the genomic context, biological functions, and mechanisms of action of miRNAs, lncRNAs, and circRNAs. We also highlight the implications of the biogenesis and gene expression dysregulation of different ncRNA subtypes in the initiation and development of human malignancies.
Collapse
Affiliation(s)
- Xueman Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Siting Fan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Erwei Song
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
335
|
Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets. Mol Genet Genomics 2015; 291:1035-51. [PMID: 26711644 DOI: 10.1007/s00438-015-1163-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and deadly cancer. The molecular pathogenesis of the disease remains poorly understood. To better understand HCC biology and explore potential biomarkers and therapeutic targets, we investigated the whole transcriptome of HCC. Considering the genetic heterogeneity of HCC, four datasets from four studies consisting of 15 pairs of HCC and adjacent normal samples were analyzed. We observed that the number of lncRNAs expressed in each HCC sample was consistently greater than the adjacent normal sample. Moreover, 15 lncRNAs were identified expressed in five to seven HCC tissues but were not detected in any adjacent normal tissue. Differential expression analysis detected 35 up- and 80 down-regulated lncRNAs in HCC samples compared with adjacent normal samples. In addition, five differentially expressed lncRNAs were predicted to play a role in oxidation and reduction process. With regard to splicing alterations, we identified nine highly recurrent differential splicing events belonging to eight genes USO1, RPS24, CCDC50, THNSL2, NUMB, FN1 (two events), SLC39A14 and NR1I3. Of them, splicing alterations of SLC39A14 and NR1I3 were reported for the association with HCC for the first time. The splicing dysregulation in HCC may be influenced by three splicing factors ESRP2, CELF2 and SRSF5 which were significantly down-regulated in HCC samples. This study revealed uncharacterized aspects of HCC transcriptome and identified important lncRNAs and splicing isoforms with the potential to serve as biomarkers and therapeutic targets for the disease.
Collapse
|
336
|
Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q, Yang M. MiRNA-192 [corrected] and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma. PLoS Genet 2015; 11:e1005726. [PMID: 26710269 PMCID: PMC4692503 DOI: 10.1371/journal.pgen.1005726] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. However, it is still largely unknown how these lncRNAs were regulated by small ncRNAs, such as microRNAs (miRNAs), at the post-transcriptional level. We here use lncRNA HOTTIP as an example to study how miRNAs impact lncRNAs expression and its biological significance in hepatocellular carcinoma (HCC). LncRNA HOTTIP is a vital oncogene in HCC, one of the deadliest cancers worldwide. In the current study, we identified miR-192 and miR-204 as two microRNAs (miRNAs) suppressing HOTTIP expression via the Argonaute 2 (AGO2)-mediated RNA interference (RNAi) pathway in HCC. Interaction between miR-192 or miR-204 and HOTTIP were further confirmed using dual luciferase reporter gene assays. Consistent with this notion, a significant negative correlation between these miRNAs and HOTTIP exists in HCC tissue specimens. Interestingly, the dysregulation of the three ncRNAs was associated with overall survival of HCC patients. In addition, the posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells. On the contrary, antagonizing endogenous miR-192 or miR-204 led to increased HOTTIP expression and stimulated cell proliferation. In vivo mouse xenograft model also support the tumor suppressor role of both miRNAs. Besides the known targets (multiple 5’ end HOX A genes, i.e. HOXA13), glutaminase (GLS1) was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Considering glutaminolysis as a crucial hallmark of cancer cells and significantly inhibited cell viability after silencingGLS1, we speculate that the miR-192/-204-HOTTIP axis may interrupt HCC glutaminolysis through GLS1 inhibition. These results elucidate that the miR-192/-204-HOTTIP axis might be an important molecular pathway during hepatic cell tumorigenesis. Our data in clinical HCC samples highlight miR-192, miR-204 and HOTTIP with prognostic and potentially therapeutic implications. Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. Here, we for the first time demonstrated how microRNAs (miRNAs) impact onco-lncRNA HOTTIP expression and its biological significance in hepatocellular carcinoma (HCC). We identified miR-192 and miR-204 as two miRNAs suppressing HOTTIP expression via the Argonaute 2-mediated RNA interference pathway. The dysregulation of the three ncRNAs was associated with overall survival of HCC patients. The posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells in vitro and in vivo. Besides one of the known target gene HOXA13, glutaminase was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Our data will have high impact on our understanding of how miRNAs are involved in the fine-regulation of lncRNAs and the potential translation in clinic.
Collapse
Affiliation(s)
- Yunxia Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaodan Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu Province, China
| | - Sichong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- * E-mail:
| |
Collapse
|
337
|
Cui W, Pizzollo J, Han Z, Marcho C, Zhang K, Mager J. Nop2 is required for mammalian preimplantation development. Mol Reprod Dev 2015; 83:124-31. [PMID: 26632338 DOI: 10.1002/mrd.22600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 01/18/2023]
Abstract
Nucleolar protein 2 (NOP2) is evolutionarily conserved from yeast to human, and has been found to play an important role in accelerating cell proliferation, cell-cycle progression, and tumor aggressiveness. The expression pattern and function of Nop2 during early mammalian embryo development, however, has not been investigated. We identified Nop2 as an essential gene for development to the blastocyst stage while performing an RNA interference (RNAi)-based screen in mouse preimplantation embryos. Nop2 is expressed throughout preimplantation development, with highest mRNA and protein accumulation at the 8-cell and morula stages, respectively. RNAi-mediated knockdown of Nop2 results in embryos that arrest as morula. NOP2-deficient embryos exhibit reduced blastomere numbers, greatly increased apoptosis, and impaired cell-lineage specification. Furthermore, knockdown of Nop2 results in global reduction of all RNA species, including rRNA, small nuclear RNA, small nucleolar RNA, and mRNA. Taken together, our results demonstrate that Nop2 is an essential gene for blastocyst formation, and is required for RNA processing and/or stability in vivo during preimplantation embryo development in the mouse.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Jason Pizzollo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Zhengbin Han
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts.,Harbin Institute of Technology, School of Life Science and Technology, Harbin, China
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, Institute of Animal Genetics, Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
338
|
Guo W, Liu S, Cheng Y, Lu L, Shi J, Xu G, Li N, Cheng K, Wu M, Cheng S, Liu S. ICAM-1–Related Noncoding RNA in Cancer Stem Cells Maintains ICAM-1 Expression in Hepatocellular Carcinoma. Clin Cancer Res 2015; 22:2041-50. [PMID: 26667486 DOI: 10.1158/1078-0432.ccr-14-3106] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Weixing Guo
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shupeng Liu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuqiang Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Lu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Shi
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guixia Xu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nan Li
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kai Cheng
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuqun Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Shanrong Liu
- Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
339
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW, Chen G. Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol 2015; 7:2781-2791. [PMID: 26668690 PMCID: PMC4670950 DOI: 10.4254/wjh.v7.i28.2781] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncRNAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncRNAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncRNAs in HCC are still deficient, an improved understanding of the roles played by lncRNAs in HCC will lead to a much more effective utilization of those lncRNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.
Collapse
|
340
|
Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics 2015; 15:249-56. [PMID: 26634812 PMCID: PMC4880007 DOI: 10.1093/bfgp/elv058] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Analysis of extracellular vesicles (EV) and their contents may be useful as disease biomarkers if they reflect the contents of cells of origin, differ between normal and diseased tissue and can be reliably detected. An increasing number of long noncoding RNA (lncRNA) are being reported to be aberrantly expressed in human cancers. These tumor-associated lncRNA may have potential as new biomarkers of disease. In this review, we highlight lncRNAs that are commonly associated with hepatocellular cancer, and summarize their potential biological roles and underlying molecular mechanisms. While lncRNA can be detected in the circulation, their low expression within circulating vesicles will require the use of highly sensitive detection technologies such as digital polymerase chain reaction or next-generation sequencing. While the integrity and functional role of tumor-specific lncRNAs within EV have yet to be established, their presence or enrichment within tumor cell-derived EV offers promise for their potential as disease biomarkers.
Collapse
|
341
|
Zhuang C, Li J, Liu Y, Chen M, Yuan J, Fu X, Zhan Y, Liu L, Lin J, Zhou Q, Xu W, Zhao G, Cai Z, Huang W. Tetracycline-inducible shRNA targeting long non-coding RNA PVT1 inhibits cell growth and induces apoptosis in bladder cancer cells. Oncotarget 2015; 6:41194-203. [PMID: 26517688 PMCID: PMC4747399 DOI: 10.18632/oncotarget.5880] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that long non-coding RNAs (lncRNAs) may be significant functional regulators in tumor development, including bladder cancer. Here, we found that PVT1 was upregulated in bladder cancer tissues and cells. Further experiments revealed that PVT1 promoted cell proliferation and suppressed cell apoptosis. Furthermore we also used the emerging technology, synthetic biology, to create tetracycline-inducible small hairpin RNA (shRNA) vectors which silenced PVT1 in a dosage-dependent manner to inhibit the progression of bladder cancer. In conclusion, data suggest that PVT1 could be an oncogene and may be a therapeutic target in bladder cancer. Synthetic "tetracycline-on" switch system can be used to quantitatively control the expression of PVT1 in bladder cancer in response to different concentration of doxycycline to suppress the progression of bladder cancer.
Collapse
Affiliation(s)
- Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou 515041, Guangdong Province, People's Republic of China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou 515041, Guangdong Province, People's Republic of China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Anhui Medical University, Hefei 230601, Anhui Province, People's Republic of China
| | - Jiancheng Yuan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Xing Fu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Qing Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Centerat Shanghai, Shanghai 200000, Shanghai, People's Republic of China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| |
Collapse
|
342
|
Zeng C, Yu X, Lai J, Yang L, Chen S, Li Y. Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia. J Hematol Oncol 2015; 8:126. [PMID: 26545364 PMCID: PMC4636781 DOI: 10.1186/s13045-015-0223-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is associated with chromosomal translocation t(15;17), which results in the proliferation of morphologically abnormal promyelocytes. Gain of supernumerary copies of the 8q24 chromosomal region, which harbors MYC and PVT1, has been shown to be the most common secondary alteration in human APL. Increased MYC can accelerate the development of myeloid leukemia in APL. However, the role that the expression of the long non-coding RNA (lncRNA) PVT1 plays in the pathogenesis of APL remains largely unknown. FINDINGS In this study, we first analyzed the lncRNA PVT1 expression level in peripheral blood cells from 28 patients with de novo APL, and significantly upregulated PVT1 was found in APL patients compared with healthy donors. We then observed significantly lower MYC and PVT1 expression during all-trans retinoic acid (ATRA)-induced differentiation and cell cycle arrest in the APL cell line. MYC knockdown in NB4 cells led to PVT1 downregulation. Moreover, PVT1 knockdown by RNA interference led to suppression of the MYC protein level, and cell proliferation was inhibited. CONCLUSION Our findings reveal that the lncRNA PVT1 may play an important role in the proliferation of APL cells and may be useful for future therapeutic management.
Collapse
Affiliation(s)
- Chengwu Zeng
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xibao Yu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lijiang Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
343
|
Zhang J, Fan D, Jian Z, Chen GG, Lai PBS. Cancer Specific Long Noncoding RNAs Show Differential Expression Patterns and Competing Endogenous RNA Potential in Hepatocellular Carcinoma. PLoS One 2015; 10:e0141042. [PMID: 26492393 PMCID: PMC4619599 DOI: 10.1371/journal.pone.0141042] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression by acting with microRNAs (miRNAs). However, the roles of cancer specific lncRNA and its related competitive endogenous RNAs (ceRNA) network in hepatocellular cell carcinoma (HCC) are not fully understood. The lncRNA profiles in 372 HCC patients, including 372 tumor and 48 adjacent non-tumor liver tissues, from The Cancer Genome Atlas (TCGA) and NCBI GEO omnibus (GSE65485) were analyzed. Cancer specific lncRNAs (or HCC related lncRNAs) were identified and correlated with clinical features. Based on bioinformatics generated from miRcode, starBase, and miRTarBase, we constructed an lncRNA-miRNA-mRNA network (ceRNA network) in HCC. We found 177 cancer specific lncRNAs in HCC (fold change ≥ 1.5, P < 0.01), 41 of them were also discriminatively expressed with gender, race, tumor grade, AJCC tumor stage, and AJCC TNM staging system. Six lncRNAs (CECR7, LINC00346, MAPKAPK5-AS1, LOC338651, FLJ90757, and LOC283663) were found to be significantly associated with overall survival (OS, log-rank P < 0.05). Collectively, our results showed the lncRNA expression patterns and a complex ceRNA network in HCC, and identified a complex cancer specific ceRNA network, which includes 14 lncRNAs and 17 miRNAs in HCC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dahua Fan
- The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - George G. Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail:
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
344
|
Cui D, Yu CH, Liu M, Xia QQ, Zhang YF, Jiang WL. Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumour Biol 2015; 37:4127-34. [PMID: 26490983 DOI: 10.1007/s13277-015-4261-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence has indicated that long non-coding RNA PVT1 is upregulated in various human cancers. However, it remains unclear whether PVT1 is involved in the development and progression of non-small cell lung cancer (NSCLC). The present study was designed to investigate the expression, biological role, and clinical significance of PVT1 in NSCLC. Our results indicated that PVT1 expression was significantly increased in NSCLC tissues and cell lines, and its upregulation was associated with advanced T-stage and tumor-node-metastasis (TNM) stage and regional lymph node metastasis. PVT1 expression levels were robust in differentiating NSCLC tissues from controls. Kaplan-Meier curve and Cox regression analysis showed that high expression of PVT1 was associated with poor overall survival and disease-free survival in NSCLC patients. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays indicated that knockdown of PVT1 remarkably inhibited NSCLC cell proliferation, whereas overexpression of PVT1 significantly promoted cellular proliferation. In addition, PVT1 knockdown increased the number of cells in the G0/G1 phase and reduced the number of cells in the S phase, while overexpression of PVT1 could promote cell cycle progression. Furthermore, our findings also revealed that the messenger RNA (mRNA) and protein expression of P15 and P21 was significantly upregulated in NSCLC cells transfected with PVT1 small interfering RNA (siRNA) and downregulated in cells transfected with pcDNA3.1-PVT1. In conclusion, our study demonstrated that PVT1 might serve as a promising biomarker for diagnosis and prognosis of NSCLC, and it could promote the proliferation of NSCLC cells by downregulating p15 and p21 expression.
Collapse
Affiliation(s)
- Di Cui
- Department of Respiration, Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Cai-Hua Yu
- Department of Cardiothoracic Surgery, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313003, China.
| | - Min Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Qing Xia
- Department of Respiration, Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yu-Feng Zhang
- Department of Respiration, Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Wei-Long Jiang
- Department of Respiration, Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
345
|
Lv L, Chen G, Zhou J, Li J, Gong J. WT1-AS promotes cell apoptosis in hepatocellular carcinoma through down-regulating of WT1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:119. [PMID: 26462627 PMCID: PMC4604772 DOI: 10.1186/s13046-015-0233-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Background The antisense of the tumor suppressor gene WT1 (WT1-AS) is a long non-coding RNA. The role of WT1-AS in the development of hepatocellular carcinoma (HCC) has not yet been elucidated. Methods Quantitative real-time PCR and western blot analyses were used to measure levels of WT1-AS and its related genes in tumor and corresponding adjacent tumor tissues of HCC patients. The effect on HCC cell proliferation and apoptosis was assessed by EdU incorporation assays and PI-Annexin-V staining, respectively. ShRNA and dual-luciferase assays were used to investigate the regulatory relationship between WT1-AS and WT1 in cell lines. Results WT1-AS expression correlated negatively with WT1 expression in HCC tumor tissue. Kaplan-Meier curve analysis revealed that WT1-AS expression is a reliable indicator of HCC prognosis. The downregulation of WT1 expression by WT1-AS promoted cell apoptosis by suppressing the JAK/STAT3 signaling pathway. Bioinformatics analysis showed that WT1-AS downregulates WT1 by binding to the TATA region of the WT1 promotor. WT1-AS was also able to reverse WT1-mediated resistance to Dox based chemotherapy in HCC cells. Conclusions WT1-AS downregulates WT1 expression in HCC tumors and promotes apoptosis by binding to the promoter region of WT1. Our findings suggest that WT1-AS may function as a tumor suppressor in HCC by reversing the oncogenic effects of WT1. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0233-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Long Lv
- Department of General Surgery, People's Hospital of Gaochun, No. 9 Chunzhong Road, Gaochun, Nanjing, 211300, Jiangsu Province, China.
| | - Gong Chen
- Department of General Surgery, People's Hospital of Gaochun, No. 9 Chunzhong Road, Gaochun, Nanjing, 211300, Jiangsu Province, China
| | - Jianping Zhou
- Department of General Surgery, Yixing People's Hospital, the Affiliated Hospital of Jiangsu University, Yixing, 214200, Jiangsu Province, China
| | - Jun Li
- Department of General Surgery, Nanjing Jiangning Hospital, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu Province, P.R. China
| | - Jianping Gong
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, 210009, China
| |
Collapse
|
346
|
Wu J, Zhang J, Shen B, Yin K, Xu J, Gao W, Zhang L. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:116. [PMID: 26452542 PMCID: PMC4600266 DOI: 10.1186/s13046-015-0229-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Accumulating evidence suggests the pro-inflammatory cytokine interleukin-6 (IL-6) in tumor microenvironment may promote the development of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown. METHODS The expression and promoter activity of lncTCF7 were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the STAT3 binding site in the lncTCF7 promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of STAT3 to the lncTCF7 promoter was confirmed by chromatin immunoprecipitation assay (CHIP) in vivo. The effects of decreasing STAT3 with small interference RNA and inhibiting STAT3 activation by small molecular inhibitor on lncTCF7 expression were also determined. RESULTS We demonstrate that IL-6 could induce lncTCF7 expression in a time- and dose-dependent manner, and we showed that IL-6 transcriptionally activated the expression of lncTCF7 in HCC cells by activating STAT3, a transcription activator which binds to promoter regions of lncTCF7. Furthermore, knocking-down STAT3 and inhibiting STAT3 activation reduced lncTCF7 expression. Importantly, RNA interference-based attenuation of lncTCF7 prevented IL-6-induced EMT and cell invasion. CONCLUSION Thus, these data provides evidence to the existence of an aberrant IL-6/STAT3/ lncTCF7 signaling axis that leads to HCC aggressiveness through EMT induction, which could be novel therapeutic targets in malignancies.
Collapse
Affiliation(s)
- Jun Wu
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| | - Jun Zhang
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China.
| | - Bin Shen
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| | - Kai Yin
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| | - Jianwei Xu
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| | - Wencan Gao
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| | - Lihong Zhang
- Department of Hepatobiliary Surgery, Taixing People's Hospital, Yangzhou University School of Medicine, 1 Changzheng Road, Jiangsu Province, 225400, People's Republic of China
| |
Collapse
|
347
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
348
|
Long non-coding RNA CARLo-5 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Clin Exp Med 2015; 17:33-43. [PMID: 26433964 DOI: 10.1007/s10238-015-0395-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Recently, many studies show that long non-coding RNAs (lncRNAs) play important roles in cancer biology. Although its expression was reported dysregulated during tumorigenesis, the contributions of lncRNAs to hepatocellular carcinoma (HCC) are still largely unknown. In particular, the lncRNA CARLo-5 has a functional role in cell-cycle regulation in colon cancer, while the clinical significance and biological function of CARLo-5 in HCC remain unelucidated. In order to fill those study blanks, the expression level of CARLo-5 in human HCC specimens was tested, and its correlation with clinicopathologic features as well as the prognosis for patients with HCC was analyzed. Additionally, MTT, wound healing and transwell assays were employed to investigate the biological function of CARLo-5. The results showed that CARLo-5 levels were significantly overexpressed in HCC tissues compared to ANLT. Besides, high expression of CARLo-5 was associated with liver cirrhosis (P = 0.001), tumor number (P < 0.001), vascular invasion (P = 0.001), capsular formation (P = 0.014) and Edmondson-Steiner grade (P < 0.001), which proved that CARLo-5 was an independent risk factor for overall survival and disease-free survival. In addition, in highly metastatic HCC cell lines (HCCLM3 and MHCC97-L), CARLo-5 was up-regulated, but in lowly metastatic HCC cell lines (HepG2, SNU387), it showed down-regulated. Besides, by using gain and loss of function experiments in HCC cell lines (HCCLM3 and HepG2), the results showed that CARLo-5 overexpression significantly enhanced cell proliferation, migration and invasion in vitro. Our study also revealed that CARLo-5 was prominently up-regulated in HCC specimens and its high expression was associated with poor prognosis of HCC patients. Totally, those findings together indicate that CARLo-5 promotes proliferation and metastasis of HCC and potentially emerged as a novel therapeutic target.
Collapse
|
349
|
Zhou Q, Chen J, Feng J, Wang J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour Biol 2015; 37:3105-13. [PMID: 26427660 DOI: 10.1007/s13277-015-4149-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/23/2015] [Indexed: 01/13/2023] Open
Abstract
The purposes of this study were to investigate the potential roles of long noncoding RNA (lncRNA) PVT1 in thyroid cancer cell proliferation and to explore their possible mechanisms. A total of 84 patients who were diagnosed as having thyroid cancer (papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC)) in Renji Hospital were enrolled in this study. Expressions of lncRNA PVT1 in thyroid cancer tissues and cell lines (IHH-4, FTC-133, and 8505C) were analyzed using RT-polymerase chain reaction (PCR) and western blotting analysis. The effects of lncRNA PVT1 expression on thyroid cancer cell proliferation and cell cycle were analyzed using flow cytometry. Furthermore, the effects of lncRNA expression on thyroid-stimulating hormone receptor (TSHR) expression and polycomb enhancer of zeste homolog 2 (EZH2) were also analyzed using RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. Compared to the controls, lncRNA PVT1 was significantly up-regulated in thyroid tissues, as well as in three kinds of tumor cell lines (P < 0.05). Silenced PVT1 significantly inhibited thyroid cell line IHH-4, FTC-133, and 8505C cell proliferation and arrested cell cycle at G0/G1 stage and significantly decreased cyclin D1 and TSHR expressions (P < 0.05). Moreover, lncRNA PVT1 could be enriched by EZH2, and silencing PVT1 resulted in the decreased recruitment of EZH2. This study suggested that lncRNA PVT1 may contribute to tumorigenesis of thyroid cancer through recruiting EZH2 and regulating TSHR expression.
Collapse
Affiliation(s)
- Qinyi Zhou
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jun Chen
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jialin Feng
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jiadong Wang
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
350
|
Gao Y, Chen G, Zeng Y, Zeng J, Lin M, Liu X, Liu J. Invasion and metastasis-related long noncoding RNA expression profiles in hepatocellular carcinoma. Tumour Biol 2015; 36:7409-7422. [PMID: 25900874 DOI: 10.1007/s13277-015-3408-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/29/2015] [Indexed: 01/25/2023] Open
Abstract
Recurrence, invasion, and metastasis are the major reasons of the low 5-year survival of hepatocellular carcinoma. However, the mechanisms of recurrence, invasion, and metastasis are still poll understood. Long noncoding RNAs (LncRNAs, >200 nt) have been demonstrated to play important roles in both tumor suppressive and oncogenic signaling pathways. Here, we employed the LncRNAs microarray technology to study the LncRNAs expression profiles at genome-wide in hepatocellular carcinoma (HCC) tissue samples with early recurrence (less than 1 year, with invasion and metastasis out of liver) and late recurrence (longer than 2 years, without invasion and metastasis out of liver), which had different recurrent/metastatic potentials, by using normal liver tissue as control to screen the dysregulated LncRNAs which are potentially involved in the recurrence, invasion, and metastasis process of HCC. Overall, 1170 LncRNAs were identified to differentially expressed between the early and late recurrence samples. These differentially expressed LncRNAs were further characterized by integrating examination of genomic context, co-expression network analysis, and gene ontology (GO) enrichment of their associated protein-coding genes. Furthermore, 15 LncRNAs selected randomly from top 50 differentially expressed LncRNAs were validated by quantitative PCR (qPCR) in cell lines MHCC97H and MHCC97L, which have exactly the same genetic background but with different invasion potentials. Meanwhile, the prognostic potential of three verified LncRNAs at cell line level was further validated in 59 HCC samples. Therefore, our results demonstrated that the aberrant expression of LncRNAs might be responsible for the HCC invasion and metastasis and provide fundamental information for further study the LncRNAs involved molecular mechanisms of the invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Yunzhen Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Jinhua Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Minjie Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|