301
|
Abstract
The mitochondrial carnitine system plays an obligatory role in beta-oxidation of long-chain fatty acids by catalyzing their transport into the mitochondrial matrix. This transport system consists of the malonyl-CoA sensitive carnitine palmitoyltransferase I (CPT-I) localized in the mitochondrial outer membrane, the carnitine:acylcarnitine translocase, an integral inner membrane protein, and carnitine palmitoyltransferase II localized on the matrix side of the inner membrane. Carnitine palmitoyltransferase I is subject to regulation at the transcriptional level and to acute control by malonyl-CoA. The N-terminal domain of CPT-I is essential for malonyl-CoA inhibition. In liver CPT-I activity is also regulated by changes in the enzyme's sensitivity to malonyl-CoA. As fluctuations in tissue malonyl-CoA content are parallel with changes in acetyl-CoA carboxylase activity, which in turn is under the control of 5'-AMP-activated protein kinase, the CPT-I/malonyl-CoA system is part of a fuel sensing gauge, turning off and on fatty acid oxidation depending on the tissue's energy demand. Additional mechanism(s) of short-term control of CPT-I activity are emerging. One proposed mechanism involves phosphorylation/dephosphorylation dependent direct interaction of cytoskeletal components with the mitochondrial outer membrane or CPT-I. We have proposed that contact sites between the outer and inner mitochondrial membranes form a microenvironment which facilitates the carnitine transport system. In addition, this system includes the long-chain acyl-CoA synthetase and porin as components.
Collapse
Affiliation(s)
- J Kerner
- Department of Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
302
|
Lea W, Abbas AS, Sprecher H, Vockley J, Schulz H. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:121-8. [PMID: 10832093 DOI: 10.1016/s1388-1981(00)00034-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first reaction of mitochondrial beta-oxidation, which is catalyzed by acyl-CoA dehydrogenases, was studied with unsaturated fatty acids that have a double bond either at the 4,5 or 5,6 position. The CoA thioesters of docosahexaenoic acid, arachidonic acid, 4,7,10-cis-hexadecatrienoic acid, 5-cis-tetradecenoic acid, and 4-cis-decenoic acid were effectively dehydrogenated by both rat and human long-chain acyl-CoA dehydrogenases (LCAD), whereas they were poor substrates of very long-chain acyl-CoA dehydrogenases (VLCAD). VLCAD, however, was active with CoA derivatives of long-chain saturated fatty acids or unsaturated fatty acids that have double bonds further removed from the thioester function. Although bovine LCAD effectively dehydrogenated 5-cis-tetradecenoyl-CoA (14:1) and 4,7,10-cis-hexadecatrienoyl-CoA, it was nearly inactive toward the other unsaturated substrates. The catalytic efficiency of rat VLCAD with 14:1 as substrate was only 4% of the efficiency determined with tetradecanoyl-CoA, whereas LCAD acted equally well on both substrates. The conclusion of this study is that LCAD serves an important, if not essential function in the beta-oxidation of unsaturated fatty acids.
Collapse
Affiliation(s)
- W Lea
- Department of Chemistry, City College of the City University of New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
303
|
Cimini A, Cristiano L, Bernardo A, Farioli-Vecchioli S, Stefanini S, Cerù MP. Presence and inducibility of peroxisomes in a human glioblastoma cell line. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:397-409. [PMID: 10779693 DOI: 10.1016/s0304-4165(00)00036-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the effect of the peroxisomal proliferator (PP) perfluorodecanoic acid (PFDA), alone or in combination with 9-cis-retinoic acid (RX) on the human glioblastoma cell line Lipari (LI). Cell proliferation, apoptotic rate, peroxisome morphology and morphometry, peroxisomal enzyme activities and the presence of peroxisome proliferator-activated receptors (PPARs) were examined. We show that PFDA alone produces pleiotropic effects on LI cells and that RX enhances some of these effects. Peroxisomal number and relative volume, as well as palmitoyl-CoA oxidase activity and protein, are increased by PFDA treatment, with a synergistic effect by RX. The latter, alone or in association with PFDA, induces catalase activity and protein, increases apoptosis and decreases cell proliferation. PPAR isotypes alpha and gamma were detected in LI cells. While the former is apparently unaffected by either treatment, the latter increases in response to PFDA, independent of the presence of RX. The results of this study are discussed in terms of PPARalpha activation and PPARgamma induction by PFDA, by either a direct or an indirect mechanism.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, via Vetoio n. 10, 67010 Coppito (AQ), Italy
| | | | | | | | | | | |
Collapse
|
304
|
Van Veldhoven PP, Mannaerts GP. Role and organization of peroxisomal beta-oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:261-72. [PMID: 10709653 DOI: 10.1007/0-306-46818-2_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In mammals, peroxisomes are involved in breakdown of very long chain fatty acids, prostanoids, pristanic acid, dicarboxylic fatty acids, certain xenobiotics and bile acid intermediates. Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and/or in man demonstrate that these substrates are degraded by separate beta-oxidation systems composed of different enzymes. In both species, the enzymes acting on straight chain fatty acids are palmitoyl-CoA oxidase, an L-specific multifunctional protein (MFP-1) and a dimeric thiolase. In liver, bile acid intermediates undergo one cycle of beta-oxidation catalyzed by trihydroxycoprostanoyl-CoA oxidase (in rat), or branched chain acyl-CoA oxidase (in man), a D-specific multifunctional protein (MFP-2) and SCPX-thiolase. Finally, pristanic acid is degraded in rat tissues by pristanoyl-CoA oxidase, the D-specific multifunctional protein-2 and SCPX-thiolase. Although in man a pristanoyl-CoA oxidase gene is present, so far its product has not been found. Hence, pristanoyl-CoA is believed to be desaturated in human tissues by the branched chain acyl-CoA oxidase. Due to the stereospecificity of the oxidases acting on 2-methyl-branched substrates, an additional enzyme, 2-methylacyl-CoA racemase, is required for the degradation of pristanic acid and the formation of bile acids.
Collapse
|
305
|
Yang SY, He XY. Molecular mechanisms of fatty acid beta-oxidation enzyme catalysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:133-43. [PMID: 10709637 DOI: 10.1007/0-306-46818-2_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- S Y Yang
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, 10314, USA
| | | |
Collapse
|
306
|
Modis Y, Wierenga RK. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 2000; 297:1171-82. [PMID: 10764581 DOI: 10.1006/jmbi.2000.3638] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biosynthetic thiolases catalyze the biological Claisen condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in many biosynthetic pathways including those which generate cholesterol, steroid hormones and ketone body energy storage molecules. High resolution crystal structures of the tetrameric biosynthetic thiolase from Zoogloea ramigera were determined (i) in the absence of active site ligands, (ii) in the presence of CoA, and (iii) from protein crystals which were flash frozen after a short soak with acetyl-CoA, the enzyme's substrate in the biosynthetic reaction. In the latter structure, a reaction intermediate was trapped: the enzyme was found to be acetylated at Cys89 and a molecule of acetyl-CoA was bound in the active site pocket. A comparison of the three new structures and the two previously published thiolase structures reveals that small adjustments in the conformation of the acetylated Cys89 side-chain allow CoA and acetyl-CoA to adopt identical modes of binding. The proximity of the acetyl moiety of acetyl-CoA to the sulfur atom of Cys378 supports the hypothesis that Cys378 is important for proton exchange in both steps of the reaction. The thioester oxygen atom of the acetylated enzyme points into an oxyanion hole formed by the nitrogen atoms of Cys89 and Gly380, thus facilitating the condensation reaction. The interaction between the thioester oxygen atom of acetyl-CoA and His348 assists the condensation step of catalysis by stabilizing a negative charge on the thioester oxygen atom. Our structure of acetyl-CoA bound to thiolase also highlights the importance in catalysis of a hydrogen bonding network between Cys89 and Cys378, which includes the thioester oxygen atom of acetyl-CoA, and extends from the catalytic site through the enzyme to the opposite molecular surface. This hydrogen bonding network is different in yeast degradative thiolase, indicating that the catalytic properties of each enzyme may be modulated by differences in their hydrogen bonding networks.
Collapse
Affiliation(s)
- Y Modis
- European Molecular Biology Laboratory, Heidelberg, Postfach 10.2209, Germany
| | | |
Collapse
|
307
|
Pons R, Cavadini P, Baratta S, Invernizzi F, Lamantea E, Garavaglia B, Taroni F. Clinical and molecular heterogeneity in very-long-chain acyl-coenzyme A dehydrogenase deficiency. Pediatr Neurol 2000; 22:98-105. [PMID: 10738914 DOI: 10.1016/s0887-8994(99)00132-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an increasingly recognized defect of mitochondrial fatty acid beta-oxidation manifesting with episodes of metabolic decompensation or isolated recurrent myoglobinuria. In this report the clinical, biochemical, and molecular studies in a series of five patients (four Italian and one Spanish) with this disorder are discussed. Biochemical studies included the determination of fibroblast substrate oxidation rates and enzyme activity and Western blot analysis of VLCAD protein. Molecular analysis was performed by sequencing the VLCAD gene from the genomic DNA. Clinical features were within the spectrum previously reported. Four patients presented in infancy or childhood with episodes of severe metabolic decompensation and dicarboxylic aciduria. Two exhibited cardiomyopathy. The fifth patient presented with isolated recurrent rhabdomyolysis, with no cardiomyopathy or dicarboxylic aciduria. In all patients a significant loss of VLCAD activity associated with a marked reduction of VLCAD protein levels occurred. Molecular analysis disclosed one novel missense mutation (Cys437Tyr) and four previously reported mutations, including two missense substitutions (Phe418Leu and Arg419Trp), a single amino acid deletion (Lys258del), and one splice site mutation (IVS8-C(-2)), which was present in all four Italian patients. All patients exhibited compound heterozygosity. The phenotypic variability and the high genotypic heterogeneity of this hereditary metabolic disorder is reported.
Collapse
Affiliation(s)
- R Pons
- Laboratory of Cellular Pathology, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Some metabolic effects of dietary marine oils, or of dietary eicosapentaenoic or docosahexaenoic acid are reviewed. It is pointed out that docosahexaenoic acid appears more effective as regards induction of peroxisomal beta-oxidation. Similarly, docosahexaenoic appears more powerful in terms of suppression of hepatic delta9-desaturase activity and mRNA-levels. The potential inhibitory effect of polyunsaturated fatty acids, particularly docosahexaenoic acid, on mitochondrial beta-oxidation is discussed. Experiments with rats suggesting that the hypolipidaemic response of eicosapentaenoic acid is more marked when the fatty acid was given to fed rats, as compared to fasted rats, are discussed.
Collapse
Affiliation(s)
- H Osmundsen
- Department of Physiology and Biochemistry, Institute for Oral Biology, University of Oslo, Norway.
| | | |
Collapse
|
309
|
Fang X, Kaduce TL, VanRollins M, Weintraub NL, Spector AA. Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32075-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
310
|
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A. Predicting the function and subcellular location of Caenorhabditis elegans proteins similar to Saccharomyces cerevisiae beta-oxidation enzymes. Yeast 2000; 17:188-200. [PMID: 11025529 PMCID: PMC2448379 DOI: 10.1002/1097-0061(20000930)17:3<188::aid-yea27>3.0.co;2-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p-SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast beta-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a beta-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
311
|
Abo-Hashema KA, Cake MH, Power GW, Clarke D. Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases. J Biol Chem 1999; 274:35577-82. [PMID: 10585433 DOI: 10.1074/jbc.274.50.35577] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study a pathway for the synthesis of triacylglycerol (TAG) within the lumen of the endoplasmic reticulum has been identified, using microsomes that had been preconditioned by depleting their endogenous substrates and then fusing them with biotinylated phosphatidylserine liposomes containing CoASH and Mg(2+). Incubating these fused microsomes with tri[(3)H] oleoylglycerol and [(14)C]oleoyl-CoA yielded microsome-associated triacylglycerol, which resisted extensive washing and had a [(3)H]:[(14)C] ratio close to 2:1. The data suggest that the precursor tri[(3)H]oleoylglycerol was hydrolyzed by microsomal lipase to membrane-bound di[(3)H]oleoylglycerol and subsequently re-esterified with luminal [(14)C]oleoyl-CoA. The accumulation of TAG within the microsomes, even when overt diacylglycerol acyltransferase (DGAT I) was inactive, is consistent with the existence of a latent diacylglycerol acyltransferase (DGAT II) within the microsomal lumen. Moreover, because luminal synthesis of TAG was carnitine-dependent and markedly reduced by glybenclamide, a potent carnitine acyltransferase inhibitor, microsomal carnitine acyltransferase appears to be essential for trafficking the [(14)C]oleoyl-CoA into the microsomal lumen for subsequent incorporation into newly synthesized TAG. This study thus provides the first direct demonstration of an enzymatic process leading to the synthesis of luminal triacylglycerol, which is a major component of very low density lipoproteins.
Collapse
Affiliation(s)
- K A Abo-Hashema
- Schools, Division of Science and Engineering, Murdoch University, Murdoch, Western Australia, 6150 Australia
| | | | | | | |
Collapse
|
312
|
Palmieri L, Lasorsa FM, Iacobazzi V, Runswick MJ, Palmieri F, Walker JE. Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae. FEBS Lett 1999; 462:472-6. [PMID: 10622748 DOI: 10.1016/s0014-5793(99)01555-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitochondrial carrier protein for carnitine has been identified in Saccharomyces cerevisiae. It is encoded by the gene CRC1 and is a member of the family of mitochondrial transport proteins. The protein has been over-expressed with a C-terminal His-tag in S. cerevisiae and isolated from mitochondria by nickel affinity chromatography. The purified protein has been reconstituted into proteoliposomes and its transport characteristics established. It transports carnitine, acetylcarnitine, propionylcarnitine and to a much lower extent medium- and long-chain acylcarnitines.
Collapse
Affiliation(s)
- L Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
313
|
So CM, Young LY. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 1999; 65:5532-40. [PMID: 10584014 PMCID: PMC91754 DOI: 10.1128/aem.65.12.5532-5540.1999] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.
Collapse
Affiliation(s)
- C M So
- Biotechnology Center for Agriculture and the Environment and Department of Environmental Sciences, Cook College, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
314
|
Athenstaedt K, Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1-16. [PMID: 10542045 DOI: 10.1046/j.1432-1327.1999.00822.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidic acid (PtdOH) is a key intermediate in glycerolipid biosynthesis. Two different pathways are known for de novo formation of this compound, namely (a) the Gro3P (glycerol 3-phosphate) pathway, and (b) the GrnP (dihydroxyacetone phosphate) pathway. Whereas the former route of PtdOH synthesis is present in bacteria and all types of eukaryotes, the GrnP pathway is restricted to yeast and mammalian cells. In this review article, we describe the enzymes catalyzing de novo formation of PtdOH, their properties and their occurrence in different cell types and organelles. Much attention has recently been paid to the subcellular localization of enzymes involved in the biosynthesis of PtdOH. In all eukaryotic cells, microsomes (ER) harbour the complete set of enzymes catalyzing these pathways and are thus the usual organelle for PtdOH formation. In contrast, the contribution of mitochondria to PtdOH synthesis is restricted to certain enzymes and depends on the cell type. In addition, chloroplasts of plants, lipid particles of the yeast, and peroxisomes of mammalian cells are significantly involved in PtdOH biosynthesis. Redundant systems of acyltransferases, the interplay of organelles, regulation of the pathway on the compartmental level, and finally the contribution of alternative pathways (phosphorylation of diacylglycerol and cleavage of phospholipids by phospholipases) to PtdOH biosynthesis appear to be required for the balanced formation of this important lipid intermediate. Dysfunction of enzymes involved in PtdOH synthesis can result in severe defects of various cellular processes. In this context, the possible physiological role(s) of PtdOH and its related metabolites, lysophosphatidic acid and diacylglycerol, will be discussed.
Collapse
Affiliation(s)
- K Athenstaedt
- Institut für Biochemie, Technische Universität, Graz, Austria
| | | |
Collapse
|
315
|
Modis Y, Wierenga RK. A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 1999; 7:1279-90. [PMID: 10545327 DOI: 10.1016/s0969-2126(00)80061-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thiolases are ubiquitous and form a large family of dimeric or tetrameric enzymes with a conserved, five-layered alphabetaalphabetaalpha catalytic domain. Thiolases can function either degradatively, in the beta-oxidation pathway of fatty acids, or biosynthetically. Biosynthetic thiolases catalyze the biological Claisen condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in a wide range of biosynthetic pathways, including those that generate cholesterol, steroid hormones, and various energy-storage molecules. RESULTS The crystal structure of the tetrameric biosynthetic thiolase from Zoogloea ramigera has been determined at 2.0 A resolution. The structure contains a striking and novel 'cage-like' tetramerization motif, which allows for some hinge motion of the two tight dimers with respect to each other. The protein crystals were flash-frozen after a short soak with the enzyme's substrate, acetoacetyl-CoA. A reaction intermediate was thus trapped: the enzyme tetramer is acetylated at Cys89 and has a CoA molecule bound in each of its active-site pockets. CONCLUSIONS The shape of the substrate-binding pocket reveals the basis for the short-chain substrate specificity of the enzyme. The active-site architecture, and in particular the position of the covalently attached acetyl group, allow a more detailed reaction mechanism to be proposed in which Cys378 is involved in both steps of the reaction. The structure also suggests an important role for the thioester oxygen atom of the acetylated enzyme in catalysis.
Collapse
Affiliation(s)
- Y Modis
- European Molecular Biology Laboratory, Postfach 10.2209, D-69012, Heidelberg, Germany
| | | |
Collapse
|
316
|
Li D, Agnihotri G, Dakoji S, Oh E, Lantz M, Liu HW. The Toxicity of Methylenecyclopropylglycine: Studies of the Inhibitory Effects of (Methylenecyclopropyl)formyl-CoA on Enzymes Involved in Fatty Acid Metabolism and the Molecular Basis of Its Inactivation of Enoyl-CoA Hydratases. J Am Chem Soc 1999. [DOI: 10.1021/ja991908w] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ding Li
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Gautam Agnihotri
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Srikanth Dakoji
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Eugene Oh
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Marily Lantz
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Hung-wen Liu
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| |
Collapse
|
317
|
Geisbrecht BV, Liang X, Morrell JC, Schulz H, Gould SJ. The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase. J Biol Chem 1999; 274:25814-20. [PMID: 10464321 DOI: 10.1074/jbc.274.36.25814] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the identification and characterization of a novel mouse gene, PDCR, that encodes a peroxisomal Delta(2), Delta(4)-dienoyl-CoA reductase. The mouse PDCR cDNA contains an 892-base pair open reading frame and is predicted to encode a 292-amino acid protein with a deduced molecular mass of 31,298 Da that terminates in a consensus type-1 peroxisomal targeting signal. Purified recombinant PDCR protein was generated from Escherichia coli and catalyzed the NADPH-dependent reduction of Delta(2)-trans, Delta(4)-trans-decadienoyl-CoA with a specific activity of 20 units/mg. Enzymatic characterization followed by high pressure liquid chromatography analysis of the products revealed that PDCR converted Delta(2)-trans,Delta(4)-trans-decadienoyl-CoA to a Delta(3)-enoyl-CoA but not to a Delta(2)-enoyl-CoA. Kinetic analyses demonstrated that PDCR is active on a broad range of Delta(2), Delta(4)-dienoyl-CoAs. Although the observed substrate preference was to Delta(2)-trans,Delta(4)-trans-decadienoyl-CoA, PDCR was also active on a C(22) substrate with multiple unsaturations, a result consistent with the role of peroxisomes in the oxidation of complex, very long chain, polyunsaturated fatty acids. The presence of a type-1 peroxisomal targeting signal Ala-Lys-Leu-COOH at the C terminus of PDCR suggested that this protein may be peroxisomal. We observed that tagged PDCR was efficiently transported to the peroxisome lumen in normal human fibroblasts but not in cells derived from a Zellweger syndrome patient with a specific defect in peroxisomal matrix protein import. We conclude that this protein resides within the peroxisome matrix and therefore represents the first mammalian peroxisomal Delta(2),Delta(4)-dienoyl-CoA reductase to be characterized at the molecular level.
Collapse
Affiliation(s)
- B V Geisbrecht
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
318
|
Geisbrecht BV, Zhang D, Schulz H, Gould SJ. Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes. J Biol Chem 1999; 274:21797-803. [PMID: 10419495 DOI: 10.1074/jbc.274.31.21797] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the identification and characterization of human and mouse PECI, a novel gene that encodes a monofunctional peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase. Human and mouse PECI were identified on the basis of their sequence similarity to Eci1p, a recently characterized peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase from the yeast Saccharomyces cerevisiae. Cloning and sequencing of the human PECI cDNA revealed the presence of a 1077-base pair open reading frame predicted to encode a 359-amino acid protein with a mass of 39.6 kDa. The corresponding mouse cDNA contains a 1074-base pair open reading frame that encodes a 358-amino acid-long protein with a deduced mass of 39.4 kDa. Northern blot analysis demonstrated human PECI mRNA is expressed in all tissues. A bacterially expressed form of human PECI catalyzed the isomerization of 3-cis-octenoyl-CoA to 2-trans-octenoyl-CoA with a specific activity of 27 units/mg of protein. The human and mouse PECI proteins contain type-1 peroxisomal targeting signals, and human PECI was localized to peroxisomes by both subcellular fractionation and immunofluorescence microscopy techniques. The potential roles for this monofunctional Delta(3),Delta(2)-enoyl-CoA isomerase in peroxisomal metabolism are discussed.
Collapse
Affiliation(s)
- B V Geisbrecht
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
319
|
Sprecher H, Chen Q, Yin FQ. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process. Lipids 1999; 34 Suppl:S153-6. [PMID: 10419131 DOI: 10.1007/bf02562271] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Both 22:4n-6 and 22:5n-3 are synthesized from n-6 and n-3 fatty acid precursors in the endoplasmic reticulum. The synthesis of both 22:5n-6 and 22:6n-3 requires that 22:4n-6 and 22:5n-3 are metabolized, respectively, to 24:5n-6 and 24:6n-3 in the endoplasmic reticulum. These two 24-carbon acids must then move to peroxisomes for partial degradation followed by the movement of 22:5n-6 and 22:6n-3 back to the endoplasmic reticulum for use as substrates in membrane lipid biosynthesis. Clearly an understanding of the control of intracellular fatty acid movement as well as of the reactions carried out by microsomes, peroxisomes, and mitochondria are all required in order to understand not only what regulates the biosynthesis of 22:5n-6 and 22:6n-3 but also why most tissue lipids selectively accumulate 22:6n-3.
Collapse
Affiliation(s)
- H Sprecher
- The Department of Medical Biochemistry, The Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
320
|
Abstract
Myocardial ATP production is dependent chiefly on the oxidative decarboxylation of glucose and fatty acids. The co-utilization of these and other substrates is determined by both the amount of any given substrate supplied to the heart as well as by complex intracellular regulatory mechanisms. This regulated balance is altered during and after ischemia. During aerobic reperfusion of ischemic myocardium, a rapid recovery of energy production is desirable for the complete recovery of muscle contractile function. It is now clear that the type of energy substrate used by the heart during reperfusion will directly influence this contractile recovery. By increasing the relative proportion of glucose oxidized to that of fatty acids, the mechanical function of the reperfused heart can be improved. However, fatty acid oxidation recovers quickly during reperfusion and dominates as a source of oxygen consumption. These high rates of fatty acid oxidation occur at the expense of glucose oxidation, resulting in a decreased recovery of both cardiac function and efficiency during reperfusion. One contributory factor to these high rates of fatty acid oxidation is a decrease in myocardial malonyl-coenzyme A (CoA) levels. Malonyl-CoA, which is synthesized by acetyl-CoA carboxylase, is an essential metabolic intermediary in the regulation of fatty acid oxidation. A decrease in malonyl-CoA level results in an increase of carnitine palmitoyl transferase-1 mediated fatty acid uptake into the mitochondria. This mechanism seems important in the regulation of fatty acid oxidation in the postischemic heart and is discussed in detail in this review, with reference to specific clinical scenarios of ischemia and reperfusion and options for modulating cardiac energy metabolism.
Collapse
Affiliation(s)
- P F Kantor
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
321
|
|
322
|
Geisbrecht BV, Schulz K, Nau K, Geraghty MT, Schulz H, Erdmann R, Gould SJ. Preliminary characterization of Yor180Cp: identification of a novel peroxisomal protein of saccharomyces cerevisiae involved in fatty acid metabolism. Biochem Biophys Res Commun 1999; 260:28-34. [PMID: 10381339 DOI: 10.1006/bbrc.1999.0860] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the preliminary characterization of Yor180Cp, a novel peroxisomal protein involved in fatty acid metabolism in the yeast Saccharomyces cerevisiae. A computer-based screen identified Yor180Cp as a putative peroxisomal protein, and Yor180Cp targeted GFP to peroxisomes in a PEX8-dependent manner. Yor180Cp was also detected by mass spectrometric analysis of an HPLC-separated extract of yeast peroxisomal matrix proteins. YOR180C is upregulated during growth on oleic acid, and deletion of YOR180C from the yeast genome resulted in a mild but significant growth defect on oleic acid, indicating a role for Yor180Cp in fatty acid metabolism. In addition, we observed that yor180cDelta cells fail to efficiently import the enzyme Delta3,Delta2-enoyl-CoA isomerase (Eci1p) to peroxisomes. This result suggested that Yor180Cp might associate with Eci1p in vivo, and a Yor180Cp-Eci1p interaction was detected using the yeast two-hybrid system. Potential roles for Yor180Cp in peroxisomal fatty acid metabolism are discussed.
Collapse
Affiliation(s)
- B V Geisbrecht
- Department of Biological Chemistry, Department of Pediatrics, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland, 21205, USA
| | | | | | | | | | | | | |
Collapse
|
323
|
Liang X, Zhu D, Schulz H. Delta3,5,7,Delta2,4,6-trienoyl-CoA isomerase, a novel enzyme that functions in the beta-oxidation of polyunsaturated fatty acids with conjugated double bonds. J Biol Chem 1999; 274:13830-5. [PMID: 10318788 DOI: 10.1074/jbc.274.20.13830] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.
Collapse
Affiliation(s)
- X Liang
- Department of Chemistry, City College, City University of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
324
|
Spector AA, Willard DE, Kaduce TL, Widstrom RL. Role of peroxisomal oxidation in the conversion of arachidonic acid to eicosatrienoic acid in human skin fibroblasts. Prostaglandins Leukot Essent Fatty Acids 1999; 60:377-82. [PMID: 10471125 DOI: 10.1016/s0952-3278(99)80016-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human skin fibroblasts converted [5,6,8,9,11,12,14,15-3H]arachidonic acid ([3H]20:4) to eicosatrienoic acid (20:3), but appreciable amounts of radiolabeled 20:3 were not detected in corresponding incubations with [1-(14)C]20:4. This indicates that the main pathway for synthesizing 20:3 from arachidonic acid in the fibroblast involves oxidative removal of the carboxyl group of arachidonic acid. Fibroblasts deficient in long-chain acyl coenzyme A dehydrogenase (LCAD) converted [3H]20:4 to [3H]20:3. However, Zellweger fibroblasts that are deficient in peroxisomal fatty acid oxidation did not, indicating that the oxidative removal of the carboxyl group occurs in the peroxisomes. [3H]Hexadecatrienoic acid (16:3) was the main product that accumulated when [3H]20:4 was incubated with normal, LCAD deficient, and very long-chain acyl coenzyme A dehydrogenase (VLCAD) deficient fibroblasts, but Zellweger fibroblasts did not form this product. Normal fibroblasts converted [3H]16:3 to radiolabeled 20:3 and arachidonic acid. These findings suggest that some of the 16:3 produced from arachidonic acid by peroxisomal beta-oxidation can be recycled and that this recycling process constitutes a novel pathway for the conversion of arachidonic acid to 20:3 in human fibroblasts.
Collapse
Affiliation(s)
- A A Spector
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA.
| | | | | | | |
Collapse
|
325
|
Asayama K, Sandhir R, Sheikh FG, Hayashibe H, Nakane T, Singh I. Increased peroxisomal fatty acid beta-oxidation and enhanced expression of peroxisome proliferator-activated receptor-alpha in diabetic rat liver. Mol Cell Biochem 1999; 194:227-34. [PMID: 10391144 DOI: 10.1023/a:1006930513476] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To determine whether the increased fatty acid beta-oxidation in the peroxisomes of diabetic rat liver is mediated by a common peroxisome proliferation mechanism, we measured the activation of long-chain (LC) and very long chain (VLC) fatty acids catalyzed by palmitoyl CoA ligase (PAL) and lignoceryl CoA ligase and oxidation of LC (palmitic acid) and VLC (lignoceric acid) fatty acids by isotopic methods. Immunoblot analysis of acyl-CoA oxidase (ACO), and Northern blot analysis of peroxisome proliferator-activated receptor (PPAR-alpha), ACO, and PAL were also performed. The PAL activity increased in peroxisomes and mitochondria from the liver of diabetic rats by 2.6-fold and 2.1 -fold, respectively. The lignoceroyl-CoA ligase activity increased by 2.6-fold in diabetic peroxisomes. Palmitic acid oxidation increased in the diabetic peroxisomes and mitochondria by 2.5-fold and 2.7-fold, respectively, while lignoceric acid oxidation increased by 2.0-fold in the peroxisomes. Immunoreactive ACO protein increased by 2-fold in the diabetic group. The mRNA levels for PPAR-alpha, ACO and PAL increased 2.9-, 2.8- and 1.6-fold, respectively, in the diabetic group. These results suggest that the increased supply of fatty acids to liver in diabetic state stimulates the expression of PPAR-alpha and its target genes responsible for the metabolism of fatty acids.
Collapse
Affiliation(s)
- K Asayama
- Department of Pediatrics, Yamanashi Medical University, Nakakomagun, Japan
| | | | | | | | | | | |
Collapse
|
326
|
Abstract
The biosynthesis of 4, 7, 10, 13, 16-22:5 and 4, 7, 10, 13, 16, 19-22:6 from dietary linoleate and linolenate, respectively, does not totally take place in the endoplasmic reticulum but does require the participation of enzymes in the endoplasmic reticulum and peroxisomes. The absence of an endoplasmic reticulum-associated acyl-CoA-dependent delta 4 desaturase also requires the controlled movement of 22- and 24-carbon polyunsaturated fatty acids between the endoplasmic reticulum and peroxisomes.
Collapse
Affiliation(s)
- H Sprecher
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
327
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
328
|
He XY, Zhang G, Blecha F, Yang SY. Identity of heart and liver L-3-hydroxyacyl coenzyme A dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:119-23. [PMID: 10064895 DOI: 10.1016/s1388-1981(98)00005-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rat heart and liver cDNAs for precursor of L-3-hydroxyacyl-CoA dehydrogenase have been cloned and sequenced. The results indicate that these different rat organs express identical dehydrogenases. Furthermore, pig heart mRNA for L-3-hydroxyacyl-CoA dehydrogenase precursor was amplified by reverse transcription-polymerase chain reaction, and all the cDNA clones were found to encode a precursor of liver L-3-hydroxyacyl-CoA dehydrogenase (X.-Y. He, S.-Y. Yang, Biochim. Biophys. Acta 1392 (1998) 119-126) but not the well-documented heart form of the dehydrogenase (K.G. Bitar et al., FEBS Lett. 116 (1980) 196-198). Sequencing data and other evidence establish that the pig, like the rat, has the same dehydrogenase in heart and liver. Since the size and structure of pig heart L-3-hydroxyacyl-CoA dehydrogenase are identical to the pig liver dehydrogenase, reports that relied on the published sequence of the pig heart dehydrogenase need to be re-evaluated. For example, the signature pattern of the L-3-hydroxyacyl-CoA dehydrogenase family is HXFXPX3MXLXE. Furthermore, the published crystal structure of the pig heart dehydrogenase that substantiated each subunit comprising 307 residues with a mercury-binding residue at position 204 (J.J. Birktoft et al., Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 8262-8266) must be re-examined in accordance with this revelation.
Collapse
Affiliation(s)
- X Y He
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
329
|
Minard KI, McAlister-Henn L. Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH. J Biol Chem 1999; 274:3402-6. [PMID: 9920883 DOI: 10.1074/jbc.274.6.3402] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth of Saccharomyces cerevisiae with a fatty acid as carbon source was shown previously to require function of either glucose-6-phosphate dehydrogenase (ZWF1) or cytosolic NADP+-specific isocitrate dehydrogenase (IDP2), suggesting dependence of beta-oxidation on a cytosolic source of NADPH. In this study, we find that DeltaIDP2DeltaZWF1 strains containing disruptions in genes encoding both enzymes exhibit a rapid loss of viability when transferred to medium containing oleate as the carbon source. This loss of viability is not observed following transfer of a DeltaIDP3 strain lacking peroxisomal isocitrate dehydrogenase to medium with docosahexaenoate, a nonpermissive carbon source that requires function of IDP3 for beta-oxidation. This suggests that the fatty acid- phenotype of DeltaIDP2DeltaZWF1 strains is not a simple defect in utilization. Instead, we propose that the common function shared by IDP2 and ZWF1 is maintenance of significant levels of NADPH for enzymatic removal of the hydrogen peroxide generated in the first step of peroxisomal beta-oxidation in yeast and that inadequate levels of the reduced form of the cofactor can produce lethality. This proposal is supported by the finding that the sensitivity to exogenous hydrogen peroxide previously reported for DeltaZWF1 mutant strains is less pronounced when analyses are conducted with a nonfermentable carbon source, a condition associated with elevated expression of IDP2. Under those conditions, similar slow growth phenotypes are observed for DeltaZWF1 and DeltaIDP2 strains, and co-disruption of both genes dramatically exacerbates the H2O2s phenotype. Collectively, these results suggest that IDP2, when expressed, and ZWF1 have critical overlapping functions in provision of reducing equivalents for defense against endogenous or exogenous sources of H2O2.
Collapse
Affiliation(s)
- K I Minard
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | |
Collapse
|
330
|
Abstract
The importance of n-6 and n-3 polyunsaturated fatty acids (PUFA) in neonatal development, particularly with respect to the developing brain and retina, is well known. This review combines recent information from basic science and clinical studies to highlight recent advances in knowledge on PUFA metabolism and areas where research is still needed on infant n-6 and n-3 fatty acid requirements. Animal, cell culture, and infant studies are consistent in demonstrating that synthesis of 22:6n-3 involves C24 PUFA and that the amounts of 18:2n-6 and 18:3n-3 influence PUFA metabolism. Studies to show that addition of n-6 fatty acids beyond delta6-desaturase alters n-6 fatty acid metabolism with no marked increase in tissue 20:4n-6 illustrate the limitations of analyses of tissue fatty acid compositions as an approach to study the effects of diet on fatty acid metabolism. New information to show highly selective pathways for n-6 and n-3 fatty acid uptake in brain, and efficient pathways for conservation of 22:6n-3 in retina emphasizes the differences in PUFA metabolism among different tissues and the unique features which allow the brain and retina to accumulate and maintain high concentrations of n-3 fatty acids. Further elucidation of the delta6-desaturases involved in 24:5n-6 and 22:6n-3 synthesis; the regulation of fatty acid movement between the endoplasmic reticulum and peroxisomes; partitioning to acylation, desaturation and oxidation; and the effects of dietary and hormonal factors on these pathways is needed for greater understanding of neonatal PUFA metabolism.
Collapse
Affiliation(s)
- S M Innis
- Department of Paediatrics, University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
331
|
DeMar JC, Rundle DR, Wensel TG, Anderson RE. Heterogeneous N-terminal acylation of retinal proteins. Prog Lipid Res 1999; 38:49-90. [PMID: 10396602 DOI: 10.1016/s0163-7827(98)00020-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J C DeMar
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
332
|
Ikegawa S, Ishikawa H, Oiwa H, Nagata M, Goto J, Kozaki T, Gotowda M, Asakawa N. Characterization of cholyl-adenylate in rat liver microsomes by liquid chromatography/electrospray ionization-mass spectrometry. Anal Biochem 1999; 266:125-32. [PMID: 9887221 DOI: 10.1006/abio.1998.2944] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cholyl-adenylate, covalently bound 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholanoic acid (cholic acid) with adenosine 5'-monophosphate having an acid anhydride linkage, has been characterized by means of liquid chromatography/mass spectrometry in an incubation mixture with a rat liver microsomal fraction. The authentic specimen of cholyl-adenylate was synthesized using the carbodiimide method and the structure was confirmed by MS and nuclear magnetic resonance spectroscopy. After incubation of cholic acid with a hepatic microsomal fraction in the presence of adenosine 5'-triphosphate, bile acids were extracted and purified by solid-phase extraction on a Sep-Pak C18 cartridge and then subjected to a LC/MS analysis, where cholyl-adenylate and a CoA thioester of cholic acid (cholyl-CoA) were monitored with characteristic negative ions of m/z 736 and 577, respectively. Cholyl-adenylate was definitely characterized and preferential biotransformation into the acyl-adenylate prior to formation of cholyl-CoA was noted. The nonenzymatic formation of taurine-conjugated cholic acid by incubation of cholyl-adenylate with taurine in a buffer solution was also demonstrated.
Collapse
Affiliation(s)
- S Ikegawa
- Faculty of Pharmaceutical Sciences, Tohoku University, Aobayama Sendai, 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Geisbrecht BV, Zhu D, Schulz K, Nau K, Morrell JC, Geraghty M, Schulz H, Erdmann R, Gould SJ. Molecular characterization of Saccharomyces cerevisiae Delta3, Delta2-enoyl-CoA isomerase. J Biol Chem 1998; 273:33184-91. [PMID: 9837886 DOI: 10.1074/jbc.273.50.33184] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the identification of the Saccharomyces cerevisiae peroxisomal Delta3,Delta2-enoyl-CoA isomerase, an enzyme that is essential for the beta-oxidation of unsaturated fatty acids. The yeast gene YLR284C was identified in an in silico screen for genes that contain an oleate response element, a transcription factor-binding site common to most fatty acid-induced genes. Growth on oleic acid resulted in a significant increase in YLR284C mRNA, demonstrating that it is indeed an oleate-induced gene. The deduced product of YLR284C contains a type 1 peroxisomal targeting signal-like sequence at its C terminus and localizes to the peroxisome in a PEX8-dependent manner. Removal of YLR284C from the S. cerevisiae genome eliminated growth on oleic acid, but had no effect on peroxisome biogenesis, indicating a role for YLR284C in fatty acid metabolism. Cells lacking YLR284C had no detectable Delta3,Delta2-enoyl-CoA isomerase activity, and a bacterially expressed form of this protein catalyzed the isomerization of 3-cis-octenoyl-CoA to 2-trans-octenoyl-CoA with a specific activity of 16 units/mg. We conclude that YLR284C encodes the yeast peroxisomal Delta3,Delta2-enoyl-CoA isomerase and propose a new name, ECI1, to reflect its enoyl-CoA isomerase activity.
Collapse
Affiliation(s)
- B V Geisbrecht
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Liu Y, Li Z, Vederas JC. Biosynthetic incorporation of advanced precursors into dehydrocurvularin, a polyketide phytotoxin from Alternaria cinerariae. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)01003-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
335
|
Ouali F, Djouadi F, Merlet-Bénichou C, Bastin J. Dietary lipids regulate beta-oxidation enzyme gene expression in the developing rat kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F777-84. [PMID: 9815135 DOI: 10.1152/ajprenal.1998.275.5.f777] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines the ability of dietary lipids to regulate gene expression of mitochondrial and peroxisomal fatty acid beta-oxidation enzymes in the kidney cortex and medulla of 3-wk-old rats and evaluates the role of glucagon or of the alpha-isoform of peroxisome proliferator-activated receptor (PPARalpha) in mediating beta-oxidation enzyme gene regulation in the immature kidney. The long-chain (LCAD) and medium-chain acyl-CoA dehydrogenases (MCAD) and acyl-CoA oxidase (ACO) mRNA levels were found coordinately upregulated in renal cortex, but not in medulla, of pups weaned on a high-fat diet from day 16 to 21. Further results establish that switching pups from a low- to a high-fat diet for only 1 day was sufficient to induce large increases in cortical LCAD, MCAD, and ACO mRNA levels, and gavage experiments show that this upregulation of beta-oxidation gene expression is initiated within 6 h following lipid ingestion. Treatment of pups with clofibrate, a PPARalpha agonist, demonstrated that PPARalpha can mediate regulation of cortical beta-oxidation enzyme gene expression, whereas glucagon was found ineffective. Thus dietary lipids physiologically regulate gene expression of mitochondrial and peroxisomal beta-oxidation enzymes in the renal cortex of suckling pups, and this might involve PPARalpha-mediated mechanisms.
Collapse
Affiliation(s)
- F Ouali
- Institut National de la Santé et de la Recherche Médicale Unité 319, Université Paris 7 Denis Diderot, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
336
|
Abstract
Carnitine functions as a substrate for a family of enzymes, carnitine acyltransferases, involved in acyl-coenzyme A metabolism and as a carrier for long-chain fatty acids into mitochondria. Carnitine biosynthesis and/or dietary carnitine fulfill the body's requirement for carnitine. To date, a genetic disorder of carnitine biosynthesis has not been described. A genetic defect in the high-affinity plasma membrane carnitine-carrier(in) leads to renal carnitine wasting and primary carnitine deficiency. Myopathic carnitine deficiency could be due to an increase in efflux moderated by the carnitine-carrier(out). Defects in the carnitine transport system for fatty acids in mitochondria have been described and are being examined at the molecular and pathophysiological levels. the nutritional management of these disorders includes a high-carbohydrate, low-fat diet and avoidance of those events that promote fatty acid oxidation, such as fasting, prolonged exercise, and cold. Large-dose carnitine treatment is effective in systemic carnitine deficiency.
Collapse
Affiliation(s)
- J Kerner
- Department of Veteran Affairs Medical Center, Department of Nutrition, Cleveland, USA
| | | |
Collapse
|
337
|
Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH. Rapid stable isotope dilution analysis of very-long-chain fatty acids, pristanic acid and phytanic acid using gas chromatography-electron impact mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 713:281-7. [PMID: 9746242 DOI: 10.1016/s0378-4347(98)00186-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A common feature of most peroxisomal disorders is the accumulation of very-long-chain fatty acids (VLCFAs) and/or pristanic and phytanic acid in plasma. Previously described methods utilizing either gas chromatography alone or gas chromatography-mass spectrometry are, in general, time-consuming and unable to analyze VLCFAs, pristanic and phytanic acid within a single analysis. We describe a simple, reproducible and rapid method using gas chromatography/mass spectrometry with deuterated internal standards. The method was evaluated by analysing 30 control samples and samples from 35 patients with defined peroxisomal disorders and showed good discrimination between controls and patients. This method is suitable for routine screening for peroxisomal disorders.
Collapse
Affiliation(s)
- P Vreken
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital and Dept. of Clinical Chemistry, The Netherlands.
| | | | | | | | | | | |
Collapse
|
338
|
Corydon TJ, Bross P, Jensen TG, Corydon MJ, Lund TB, Jensen UB, Kim JJ, Gregersen N, Bolund L. Rapid degradation of short-chain acyl-CoA dehydrogenase variants with temperature-sensitive folding defects occurs after import into mitochondria. J Biol Chem 1998; 273:13065-71. [PMID: 9582344 DOI: 10.1074/jbc.273.21.13065] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most disease-causing missense mutations in short-chain acyl-CoA dehydrogenase (SCAD) and medium-chain acyl-CoA dehydrogenase are thought to compromise the mitochondrial folding and/or stability of the mutant proteins. To address this question, we studied the biogenesis of SCAD proteins in COS-7 cells transfected with cDNA corresponding to two SCAD missense mutations, R22W (identified in a patient with SCAD deficiency) or R22C (homologous to a disease-associated R28C mutation in medium-chain acyl-CoA dehydrogenase deficiency). After cultivation at 37 degreesC the steady-state amounts of SCAD antigen and activity in extracts from cells transfected with mutant SCAD cDNAs were negligible compared with those of cells transfected with SCAD wild type cDNA, documenting the deleterious effect of the two mutations. Analysis of metabolically labeled and immunoprecipitated SCAD wild type and mutant proteins showed that the two mutant proteins were synthesized as the 44-kDa precursor form, imported into mitochondria and processed to the mature 41.7-kDa form in a normal fashion. However, the intramitochondrial level of matured mutant SCAD proteins decreased rapidly to very low levels, indicating a rapid degradation of the mutant proteins at 37 degreesC. A rapid initial elimination phase was also observed following cultivation at 26 degreesC; however, significantly higher amounts of metabolically labeled and immunoprecipitated mature mutant SCAD proteins remained detectable. This corresponds well with the appreciable steady-state levels of SCAD mutant enzyme activity observed at 26 degreesC. In addition, confocal laser scanning microscopy of immunostained cells showed that the SCAD mutant proteins were localized intramitochondrially. Together, these results show that newly synthesized SCAD R22W and R22C mutant proteins are imported and processed in the mitochondrial matrix, but that a fraction of the proteins is rapidly eliminated by a temperature-dependent degradation mechanism. Thermal stability profiles of wild type and mutant enzymes revealed no difference between the two mutants and the wild type protein. Furthermore, the turnover of the SCAD mutant enzymes in intact cells was comparable to that of the wild type, indicating that the rapid degradation of the mutant SCAD proteins is not due to lability of the correctly folded tetrameric structure but rather to elimination of partly folded or misfolded proteins along the folding pathway.
Collapse
Affiliation(s)
- T J Corydon
- Institute of Human Genetics, Wilhelm Meyers Allé, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Williard DE, Kaduce TL, Harmon SD, Spector AA. Conversion of eicosapentaenoic acid to chain-shortened omega–3 fatty acid metabolites by peroxisomal oxidation. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33865-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
340
|
Steep rise of docosahexaenoic acid in phosphatidylethanolamines of heart and liver of rats fed native olive oil or rapeseed oil. Nutr Res 1998. [DOI: 10.1016/s0271-5317(98)00070-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
341
|
Babidge W, Millard S, Roediger W. Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol Cell Biochem 1998; 181:117-24. [PMID: 9562248 DOI: 10.1023/a:1006838231432] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The disease process of ulcerative colitis (UC) is associated with a block in beta-oxidation of short chain fatty acid in colonic epithelial cells which can be reproduced by exposure of cells to sulfides. The aim of the current work was to assess the level in the beta-oxidation pathway at which sulfides might be inhibitory in human colonocytes. Isolated human colonocytes from cases without colitis (n = 12) were exposed to sulfide (1.5 mM) in the presence or absence of exogenous CoA and ATP. Short chain acyl-CoA esters were measured by a high performance liquid chromatographic assay. 14CO2 generation was measured from [1-14C]butyrate and [6-14C]glucose. 14CO2 from butyrate was significantly reduced (p < 0.001) by sulfide. When colonocytes were incubated with hydrogen sulfide in the presence of CoA and ATP, butyryl-CoA concentration was increased (p < 0.01), while crotonyl-CoA (p < 0.01) and acetyl-CoA (p < 0.01) concentrations were decreased. These results show that sulfides inhibit short chain acyl-CoA dehydrogenase. As oxidation of n-butyrate governs the epithelial barrier function of colonocytes the functional activity of short chain acyl-CoA dehydrogenase may be critical in maintaining colonic mucosal integrity. Maintaining the functional activity of dehydrogenases could be an important determinant in the expression of ulcerative colitis.
Collapse
Affiliation(s)
- W Babidge
- University of Adelaide, Department of Surgery, The Queen Elizabeth Hospital, Australia
| | | | | |
Collapse
|
342
|
Abstract
Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal functions are impaired. Most of the functions known to take place in peroxisomes have to do with lipids. Indeed, peroxisomes are capable of 1. fatty acid beta-oxidation 2. fatty acid alpha-oxidation 3. synthesis of cholesterol and other isoprenoids 4. ether-phospholipid synthesis and 5. biosynthesis of polyunsaturated fatty acids. In Chapters 2-6 we will discuss the functional organization and enzymology of these pathways in detail. Furthermore, attention is paid to the permeability properties of peroxisomes with special emphasis on recent studies which suggest that peroxisomes are closed structures containing specific membrane proteins for transport of metabolites. Finally, the disorders of peroxisomal lipid metabolism will be discussed.
Collapse
Affiliation(s)
- R J Wanders
- Department of Clinical Chemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
343
|
Shoukry K, Schulz H. Significance of the reductase-dependent pathway for the beta-oxidation of unsaturated fatty acids with odd-numbered double bonds. Mitochondrial metabolism of 2-trans-5-cis-octadienoyl-CoA. J Biol Chem 1998; 273:6892-9. [PMID: 9506993 DOI: 10.1074/jbc.273.12.6892] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-oxidation of unsaturated fatty acids with odd-numbered double bonds proceeds by reduction of the double bond (reductase-dependent pathway) in addition to the well established isomerization of the double bond (isomerase-dependent pathway). The metabolic significance of the reductase-dependent pathway was assessed with 2-trans-5-cis-octadienoyl-CoA (2,5-octadienoyl-CoA) and its products, all of which are metabolites of alpha-linolenic acid. A kinetic evaluation of beta-oxidation enzymes revealed that the presence of a 5-cis double bond in the substrate most adversely affected the activity of 3-ketoacyl-CoA thiolase although not enough to become rate-limiting. Concentration-dependent and time-dependent measurements indicated that most (80%) of 2,5-octadienoyl-CoA is metabolized via the isomerase-dependent pathway. The reason for the greater flux through the isomerase-dependent pathway is the higher activity of L-3-hydroxyacyl-CoA dehydrogenase as compared with Delta3,Delta2-enoyl-CoA isomerase. These two enzymes catalyze the rate-limiting steps in the isomerase-dependent and reductase-dependent pathways, respectively. Once 2,5-octadienoyl-CoA is converted to 3,5-octadienoyl-CoA (perhaps fortuitously because of the presence of Delta3,Delta2-enoyl-CoA isomerase), the only effective route for its degradation is via the reductase-dependent pathway. It is concluded that the reductase-dependent pathway assures the degradation of 3,5-dienoyl-CoA intermediates, thereby preventing the depletion of free coenzyme A and a likely impairment of mitochondrial oxidative function.
Collapse
Affiliation(s)
- K Shoukry
- Department of Chemistry, City College, City University of New York, New York, New York 10031, USA
| | | |
Collapse
|
344
|
van Grunsven EG, van Berkel E, Ijlst L, Vreken P, de Klerk JB, Adamski J, Lemonde H, Clayton PT, Cuebas DA, Wanders RJ. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc Natl Acad Sci U S A 1998; 95:2128-33. [PMID: 9482850 PMCID: PMC19272 DOI: 10.1073/pnas.95.5.2128] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peroxisomes play an essential role in a number of different metabolic pathways, including the beta-oxidation of a distinct set of fatty acids and fatty acid derivatives. The importance of the peroxisomal beta-oxidation system in humans is made apparent by the existence of a group of inherited diseases in which peroxisomal beta-oxidation is impaired. This includes X-linked adrenoleukodystrophy and other disorders with a defined defect. On the other hand, many patients have been described with a defect in peroxisomal beta-oxidation of unknown etiology. Resolution of the defects in these patients requires the elucidation of the enzymatic organization of the peroxisomal beta-oxidation system. Importantly, a new peroxisomal beta-oxidation enzyme was recently described called D-bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activity primarily reacting with alpha-methyl fatty acids like pristanic acid and di- and trihydroxycholestanoic acid. In this patient we describe the first case of D-bifunctional protein deficiency as resolved by enzyme activity measurements and mutation analysis. The mutation found (Gly16Ser) is in the dehydrogenase coding part of the gene in an important loop of the Rossman fold forming the NAD+-binding site. The results show that the newly identified D-bifunctional protein plays an essential role in the peroxisomal beta-oxidation pathway that cannot be compensated for by the L-specific bifunctional protein.
Collapse
Affiliation(s)
- E G van Grunsven
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Huang W, Jia J, Edwards P, Dehesh K, Schneider G, Lindqvist Y. Crystal structure of beta-ketoacyl-acyl carrier protein synthase II from E.coli reveals the molecular architecture of condensing enzymes. EMBO J 1998; 17:1183-91. [PMID: 9482715 PMCID: PMC1170466 DOI: 10.1093/emboj/17.5.1183] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the biosynthesis of fatty acids, the beta-ketoacyl-acyl carrier protein (ACP) synthases catalyze chain elongation by the addition of two-carbon units derived from malonyl-ACP to an acyl group bound to either ACP or CoA. The crystal structure of beta-ketoacyl synthase II from Escherichia coli has been determined with the multiple isomorphous replacement method and refined at 2.4 A resolution. The subunit consists of two mixed five-stranded beta-sheets surrounded by alpha-helices. The two sheets are packed against each other in such a way that the fold can be described as consisting of five layers, alpha-beta-alpha-beta-alpha. The enzyme is a homodimer, and the subunits are related by a crystallographic 2-fold axis. The two active sites are located near the dimer interface but are approximately 25 A apart. The proposed nucleophile in the reaction, Cys163, is located at the bottom of a mainly hydrophobic pocket which is also lined with several conserved polar residues. In spite of very low overall sequence homology, the structure of beta-ketoacyl synthase is similar to that of thiolase, an enzyme involved in the beta-oxidation pathway, indicating that both enzymes might have a common ancestor.
Collapse
Affiliation(s)
- W Huang
- Division of Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
346
|
Synthesis of polyunsaturated β-thia and γ-thia fatty acids from naturally derived polyunsaturated fatty alcohols and in vitro evaluation of their susceptibility to β-oxidation. Chem Phys Lipids 1998. [DOI: 10.1016/s0009-3084(98)00002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
347
|
Henke B, Girzalsky W, Berteaux-Lecellier V, Erdmann R. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids. J Biol Chem 1998; 273:3702-11. [PMID: 9452501 DOI: 10.1074/jbc.273.6.3702] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Saccharomyces cerevisiae the metabolic degradation of saturated fatty acids is exclusively confined to peroxisomes. In addition to a functional beta-oxidation system, the degradation of unsaturated fatty acids requires auxiliary enzymes, including a Delta2, Delta3-enoyl-CoA isomerase and an NADPH-dependent 2,4-dienoyl-CoA reductase. We found both enzymes to be present in yeast peroxisomes. The impermeability of the peroxisomal membrane for pyrimidine nucleotides led to the question of how the NADPH needed by the reductase is regenerated in the peroxisomal lumen. We report the identification and functional analysis of the IDP3 gene product, which is a yeast peroxisomal NADP-dependent isocitrate dehydrogenase. The newly identified peroxisomal protein is homologous to the mitochondrial Idp1p and cytosolic Idp2p, which both are yeast NADP-dependent isocitrate dehydrogenases. Yeast cells lacking Idp3p grow normally on saturated fatty acids, but growth is impaired on unsaturated fatty acids, indicating that the peroxisomal Idp3p is involved in their metabolic utilization. The data presented are consistent with the assumption that peroxisomes of S. cerevisiae contain the enzyme equipment needed for the degradation of unsaturated fatty acids, including an NADP-dependent isocitrate dehydrogenase, a putative constituent of a peroxisomal NADPH-regenerating redox system.
Collapse
Affiliation(s)
- B Henke
- Department of Physiological Chemistry, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
348
|
van Roermund CW, Hettema EH, Kal AJ, van den Berg M, Tabak HF, Wanders RJ. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J 1998; 17:677-87. [PMID: 9450993 PMCID: PMC1170417 DOI: 10.1093/emboj/17.3.677] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical cell fractionation studies that this enzyme is a typical constituent of peroxisomes. As a consequence, the beta-oxidation of mono- and polyunsaturated fatty acids with double bonds at even positions requires stoichiometric amounts of intraperoxisomal NADPH. We suggest that NADP-dependent isocitrate dehydrogenase isoenzymes function in an NADP redox shuttle across the peroxisomal membrane to keep intraperoxisomal NADP reduced. This is based on the finding of a third NADP-dependent isocitrate dehydrogenase isoenzyme, Idp3p, next to the already known mitochondrial and cytosolic isoenzymes, which turned out to be present in the peroxisomal matrix. Our proposal is strongly supported by the observation that peroxisomal Idp3p is essential for growth on the unsaturated fatty acids arachidonic, linoleic and petroselinic acid, which require 2, 4-dienoyl-CoA reductase activity. On the other hand, growth on oleate which does not require 2,4-dienoyl-CoA reductase, and NADPH is completely normal in Deltaidp3 cells.
Collapse
Affiliation(s)
- C W van Roermund
- Department of Clinical Chemistry, University of Amsterdam, Academic Medical Centre, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
349
|
Chen Q, Luthria DL, Sprecher H. Analysis of the acyl-CoAs that accumulate during the peroxisomal beta-oxidation of arachidonic acid and 6,9,12-octadecatrienoic acid. Arch Biochem Biophys 1998; 349:371-5. [PMID: 9448727 DOI: 10.1006/abbi.1997.0461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biosynthesis of 4,7,10,13,16-22:5 and 4,7,10,13,16,19-22:6 requires that when 6,9,12,15,18-24:5 and 6,9,12,15,18,21-24:6 are produced in microsomes they must move to peroxisomes for partial beta-oxidation. When the 24-carbon acids were incubated with peroxisomes, 22-carbon acids with their first double bond at position 4 accumulated as did those with their first two double bonds at the 2-trans-4-cis-positions (D. L. Luthria, S. B. Mohammed, and H. Sprecher, J. Biol. Chem. 271, 16020-16025, 1996; and B. S. Mohammed, D. L. Luthria, S. P. Baykousheva, and H. Sprecher, Biochem. J., 326, 425-430, 1997). In the study reported here we analyzed the acyl-CoAs that accumulated when peroxisomes were incubated with 5,8,11,14-20:4 and 6,9,12-18:3, a metabolite that would be produced via one cycle of arachidonate degradation via the pathway requiring both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5, delta 2,4-dienoyl-CoA isomerase. With both substrates the acyl-CoAs of 2-trans-4-10:2, 4-10:1, 2-trans-4,7,10-16:4, and 4,7,10-16:3 accumulated. These results further establish that the reductase catalyzes a control step in the peroxisomal degradation of unsaturated fatty acids. It was not possible to detect any 18- or 12-carbon acyl-CoA when arachidonate was the substrate, nor did any 12-carbon catabolite accumulate from 6,9,12-18:3. The fractional amount of 5,8-14:2 and arachidonate catabolized via the pathway using only the enzymes of saturated fatty acid degradation versus the pathway that also uses the reductase and the isomerase could thus not be estimated.
Collapse
Affiliation(s)
- Q Chen
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
350
|
Kraak MN, Kessler B, Witholt B. In vitro activities of granule-bound poly[(R)-3-hydroxyalkanoate]polymerase C1 of Pseudomonas oleovorans--development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:432-9. [PMID: 9428695 DOI: 10.1111/j.1432-1033.1997.0432a.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A newly developed in vitro activity assay for medium-chain-length (mcl)-poly(3-hydroxyalkanoate) polymerases is described. Polymerase C1 of Pseudomonas oleovorans GPo1 attached to isolated granules was used as model enzyme. A direct correlation was found between (R)-3-hydroxyoctanoylCoA depletion and poly(3-hydroxyalkanoate) synthesis due to polymerase C1 activity. Highest activities of 1.13 U/mg granule bound protein and highest specific activities of 2.3 U/mg polymerase C1 were determined towards (RS)-3-hydroxyoctanoylCoA. A first determination of a Km value for mcl poly(3-hydroxyalkanoate) polymerases was performed leading to an estimated Km of 0.16 (+/-0.1) mM for granule bound polymerase C1 with (R)-3-hydroxyoctanoylCoA as substrate. Polymerase C1 showed no activity towards (RS)-3-hydroxybutyrylCoA and a specific activity of 0.28 U/mg polymerase C1 for (R)-3-hydroxyvalerylCoA. (R)-3-HydroxyoctanoylCoA and a mixture of (RS)-3-hydroxyoctanoylCoA were both depleted for more than 75% by granule-bound polymerase C1, suggesting a non-rate-limiting epimerase activity attached to poly(3-hydroxyalkanoate) granules isolated from Pseudomonas putida GPp104[pGEc405]. Whereas no relationship was found between the activity of granule-bound polymerase C1 and poly(3-hydroxyalkanoate) content of the granules, higher activities were measured when a higher substrate concentration or more enzyme was present in the in vitro activity assay.
Collapse
Affiliation(s)
- M N Kraak
- Institute of Biotechnology, ETH Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|