301
|
Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc Natl Acad Sci U S A 2008; 105:20947-52. [PMID: 19098102 DOI: 10.1073/pnas.0804007106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A combination of cell culture and animal studies has recently shown that adhesion between neurexins and neuroligins played important roles in synapse initiation, maturation, and function. Binding of neurexin-1beta to neuroligin-1 triggers the postsynaptic clustering of the scaffold postsynaptic density protein 95, but the composition and timing of accumulation of glutamate receptors at those nascent contacts remain unclear. Using glutamate iontophoresis and patch-clamp recordings, we identified functional AMPA receptors (AMPARs) and NMDA receptors at postsynaptic density protein 95 clusters induced by neurexin-1beta coated microspheres on primary hippocampal neurons. The recruitment of AMPARs occurred as early as 2 h after initial contact, and was not blocked by TTX/2-amino-5-phosphovaleric acid (APV) treatment. The differential recruitment of recombinant subunits GluR1 and GluR2, as well as the absence of rectification in voltage/current curves, further indicate that neurexin/neuroligin contacts primarily recruit GluR2-containing AMPARs. Finally, by using glutamate un-caging and calcium imaging, we show that AMPARs participate in calcium entry at neurexin-1beta induced post-synapses, most likely through the activation of voltage-gated calcium channels. Such rapid and activity-independent accumulation of functional AMPARs at neurexin-1beta-induced postsynapses points to a new role of AMPARs in synaptogenesis.
Collapse
|
302
|
Puthanveettil SV, Monje FJ, Miniaci MC, Choi YB, Karl KA, Khandros E, Gawinowicz MA, Sheetz MP, Kandel ER. A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 2008; 135:960-73. [PMID: 19041756 DOI: 10.1016/j.cell.2008.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/28/2008] [Accepted: 11/04/2008] [Indexed: 01/09/2023]
Abstract
To explore how gene products, required for the initiation of synaptic growth, move from the cell body of the sensory neuron to its presynaptic terminals, and from the cell body of the motor neuron to its postsynaptic dendritic spines, we have investigated the anterograde transport machinery in both the sensory and motor neurons of the gill-withdrawal reflex of Aplysia. We found that the induction of long-term facilitation (LTF) by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia, requires upregulation of kinesin heavy chain (KHC) in both pre- and postsynaptic neurons. Indeed, upregulation of KHC in the presynaptic neurons alone is sufficient for the induction of LTF. However, KHC is not required for the persistence of LTF. Thus, in addition to transcriptional activation in the nucleus and local protein synthesis at the synapse, our studies have identified a third component critical for long-term learning-related plasticity: the coordinated upregulation of kinesin-mediated transport.
Collapse
Affiliation(s)
- Sathyanarayanan V Puthanveettil
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Classical physiological work by Katz, Eccles, and others revealed the central importance of synapses in brain function, and characterized the mechanisms involved in synaptic transmission. Building on this work, major advances in the past two decades have elucidated how synapses work molecularly. In the present perspective, we provide a short description of our personal view of these advances, suggest a series of important future questions about synapses, and discuss ideas about how best to achieve further progress in the field.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304 USA
| | | |
Collapse
|
304
|
Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD. Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008; 149:6006-17. [PMID: 18755801 PMCID: PMC2613060 DOI: 10.1210/en.2008-0274] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
The brain processes information by transmitting signals at synapses, which connect neurons into vast networks of communicating cells. In these networks, synapses not only transmit signals but also transform and refine them. Neurexins and neuroligins are synaptic cell-adhesion molecules that connect presynaptic and postsynaptic neurons at synapses, mediate signalling across the synapse, and shape the properties of neural networks by specifying synaptic functions. In humans, alterations in genes encoding neurexins or neuroligins have recently been implicated in autism and other cognitive diseases, linking synaptic cell adhesion to cognition and its disorders.
Collapse
Affiliation(s)
- Thomas C Südhof
- Neuroscience Institute, Department of Molecular and Cellular Physiology, Stanford University, 1050 Arastradero Road B249, Palo Alto, California 94304, USA.
| |
Collapse
|
306
|
Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, Liu X, Südhof TC, Powell CM. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. GENES BRAIN AND BEHAVIOR 2008; 8:114-26. [PMID: 19016888 DOI: 10.1111/j.1601-183x.2008.00455.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroligins (NL) are postsynaptic cell adhesion molecules that are thought to specify synapse properties. Previous studies showed that mutant mice carrying an autism-associated point mutation in NL3 exhibit social interaction deficits, enhanced inhibitory synaptic function and increased staining of inhibitory synaptic puncta without changes in overall inhibitory synapse numbers. In contrast, mutant mice lacking NL2 displayed decreased inhibitory synaptic function. These studies raised two relevant questions. First, does NL2 deletion impair inhibitory synaptic function by altering the number of inhibitory synapses, or by changing their efficacy? Second, does this effect of NL2 deletion on inhibition produce behavioral changes? We now show that although NL2-deficient mice exhibit an apparent decrease in number of inhibitory synaptic puncta, the number of symmetric synapses as determined by electron microscopy is unaltered, suggesting that NL2 deletion impairs the function of inhibitory synapses without decreasing their numbers. This decrease in inhibitory synaptic function in NL2-deficient mice correlates with a discrete behavioral phenotype that includes a marked increase in anxiety-like behavior, a decrease in pain sensitivity and a slight decrease in motor co-ordination. This work confirms that NL2 modulates inhibitory synaptic function and is the first demonstration that global deletion of NL2 can lead to a selective behavioral phenotype.
Collapse
Affiliation(s)
- J Blundell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8813, USA
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Biswas S, Russell RJ, Jackson CJ, Vidovic M, Ganeshina O, Oakeshott JG, Claudianos C. Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. PLoS One 2008; 3:e3542. [PMID: 18974885 PMCID: PMC2570956 DOI: 10.1371/journal.pone.0003542] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/16/2008] [Indexed: 01/07/2023] Open
Abstract
Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development.
Collapse
Affiliation(s)
- Sunita Biswas
- University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
- Australian National University, Research School of Biological Sciences, Canberra, Australian Capital Territory, Australia
- CSIRO Entomology, Black Mountain, Canberra, Australian Capital Territory, Australia
| | - Robyn J. Russell
- CSIRO Entomology, Black Mountain, Canberra, Australian Capital Territory, Australia
| | - Colin J. Jackson
- CSIRO Entomology, Black Mountain, Canberra, Australian Capital Territory, Australia
| | - Maria Vidovic
- Australian National University, Research School of Biological Sciences, Canberra, Australian Capital Territory, Australia
| | - Olga Ganeshina
- University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - John G. Oakeshott
- CSIRO Entomology, Black Mountain, Canberra, Australian Capital Territory, Australia
| | - Charles Claudianos
- University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
- CSIRO Entomology, Black Mountain, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
308
|
Carlisle HJ, Fink AE, Grant SGN, O'Dell TJ. Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity. J Physiol 2008; 586:5885-900. [PMID: 18936077 DOI: 10.1113/jphysiol.2008.163469] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The membrane-associated guanylate kinases (MAGUKs) PSD-95, PSD-93 and SAP102 are thought to have crucial roles in both AMPA receptor trafficking and formation of NMDA receptor-associated signalling complexes involved in synaptic plasticity. While PSD-95, PSD-93, and SAP102 appear to have similar roles in AMPA receptor trafficking, it is not known whether these MAGUKs also have functionally similar roles in synaptic plasticity. To explore this issue we examined several properties of basal synaptic transmission in the hippocampal CA1 region of PSD-93 and PSD-95 mutant mice and compared the ability of a number of different synaptic stimulation protocols to induce long-term potentiation (LTP) and long-term depression (LTD) in these mutants. We find that while both AMPA and NMDA receptor-mediated synaptic transmission are normal in PSD-93 mutants, PSD-95 mutant mice exhibit clear deficits in AMPA receptor-mediated transmission. Moreover, in contrast to the facilitation of LTP induction and disruption of LTD observed in PSD-95 mutant mice, PSD-93 mutant mice exhibit deficits in LTP and normal LTD. Our results suggest that PSD-95 has a unique role in AMPA receptor trafficking at excitatory synapses in the hippocampus of adult mice and indicate that PSD-93 and PSD-95 have essentially opposite roles in LTP, perhaps because these MAGUKs form distinct NMDA receptor signalling complexes that differentially regulate the induction of LTP by different patterns of synaptic activity.
Collapse
Affiliation(s)
- Holly J Carlisle
- Department of Physiology, David Geffen School of Medicine at UCLA, 53-231 Center for the Health Sciences, Box 951751, Los Angeles, CA 90095-1751, USA
| | | | | | | |
Collapse
|
309
|
Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci U S A 2008; 105:15124-9. [PMID: 18812509 DOI: 10.1073/pnas.0801639105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurexins are cell-surface molecules that bind neuroligins to form a heterophilic, Ca(2+)-dependent complex at central synapses. This transsynaptic complex is required for efficient neurotransmission and is involved in the formation of synaptic contacts. In addition, both molecules have been identified as candidate genes for autism. Here we performed mutagenesis experiments to probe for essential components of the neurexin/neuroligin binding interface at the single-amino acid level. We found that in neurexins the contact area is sharply delineated and consists of hydrophobic residues of the LNS domain that surround a Ca(2+) binding pocket. Point mutations that changed electrostatic and shape properties leave Ca(2+) coordination intact but completely inhibit neuroligin binding, whereas alternative splicing in alpha- and beta-neurexins and in neuroligins has a weaker effect on complex formation. In neuroligins, the contact area appears less distinct because exchange of a more distant aspartate completely abolished binding to neurexin but many mutations of predicted interface residues had no strong effect on binding. Together with calculations of energy terms for presumed interface hot spots that complement and extend our mutagenesis and recent crystal structure data, this study presents a comprehensive structural basis for the complex formation of neurexins and neuroligins and their transsynaptic signaling between neurons.
Collapse
|
310
|
Lintas C, Persico AM. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 2008; 46:1-8. [PMID: 18728070 PMCID: PMC2603481 DOI: 10.1136/jmg.2008.060871] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autism spectrum disorders represent a group of developmental disorders with strong genetic underpinnings. Several cytogenetic abnormalities or de novo mutations able to cause autism have recently been uncovered. In this study, the literature was reviewed to highlight genotype-phenotype correlations between causal gene mutations or cytogenetic abnormalities and behavioural or morphological phenotypes. Based on this information, a set of practical guidelines is proposed to help clinical geneticists pursue targeted genetic testing for patients with autism whose clinical phenotype is suggestive of a specific genetic or genomic aetiology.
Collapse
Affiliation(s)
- C Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Via Alvaro del Portillo 21, I-00128 Rome, Italy
| | | |
Collapse
|
311
|
Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci U S A 2008; 105:13151-6. [PMID: 18723687 DOI: 10.1073/pnas.0802390105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GABAergic synapses are crucial for brain function, but the mechanisms underlying inhibitory synaptogenesis are unclear. Here, we show that postnatal Purkinje cells (PCs) of GABA(A)alpha1 knockout (KO) mice express transiently the alpha3 subunit, leading to the assembly of functional GABA(A) receptors and initial normal formation of inhibitory synapses, that are retained until adulthood. Subsequently, down-regulation of the alpha3 subunit causes a complete loss of GABAergic postsynaptic currents, resulting in a decreased rate of inhibitory synaptogenesis and formation of mismatched synapses between GABAergic axons and PC spines. Notably, the postsynaptic adhesion molecule neuroligin-2 (NL2) is correctly targeted to inhibitory synapses lacking GABA(A) receptors and the scaffold molecule gephyrin, but is absent from mismatched synapses, despite innervation by GABAergic axons. Our data indicate that GABA(A) receptors are dispensable for synapse formation and maintenance and for targeting NL2 to inhibitory synapses. However, GABAergic signaling appears to be crucial for activity-dependent regulation of synapse density during neuronal maturation.
Collapse
|
312
|
Ylisaukko-oja T, Rehnström K, Auranen M, Vanhala R, Alen R, Kempas E, Ellonen P, Turunen JA, Makkonen I, Riikonen R, Nieminen-von Wendt T, von Wendt L, Peltonen L, Järvelä I. Analysis of four neuroligin genes as candidates for autism. Eur J Hum Genet 2008; 13:1285-92. [PMID: 16077734 DOI: 10.1038/sj.ejhg.5201474] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.
Collapse
Affiliation(s)
- Tero Ylisaukko-oja
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Ito H, Atsuzawa K, Sudo K, Di Stefano P, Iwamoto I, Morishita R, Takei S, Semba R, Defilippi P, Asano T, Usuda N, Nagata KI. Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. J Neurochem 2008; 107:61-72. [PMID: 18662323 DOI: 10.1111/j.1471-4159.2008.05585.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
p140Cap (Cas-associated protein) is an adaptor protein considered to play pivotal roles in cell adhesion, growth and Src tyrosine kinase-related signaling in non-neuronal cells. It is also reported to interact with a pre-synaptic membrane protein, synaptosome-associated protein of 25 kDa, and may participate in neuronal secretion. However, properties and precise functions of p140Cap in neuronal cells are almost unknown. Here we show, using biochemical analyses, that p140Cap is expressed in rat brain in a developmental stage-dependent manner, and is relatively abundant in the synaptic plasma membrane fraction in adults. Immunohistochemistry showed localization of p140Cap in the neuropil in rat brain and immunofluorescent analyses detected p140Cap at synapses of primary cultured rat hippocampal neurons. Electron microscopy further revealed localization at pre- and post-synapses. Screening of p140Cap-binding proteins identified a multidomain adaptor protein, vinexin, whose third Src-homology 3 domain interacts with the C-terminal Pro-rich motif of p140Cap. Immunocomplexes between the two proteins were confirmed in COS7 and rat brain. We also clarified that a pre-synaptic protein, synaptophysin, interacts with p140Cap. These results suggest that p140Cap is involved in neurotransmitter release, synapse formation/maintenance, and signaling.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci 2008; 28:6055-67. [PMID: 18550748 DOI: 10.1523/jneurosci.0032-08.2008] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The level of excitation in the brain is kept under control through inhibitory signals mainly exerted by GABA neurons. However, the molecular machinery that regulates the balance between excitation and inhibition (E/I) remains unclear. Candidate molecules implicated in this process are neuroligin (NL) adhesion molecules, which are differentially enriched at either excitatory or inhibitory contacts. In this study, we use transgenic mouse models expressing NL1 or NL2 to examine whether enhanced expression of specific NLs results in synaptic imbalance and altered neuronal excitability and animal behavior. Our analysis reveals several abnormalities selectively manifested in transgenic mice with enhanced expression of NL2 but not NL1. A small change in NL2 expression results in enlarged synaptic contact size and vesicle reserve pool in frontal cortex synapses and an overall reduction in the E/I ratio. The frequency of miniature inhibitory synaptic currents was also found to be increased in the frontal cortex of transgenic NL2 mice. These animals also manifested stereotyped jumping behavior, anxiety, impaired social interactions, and enhanced incidence of spike-wave discharges, as depicted by EEG analysis in freely moving animals. These findings may provide the neural basis for E/I imbalance and altered behavior associated with neurodevelopmental disorders.
Collapse
|
315
|
Koehnke J, Jin X, Trbovic N, Katsamba PS, Brasch J, Ahlsen G, Scheiffele P, Honig B, Palmer AG, Shapiro L. Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4. Structure 2008; 16:410-21. [PMID: 18334216 DOI: 10.1016/j.str.2007.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 11/28/2022]
Abstract
Presynaptic neurexins (NRXs) bind to postsynaptic neuroligins (NLs) to form Ca(2+)-dependent complexes that bridge neural synapses. beta-NRXs bind NLs through their LNS domains, which contain a single site of alternative splicing (splice site 4) giving rise to two isoforms: +4 and Delta. We present crystal structures of the Delta isoforms of the LNS domains from beta-NRX1 and beta-NRX2, crystallized in the presence of Ca(2+) ions. The Ca(2+)-binding site is disordered in the beta-NRX2 structure, but the 1.7 A beta-NRX1 structure reveals a single Ca(2+) ion, approximately 12 A from the splice insertion site, with one coordinating ligand donated by a glutamic acid from an adjacent beta-NRX1 molecule. NMR studies of beta-NRX1+4 show that the insertion sequence is unstructured, and remains at least partially disordered in complex with NL. These results raise the possibility that beta-NRX insertion sequence 4 may function in roles independent of neuroligin binding.
Collapse
Affiliation(s)
- Jesko Koehnke
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Shen KC, Kuczynska DA, Wu IJ, Murray BH, Sheckler LR, Rudenko G. Regulation of neurexin 1beta tertiary structure and ligand binding through alternative splicing. Structure 2008; 16:422-31. [PMID: 18334217 DOI: 10.1016/j.str.2008.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/13/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a "splice-insert signaling code." In particular, neurexin 1beta carrying an alternative splice insert at site SS#4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1beta+SS#4 reveals dramatic rearrangements to the "hypervariable surface," the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop beta10-beta11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca(2+)-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1beta isoforms acquire neuroligin splice isoform selectivity.
Collapse
Affiliation(s)
- Kaiser C Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
317
|
Triana-Baltzer GB, Liu Z, Gounko NV, Berg DK. Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons. Mol Cell Neurosci 2008; 39:74-82. [PMID: 18585463 DOI: 10.1016/j.mcn.2008.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 12/26/2022] Open
Abstract
Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.
Collapse
Affiliation(s)
- Gallen B Triana-Baltzer
- Neurobiology Section, Division of Biological Sciences, 0357, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA
| | | | | | | |
Collapse
|
318
|
Abstract
Transcellular interactions between neuroligins (NL) and beta-neurexin have been widely documented to promote maturation and function of both glutamatergic and GABAergic synapses. Recently it has been shown that neuroligin-1 plays a similar role at nicotinic synapses on chick ciliary ganglion neurons in culture, acting from the postsynaptic side to enhance transmitter release from adjacent cholinergic terminals and boost nicotinic input to the cells. We show here that the ciliary ganglion expresses three forms of neuroligin as well as two beta-neurexins and an alpha-neurexin. Overexpression of the beta-neurexins, but not the alpha-neurexin, can induce clustering of endogenous PSD-95 in adjacent neurons, presumably engaging neuroligin in the postsynaptic cell. The trans effects of beta-neurexins are selective; though both alpha3- and alpha7-containing nicotinic receptors are available on opposing cells, beta-neurexins induce coclustering of alpha3- but not alpha7-containing nicotinic receptors. Overexpression of other putative synaptogenic molecules, including SynCAM and L1, are ineffective at trans-clustering of PSD-95 on adjacent neurons. The beta-neurexins also exert a cis effect, coclustering presynaptic markers along with beta-neurexin in neurites juxtaposed to postsynaptic proteins, consistent with organizing presynaptic components as well. Striated muscle, the synaptic target of ciliary neurons in vivo, also expresses neuroligin. The results demonstrate that NL and neurexins are present at multiple sites in nicotinic cholinergic pathways and suggest the possibility of both cis- and trans-interactions to influence nicotinic signaling.
Collapse
Affiliation(s)
- Brendon S Ross
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | |
Collapse
|
319
|
Biophysical characterization of the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3. Biophys J 2008; 95:1928-44. [PMID: 18456828 DOI: 10.1529/biophysj.107.126995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholinesterase-like adhesion molecules (CLAMs) are a family of neuronal cell adhesion molecules with important roles in synaptogenesis, and in maintaining structural and functional integrity of the nervous system. Our earlier study on the cytoplasmic domain of one of these CLAMs, the Drosophila protein, gliotactin, showed that it is intrinsically unstructured in vitro. Bioinformatic analysis suggested that the cytoplasmic domains of other CLAMs are also intrinsically unstructured, even though they bear no sequence homology to each other or to any known protein. In this study, we overexpress and purify the cytoplasmic domain of human neuroligin 3, notwithstanding its high sensitivity to the Escherichia coli endogenous proteases that cause its rapid degradation. Using bioinformatic analysis, sensitivity to proteases, size exclusion chromatography, fluorescence correlation spectroscopy, analytical ultracentrifugation, small angle x-ray scattering, circular dichroism, electron spin resonance, and nuclear magnetic resonance, we show that the cytoplasmic domain of human neuroligin 3 is intrinsically unstructured. However, several of these techniques indicate that it is not fully extended, but becomes significantly more extended under denaturing conditions.
Collapse
|
320
|
Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz CE, Sommer SS. Neurexin 1alpha structural variants associated with autism. Neurosci Lett 2008; 438:368-70. [PMID: 18490107 DOI: 10.1016/j.neulet.2008.04.074] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 04/16/2008] [Accepted: 04/19/2008] [Indexed: 11/19/2022]
Abstract
Neurexins are presynaptic membrane cell-adhesion molecules which bind to neuroligins, a family of proteins that are associated with autism. To explore the possibility that structural variants in the neurexin alpha genes predispose to autism, the coding regions and associated splice junctions of the neurexin 1alpha gene were sequenced in 116 Caucasian patients with autism and 192 Caucasian controls. Five ultra-rare structural variants including a predicted splicing mutation were found in patients with autism and absent in 10,000 control alleles. Only one ultra-rare structural variant was found in controls (5/116 vs. 1/192; P=0.03, Fisher's exact test, one-sided). In the context of all available data, the ultra-rare structural variants of the neurexin 1alpha gene are consistent with mutations predisposing to autism.
Collapse
Affiliation(s)
- Jin Yan
- Department of Molecular Genetics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Abstract
Neuroligins (NLs) are postsynaptic cell-adhesion molecules that are implicated in humans in autism spectrum disorders because the genes encoding NL3 and NL4 are mutated in rare cases of familial autism. NLs are highly conserved evolutionarily, except that no NL4 was detected in the currently available mouse genome sequence assemblies. We now demonstrate that mice express a distant NL4 variant that rapidly evolved from other mammalian NL4 genes and that exhibits sequence variations even between different mouse strains. Despite its divergence, mouse NL4 binds neurexins and is transported into dendritic spines, suggesting that the core properties of NLs are retained in this divergent NL isoform. The selectively rapid evolution of NL4 in mice suggests that its function in the brain is under less stringent control than that of other NLs, shedding light on why its mutation in autism spectrum disorder patients is not lethal, but instead leads to a discrete developmental brain disorder.
Collapse
|
322
|
Keith D, El-Husseini A. Excitation Control: Balancing PSD-95 Function at the Synapse. Front Mol Neurosci 2008; 1:4. [PMID: 18946537 PMCID: PMC2526002 DOI: 10.3389/neuro.02.004.2008] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/12/2023] Open
Abstract
Excitability of individual neurons dictates the overall excitation in specific brain circuits. This process is thought to be regulated by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dove Keith
- Department of Psychiatry and the Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
323
|
Araç D, Boucard AA, Ozkan E, Strop P, Newell E, Südhof TC, Brunger AT. Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 2008; 56:992-1003. [PMID: 18093522 DOI: 10.1016/j.neuron.2007.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 01/11/2023]
Abstract
Neurexins and neuroligins provide trans-synaptic connectivity by the Ca2+-dependent interaction of their alternatively spliced extracellular domains. Neuroligins specify synapses in an activity-dependent manner, presumably by binding to neurexins. Here, we present the crystal structures of neuroligin-1 in isolation and in complex with neurexin-1 beta. Neuroligin-1 forms a constitutive dimer, and two neurexin-1 beta monomers bind to two identical surfaces on the opposite faces of the neuroligin-1 dimer to form a heterotetramer. The neuroligin-1/neurexin-1 beta complex exhibits a nanomolar affinity and includes a large binding interface that contains bound Ca2+. Alternatively spliced sites in neurexin-1 beta and in neuroligin-1 are positioned nearby the binding interface, explaining how they regulate the interaction. Structure-based mutations of neuroligin-1 at the interface disrupt binding to neurexin-1 beta, but not the folding of neuroligin-1 and confirm the validity of the binding interface of the neuroligin-1/neurexin-1 beta complex. Our results provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.
Collapse
Affiliation(s)
- Demet Araç
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 2008; 56:823-37. [PMID: 18054859 PMCID: PMC2151975 DOI: 10.1016/j.neuron.2007.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/08/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Synaptogenesis is a highly regulated process that underlies formation of neural circuitry. Considerable work has demonstrated the capability of some adhesion molecules, such as SynCAM and Neurexins/Neuroligins, to induce synapse formation in vitro. Furthermore, Cdk5 gain of function results in an increased number of synapses in vivo. To gain a better understanding of how Cdk5 might promote synaptogenesis, we investigated potential crosstalk between Cdk5 and the cascade of events mediated by synapse-inducing proteins. One protein recruited to developing terminals by SynCAM and Neurexins/Neuroligins is the MAGUK family member CASK. We found that Cdk5 phosphorylates and regulates CASK distribution to membranes. In the absence of Cdk5-dependent phosphorylation, CASK is not recruited to developing synapses and thus fails to interact with essential presynaptic components. Functional consequences include alterations in calcium influx. Mechanistically, Cdk5 regulates the interaction between CASK and liprin-alpha. These results provide a molecular explanation of how Cdk5 can promote synaptogenesis.
Collapse
Affiliation(s)
- Benjamin Adam Samuels
- Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2. Proc Natl Acad Sci U S A 2008; 105:1873-8. [PMID: 18250328 DOI: 10.1073/pnas.0711701105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3-A crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.
Collapse
|
326
|
Abstract
Neuroligin 4 (NLGN4) is a member of a cell adhesion protein family that appears to play a role in the maturation and function of neuronal synapses. Mutations in the X-linked NLGN4 gene are a potential cause of autistic spectrum disorders, and mutations have been reported in several patients with autism, Asperger syndrome, and mental retardation. We describe here a family with a wide variation in neuropsychiatric illness associated with a deletion of exons 4, 5, and 6 of NLGN4. The proband is an autistic boy with a motor tic. His brother has Tourette syndrome and attention deficit hyperactivity disorder. Their mother, a carrier, has a learning disorder, anxiety, and depression. This family demonstrates that NLGN4 mutations can be associated with a wide spectrum of neuropsychiatric conditions and that carriers may be affected with milder symptoms.
Collapse
|
327
|
Budreck EC, Scheiffele P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2008; 26:1738-48. [PMID: 17897391 DOI: 10.1111/j.1460-9568.2007.05842.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1-4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1-NL3 and NL2-NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
- Elaine C Budreck
- Department of Physiology & Cellular Biophysics, Columbia University, College of Physicians & Surgeons, 630 West 168th Street, P&S 11-511, New York, NY 10032, USA
| | | |
Collapse
|
328
|
Seabold GK, Wang PY, Chang K, Wang CY, Wang YX, Petralia RS, Wenthold RJ. The SALM family of adhesion-like molecules forms heteromeric and homomeric complexes. J Biol Chem 2008; 283:8395-405. [PMID: 18227064 DOI: 10.1074/jbc.m709456200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a newly discovered family of adhesion molecules that play roles in synapse formation and neurite outgrowth. The SALM family is comprised of five homologous molecules that are expressed largely in the central nervous system. SALMs 1-3 contain PDZ-binding domains, whereas SALMs 4 and 5 do not. We are interested in characterizing the interactions of the SALMs both among the individual members and with other binding partners. In the present study, we focused on the interactions formed by the five SALM members in rat brain and heterologous cells. In brain, we found that SALMs 1-3 strongly co-immunoprecipitated with each other, whereas SALMs 4 and 5 did not, suggesting that SALMs 4 and 5 mainly form homomeric complexes. In heterologous cells transfected with SALMs, co-immunoprecipitation studies showed that all five SALMs form heteromeric and homomeric complexes. We also determined if SALMs could form trans-cellular associations between transfected heterologous cells. Both SALMs 4 and 5 formed homophilic, but not heterophilic associations, whereas no trans associations were formed by the other SALMs. The ability of SALM4 to form trans interactions is due to its extracellular N terminus because chimeras of SALM4 N terminus and SALM2 C terminus can form trans interactions, whereas chimeras of SALM2 N terminus and SALM4 C terminus cannot. Co-culture experiments using HeLa cells and rat hippocampal neurons expressing the SALMs showed that SALM4 is recruited to points of contact between the cells. In neurons, these points of contact were seen in both axons and dendrites.
Collapse
Affiliation(s)
- Gail K Seabold
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, MD 20892-8027, USA
| | | | | | | | | | | | | |
Collapse
|
329
|
Keith D, El-Husseini A. Excitation Control: Balancing PSD-95 Function at the Synapse. Front Mol Neurosci 2008; 1:4. [PMID: 18946537 DOI: 10.3389/neuro.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 05/19/2023] Open
Abstract
Excitability of individual neurons dictates the overall excitation in specific brain circuits. This process is thought to be regulated by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dove Keith
- Department of Psychiatry and the Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
330
|
Abstract
alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Division of Cell and Molecular Biology, Imperial College London, London, SW7 2AY, UK.
| | | | | |
Collapse
|
331
|
Abstract
Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.
Collapse
|
332
|
Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 2007; 15:50-6. [PMID: 18084303 DOI: 10.1038/nsmb1350] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 11/16/2007] [Indexed: 12/31/2022]
Abstract
The heterophilic synaptic adhesion molecules neuroligins and neurexins are essential for establishing and maintaining neuronal circuits by modulating the formation and maturation of synapses. The neuroligin-neurexin adhesion is Ca2+-dependent and regulated by alternative splicing. We report a structure of the complex at a resolution of 2.4 A between the mouse neuroligin-1 (NL1) cholinesterase-like domain and the mouse neurexin-1beta (NX1beta) LNS (laminin, neurexin and sex hormone-binding globulin-like) domain. The structure revealed a delicate neuroligin-neurexin assembly mediated by a hydrophilic, Ca2+-mediated and solvent-supplemented interface, rendering it capable of being modulated by alternative splicing and other regulatory factors. Thermodynamic data supported a mechanism wherein splicing site B of NL1 acts by modulating a salt bridge at the edge of the NL1-NX1beta interface. Mapping neuroligin mutations implicated in autism indicated that most such mutations are structurally destabilizing, supporting deficient neuroligin biosynthesis and processing as a common cause for this brain disorder.
Collapse
|
333
|
Synaptic adhesion molecules and PSD-95. Prog Neurobiol 2007; 84:263-83. [PMID: 18206289 DOI: 10.1016/j.pneurobio.2007.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.
Collapse
|
334
|
Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiol Dis 2007; 29:490-504. [PMID: 18165017 DOI: 10.1016/j.nbd.2007.11.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Here, we show that R6/1 (HD) mice have deficits in short-term hippocampal-dependent memory prior to onset of motor symptoms. HD mice also exhibit impaired performance on a test of long-term spatial memory, however, environmental enrichment enhanced spatial learning and significantly ameliorated this memory deficit in HD mice. Analysis of the presynaptic vesicle protein synaptophysin showed no differences between standard-housed wild-type and HD littermates, however, enrichment increased synaptophysin levels in the frontal cortex and hippocampus in both groups. In comparison, analysis of postsynaptic proteins revealed that HD animals show decreased levels of PSD-95 and GluR1, but no change in levels of gephyrin. Furthermore, at 12 weeks of age when we observe a beneficial effect of enrichment on spatial learning in HD mice, enrichment also delays the onset of a deficit in hippocampal PSD-95 levels. Our results show that cognitive deficits in HD mice can be ameliorated by environmental enrichment and suggest that changes in synaptic composition may contribute to the cognitive alterations observed.
Collapse
|
335
|
Kang Y, Zhang X, Dobie F, Wu H, Craig AM. Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J Biol Chem 2007; 283:2323-34. [PMID: 18006501 DOI: 10.1074/jbc.m703957200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Beta-neurexin and neuroligin cell adhesion molecules contribute to synapse development in the brain. The longer alpha-neurexins function at both glutamate and gamma-aminobutyric acid (GABA) synapses in coupling to presynaptic calcium channels. Binding of alpha-neurexins to neuroligins was recently reported, but the role of the alpha-neurexins in synapse development has not been well studied. Here we report that in COS cell neuron coculture assays, all three alpha-neurexins induce clustering of the GABAergic postsynaptic scaffolding protein gephyrin and neuroligin 2 but not of the glutamatergic postsynaptic scaffolding protein PSD-95 or neuroligin 1/3/4. alpha-Neurexins also induce clustering of the GABA(A) receptor gamma2 subunit. This synapse promoting activity of alpha-neurexins is mediated by the sixth LNS (laminin neurexin sex hormone-binding protein) domain and negatively modulated by upstream sequences. Although inserts at splice site 4 (S4) in beta-neurexins promote greater clustering activity for GABA than glutamate proteins in coculture assay, alpha-neurexin-specific sequences confer complete specificity for GABA proteins. We further report a developmental increase in the ratio of -S4 to +S4 forms of neurexins correlating with an increase in glutamate relative to GABA synaptogenesis and activity regulation of splicing at S4. Thus, +S4 beta-neurexins and, even more selectively, alpha-neurexins may be mediators of GABAergic synaptic protein recruitment and stabilization.
Collapse
Affiliation(s)
- Yunhee Kang
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | | | | | | | | |
Collapse
|
336
|
Abstract
Alternative pre-mRNA splicing has an important role in the control of neuronal gene expression. Many neuronal proteins are structurally diversified through the differential inclusion and exclusion of sequences in the final spliced mRNA. Here, we discuss common mechanisms of splicing regulation and provide examples of how alternative splicing has important roles in neuronal development and mature neuron function. Finally, we describe regulatory proteins that control the splicing of some neuronally expressed transcripts.
Collapse
Affiliation(s)
- Qin Li
- Howard Hughes Medical Institute, University of California, Los Angeles, 6-762 MacDonald Research Laboratories, 675 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
337
|
Li J, Ashley J, Budnik V, Bhat MA. Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 2007; 55:741-55. [PMID: 17785181 PMCID: PMC2039911 DOI: 10.1016/j.neuron.2007.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/17/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Neurexins have been proposed to function as major mediators of the coordinated pre- and postsynaptic apposition. However, key evidence for this role in vivo has been lacking, particularly due to gene redundancy. Here, we have obtained null mutations in the single Drosophila neurexin gene (dnrx). dnrx loss of function prevents the normal proliferation of synaptic boutons at glutamatergic neuromuscular junctions, while dnrx gain of function in neurons has the opposite effect. DNRX mostly localizes to the active zone of presynaptic terminals. Conspicuously, dnrx null mutants display striking defects in synaptic ultrastructure, with the presence of detachments between pre- and postsynaptic membranes, abnormally long active zones, and increased number of T bars. These abnormalities result in corresponding alterations in synaptic transmission with reduced quantal content. Together, our results provide compelling evidence for an in vivo role of neurexins in the modulation of synaptic architecture and adhesive interactions between pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- Jingjun Li
- Curriculum in Neurobiology, Department of Cell and Molecular Physiology, UNC-Neuroscience Center, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine Chapel Hill, NC 27599-7545
| | - James Ashley
- Department of Neurobiology University of Massachusetts Medical School Worcester, MA 01605
| | - Vivian Budnik
- Department of Neurobiology University of Massachusetts Medical School Worcester, MA 01605
| | - Manzoor A. Bhat
- Curriculum in Neurobiology, Department of Cell and Molecular Physiology, UNC-Neuroscience Center, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine Chapel Hill, NC 27599-7545
- *To whom correspondence should be addressed: Manzoor Bhat, Ph.D., Neuroscience Research Building, Room #5109, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, Tel: (919) 966-1018, Fax: (919) 843-2777,
| |
Collapse
|
338
|
Shapiro L, Love J, Colman DR. Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci 2007; 30:451-74. [PMID: 17600523 DOI: 10.1146/annurev.neuro.29.051605.113034] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unparalleled complexity of intercellular connections in the nervous system presents requirements for high levels of both specificity and diversity for the proteins that mediate cell adhesion. Here we describe recent advances toward understanding the molecular mechanisms that underlie adhesive binding, specificity, and diversity for several well-characterized families of adhesion molecules in the nervous system. Although many families of adhesion proteins, including cadherins and immunoglobulin superfamily members, are utilized in neural and nonneural contexts, nervous system-specific diversification mechanisms, such as precisely regulated alternative splicing, provide an important means to enable their function in the complex context of the nervous system.
Collapse
Affiliation(s)
- Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, 2Edward S. Harkness Eye Institute, Columbia University, New York, New York 10032 USA.
| | | | | |
Collapse
|
339
|
Berninghausen O, Rahman MA, Silva JP, Davletov B, Hopkins C, Ushkaryov YA. Neurexin Ibeta and neuroligin are localized on opposite membranes in mature central synapses. J Neurochem 2007; 103:1855-63. [PMID: 17868325 PMCID: PMC2517655 DOI: 10.1111/j.1471-4159.2007.04918.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Ibeta and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Ibeta and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Ibeta is largely (96%) pre-synaptic. Thus, neurexin Ibeta and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.
Collapse
Affiliation(s)
- Otto Berninghausen
- Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
340
|
Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007; 318:71-6. [PMID: 17823315 PMCID: PMC3235367 DOI: 10.1126/science.1146221] [Citation(s) in RCA: 741] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorders (ASDs) are characterized by impairments in social behaviors that are sometimes coupled to specialized cognitive abilities. A small percentage of ASD patients carry mutations in genes encoding neuroligins, which are postsynaptic cell-adhesion molecules. We introduced one of these mutations into mice: the Arg451-->Cys451 (R451C) substitution in neuroligin-3. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly, these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. These data suggest that increased inhibitory synaptic transmission may contribute to human ASDs and that the R451C knockin mice may be a useful model for studying autism-related behaviors.
Collapse
Affiliation(s)
- Katsuhiko Tabuchi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jacqueline Blundell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark R. Etherton
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert E. Hammer
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xinran Liu
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Craig M. Powell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Thomas C. Südhof
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- To whom correspondence should be addressed.
| |
Collapse
|
341
|
Hishimoto A, Liu QR, Drgon T, Pletnikova O, Walther D, Zhu XG, Troncoso JC, Uhl GR. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Hum Mol Genet 2007; 16:2880-91. [PMID: 17804423 DOI: 10.1093/hmg/ddm247] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurexins are cell adhesion molecules that help to specify and stabilize synapses and provide receptors for neuroligins, neurexophilins, dystroglycans and alpha-latrotoxins. We previously reported significant allele frequency differences for single nucleotide polymorphisms (SNPs) in the neurexin 3 (NRXN3) gene in each of two comparisons between individuals who were dependent on illegal substances and controls. We now report work clarifying details of NRXN3's gene structure and variants and documenting association of NRXN3 SNPs with alcohol dependence. We localize this association signal with the vicinity of the NRXN3 splicing site 5 (SS#5). A splicing site SNP, rs8019381, that is located 23 bp from the SS#5 exon 23 donor site displays association with P = 0.0007 (odds ratio = 2.46). Including or excluding exon 23 at SS#5 produces soluble or transmembrane NRXN3 isoforms. We thus examined expression of these NRXN3 isoforms in postmortem human cerebral cortical brain samples from individuals with varying rs8019381 genotypes. Two of the splice variants that encode transmembrane NRXN3 isoforms were expressed at significantly lower levels in individuals with the addiction-associated rs8019381 'T' allele than in CC homozygotes. Taken together with recent reports of NRXN3 association with nicotine dependence and linkage with opiate dependence, these data support roles for NRXN3 haplotypes that alter expression of specific NRXN3 isoforms in genetic vulnerabilities to dependence on a variety of addictive substances.
Collapse
Affiliation(s)
- Akitoyo Hishimoto
- Molecular Neurobiology Branch, NIDA-IRP, NIH, DHSS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Südhof TC. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 2007; 54:919-31. [PMID: 17582332 PMCID: PMC3738748 DOI: 10.1016/j.neuron.2007.05.029] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/29/2006] [Accepted: 05/31/2007] [Indexed: 01/08/2023]
Abstract
Neuroligins enhance synapse formation in vitro, but surprisingly are not required for the generation of synapses in vivo. We now show that in cultured neurons, neuroligin-1 overexpression increases excitatory, but not inhibitory, synaptic responses, and potentiates synaptic NMDAR/AMPAR ratios. In contrast, neuroligin-2 overexpression increases inhibitory, but not excitatory, synaptic responses. Accordingly, deletion of neuroligin-1 in knockout mice selectively decreases the NMDAR/AMPAR ratio, whereas deletion of neuroligin-2 selectively decreases inhibitory synaptic responses. Strikingly, chronic inhibition of NMDARs or CaM-Kinase II, which signals downstream of NMDARs, suppresses the synapse-boosting activity of neuroligin-1, whereas chronic inhibition of general synaptic activity suppresses the synapse-boosting activity of neuroligin-2. Taken together, these data indicate that neuroligins do not establish, but specify and validate, synapses via an activity-dependent mechanism, with different neuroligins acting on distinct types of synapses. This hypothesis reconciles the overexpression and knockout phenotypes and suggests that neuroligins contribute to the use-dependent formation of neural circuits.
Collapse
Affiliation(s)
- Alexander A Chubykin
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | | | | | | | | | |
Collapse
|
343
|
Comoletti D, Grishaev A, Whitten AE, Tsigelny I, Taylor P, Trewhella J. Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering. Structure 2007; 15:693-705. [PMID: 17562316 PMCID: PMC2677967 DOI: 10.1016/j.str.2007.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 12/16/2022]
Abstract
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Davide Comoletti
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
344
|
Saro D, Li T, Rupasinghe C, Paredes A, Caspers N, Spaller MR. A thermodynamic ligand binding study of the third PDZ domain (PDZ3) from the mammalian neuronal protein PSD-95. Biochemistry 2007; 46:6340-52. [PMID: 17474715 PMCID: PMC2527733 DOI: 10.1021/bi062088k] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamic parameters associated with the binding of several series of linear peptides to the third PDZ domain (PDZ3) of the postsynaptic density 95 protein (PSD-95) have been measured using isothermal titration calorimetry (ITC). Two strategies were pursued in developing these binding ligands: (1) systematic N-terminal truncation of sequences derived from the C-terminal regions of identified PDZ3-binding proteins (CRIPT, neuroligin-1, and citron) and (2) selective mutation of specific positions within a consensus hexapeptide (KKETEV) known to bind PDZ3. Each synthetically prepared peptide was used to titrate PDZ3, which yielded the changes in Gibbs free energy (DeltaG), enthalpy (DeltaH), and entropy (TDeltaS) for the binding event. Selected peptides were subjected to additional analysis, which entailed (1) measuring the change in heat capacity (DeltaCp) upon association, to assess the character of the binding interface, and (2) constructing thermodynamic double mutant cycles, to determine the presence of cooperative effects. From the first series, the CRIPT protein proved to be the better source for higher affinity sequences. From the second series, enhanced binding was associated with peptides that closely adhered to the established motif for class I PDZ domain C-termini, X-(T/S)-X-(V/I/L), and more specifically to a narrower motif of X-T-X-V. Further, in both series a length of six residues was necessary and sufficient to capture maximal affinity. In addition, there were significant influences upon binding by modifying the abutting "X" positions. The cumulative results provide greater detail into the specific nature of ligand binding to PDZ3 and will assist in the development of selective molecular probes for the study of this and structurally homologous PDZ domains.
Collapse
|
345
|
Giordano C, Poiana G, Augusti-Tocco G, Biagioni S. Acetylcholinesterase modulates neurite outgrowth on fibronectin. Biochem Biophys Res Commun 2007; 356:398-404. [PMID: 17359933 DOI: 10.1016/j.bbrc.2007.02.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/27/2007] [Indexed: 11/27/2022]
Abstract
Acetylcholinesterase (AChE) has been reported to be involved in the modulation of neurite outgrowth. To understand the role played by different domains, we transfected neuroblastoma cells with three constructs containing the invariant region of AChE, differing in the exon encoding the C-terminus and therefore in AChE cellular fate and localization. All isoforms increased neurite extension, suggesting the involvement of the invariant domain [A. De Jaco, G. Augusti-Tocco, S. Biagioni, Alternative AChE molecular forms exhibit similar ability to induce neurite outgrowth, J. Neurosci. Res. 70 (2002) 756-765]. The peripheral anionic site (PAS) is encoded by invariant exons and represents the domain involved in non-cholinergic functions of AChE. Masking of PAS with fasciculin results in a significant decrease of neurite outgrowth in all clones overexpressing AChE. A strong reduction was also observed when clones were cultured on fibronectin. Treatment of clones with fasciculin, therefore masking PAS, abolished the fibronectin-induced reduction. The inhibition of the catalytic site cannot revert the fibronectin effect. Finally, when clones were cultured on fibronectin in the presence of heparin, a ligand of fibronectin, the inhibitory effect was completely reversed. Our results indicate that PAS could directly or indirectly mediate AChE/fibronectin interactions.
Collapse
Affiliation(s)
- C Giordano
- Dipartimento Biologia Cellulare e Sviluppo, Università La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
346
|
Conroy WG, Nai Q, Ross B, Naughton G, Berg DK. Postsynaptic neuroligin enhances presynaptic inputs at neuronal nicotinic synapses. Dev Biol 2007; 307:79-91. [PMID: 17521624 DOI: 10.1016/j.ydbio.2007.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 11/23/2022]
Abstract
Neuroligins are cell adhesion molecules that interact with neurexins on adjacent cells to promote glutamatergic and GABAergic synapse formation in culture. We show here that neuroligin enhances nicotinic synapses on neurons in culture, increasing synaptic input. When neuroligin is overexpressed in neurons, the extracellular domain induces presynaptic specializations in adjacent cholinergic neurons as visualized by SV2 puncta. The intracellular domain is required to translate the SV2 puncta into synaptic input as reflected by increases in the frequency of spontaneous mini-synaptic currents. The PDZ-binding motif of neuroligin is not needed for these effects. Together, the extracellular and proximal intracellular domains of neuroligin are sufficient to induce presynaptic specializations, align them over postsynaptic receptor clusters, and increase synaptic function. Manipulation of endogenous neuroligin with beta-neurexin-expressing cells confirms its presence; repressing function with dominant negative constructs and inhibitory shRNA shows that endogenous neuroligin helps confer functionality on existing nicotinic synaptic contacts. Endogenous neuroligin does not appear to be required, however, for initial formation of the contacts, suggesting that other components under these conditions can also initiate synapse formation. The results indicate that postsynaptic neuroligin is important for functional nicotinic synapses on neurons and that the effects achieved will likely depend on neuroligin levels.
Collapse
Affiliation(s)
- William G Conroy
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0357, USA.
| | | | | | | | | |
Collapse
|
347
|
Taniguchi H, Gollan L, Scholl FG, Mahadomrongkul V, Dobler E, Limthong N, Peck M, Aoki C, Scheiffele P. Silencing of neuroligin function by postsynaptic neurexins. J Neurosci 2007; 27:2815-24. [PMID: 17360903 PMCID: PMC2839889 DOI: 10.1523/jneurosci.0032-07.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 02/02/2007] [Accepted: 02/02/2007] [Indexed: 12/24/2022] Open
Abstract
The formation of neuronal circuits during development involves a combination of synapse stabilization and elimination events. Synaptic adhesion molecules are thought to play an important role in synaptogenesis, and several trans-synaptic adhesion systems that promote the formation and maturation of synapses have been identified. The neuroligin-neurexin complex is a heterophilic adhesion system that promotes assembly and maturation of synapses through bidirectional signaling. In this protein complex, postsynaptic neuroligins are thought to interact trans-synaptically with presynaptic neurexins. However, the subcellular localization of neurexins has not been determined. Using immunoelectron microscopy, we found that endogenous neurexins and epitope-tagged neurexin-1beta are localized to axons and presynaptic terminals in vivo. Unexpectedly, neurexins are also abundant in the postsynaptic density. cis-expression of neurexin-1beta with neuroligin-1 inhibits trans-binding to recombinant neurexins, blocks the synaptogenic activity of neuroligin-1, and reduces the density of presynaptic terminals in cultured hippocampal neurons. Our results demonstrate that the function of neurexin proteins is more diverse than previously anticipated and suggest that postsynaptic cis-interactions might provide a novel mechanism for silencing the activity of a synaptic adhesion complex.
Collapse
Affiliation(s)
- Hiroki Taniguchi
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| | - Leora Gollan
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| | - Francisco G. Scholl
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| | | | - Elizabeth Dobler
- Center for Neural Science, New York University, New York, New York 10003
| | - Nicolas Limthong
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| | - Morgen Peck
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York 10003
| | - Peter Scheiffele
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, Physicians and Surgeons 11-511, New York, New York 10032, and
| |
Collapse
|
348
|
Yamakawa H, Oyama S, Mitsuhashi H, Sasagawa N, Uchino S, Kohsaka S, Ishiura S. Neuroligins 3 and 4X interact with syntrophin-γ2, and the interactions are affected by autism-related mutations. Biochem Biophys Res Commun 2007; 355:41-6. [PMID: 17292328 DOI: 10.1016/j.bbrc.2007.01.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/17/2007] [Indexed: 11/25/2022]
Abstract
Recently, neuroligins (NLs)3 and 4X have received much attention as autism-related genes. Here, we identified syntrophin-gamma2 (SNTG2) as a de novo binding partner of NL3. SNTG2 also bound to NL4X and NL4Y. Interestingly, the binding was influenced by autism-related mutations, implying that the impaired interaction between NLs and SNTG2 contributes to the etiology of autism.
Collapse
Affiliation(s)
- Hidekuni Yamakawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 3-8-1 Komaba, Meguro-ku 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
349
|
Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 2007; 8:206-20. [PMID: 17299456 PMCID: PMC4756920 DOI: 10.1038/nrn2075] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many cell adhesion molecules are localized at synaptic sites in neuronal axons and dendrites. These molecules bridge pre- and postsynaptic specializations but do far more than simply provide a mechanical link between cells. In this review, we will discuss the roles these proteins have during development and at mature synapses. Synaptic adhesion proteins participate in the formation, maturation, function and plasticity of synaptic connections. Together with conventional synaptic transmission mechanisms, these molecules are an important element in the trans-cellular communication mediated by synapses.
Collapse
Affiliation(s)
- Matthew B Dalva
- University of Pennsylvania Medical Center, Department of Neuroscience, BRB II/III, Room 1114, 421 Curie Blvd., Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
350
|
Dong N, Qi J, Chen G. Molecular reconstitution of functional GABAergic synapses with expression of neuroligin-2 and GABAA receptors. Mol Cell Neurosci 2007; 35:14-23. [PMID: 17336090 DOI: 10.1016/j.mcn.2007.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/31/2006] [Accepted: 01/24/2007] [Indexed: 11/18/2022] Open
Abstract
Trans-synaptic cell adhesion molecules neuroligins and neurexins play an important role in promoting central synapse formation. We report here a molecular reconstruction of functional GABAergic synapses in non-neuronal cells with the coexpression of postsynaptic cell adhesion molecule neuroligin-2 (NL-2) and GABA(A) receptors. HEK 293T cells were co-transfected with GABA(A) receptors and NL-2 or its homologue neuroligin-1 (NL-1), and then cocultured with hypothalamic cultures which are enriched with GABAergic neurons. Both spontaneous and action potential-evoked GABAergic events were readily detected in HEK 293T cells coexpressing GABA(A) receptors with NL-2, but not with NL-1. Aggregating NL-2 with specific antibodies in live cells resulted in coaggregation of GABA(A) receptors. Expression of NL-2 in HEK 293T cells also induced stronger GABAergic presynaptic differentiation than that of NL-1 in neuronal cocultures. These results suggest that NL-2 may potentially serve as a central organizer for GABAergic synapse assembly by interacting with both presynaptic neurexins and postsynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- Ning Dong
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|