301
|
Saghatelyan AK, Gorissen S, Albert M, Hertlein B, Schachner M, Dityatev A. The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 2000; 12:3331-42. [PMID: 10998116 DOI: 10.1046/j.1460-9568.2000.00216.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perisomatic inhibition of pyramidal cells regulates efferent signalling from the hippocampus. The striking presence of HNK-1, a carbohydrate expressed by neural adhesion molecules, on perisomatic interneurons and around somata of CA1 pyramidal neurons led us to apply monoclonal HNK-1 antibodies to acute murine hippocampal slices. Injection of these antibodies decreased GABAA receptor-mediated perisomatic inhibitory postsynaptic currents (pIPSCs) but did not affect dendritic IPSCs or excitatory postsynaptic currents. The decrease in the mean amplitude of evoked pIPSCs by HNK-1 antibodies was accompanied by an increase in the coefficient of variation of pIPSC amplitude, number of failures and changes in frequency but not amplitude of miniature IPSCs, suggesting that HNK-1 antibodies reduced efficacy of evoked GABA release. HNK-1 antibodies did not affect pIPSCs in knock-out mice deficient in the extracellular matrix molecule tenascin-R which carries the HNK-1 carbohydrate as analysed by immunoblotting in synaptosomal fractions prepared from the CA1 region of the hippocampus. For control, HNK-1 antibody was applied to acute sections of mice deficient in the neural cell adhesion molecule NCAM, another potential carrier of HNK-1, and resulted in decrease of pIPSCs as observed in wild-type mice. Reduction in perisomatic inhibition is expected to promote induction of long-term potentiation (LTP) by increasing the level of depolarization during theta-burst stimulation. Indeed, LTP was increased by HNK-1 antibody applied before stimulation. Moreover, LTP was reduced by an HNK-1 peptide mimic, but not control peptide. These results provide first evidence that tenascin-R and its associated HNK-1 carbohydrate modulate perisomatic inhibition and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- A K Saghatelyan
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
302
|
Abstract
We studied the effect of the Type II metabotropic glutamate receptor (mGluR 2,3) agonist APDC on the response of neurons in slices of rat visual cortex. In all cortical layers, APDC attenuated the EPSP produced by stimulation of the predominant excitatory input. This EPSP attenuation was seen in both younger and older rat slices and was present with G-protein blockade in the cell recorded, demonstrating that it was a presynaptic effect. Further, this EPSP attenuation was blocked by the mGluR 2,3 antagonist EGLU. A postsynaptic depressive effect of APDC on the NMDA response was seen in layers 2 and 3, but not in layers 5 and 6. Thus, the predominant action of Type II mGluRs in the visual cortex is a presynaptic reduction of glutamate release which persists through development. This regulation may be important in the setting of excitatory tone in visual cortex and in the extraction/processing of visual information.
Collapse
Affiliation(s)
- H J Flavin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, P.O. Box 20-8061, New Haven, CT 06520-8061, USA
| | | | | |
Collapse
|
303
|
Morin D, Bonnot A, Ballion B, Viala D. alpha1-adrenergic receptor-induced slow rhythmicity in nonrespiratory cervical motoneurons of neonatal rat spinal cord. Eur J Neurosci 2000; 12:2950-66. [PMID: 10971636 DOI: 10.1046/j.1460-9568.2000.00154.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have reported that the alpha1-adrenergic system can activate spinal rhythm generators belonging to the central respiratory network. In order to analyse alpha1-adrenergic effects on both cranial and spinal motoneuronal activity, phenylephrine (1-800 microM) was applied to in vitro preparations of neonatal rat brainstem-spinal cord. High concentration of phenylephrine superfusion exerted multiple effects on spinal cervical outputs (C2-C6), consisting of a lengthening of respiratory period and an increase in inspiratory burst duration. Furthermore, in 55% of cases a slow motor rhythm recorded from the same spinal outputs was superimposed on the inspiratory activity. However, this phenylephrine-induced slow motor rhythm generated at the spinal level was observed neither in inspiratory cranial nerves (glossopharyngeal, vagal and hypoglossal outputs) nor in phrenic nerves. Whole-cell patch-clamp recordings were carried out on cervical motoneurons (C4-C5), to determine first which motoneurons were involved in this slow rhythm, and secondly the cellular events underlying direct phenylephrine effects on motoneurons. In all types of motoneurons (inspiratory and nonrespiratory) phenylephrine induced a prolonged depolarization with an increase in neuronal excitability. However, only nonrespiratory motoneurons showed additional rhythmic membrane depolarizations (with spiking) occurring in phase with the slow motor rhythm recorded from the ventral root. Furthermore the tonic depolarization produced in all motoneurons results from an inward current [which persists in the presence of tetrodotoxin (TTX)] associated with a decrease in neuron input conductance, with a reversal potential varying as a Nernstian function of extracellular K+ concentration. Our results indicate that the alpha1-adrenoceptor activation: (i) affects both the central respiratory command (i.e. respiratory period and inspiratory burst duration) and spinal inspiratory outputs; (ii) induces slow spinal motor rhythmicity, which is unlikely to be related to the respiratory system; and (iii), increases motoneuronal excitability, probably through a decrease in postsynaptic leak K+ conductance.
Collapse
Affiliation(s)
- D Morin
- Laboratoire de Neurobiologie des Réseaux, UMR CNRS 5816, Université Bordeaux 1, avenue des Facultés, 33405 Talence Cedex, France.
| | | | | | | |
Collapse
|
304
|
Neugebauer V, Zinebi F, Russell R, Gallagher JP, Shinnick-Gallagher P. Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J Neurophysiol 2000; 84:759-70. [PMID: 10938303 DOI: 10.1152/jn.2000.84.2.759] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled metabotropic glutamate receptors (mGluRs) are being implicated in various forms of neuroplasticity and CNS disorders. This study examined whether the sensitivities of mGluR agonists are modulated in a distinct fashion in different models of synaptic plasticity, specifically, kindling and chronic cocaine treatment. The influence of kindling and chronic cocaine exposure in vivo was examined in vitro on the modulation of synaptic transmission by group II and III metabotropic glutamate receptors using whole cell voltage-clamp recordings of central amygdala (CeA) neurons. Synaptic transmission was evoked by electrical stimulation of the basolateral amygdala (BLA) and ventral amygdaloid pathway (VAP) afferents in brain slices from control rats and from rats treated with cocaine or exposed to three to five stage-five kindled seizures. This study shows that after chemical stimulation with chronic cocaine exposure or after electrical stimulation with kindling the receptor sensitivities for mGluR agonists are altered in opposite ways. In slices from control rats, group II agonists, (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (LCCG1) and (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), depressed neurotransmission more potently at the BLA-CeA than at the VAP-CeA synapse while group III agonist, L(+)-2-amino-4-phosphonobutyrate (LAP4), depressed neurotransmission more potently at the VAP-CeA synapse than at the BLA-CeA. These agonist actions were not seen (were absent) in amygdala neurons from chronic cocaine-treated animals. In contrast, after kindling, concentration response relationships for LCCG1 and LAP4 were shifted to the left, suggesting that sensitivity to these agonists is increased. Except at high concentrations, LCCG1, LY354740, and LAP4 neither induced membrane currents nor changed current-voltage relationships. Loss of mGluR inhibition with chronic cocaine treatment may contribute to counter-adaptive changes including anxiety and depression in cocaine withdrawal. Drugs that restore the inhibitory effects of group II and III mGluRs may be novel tools in the treatment of cocaine dependence. The enhanced sensitivity to group II and III mGluR agonists in kindling is similar to that recorded at the lateral to BLA synapse in the amygdala where they reduce epileptiform bursting. These findings suggest that drugs modifying mGluRs may prove useful in the treatment of cocaine withdrawal or epilepsy.
Collapse
Affiliation(s)
- V Neugebauer
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | |
Collapse
|
305
|
Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 2000; 84:909-26. [PMID: 10938316 DOI: 10.1152/jn.2000.84.2.909] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The input conductance of cells in the cat primary visual cortex (V1) has been shown recently to grow substantially during visual stimulation. Because increasing conductance can have a divisive effect on the synaptic input, theoretical proposals have ascribed to it specific functions. According to the veto model, conductance increases would serve to sharpen orientation tuning by increasing most at off-optimal orientations. According to the normalization model, conductance increases would control the cell's gain, by being independent of stimulus orientation and by growing with stimulus contrast. We set out to test these proposals and to determine the visual properties and possible synaptic origin of the conductance increases. We recorded the membrane potential of cat V1 cells while injecting steady currents and presenting drifting grating patterns of varying contrast and orientation. Input conductance grew with stimulus contrast by 20-300%, generally more in simple cells (40-300%) than in complex cells (20-120%), and in simple cells was strongly modulated in time. Conductance was invariably maximal for stimuli of the preferred orientation. Thus conductance changes contribute to a gain control mechanism, but the strength of this gain control does not depend uniquely on contrast. By assuming that the conductance changes are entirely synaptic, we further derived the excitatory and inhibitory synaptic conductances underlying the visual responses. In simple cells, these conductances were often arranged in push-pull: excitation increased when inhibition decreased and vice versa. Excitation and inhibition had similar preferred orientations and did not appear to differ in tuning width, suggesting that the intracortical synaptic inputs to simple cells of cat V1 originate from cells with similar orientation tuning. This finding is at odds with models where orientation tuning in simple cells is achieved by inhibition at off-optimal orientations or sharpened by inhibition that is more broadly tuned than excitation.
Collapse
Affiliation(s)
- J S Anderson
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
306
|
Yamada K, Hasuo H, Murakami C, Yasaka Y, Fujimura T, Akasu T. 5-Hydroxytryptamine-induced outward currents mediated via 5-HT(1A) receptors in neurons of the rat dorsolateral septal nucleus. Neurosci Res 2000; 37:307-14. [PMID: 10958979 DOI: 10.1016/s0168-0102(00)00133-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of 5-hydroxytryptamine (5-HT) on neurons of the rat dorsolateral septal nucleus (DLSN) were examined by intracellular and whole-cell patch-clamp recording techniques. An outward current was induced by 5-HT (1-100 microM) in a concentration-dependent manner. The EC(50) for 5-HT was 4.8 microM. Also, 8-OH-DPAT (10-100 microM) produced the outward current an EC(50) of 17 microM. Amplitudes of the outward currents produced by 5-HT (100 microM) and 8-OH-DPAT (100 microM) were 117+/-4 (n=6) and 58+/-8 pA (n=6), respectively. Fluvoxamine (200 nM), a specific serotonin re-uptake inhibitor, enhanced the 5-HT (1 microM)-induced outward current: the EC(50) for 5-HT was 0.5 microM in the presence of fluvoxamine (200 nM). L-694247 (100 microM) and CP 93129 (100 microM) also produced outward currents with amplitudes of 33+/-3 (n=4) and 18+/-5 pA (n=4), respectively in DLSN neurons. DOI (100 microM) and RS 67333 (100 microM) did not produce outward currents. NAN-190 shifted, in a parallel manner, the concentration-response relationship of 5-HT to the right. The Lineweaver-Burk plot of the concentration-response curve showed that NAN-190 depressed the 5-HT-induced current in a competitive manner. The current-voltage relationship indicates that the 5-HT-induced current reversed polarity at a potential close to the equilibrium potential of K(+). Ba(2+) (100 microM-1 mM) partially depressed the outward current produced by 5-HT. These results suggest that 5-HT induces multiple K(+) currents via 5-HT(1A) receptors in DLSN neurons.
Collapse
Affiliation(s)
- K Yamada
- Department of Physiology, Kurume University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
307
|
Alberi S, Boeijinga PH, Raggenbass M, Boddeke HW. Involvement of calmodulin-dependent protein kinase II in carbachol-induced rhythmic activity in the hippocampus of the rat. Brain Res 2000; 872:11-9. [PMID: 10924670 DOI: 10.1016/s0006-8993(00)02331-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of calcium and protein kinases in rhythmic activity induced by muscarinic receptor activation in the CA1 area in rat hippocampal slices was investigated. Extracellular recording showed that carbachol (20 microM) induced synchronized field potential activity with a dominant frequency of 7.39+/-0.68 Hz. Pretreatment with the membrane permeable Ca(2+) chelator BAPTA-AM (50 microM) or with thapsigargin (1 microM), a compound which depletes intracellular calcium stores, reduced the dominant power of carbachol-induced theta-like activity by 83% and 78%, respectively. Inhibition of calmodulin-dependent protein kinase II (CaMKII) by the cell permeable inhibitor KN-93 (10 microM) reduced the power of carbachol-induced theta-like activity by 80%. In contrast the protein kinase C (PKC) inhibitor calphostin C did not significantly (P>0.05) affect the effect of carbachol. Whole-cell recording indicated that KN-93 also blocked carbachol-induced suppression of slow I(AHP) and strongly inhibited the carbachol-induced plateau potential. Our data suggest that activation of CaMKII by carbachol is crucial for local theta-like activity in the CA1 area of the rat hippocampus in vitro. Furthermore, involvement of CaMKII in carbachol-induced suppression of the slow I(AHP) and the induction of plateau potentials could play a role in the induction of theta-like rhythmic activity by carbachol.
Collapse
Affiliation(s)
- S Alberi
- Novartis Pharma Ltd., 4002 CH, Basel, Switzerland
| | | | | | | |
Collapse
|
308
|
Dammerman RS, Noctor SC, Kriegstein AR. Extrinsic GABAergic innervation of developing neocortical layer 1 in organotypic slice co-cultures. J Comp Neurol 2000; 423:112-20. [PMID: 10861540 DOI: 10.1002/1096-9861(20000717)423:1<112::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Afferents from the zona incerta (ZI) of the ventral thalamus contribute to the dense, transient gamma-aminobutyric acid (GABA)ergic fiber plexus in layer 1 of the developing rodent somatosensory cortex. Incertocortical axons contact the distal apical dendrites of postmigratory cortical pyramidal cells. Although recent work has shown that these GABAergic incertocortical fibers are likely to provide widespread fast synaptic excitation of pyramidal cells in layers 2-6 during peak periods of cortical synaptogenesis, little is known about the mechanisms by which these axons project to the neocortex and are confined to layer 1. Here we characterize organotypic slice co-cultures in which a region of embryonic diencephalon containing the ZI is maintained adjacent to a region of embryonic somatosensory cortex. Diencephalic explants from transgenic mice expressing enhanced green fluorescent protein (EGFP) enabled direct visualization of diencephalocortical connections. Isochronic co-cultures exhibited diencephalocortical fiber ingrowth immunoreactive for both GABA and the presynaptic vesicle-associated protein synaptophysin that was restricted to neocortical layer 1. This pattern of lamina-specific diencephalocortical ingrowth occurred irrespective of placement of the afferent explant, and persisted in the absence of action potential activity and GABA(A) receptor activation. Heterochronic co-cultures containing older cortex demonstrated that the cortical explants remain permissive for lamina-specific ingrowth through the first postnatal week. Organotypic slice cocultures provide a system in which to study the mechanisms underlying the layer 1-specific ingrowth of extrinsic GABAergic inputs to the perinatal neocortex.
Collapse
Affiliation(s)
- R S Dammerman
- Department of Neurology and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
309
|
Izawa S, Inoue K, Adachi A, Funahashi M. Activity of neurons in the nucleus of the solitary tract of rats: effect of osmotic and mechanical stimuli. Neurosci Lett 2000; 288:33-6. [PMID: 10869809 DOI: 10.1016/s0304-3940(00)01193-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patch-clamp recordings were used to examine the osmosensitivity and mechanosensitivity of neurons in the caudal part of the nucleus tractus solitarius in coronal slices from rat brain. Firing rates and membrane potentials were measured as slices were exposed to perfusate which varied in its osmolality and/or sodium concentration. In all cells tested, the responses to change in the sodium concentration of perfusate were duplicated by osmolality changes of sucrose or mannitol. When nucleus tractus solitarius cells were tested with changes in pressure applied via the pipette, responses to positive or negative pressure paralleled their responses to osmotic stimulation. We suggest that a mechanosensitive receptor exists on osmosensitive neurons within the nucleus tractus solitarius, and this receptor may be responsible for changes in the firing rate and membrane potential which occur in the nucleus tractus solitarius neurons.
Collapse
Affiliation(s)
- S Izawa
- Department of Operative Dentistry, Okayama University Dental School, Japan
| | | | | | | |
Collapse
|
310
|
Dammerman RS, Flint AC, Noctor S, Kriegstein AR. An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 2000; 84:428-34. [PMID: 10899216 DOI: 10.1152/jn.2000.84.1.428] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 1 of the developing rodent somatosensory cortex contains a dense, transient GABAergic fiber plexus. Axons arising from the zona incerta (ZI) of the ventral thalamus contribute to this plexus, as do axons of intrinsic GABAergic cells of layer 1. The function of this early-appearing fiber plexus is not known, but these fibers are positioned to contact the apical dendrites of most postmigratory neurons. Here we show that electrical stimulation of layer 1 results in a GABA(A)-mediated postsynaptic current (PSC) in pyramidal neurons. Gramicidin perforated patch recording demonstrates that the GABAergic layer 1 synapse is excitatory and can trigger action potentials in cortical neurons. In contrast to electrical stimulation, activation of intrinsic layer 1 neurons with a glutamate agonist fails to produce PSCs in pyramidal cells. In addition, responses can be evoked by stimulation of layer 1 at relatively large distances from the recording site. These findings are consistent with a contribution of the widely projecting incertocortical pathway, the only described GABAergic projection to neonatal cortex. Recording of identified neonatal incertocortical neurons reveals a population of active cells that exhibit high frequencies of spontaneous action potentials and are capable of robustly activating neonatal cortical neurons. Because the fiber plexus is confined to layer 1, this pathway provides a spatially restricted excitatory GABAergic innervation of the distal apical dendrites of pyramidal neurons during the peak period of cortical synaptogenesis.
Collapse
Affiliation(s)
- R S Dammerman
- Department of Neurology and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
311
|
Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. J Neurosci 2000. [PMID: 10844019 DOI: 10.1523/jneurosci.20-12-04497.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simultaneous microelectrode recording from two individual synaptically connected neurons enables the direct analysis of synaptic transmission and plasticity at a minimal synaptic connection. We have recorded from pairs of CA3 pyramidal neurons in organotypic hippocampal slices to examine the properties of long-term potentiation (LTP) at such minimal connections. LTP in minimal connections was found to be identical to the NMDA-dependent LTP expressed by CA3-CA1 synapses, demonstrating this system provides a good model for the study of the mechanisms of LTP expression. The LTP at minimal synaptic connections does not behave as a simple increase in transmitter release probability, because the amplitude of unitary EPSCs can increase several-fold, unlike what is observed when release probability is increased by raising extracellular calcium. Taking advantage of the relatively short axon connecting neighboring CA3 neurons, we found it feasible to introduce pharmacological agents to the interior of presynaptic terminals by injection into the presynaptic soma and have used this technique to investigate presynaptic effects on basal transmission and LTP. Presynaptic injection of nicotinamide reduced basal transmission, but LTP in these pairs was essentially normal. In contrast, presynaptic injection of H-7 significantly depressed LTP but not basal transmission, indicating a specific role of presynaptic protein kinases in LTP. These results demonstrate that pharmacological agents can be directly introduced into the presynaptic cell and that a purely presynaptic perturbation can alter this plasticity.
Collapse
|
312
|
Abstract
Computational modeling provides a means for linking the physiological and anatomical characteristics of entorhinal cortex at a cellular level to the functional role of this region in behavior. We have developed detailed simulations of entorhinal cortical neurons and networks, with an emphasis on the role of acetylcholine in entorhinal cortical function. Computational modeling suggests that when acetylcholine levels are high, this sets appropriate dynamics for the storage of stimuli during performance of delayed matching tasks. In particular, acetylcholine activates a calcium-sensitive nonspecific cation current which provides an intrinsic cellular mechanism which could maintain neuronal activity across a delay period. Simulations demonstrate how this phenomena could underlie entorhinal cortex delay activity as described in previous unit recordings. Acetylcholine also induces theta rhythm oscillations which may be appropriate for timing of afferent input to be encoded in hippocampus and for extraction of individual stored sequences from multiple stored sequences. Lower levels of acetylcholine may allow sharp wave dynamics which can reactivate associations encoded in hippocampus and drive the formation of additional traces in hippocampus and entorhinal cortex during consolidation.
Collapse
Affiliation(s)
- M E Hasselmo
- Department of Psychology, Boston University, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
313
|
Anderson J, Lampl I, Reichova I, Carandini M, Ferster D. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nat Neurosci 2000; 3:617-21. [PMID: 10816319 DOI: 10.1038/75797] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane potentials of cortical neurons fluctuate between a hyperpolarized ('down') state and a depolarized ('up') state which may be separated by up to 30 mV, reflecting rapid but infrequent transitions between two patterns of synaptic input. Here we show that such fluctuations may contribute to representation of visual stimuli by cortical cells. In complex cells of anesthetized cats, where such fluctuations are most prominent, prolonged visual stimulation increased the probability of the up state. This probability increase was related to stimulus strength: its dependence on stimulus orientation and contrast matched each cell's averaged membrane potential. Thus large fluctuations in membrane potential are not simply noise on which visual responses are superimposed, but may provide a substrate for encoding sensory information.
Collapse
Affiliation(s)
- J Anderson
- Department of Neurobiology and Physiology, Northwestern University, 2153 North Campus Drive, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
314
|
Abstract
Hypoxia-induced suppression of NMDA receptors (NMDARs) in western painted turtle (Chrysemys picta) cortical neurons may be critical for surviving months of anoxic dormancy. We report that NMDARs are silenced by at least three different mechanisms operating at different times during anoxia. In pyramidal neurons from cerebrocortex, 1-8 min anoxia suppressed NMDAR activity (Ca(2+) influx and open probability) by 50-60%. This rapid decrease in receptor activity was controlled by activation of phosphatase 1 or 2A but was not associated with an increase in [Ca(2+)](i). However, during 2 hr of anoxia, [Ca(2+)](i) in cerebrocortical neurons increased by 35%, and suppression of NMDARs was predicted by the increase of [Ca(2+)](i) and controlled by calmodulin. An additional mechanism of NMDAR silencing, reversible removal of receptors from the cell membrane, was found in cerebrocortex of turtles remaining anoxic at 3 degrees C for 3-21 d. When suppression of NMDARs was prevented with phosphatase inhibitors, tolerance of anoxia was lost. Silencing of NMDARs is thus critical to the remarkable ability of C. picta to tolerate life without oxygen.
Collapse
|
315
|
Yip S, Sastry BR. Effects of hemoglobin and its breakdown products on synaptic transmission in rat hippocampal CA1 neurons. Brain Res 2000; 864:1-12. [PMID: 10793181 DOI: 10.1016/s0006-8993(00)02067-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
During head injuries and hemorrhagic stroke, blood is released into the extravascular space. The pooled erythrocytes get lysed and hemoglobin is released into the intracranial cavities. Therefore, neurons may be exposed to hemoglobin and/or its breakdown products, hemin and iron, for long periods of time. In this study, the electrophysiological actions of these agents on synaptic transmission in rat hippocampal CA1 pyramidal neurons were studied using extracellular field- and whole cell patch-recordings. Previously our laboratory reported that commercially available hemoglobin produced a dose dependent suppression of synaptic transmission in hippocampal CA1 neurons. In the present study, however, we found that this depression was caused by impurities present in the hemoglobin samples. Commercially available hemoglobin and methemoglobin did not have a significant effect on synaptic transmission. Although, reduced-hemoglobin prepared using a method described by Martin et al. [J. Pharm. Exp. Ther. 232 (1985) 708], produced a significant depression of synaptic transients, these effects were due to contamination with bisulfite that was present due to the reducing procedure. Therefore, the technique of Martin et al. was inadequate in removing the reducing agents or their breakdown products. A number of studies in literature used commercial samples of hemoglobin or reduced hemoglobin prepared using the method of Martin et al. Our observations indicate that it would be important to determine if contaminants, rather than hemoglobin, are responsible for the observed effects in these studies. Unlike hemoglobin, its breakdown products, ferrous chloride and hemin, produced an irreversible and significant depression of field excitatory postsynaptic potentials. The relevance of these effects in neurological complications that follow head injuries and hemorrhagic stroke awaits further investigation.
Collapse
Affiliation(s)
- S Yip
- Neuroscience Research Laboratory, Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
316
|
Robinson DW, Cameron WE. Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording. J Neurophysiol 2000; 83:3160-4. [PMID: 10805711 DOI: 10.1152/jn.2000.83.5.3160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of cellular dialysis associated with whole-cell recording was studied in 24 developing hypoglossal motoneurons in a rat brainstem slice preparation. In all cases, establishing whole-cell continuity with the electrode solution resulted in an increase in the input resistance measured in current clamp. The mean magnitude of this increase was 39.7% and the time course of the maximum effect was quite variable. There was no correlation found between the time to maximum effect and the magnitude of the increase in resistance. These data indicate that the passive membrane properties are not constant during whole-cell recording in mammalian motoneurons.
Collapse
Affiliation(s)
- D W Robinson
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
317
|
Krause M, Pedarzani P. A protein phosphatase is involved in the cholinergic suppression of the Ca(2+)-activated K(+) current sI(AHP) in hippocampal pyramidal neurons. Neuropharmacology 2000; 39:1274-83. [PMID: 10760369 DOI: 10.1016/s0028-3908(99)00227-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The slow calcium-activated potassium current sI(AHP) underlies spike-frequency adaptation and has a substantial impact on the excitability of hippocampal CA1 pyramidal neurons. Among other neuromodulatory substances, sI(AHP) is modulated by acetylcholine acting via muscarinic receptors. The second-messenger systems mediating the suppression of sI(AHP) by muscarinic agonists are largely unknown. Both protein kinase C and A do not seem to be involved, whereas calcium calmodulin kinase II has been shown to take part in the muscarinic action on sI(AHP). We re-examined the mechanism of action of muscarinic agonists on sI(AHP) combining whole-cell recordings with the use of specific inhibitors or activators of putative constituents of the muscarinic pathway. Our results suggest that activation of muscarinic receptors reduces sI(AHP) in a G-protein-mediated and phospholipase C-independent manner. Furthermore, we obtained evidence for the involvement of the cGMP-cGK pathway and of a protein phosphatase in the cholinergic suppression of sI(AHP), whereas release of Ca(2+) from IP(3)-sensitive stores seems to be relevant neither for maintenance nor for modulation of sI(AHP).
Collapse
Affiliation(s)
- M Krause
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, D-37075, Göttingen, Germany
| | | |
Collapse
|
318
|
Doherty J, Gale K, Eagles DA. Evoked epileptiform discharges in the rat anterior piriform cortex: generation and local propagation. Brain Res 2000; 861:77-87. [PMID: 10751567 DOI: 10.1016/s0006-8993(00)02000-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to identify cellular and synaptic properties of neurons in a small region within the anterior piriform cortex (aPC), termed the area tempestas (AT), responsible for triggering forebrain seizures in rats. Using a brain slice preparation, we performed whole-cell patch recordings from neurons in the regions overlapping the functionally defined AT. Local electrical stimulation activated synaptic inputs to neurons in these regions, collectively termed the deep aPC (daPC). Synaptic inputs were blocked by selective ionotropic glutamate receptor antagonists. Excitatory bursts were evoked from 59% of daPC neurons as the stimulus intensity was raised above a precise threshold. Secondary bursts (6-15 Hz) occurred in 34% of daPC neurons. Evoked bursts were synaptically driven, as they were blocked by TTX (1 microM) or 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX, 1 microM), but not by inclusion of cesium and N-(2, 6-dimethylphenylcarbamoylmethyl) triethylammonium (QX-314) in the internal patch solution. Neither augmentation of excitatory nor suppression of inhibitory transmission were required to evoke bursts from daPC neurons. However, bicuculline (20 microM) lowered the threshold intensity for evoking discharges and increased the incidence and duration of evoked bursts, indicating active inhibitory control of daPC neurons. Stimulation in the daPC evoked epileptiform field potentials from layer II of the adjacent PC and bursts from layer II pyramidal neurons. This work demonstrates that synaptically dependent excitatory burst discharges can be evoked from daPC neurons without altering the balance between synaptic excitation and inhibition. Stimuli that trigger bursts in daPC neurons also generate epileptiform activity in layer II pyramidal cells, indicating that propagation of excitatory activity triggered from the daPC to the pyramidal neurons of the aPC can contribute to the initiation of seizures induced by disinhibition of the AT in vivo.
Collapse
Affiliation(s)
- J Doherty
- Department of Biology, Georgetown University, Washington, DC 20057-1029, USA
| | | | | |
Collapse
|
319
|
Abstract
Redox-active compounds modulate NMDA receptors (NMDARs) such that reduction of NMDAR redox sites increases, and oxidation decreases, NMDAR-mediated activity. Because NMDARs contribute to the pathophysiology of seizures, redox-active compounds also may modulate seizure activity. We report that the oxidant 5, 5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and the redox cofactor pyrroloquinoline quinone (PQQ) suppressed low Mg(2+)-induced hippocampal epileptiform activity in vitro. Additionally, in slices exposed to 4-7 microM bicuculline, DTNB and PQQ reversed the potentiation of evoked epileptiform responses by the reductants dithiothreitol and Tris(2-carboxyethyl)phosphine (TCEP). NMDA-evoked whole-cell currents in CA1 neurons in slices were increased by TCEP and subsequently decreased by DTNB or PQQ at the same concentrations that modulated epileptiform activity. However, DTNB and PQQ had little effect on baseline NMDA-evoked currents in control medium, and PQQ did not alter NMDAR-dependent long-term potentiation. In contrast, in slices returned to control medium after low Mg(2+)-induced ictal activity, DTNB significantly inhibited NMDAR-mediated currents, indicating endogenous reduction of NMDAR redox sites under this epileptogenic condition. These data suggested that PQQ and DTNB suppressed spontaneous ictal activity by reversing pathological NMDAR redox potentiation without inhibiting physiological NMDAR function. In vivo, PQQ decreased the duration of chemoconvulsant-induced seizures in rat pups with no effect on baseline behavior. Our results reveal endogenous potentiation of NMDAR function via mass reduction of redox sites as a novel mechanism that may enhance epileptogenesis and facilitate the transition to status epilepticus. The results further suggest that redox-active compounds may have therapeutic use by reversing NMDAR-mediated pathophysiology without blocking physiological NMDAR function.
Collapse
|
320
|
Ito I, Kawakami R, Sakimura K, Mishina M, Sugiyama H. Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology 2000; 39:943-51. [PMID: 10727704 DOI: 10.1016/s0028-3908(99)00217-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal CA3 pyramidal neurons receive synaptic inputs from commissural and associational fibers on both apical and basal dendrites. NMDA receptors at these synapses were examined in hippocampal slices of wild-type mice and GluRvarepsilon1 (NR2A) subunit knockout mice. Electrical stimulations at the CA3 stratum radiatum or stratum oriens activate both commissural and associational (C/A) synapses, whereas stimulations at ventral fimbria mainly activate commissural synapses. Ro 25-6981 and ifenprodil, the GluRepsilon2 (NR2B) subunit-selective NMDA receptor antagonists, suppressed NMDA receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) at the commissural-CA3 synapses on basal dendrites more strongly than those at the C/A-CA3 synapses on apical or basal dendrites. However, glutamate-evoked NMDA receptor currents were reduced by the GluRepsilon1 subunit knockout to a similar extent at both apical and basal dendrites. The GluRepsilon1 subunit knockout also reduced NMDA EPSCs at the C/A-CA3 synapses on basal dendrites, but did not affect NMDA EPSCs at the commissural-CA3 synapses on basal dendrites. These results confirmed our previous findings that NMDA receptors operating at different synapses in CA3 pyramidal cells have different GluRepsilon subunit compositions, and further show that the GluRepsilon subunit composition may be regulated depending on the types of synaptic inputs, even within a single CA3 pyramidal neuron.
Collapse
Affiliation(s)
- I Ito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
321
|
Haug T, Storm JF. Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 2000; 83:2071-9. [PMID: 10758117 DOI: 10.1152/jn.2000.83.4.2071] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied modulation of the slow Ca(2+)-activated K(+) current (I(sAHP)) in CA1 hippocampal pyramidal neurons by three peptide transmitters: corticotropin releasing factor (CRF, also called corticotropin releasing hormone, CRH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). These peptides are known to be expressed in interneurons. Using whole cell voltage clamp in hippocampal slices from young rats, in the presence of tetrodotoxin (TTX, 0.5 microM) and tetraethylammonium (TEA, 5 mM), I(sAHP) was measured after a brief depolarizing voltage step eliciting inward Ca(2+) current. Each of the peptides CRF (100-250 nM), VIP (400 nM), and CGRP (1 microM) significantly reduced the amplitude of I(sAHP). Thus the I(sAHP) amplitude was reduced to 22% by 100 nM CRF, to 17% by 250 nM CRF, to 22% by 400 nM VIP, and to 40% by 1 microM CGRP. We found no consistent concomitant changes in the Ca(2+) current or in the time course of I(sAHP) for any of the three peptides, suggesting that the suppression of I(sAHP) was not secondary to a general suppression of Ca(2+) channel activity. Because each of these peptides is known to activate the cyclic AMP (cAMP) cascade in various cell types, and I(sAHP) is known to be suppressed by cAMP via the cAMP-dependent protein kinase (PKA), we tested whether the effects on I(sAHP) by CRF, VIP, and CGRP are mediated by PKA. Intracellular application of the PKA-inhibitor Rp-cAMPS significantly reduced the suppression of I(sAHP) by CRF, VIP, and CGRP. Thus with 1 mM Rp-cAMPS in the recording pipette, the average suppression of I(sAHP) was reduced from 78 to 26% for 100 nM CRF, from 83 to 32% for 250 nM CRF, from 78 to 30% for 400 nM VIP, and from 60 to 7% for 1 microM CGRP. We conclude that CRF, VIP, and CGRP suppress the slow Ca(2+)-activated K(+) current, I(sAHP), in CA1 hippocampal pyramidal neurons by activating the cAMP-dependent protein kinase, PKA. Together with the monoamine transmitters norepinephrine, serotonin, histamine, and dopamine, these peptide transmitters all converge on the cAMP cascade modulating I(sAHP).
Collapse
Affiliation(s)
- T Haug
- Institute of Physiology and Neurophysiology, University of Oslo, N-0317 Oslo, Norway
| | | |
Collapse
|
322
|
Molnár P, Nadler JV. gamma-Aminobutyrate, alpha-carboxy-2-nitrobenzyl ester selectively blocks inhibitory synaptic transmission in rat dentate gyrus. Eur J Pharmacol 2000; 391:255-62. [PMID: 10729366 DOI: 10.1016/s0014-2999(00)00106-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
gamma-Aminobutyrate, alpha-carboxy-2-nitrobenzyl ester (cGABA) is a stable photoactivatable probe used to study gamma-aminobutyrate (GABA) receptors. GABA is released from this compound when it is exposed to ultraviolet light, but little is known about the electrophysiological effects of the compound itself. Whole cell patch clamp recordings on rat hippocampal slices demonstrated that cGABA blocked polysynaptic inhibitory postsynaptic currents (IPSCs) evoked in dentate granule cells by antidromic stimulation of the mossy fibers. It also reduced monosynaptically evoked IPSCs with an IC(50) of 28 microM. In contrast, cGABA had no effect on excitatory postsynaptic currents (EPSCs) evoked by perforant path stimulation. The effect of cGABA was not mediated by depression of GABA release through activation of presynaptic GABA(B) receptors. cGABA inhibited muscimol-evoked currents by only 15% at a concentration of 40 microM. At this same concentration, it reduced the mean frequency of miniature inhibitory postsynaptic potentials by 71%, their mean peak amplitude by 44%, their mean decay time constant by 26% and the mean charge transfer per event by 52%. These effects may be explained by a phenothiazine-like modification of GABA(A) receptor kinetics and/or a selective block of somatic GABA synapses.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
323
|
Parkis MA, Robinson DM, Funk GD. A method for activating neurons using endogenous synaptic waveforms. J Neurosci Methods 2000; 96:77-85. [PMID: 10704674 DOI: 10.1016/s0165-0270(99)00186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal input-output functions are traditionally studied using rectangular or ramp waveforms of injected current. These waveforms are easy to produce and responses to them easy to quantify; thus they have been central to our understanding of the roles that membrane properties play in controlling repetitive firing. However, since smooth rectangular step and ramp waveforms lack the dynamic features of endogenous synaptic input, their use has the potential to underemphasize the importance of input patterns in controlling physiological patterns of neuronal output. To activate neurons with current waveforms that replicate natural synaptic input, we developed a method for acquiring, digitally manipulating and reinjecting endogenous synaptic currents. We demonstrate, by applying this technique to phrenic motoneurons (PMNs) in rhythmically-active in vitro preparations from neonatal rats, that stimulation of neurons with endogenous current waveforms produces responses that mimic those produced by spontaneous synaptic inputs. Acquired waveforms can be reinjected repeatedly to produce consistent responses, and can also be amplified or filtered prior to reinjection to yield a range of information including standard descriptors of firing behavior such as frequency/current plots. This technique provides a valuable tool for analysing characteristics of the synaptic waveform important in generating neuronal output and how synaptic factors interact with membrane properties to control repetitive firing.
Collapse
Affiliation(s)
- M A Parkis
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
324
|
Sawatari A, Callaway EM. Diversity and cell type specificity of local excitatory connections to neurons in layer 3B of monkey primary visual cortex. Neuron 2000; 25:459-71. [PMID: 10719899 DOI: 10.1016/s0896-6273(00)80908-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the primary visual cortex of macaque monkeys, laminar and columnar axonal specificity are correlated with functional differences between locations. We describe evidence that embedded within this anatomical framework is finer specificity of functional connections. Photostimulation-based mapping of functional input to 31 layer 3B neurons revealed that input sources to individual cells were highly diverse. Although some input differences were correlated with neuronal anatomy, no 2 neurons received excitatory input from the same cortical layers. Thus, input diversity reveals far more cell types than does anatomical diversity. This implies relatively little functional redundancy; despite trends related to laminar or columnar position, pools of neurons contributing uniquely to visual processing are likely relatively small. These results also imply that similarities in the anatomy of circuits in different cortical areas or species may not indicate similar functional connectivity.
Collapse
Affiliation(s)
- A Sawatari
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
325
|
Hermes ML, Ruijter JM, Klop A, Buijs RM, Renaud LP. Vasopressin increases GABAergic inhibition of rat hypothalamic paraventricular nucleus neurons in vitro. J Neurophysiol 2000; 83:705-11. [PMID: 10669486 DOI: 10.1152/jn.2000.83.2.705] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This investigation used an in vitro hypothalamic brain slice preparation and whole cell and perforated-patch recording to examine the response of magnocellular neurons in hypothalamic paraventricular nucleus (PVN) to bath applications of vasopressin (VP; 100-500 nM). In 22/38 cells, responses were characterized by an increase in the frequency of bicuculline-sensitive inhibitory postsynaptic potentials or currents with no detectable influence on excitatory postsynaptic events. Perforated-patch recordings confirmed that VP did not have an effect on intrinsic membrane properties of magnocellular PVN neurons (n = 17). Analysis of intrinsic membrane properties obtained with perforated-patch recording (n = 23) demonstrated that all of nine VP-sensitive neurons showed a rebound depolarization after transient membrane hyperpolarization from rest. By contrast, 12/14 nonresponding neurons displayed a delayed return to resting membrane potentials. Recordings of reversed inhibitory postsynaptic currents with chloride-loaded electrodes showed that responses to VP persisted in media containing glutamate receptor antagonists but were abolished in the presence of tetrodotoxin. In addition, responses were mimicked by vasotocin [Phe(2), Orn(8)], a selective V(1a) receptor agonist, and blocked by [beta-Mercapto-beta, beta-cyclopentamethylenepropionyl(1),O-Me-Tyr(2), Arg(8)]-VP (Manning compound), a V(1a)/OT receptor antagonist. Neither [deamino-Cys(1),Val(4),D-Arg(8)]-VP, a selective V(2) receptor agonist, nor oxytocin were effective. Collectively, the results imply that VP acts at V(1a) receptors to excite GABAergic neurons that are presynaptic to a population of magnocellular PVN neurons the identity of which features a unique rebound depolarization. Endogenous sources of VP may be VP-synthesizing neurons in suprachiasmatic nucleus, known to project toward the perinuclear regions of PVN, and/or the magnocellular neurons within PVN.
Collapse
Affiliation(s)
- M L Hermes
- Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
326
|
Abstract
We have investigated the relationship between membrane potential and firing rate in cat visual cortex and found that the spike threshold contributes substantially to the sharpness of orientation tuning. The half-width at half-height of the tuning of the spike responses was 23 +/- 8 degrees, compared with 38 +/- 15 degrees for the membrane potential responses. Direction selectivity was also greater in spike responses (direction index, 0.61 +/- 0.35) than in membrane potential responses (0.28 +/- 0.21). Threshold also increased the distinction between simple and complex cells, which is commonly based on the linearity of the spike responses to drifting sinusoidal gratings. In many simple cells, such stimuli evoked substantial elevations in the mean potential, which are nonlinear. Being subthreshold, these elevations would be hard to detect in the firing rate responses. Moreover, just as simple cells displayed various degrees of nonlinearity, complex cells displayed various degrees of linearity. We fitted the firing rates with a classic rectification model in which firing rate is zero at potentials below a threshold and grows linearly with the potential above threshold. When the model was applied to a low-pass-filtered version of the membrane potential (with spikes removed), the estimated values of threshold (-54.4 +/- 1.4 mV) and linear gain (7.2 +/- 0.6 spikes. sec(-1). mV(-1)) were similar across the population. The predicted firing rates matched the observed firing rates well and accounted for the sharpening of orientation tuning of the spike responses relative to that of the membrane potential. As it was for stimulus orientation, threshold was also independent of stimulus contrast. The rectification model accounted for the dependence of spike responses on contrast and, because of a stimulus-induced tonic hyperpolarization, for the response adaptation induced by prolonged stimulation. Because gain and threshold are unaffected by visual stimulation and by adaptation, we suggest that they are constant under all conditions.
Collapse
|
327
|
Lamsa K, Palva JM, Ruusuvuori E, Kaila K, Taira T. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J Neurophysiol 2000; 83:359-66. [PMID: 10634879 DOI: 10.1152/jn.2000.83.1.359] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at >20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population.
Collapse
Affiliation(s)
- K Lamsa
- Department of Biosciences, Division of Animal Physiology, University of Helsinki, 00014, Finland
| | | | | | | | | |
Collapse
|
328
|
Grunze H, Langosch J, von Loewenich C, Walden J. Modulation of neural cell membrane conductance by the herbal anxiolytic and antiepileptic drug aswal. Neuropsychobiology 2000; 42 Suppl 1:28-32. [PMID: 11093068 DOI: 10.1159/000054849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To evaluate the effects of aswal on ionic fluxes and neuronal excitation, we performed extracellular and whole cell patch clamp recordings on CA1 pyramidal neurons of guinea pigs and Long-Evans rats. Aswal (100- 250 mg/l) was administered systemically, and its effects on the rate of synchronized extracellular field potentials (EFP), membrane parameters, action potentials and postsynaptic potentials were recorded. The extracellular results obtained are consistent with calcium antagonistic properties. Intracellular recordings suggest that a direct sodium antagonistic effect as seen in many antiepileptic drugs plays no significant role. Further effects on ligand gated ion channels are discussed controversially. In summary, the cellular action of aswal appears heterogeneous with calcium antagonism playing a prominent role in counteracting excitation which may be a common feature in epilepsy and different psychiatric conditions as mood and anxiety disorder.
Collapse
Affiliation(s)
- H Grunze
- Department of Psychiatry, LMU University Hospital, Munich, Germany.
| | | | | | | |
Collapse
|
329
|
Ptak K, Konrad M, Di Pasquale E, Tell F, Hilaire G, Monteau R. Cellular and synaptic effect of substance P on neonatal phrenic motoneurons. Eur J Neurosci 2000; 12:126-38. [PMID: 10651867 DOI: 10.1046/j.1460-9568.2000.00886.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments were carried out on the in vitro brainstem-spinal cord preparation of the newborn rat to analyse the effects of substance P (SP) on phrenic motoneuron (PMN) activity. In current-clamp mode, SP significantly depolarized PMNs, increased their input resistance, decreased the rheobase current and shifted the firing frequency-intensity relationships leftwards, but did not affect spike frequency adaptation or single spike configuration. The neurokinin receptor agonist NK1 had SP-mimetic effects, whereas the NK3 and NK2 receptor agonists were less effective and ineffective, respectively. In a tetrodotoxin-containing aCSF, only SP or the NK1 receptor agonist were still active. No depolarization was observed when the NK1 receptor agonist was applied in the presence of muscarine. In voltage-clamp mode, SP or the NK1 receptor agonist produced an inward current (ISP) which was not significantly reduced by extracellular application of tetraethylammonium, Co2+, 4-aminopyridine or Cs+. In aCSF containing tetrodotoxin, Co2+ and Cs+, ISP was blocked by muscarine. No PMN displayed any M-type potassium current but only a current showing no voltage sensitivity over the range -100 to 0 mV, reversing near the expected EK +, hence consistent with a leak current. SP application to the spinal cord only (using a partitioned chamber) significantly increased the phrenic activity. Pretreatment with the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) decreased the C4 discharge duration and blocked the effect of SP, thus exhibiting an NMDA potentiation by SP. In conclusion, SP modulates postsynaptically the response of phrenic motoneurons to the inspiratory drive through the reduction of a leak conductance and the potentiation of the NMDA component of the synaptic input.
Collapse
Affiliation(s)
- K Ptak
- ESA CNRS 6034, Faculté des Sciences de St Jérôme, 13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
330
|
Grover LM, Yan C. Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus. J Neurophysiol 1999; 82:2956-69. [PMID: 10601432 DOI: 10.1152/jn.1999.82.6.2956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies implicated metabotropic glutamate receptors (mGluRs) in N-methyl-D-aspartate (NMDA) receptor-independent long-term potentiation (LTP) in area CA1 of the rat hippocampus. To learn more about the specific roles played by mGluRs in NMDA receptor-independent LTP, we used whole cell recordings to load individual CA1 pyramidal neurons with a G-protein inhibitor [guanosine-5'-O-(2-thiodiphosphate), GDPbetaS]. Although loading postsynaptic CA1 pyramidal neurons with GDPbetaS significantly reduced G-protein dependent postsynaptic potentials, GDPbetaS failed to prevent NMDA receptor- independent LTP, suggesting that postsynaptic G-protein-dependent mGluRs are not required. We also performed a series of extracellular field potential experiments in which we applied group-selective mGluR antagonists. We had previously determined that paired-pulse facilitation (PPF) was decreased during the first 30-45 min of NMDA receptor-independent LTP. To determine if mGluRs might be involved in these PPF changes, we used a twin-pulse stimulation protocol to measure PPF in field potential experiments. NMDA receptor-independent LTP was prevented by a group II mGluR antagonist [(2S)-alpha-ethylglutamic acid] and a group III mGluR antagonist [(RS)-alpha-cyclopropyl-4-phosphonophenylglycine], but was not prevented by other group II and III mGluR antagonists [(RS)-alpha-methylserine-O-phosphate monophenyl ester or (RS)-alpha-methylserine-O-phosphate]. NMDA receptor-independent LTP was not prevented by either of the group I mGluR antagonists we examined, (RS)-1-aminoindan-1,5-dicarboxylic acid and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. The PPF changes which accompany NMDA receptor-independent LTP were not prevented by any of the group-selective mGluR antagonists we examined, even when the LTP itself was blocked. Finally, we found that tetanic stimulation in the presence of group III mGluR antagonists lead to nonspecific potentiation in control (nontetanized) input pathways. Taken together, our results argue against the involvement of postsynaptic group I mGluRs in NMDA receptor-independent LTP. Group II and/or group III mGluRs are required, but the specific details of the roles played by these mGluRs in NMDA receptor-independent LTP are uncertain. Based on the pattern of results we obtained, we suggest that group II mGluRs are required for induction of NMDA receptor-independent LTP, and that group III mGluRs are involved in determining the input specificity of NMDA receptor-independent LTP by suppressing potentiation of nearby, nontetanized synapses.
Collapse
Affiliation(s)
- L M Grover
- Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755-9340, USA
| | | |
Collapse
|
331
|
Dunning DD, Hoover CL, Soltesz I, Smith MA, O'Dowd DK. GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. J Neurophysiol 1999; 82:3286-97. [PMID: 10601460 DOI: 10.1152/jn.1999.82.6.3286] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have described maturational changes in GABAergic inhibitory synaptic transmission in the rodent somatosensory cortex during the early postnatal period. To determine whether alterations in the functional properties of synaptically localized GABA(A) receptors (GABA(A)Rs) contribute to development of inhibitory transmission, we used the whole cell recording technique to examine GABAergic miniature postsynaptic currents (mPSCs) in developing cortical neurons. Neurons harvested from somatosensory cortices of newborn mice showed a progressive, eightfold increase in GABAergic mPSC frequency during the first 4 wk of development in dissociated cell culture. A twofold decrease in the decay time of the GABAergic mPSCs, between 1 and 4 wk, demonstrates a functional change in the properties of GABA(A)Rs mediating synaptic transmission in cortical neurons during development in culture. A similar maturational profile observed in GABAergic mPSC frequency and decay time in cortical neurons developing in vivo (assessed in slices), suggests that these changes in synaptically localized GABA(A)Rs contribute to development of inhibition in the rodent neocortex. Pharmacological and reverse transcription-polymerase chain reaction (RT-PCR) studies were conducted to determine whether changes in subunit expression might contribute to the observed developmental alterations in synaptic GABA(A)Rs. Zolpidem (300 nM), a subunit-selective benzodiazepine agonist with high affinity for alpha1-subunits, caused a reversible slowing of the mPSC decay kinetics in cultured cortical neurons. Development was characterized by an increase in the potency of zolpidem in modulating the mPSC decay, suggesting a maturational increase in percentage of functionally active GABA(A)Rs containing alpha1 subunits. The relative expression of alpha1 versus alpha5 GABA(A)R subunit mRNA in cortical tissue, both in vivo and in vitro, also increased during this same period. Furthermore, single-cell RT-multiplex PCR analysis revealed more rapidly decaying mPSCs in individual neurons in which alpha1 versus alpha5 mRNA was amplified. Together these data suggest that changes in alpha-subunit composition of GABA(A)Rs contribute to the maturation of GABAergic mPSCs mediating inhibition in developing cortical neurons.
Collapse
Affiliation(s)
- D D Dunning
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | | | | | | | |
Collapse
|
332
|
Liu QS, Han S, Jia YS, Ju G. Selective modulation of excitatory transmission by mu-opioid receptor activation in rat supraoptic neurons. J Neurophysiol 1999; 82:3000-5. [PMID: 10601435 DOI: 10.1152/jn.1999.82.6.3000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid peptides have profound inhibitory effects on the production of oxytocin and vasopressin, but their direct effects on magnocellular neuroendocrine neurons appear to be relatively weak. We tested whether a presynaptic mechanism is involved in this inhibition. The effects of mu-opioid receptor agonist D-Ala(2), N-CH(3)-Phe(4), Gly(5)-ol-enkephalin (DAGO) on excitatory and inhibitory transmission were studied in supraoptic nucleus (SON) neurons from rat hypothalamic slices using whole cell recording. DAGO reduced the amplitude of evoked glutamatergic excitatory postsynaptic currents (EPSCs) in a dose-dependent manner. In the presence of tetrodotoxin (TTX) to block spike activity, DAGO also reduced the frequency of spontaneous miniature EPSCs without altering their amplitude distribution, rising time, or decaying time constant. The above effects of DAGO were reversed by wash out, or by addition of opioid receptor antagonist naloxone or selective mu-antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7)-NH(2) (CTOP). In contrast, DAGO had no significant effect on the evoked and spontaneous miniature GABAergic inhibitory postsynaptic currents (IPSCs) in most SON neurons. A direct membrane hyperpolarization of SON neurons was not detected in the presence of DAGO. These results indicate that mu-opioid receptor activation selectively inhibits excitatory activity in SON neurons via a presynaptic mechanism.
Collapse
Affiliation(s)
- Q S Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xian 710032, People's Republic of China
| | | | | | | |
Collapse
|
333
|
Routbort MJ, Bausch SB, McNamara JO. Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience 1999; 94:755-65. [PMID: 10579566 DOI: 10.1016/s0306-4522(99)00358-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sprouting of the mossy fiber axons of the dentate granule cells is a structural neuronal plasticity found in the mature brain of epileptic humans and experimental animals. Mossy fiber sprouting typically arises in experimental animals after repeated seizures and may contribute to the hyperexcitability of the epileptic brain. Investigation of the molecular triggers and spatial cues involved in mossy fiber sprouting has been hampered by the lack of an optimal in vitro model for studying this rearrangement. For an in vitro model to be feasible, the circuitry and receptors involved in convulsant-induced mossy fiber sprouting would have to be localized near the granule cells, rather than being dependent on long-range brain interconnections. However, it is not known whether this is the case. We report here that that application of the convulsant, kainic acid, to organotypic hippocampal explant cultures induces seizures, neuronal cell death, and subsequent dramatic mossy fiber sprouting with a similar laminar preference and time-course to that seen in intact animals. Prolonged (48 h) but not transient (4 h) kainic acid treatment caused regionally selective neuronal cell death. Cultures treated with kainic acid for a prolonged period displayed a time- and dose-dependent increase in supragranular Timm staining reflective of increased mossy fiber innervation to this area. Direct visualization of mossy fiber axons with neurobiotin-labeling revealed that mossy fibers in kainic acid-treated cultures exhibited a dramatic increase in supragranular axonal branch points and synaptic boutons. The cellular and molecular determinants required for kainic acid-induced cell death and subsequent mossy fiber reorganization thus appear to be intrinsic to the hippocampal slice preparation, and are preserved in culture. Given the ease with which functional inhibitors or pharmacological agents may be utilized in this system, slice cultures may provide a powerful model in which to study the molecular components involved in triggering mossy fiber outgrowth and underlying its laminar specificity. Elucidation of these molecular pathways will likely have both specific utility in clarifying the functional consequences of mossy fiber sprouting, as well as general utility in understanding of synaptic reorganization in the mature central nervous system.
Collapse
Affiliation(s)
- M J Routbort
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
334
|
Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J Neurosci 1999. [PMID: 10531429 DOI: 10.1523/jneurosci.19-21-09252.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-frequency stimulation (HFS) applied to stratum radiatum of a rat hippocampal slice in the presence of ionotropic glutamate receptor antagonists evokes a biphasic GABA(A) receptor-dependent response in CA1 pyramidal neurons, with a brief hyperpolarizing IPSP (hIPSP) followed by a long-lasting depolarization. We show now that it is possible to pharmacologically separate the hIPSP and late depolarization from one another. In neurons intracellularly perfused for 1-2 hr with F(-) as the major anion and no ATP, the hIPSP (and the corresponding current, hIPSC) evoked by HFS was blocked, whereas neither the late depolarization nor its underlying current was attenuated. In contrast, internal perfusion with a high concentration (5 mM) of the impermeant lidocaine derivative QX-314 selectively abolished the depolarizing component of the biphasic response and also strongly reduced depolarizations evoked by extracellular microinjection of K(+). Bath application of quinine (0. 2-0.5 mM) or quinidine (0.1 mM) resulted in a pronounced inhibition of the HFS-induced extracellular K(+) concentration ([K(+)](o)) transient but not of the bicarbonate-dependent alkaline shift in extracellular pH. The attenuation of the [K(+)](o) transient was closely paralleled by a suppression of the HFS-evoked depolarization but not of the hIPSP. Quini(di)ne did not affect depolarizations induced by exogenous K(+) either. These data provide direct pharmacological evidence for the view that the HFS-induced biphasic response of the pyramidal neuron is composed of mechanistically distinct components: a direct GABA(A) receptor-mediated phase, which is followed by a slow, nonsynaptic [K(+)](o)-mediated depolarization. The bicarbonate-dependent, activity-induced [K(+)](o) transient can be blocked by quini(di)ne, whereas its depolarizing action in the pyramidal neuron is inhibited by internal QX-314. The presence of fundamentally distinct components in GABA(A) receptor-mediated actions evoked by HFS calls for further investigations of their functional role(s) in standard experimental maneuvers, such as those used in studies of synaptic plasticity and induction of gamma oscillations.
Collapse
|
335
|
Lenz RA, Alger BE. Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. J Physiol 1999; 521 Pt 1:147-57. [PMID: 10562341 PMCID: PMC2269651 DOI: 10.1111/j.1469-7793.1999.00147.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. We made whole-cell recordings from CA1 pyramidal cells in the rat hippocampal slice preparation to study the calcium (Ca2+) dependence of depolarization-induced suppression of inhibition (DSI). DSI is a retrograde signalling process in which voltage-dependent Ca2+ influx into a pyramidal cell leads to a transient decrease in the release of GABA from interneurons. 2. To investigate the Ca2+ dependence of DSI without altering extracellular divalent cations, we varied the type and amount of Ca2+ chelator (EGTA or BAPTA) in the recording pipette (keeping the chelator : Ca2+ ratio constant). Evoked inhibitory postsynaptic currents (IPSCs) were induced in the presence of antagonists of ionotropic glutamate receptors. DSI was induced by depolarizing voltage steps, lasting from 0.025 to 5 s, to 0 mV. 3. DSI was directly dependent on the duration of the voltage step used to induce it, from threshold up to a maximal value of IPSC suppression, whether EGTA or BAPTA was used, and whether their concentrations were 0.1, 0.5 or 2 mM. For instance, a voltage step lasting 1.37 s produced half-maximal DSI with 2 mM BAPTA, but with 0. 1 mM BAPTA, half-maximal DSI was achieved with a step lasting 0.186 s. Peak DSI was the same in all cases, and DSI was blocked with either 10 mM EGTA or BAPTA in the pipette. Bath application of carbachol could overcome the block of DSI by 10 mM EGTA but not by 10 mM BAPTA. 4. We calculated that a voltage step lasting approximately 100 ms would be necessary to activate half-maximal DSI in the absence of exogenous Ca2+ buffers. 5. Log-log plots of calculated total Ca2+ influx, estimated from time integrals of Ca2+ currents, versus DSI yielded a straight line with a slope of approximately 1, and increasing extracellular [Ca2+] from 2.5 to 5 mM did not change the slope. 6. The time course of decay of DSI was well described by an exponential function with a time constant of approximately 20 s and was not affected by changes in either concentration or type of Ca2+ buffer. 7. The data suggest that, in its Ca2+ dependence, DSI more closely resembles the slow release of neuropeptides and hormones than it does the process of fast release of many neurotransmitters.
Collapse
Affiliation(s)
- R A Lenz
- Department of Pharmacology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
336
|
Lo FS, Guido W, Erzurumlu RS. Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats. J Neurophysiol 1999; 82:2765-75. [PMID: 10561443 PMCID: PMC3677564 DOI: 10.1152/jn.1999.82.5.2765] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rodent brain stem trigeminal complex, select sets of neurons form modular arrays or "barrelettes," that replicate the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. These cells detect the patterned input from the trigeminal axons that innervate the whiskers and sinus hairs. Other brain stem trigeminal cells, interbarrelette neurons, do not form patterns and respond to multiple whiskers. We examined the membrane properties and synaptic responses of morphologically identified barrelette and interbarrelette neurons in the principal sensory nucleus (PrV) of the trigeminal nerve in early postnatal rats shortly after whisker-related patterns are established. Barrelette cell dendritic trees are confined to a single barrelette, whereas the dendrites of interbarrelette cells span wider territories. These two cell types are distinct from smaller GABAergic interneurons. Barrelette cells can be distinguished by a prominent transient A-type K(+) current (I(A)) and higher input resistance. On the other hand, interbarrelette cells display a prominent low-threshold T-type Ca(2+) current (I(T)) and lower input resistance. Both classes of neurons respond differently to electrical stimulation of the trigeminal tract. Barrelette cells show either a monosynaptic excitatory postsynaptic potential (EPSP) followed by a large disynaptic inhibitory postsynaptic potential (IPSP) or just simply a disynaptic IPSP. Increasing stimulus intensity produces little change in EPSP amplitude but leads to a stepwise increase in IPSP amplitude, suggesting that barrelette cells receive more inhibitory input than excitatory input. This pattern of excitation and inhibition indicates that barrelette cells receive both feed-forward and lateral inhibition. Interbarrelette cells show a large monosynaptic EPSP followed by a small disynaptic IPSP. Increasing stimulus intensity leads to a stepwise increase in EPSP amplitude and the appearance of polysynaptic EPSPs, suggesting that interbarrelette cells receive excitatory inputs from multiple sources. Taken together, these results indicate that barrelette and interbarrelette neurons can be identified by their morphological and functional attributes soon after whisker-related pattern formation in the PrV.
Collapse
Affiliation(s)
- F S Lo
- Department of Cell Biology and Anatomy and Neuroscience Center of Excellence, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
337
|
Luhmann HJ, Schubert D, Kötter R, Staiger JF. Cellular morphology and physiology of the perinatal rat cerebral cortex. Dev Neurosci 1999; 21:298-309. [PMID: 10575253 DOI: 10.1159/000017379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular morphology and electrophysiology of the rat neocortex between embryonic day (E) 18 and postnatal day (P) 3 was studied in vitro by extracellular biocytin injections and whole-cell recordings, respectively. Most neurons were characterized by a small number of short-range dendrites and a main axon that was directed towards the white matter. Biocytin injections into the marginal zone and the cortical plate labeled far-reaching connections extending up to 2 mm in horizontal direction, indicating the existence of a dense network of long-range intrinsic projections in the neonatal cortex. Action potentials could be elicited as early as E18 and repetitive firing could first be observed at P0. Electrical stimulation of the immature cortex at various positions elicited polyphasic and long-lasting (up to 1 s) excitatory postsynaptic potentials and currents, which were significantly reduced in amplitude by a selective N-methyl-D-aspartate receptor antagonist. Our data indicate that the perinatal cortex manifests the structural and functional conditions for powerful excitatory interactions, which increase the likelihood for the generation of epileptiform activity during this developmental period.
Collapse
Affiliation(s)
- H J Luhmann
- Institute of Neurophysiology, University of Düsseldorf, Germany.
| | | | | | | |
Collapse
|
338
|
Xiao Y, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res 1999; 846:112-21. [PMID: 10536218 DOI: 10.1016/s0006-8993(99)01997-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The n-3 polyunsaturated fatty acids (PUFAs) reduce cardiac membrane excitability and prevent cardiac arrhythmias in animals and probably in humans. In this study, we assessed the effects of n-3 PUFAs on membrane excitability in mouse hippocampal neurons with both whole-cell current and voltage-clamp methods. Extracellular application of 20 microM eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced the frequency of electrical-evoked action potentials in CA1 neurons of hippocampal slices from 3.8+/-0.7 Hz of control to 2.1+/-0.5 Hz. In addition, EPA significantly hyperpolarized the resting membrane potential and raised the stimulatory threshold of action potentials in CA1 neurons. Another n-3 PUFA, docosahexaenoic acid (DHA, C22:6n-3), had effects on membrane excitability similar to those of EPA. In contrast, EPA ethyl ester, oleic acid (OA, C18:n-9), and stearic acid (SA, C18:0) did not alter the membrane excitability in CA1 neurons. Bath application of pentylenetetrazole (PTZ) or glutamate reduced the stimulatory threshold and increased the frequency of action potentials of hippocampal neurons. EPA restored PTZ- or glutamate-enhanced neuronal excitability to the control level. EPA also suppressed glutamate-activated inward currents. Furthermore, EPA and DHA significantly inhibited the frequency of action potentials without effecting the stimulatory threshold of CA3 neurons. These data demonstrate that n-3 PUFAs modify neuronal membrane excitability under control and drug-stimulated conditions. The sensitivity to these effects of PUFAs varies from neurons of different hippocampal regions.
Collapse
Affiliation(s)
- Y Xiao
- The Charles A. Dana Research Institute and The Harvard-Thorndike Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
339
|
Two-stage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J Neurosci 1999. [PMID: 10516328 DOI: 10.1523/jneurosci.19-20-09107.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most songbirds, vocal learning occurs through two experience-dependent phases, culminating in a reduction of behavioral plasticity called song crystallization. At ends of developmentally plastic periods in other systems, synaptic properties change in a fashion appropriate to limit plasticity. Maturation of glutamatergic synapses often involves a reduction in duration of NMDA receptor (NMDAR)-mediated synaptic responses and a coincident reduction in the contribution of NMDARs to synaptic transmission. We hypothesized that similar changes in the zebra finch song system help limit behavioral plasticity during song development. Nucleus robustus archistriatalis (RA) is a key nucleus in the forebrain song motor pathway and receives glutamatergic input from the motor nucleus HVc. RA also receives glutamatergic input, mediated primarily by NMDARs, from the lateral magnocellular nucleus of the anterior neostriatum, which is part of a circuit essential for learning but not song production. We examined whether synaptic maturation occurs in either input to RA by recording synaptic currents in brain slices prepared from zebra finches of different ages. We find the motor input from HVc to RA uses both AMPA receptors (AMPARs) and NMDARs, and synaptic maturation occurs in two phases: an early reduction in duration of NMDAR-mediated synaptic currents in both inputs, and a later reduction in the NMDAR contribution to synaptic responses in the motor pathway. Although NMDAR kinetics change too early to account for crystallization, the reduction of the relative NMDAR contribution to synaptic transmission could contribute to the onset of crystallization. Thus, synaptic maturation events can be temporally distinct and input-specific and may play different roles in behavioral plasticity.
Collapse
|
340
|
Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A 1999; 96:12911-6. [PMID: 10536022 PMCID: PMC23160 DOI: 10.1073/pnas.96.22.12911] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have studied GABAergic synaptic transmission in retinal ganglion cells and hippocampal pyramidal cells to determine, at a cellular level, what is the effect of the targeted disruption of the gene encoding the synthetic enzyme GAD65 on the synaptic release of gamma-aminobutyric acid (GABA). Neither the size nor the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents (IPSCs) were reduced in retina or hippocampus in GAD65-/- mice. However, the release of GABA during sustained synaptic activation was substantially reduced. In the retina both electrical- and K(+)-induced increases in IPSC frequency were depressed without a change in IPSC amplitude. In the hippocampus the transient increase in the probability of inhibitory transmitter release associated with posttetanic potentiation was absent in the GAD65-/- mice. These results indicate that during and immediately after sustained stimulation the increase in the probability of transmitter release is not maintained in GAD65-/- mice. Such a finding suggests a decrease in the size or refilling kinetics of the releasable pool of vesicles, and various mechanisms are discussed that could account for such a defect.
Collapse
Affiliation(s)
- N Tian
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
341
|
Kim YI, Kim SH, Kim DY, Lee HW, Shin HC, Chung JM, Han HC, Na HS, Hong SK. Electrophysiological evidence for the role of substance P in retinohypothalamic transmission in the rat. Neurosci Lett 1999; 274:99-102. [PMID: 10553947 DOI: 10.1016/s0304-3940(99)00681-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinohypothalamic tract (RHT) is a neural pathway through which photic time cues are delivered directly to the mammalian circadian pacemaker in the suprachiasmatic nucleus (SCN). Although the excitatory amino acid glutamate is the primary neurotransmitter in the RHT, other substances such as substance P (SPq also have been suggested to play a role. The present study tested the hypothesis that SP participates in retinohypothalamic transmission and selectively modulates either N-methyl-D-aspartate (NMDA) or non-NMDA receptor-mediated neurotransmission. The SP antagonist L-703,606 depressed the excitatory postsynaptic current (EPSC) evoked by optic nerve stimulation in SCN neurons in rat hypothalamic slices. The SP antagonist also had a similar depressive effect on the NMDA and non-NMDA receptor-mediated components of the EPSC. These results suggest that SP is an excitatory neuromodulator contributing to the expression of both the NMDA and non-NMDA receptor-mediated components of retinohypothalamic transmission.
Collapse
Affiliation(s)
- Y I Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Chen L, Bao S, Qiao X, Thompson RF. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit. Proc Natl Acad Sci U S A 1999; 96:12132-7. [PMID: 10518588 PMCID: PMC18424 DOI: 10.1073/pnas.96.21.12132] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The waggler, a neurological mutant mouse with a disrupted putative neuronal Ca(2+) channel gamma subunit, exhibits a cerebellar granule cell-specific brain-derived neurotrophic factor deficit, severe ataxia, and impaired eyeblink conditioning. Here, we show that multiple synapses of waggler cerebellar granule cells are arrested at an immature stage during development. Synaptic transmission is reduced at parallel fiber-Purkinje cell synapses. The Golgi cell-granule cell synaptic currents show immature kinetics associated with reduced gamma-aminobutyric acid type A receptor alpha6 subunit expression in granule cells. In addition, the mossy fiber-granule cell synapses exhibit N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs), but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs. Our results suggest that voltage-dependent Ca(2+) channels are involved in synapse maturation. This deficient synaptic transmission in the waggler cerebellum may account for their behavioral deficits.
Collapse
Affiliation(s)
- L Chen
- Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | |
Collapse
|
343
|
Flint AC, Dammerman RS, Kriegstein AR. Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. Proc Natl Acad Sci U S A 1999; 96:12144-9. [PMID: 10518590 PMCID: PMC18426 DOI: 10.1073/pnas.96.21.12144] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oscillations in intracellular free calcium concentration ([Ca(2+)](i)) occur spontaneously in immature neurons of the developing cerebral cortex. Here, we show that developing murine cortical neurons exhibit calcium oscillations in response to direct activation of the mGluR5 subtype of the group I metabotropic glutamate receptor (mGluR). In contrast, other manipulations that elicit [Ca(2+)](i) increases produce simple, nonoscillatory changes. Furthermore, we find that spontaneous oscillatory [Ca(2+)](i) activity is blocked by antagonists of group I mGluRs, suggesting a specific role for mGluR activation in the promotion of oscillatory [Ca(2+)](i) dynamics in immature cortical neurons. The oscillatory pattern of [Ca(2+)](i) increases produced by mGluR activation might play a role in the regulation of gene expression and the control of developmental events.
Collapse
Affiliation(s)
- A C Flint
- Center for Neurobiology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
344
|
Molnár P, Nadler JV. Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation. J Neurophysiol 1999; 82:1883-94. [PMID: 10515977 DOI: 10.1152/jn.1999.82.4.1883] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dentate granule cells become synaptically interconnected in the hippocampus of persons with temporal lobe epilepsy, forming a recurrent mossy fiber pathway. This pathway may contribute to the development and propagation of seizures. The physiology of mossy fiber-granule cell synapses is difficult to characterize unambiguously, because electrical stimulation may activate other pathways and because there is a low probability of granule cell interconnection. These problems were addressed by the use of scanning laser photostimulation in slices of the caudal hippocampal formation. Glutamate was released from a caged precursor with highly focused ultraviolet light to evoke action potentials in a small population of granule cells. Excitatory synaptic currents were recorded in the presence of bicuculline. Minimal laser photostimulation evoked an apparently unitary excitatory postsynaptic current (EPSC) in 61% of granule cells from rats that had experienced pilocarpine-induced status epilepticus followed by recurrent mossy fiber growth. An EPSC was also evoked in 13-16% of granule cells from the control groups. EPSCs from status epilepticus and control groups had similar peak amplitudes ( approximately 30 pA), 20-80% rise times (approximately 1.2 ms), decay time constants ( approximately 10 ms), and half-widths (approximately 8 ms). The mean failure rate was high (approximately 70%) in both groups, and in both groups activation of N-methyl-D-aspartate receptors contributed a small component to the EPSC. The strong similarity between responses from the status epilepticus and control groups suggests that they resulted from activation of a similar synaptic population. No EPSC was recorded when the laser beam was focused in the dentate hilus, suggesting that indirect activation of hilar mossy cells contributed little, if at all, to these results. Recurrent mossy fiber growth increases the density of mossy fiber-granule cell synapses in the caudal dentate gyrus by perhaps sixfold, but the new synapses appear to operate very similarly to preexisting mossy fiber-granule cell synapses.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
345
|
Jackson MF, Esplin B, Capek R. Activity-dependent enhancement of hyperpolarizing and depolarizing gamma-aminobutyric acid (GABA) synaptic responses following inhibition of GABA uptake by tiagabine. Epilepsy Res 1999; 37:25-36. [PMID: 10515172 DOI: 10.1016/s0920-1211(99)00029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of the 7-aminobutyric acid (GABA) uptake blocker tiagabine on isolated inhibitory postsynaptic potentials (IPSPs) were examined in CA1 pyramidal cells of the rat hippocampal slice preparation. The IPSPs were elicited by either single stimuli or by high frequency (100 Hz, 200 ms) stimulation (HFS) of inhibitory interneurons. Bath applied tiagabine (20 microM) produced little or no increase in the amplitude of IPSPs evoked by low (30-50 microA) or high (200-400 microA) intensity single stimuli. Only the duration of IPSPs evoked by high intensity stimuli was substantially prolonged by tiagabine, the time integral of the hyperpolarizing response being increased 3.2-fold. HFS elicited much larger fast and slow IPSPs than a single stimulus. In addition, with increments in the intensity (80-550 microA) of HFS, a GABA(A) receptor-mediated depolarizing response of progressively larger amplitude appeared between, and overlapped with, the fast and slow hyperpolarizing components of the IPSP. Tiagabine application markedly increased the GABA-mediated responses evoked by both low and high intensity HFS. Increasing the intensity of HFS enhanced the drug effect. Thus, measurements of the time integral of evoked responses showed that with weak (60 microA) HFS, tiagabine caused a 3.6-fold increase in the area of hyperpolarization while, in contrast, with strong (530 microA) HFS, tiagabine produced a 13.5-fold increase in the depolarizing actions of GABA. Our results suggest that tiagabine, a therapeutically effective anticonvulsant, may paradoxically increase, through a GABA(A) receptor-mediated mechanism, neuronal depolarization during the high frequency discharge of neurons involved in epileptiform activity.
Collapse
Affiliation(s)
- M F Jackson
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Que, Canada
| | | | | |
Collapse
|
346
|
Ling DS, Benardo LS. Restrictions on inhibitory circuits contribute to limited recruitment of fast inhibition in rat neocortical pyramidal cells. J Neurophysiol 1999; 82:1793-807. [PMID: 10515969 DOI: 10.1152/jn.1999.82.4.1793] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To further define the operational boundaries on fast inhibition in neocortex, whole cell recordings were made from layer V pyramidal neurons in neocortical slices to evaluate evoked inhibitory postsynaptic currents (IPSCs) and spontaneous miniature IPSCs (mIPSCs). Stimulating electrodes were placed in layers VI and I/II to determine whether simultaneous stimulation of deep and superficial laminae could extend the magnitude of maximal IPSCs evoked by deep-layer stimulation alone. The addition of superficial-layer stimulation did not increase maximal IPSC amplitude, confirming the strict limit on fast inhibition. Spontaneous miniature IPSCs were recorded in the presence of tetrodotoxin. The frequency of spontaneous mIPSCs ranged from 10.0 to 33.1 Hz. mIPSC amplitude varied considerably, with a range of 5. 0-128.2 pA and a mean value of 20.7+/-4.1 pA (n = 12 cells). The decay phase of miniature IPSCs was best fit by a single exponential, similar to evoked IPSCs. The mean time constant of decay was 6.4+/-0.6 ms, with a range of 0.2-20.1 ms. The mean 10-90% rise time was 1.9+/-0.2 ms, ranging from 0.2 to 6.3 ms. Evaluation of mIPSC kinetics revealed no evidence of dendritic filtering. Amplitude histograms of mIPSCs exhibited skewed distributions with several discernable peaks that, when fit with Gaussian curves, appeared to be spaced equidistantly, suggesting that mIPSC amplitudes varied quantally. The mean separation of Gaussian peaks ranged from 6.1 to 7.8 pA. The quantal distributions did not appear to be artifacts of noise. Exposure to saline containing low Ca(2+) and high Mg(2+) concentrations reduced the number of histogram peaks, but did not affect the quantal size. Mean mIPSC amplitude and quantal size varied with cell holding potential in a near-linear manner. Statistical evaluation of amplitude histograms verified the multimodality of mIPSC amplitude distributions and corroborated the equidistant spacing of peaks. Comparison of mIPSC values with published data from single GABA channel recordings suggests that the mean mIPSC conductance corresponds to the activation of 10-20 GABA(A) receptor channels, and that the release of a single inhibitory quantum opens 3-6 channels. Further comparison of mIPSCs with evoked inhibitory events suggests that a single interneuron may form, on average, 4-12 functional synapses with a pyramidal cell, and that 10-12 individual interneurons are engaged during recruitment of maximal population IPSCs. This suggests that inhibitory circuits are much more restricted in both the size of the unit events and effective number of connections when compared with excitatory inputs.
Collapse
Affiliation(s)
- D S Ling
- Department of Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | |
Collapse
|
347
|
Chiou LC. [Phe1psi(CH2-NH)Gly2]nociceptin-(1 - 13)-NH2 activation of an inward rectifier as a partial agonist of ORL1 receptors in rat periaqueductal gray. Br J Pharmacol 1999; 128:103-7. [PMID: 10498840 PMCID: PMC1571592 DOI: 10.1038/sj.bjp.0702746] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Revised: 04/23/1999] [Accepted: 06/01/1999] [Indexed: 11/09/2022] Open
Abstract
1. [Phe1psi(CH2-NH)Gly2]nociceptin-(1 - 13)-NH2 (Phepsi), a tridecapeptide analogue of orphanin FQ/nociceptin (OFQ/N), was introduced as a competitive antagonist of opioid receptor-like orphan receptor (ORL1) in guinea-pig ileum and mouse vas deferens preparations in vitro but was recently found to act as an agonist in vivo. 2. In the periaqueductal gray, a site enriched with both OFQ/N and ORL1 and involved in OFQ/N-induced hyperalgesia and anti-analgesia, the effects of Phepsi and OFQ/N on the membrane current were studied using whole cell patch clamp recording technique in rat brain slices. 3. OFQ/N (0.01 - 1 microM) activated an inwardly rectifying type of K+ channels in ventrolateral neurons of PAG. Phepsi (0.03 - 1 microM), like OFQ/N, also activated this inward rectifier but had only 30% efficacy of OFQ/N. 4 At maximal effective concentration (1 microM), Phepsi reversed the increment of K+ conductance induced by OFQ/N (300 nM) by 46%. On the other hand, Phepsi also prevented the effect of OFQ/N if pretreated before OFQ/N. 5 It is suggested that Phepsi acts as a partial agonist of ORL1 that mediates the activation of inwardly rectifying K+ channels in ventrolateral neurons of rat periaqueductal gray.
Collapse
Affiliation(s)
- L C Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Jen-Ai Road, Section 1, Taipei 100, Taipei, Taiwan.
| |
Collapse
|
348
|
Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. J Neurosci 1999. [PMID: 10436061 DOI: 10.1523/jneurosci.19-16-07066.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of nitric oxide (NO) as a mediator of synaptic plasticity is controversial in both the adult and developing brain. NO generation appears to be necessary for some types of NMDA receptor-dependent synaptic plasticity during development but not for others. Our previous work using several NO donors revealed that Xenopus laevis retinal ganglion cell axons stop growing in response to NO exposure. We demonstrate here that the same response occurs in tectal neuron processes bathed in the NO donor S-nitrosocysteine (SNOC) and in RGC growth cones to which SNOC is very locally applied. We show that NO synthase (NOS) activity is present in the Rana pipiens optic tectum throughout development in a dispersed subpopulation of tectal neurons, although effects of NO on synaptic function in a Rana pipiens tectal slice were varied. We chronically inhibited NOS in doubly innervated Rana tadpole optic tecta using L-N(G)-nitroarginine methyl ester in Elvax. Despite significant NOS inhibition as measured biochemically, eye-specific stripes remained normally segregated. This suggests that NOS activity is not downstream of NMDA receptor activation during retinotectal synaptic competition because NMDA receptor activation is necessary for segregation of retinal afferents into ocular dominance stripes in the doubly innervated tadpole optic tectum. We conclude that NO has some signaling function in the retinotectal pathway, but this function is not critical to the mechanism that refines the projection and causes eye-specific stripes.
Collapse
|
349
|
Ghai HS, Buck LT. Acute reduction in whole cell conductance in anoxic turtle brain. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R887-93. [PMID: 10484508 DOI: 10.1152/ajpregu.1999.277.3.r887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the effect of anoxia, a "mimic" turtle artificial cerebrospinal fluid (aCSF) consisting of high Ca2+ and Mg2+ concentrations and low pH and adenosine perfusions, on whole cell conductance (G(w)) in turtle brain slices using a whole cell voltage-clamp technique. With EGTA in the recording electrode, anoxic or adenosine perfusions did not change Gw significantly (values range between 2.15 +/- 0.24 and 3.24 +/- 0.56 nS). However, perfusion with normoxic or anoxic mimic aCSF significantly decreased Gw. High [Ca2+] (4.0 or 7.8 mM) perfusions alone could reproduce the changes in Gw found with the mimic perfusions. With the removal of EGTA from the recording electrode, Gw decreased significantly during both anoxic and adenosine perfusions. The A1-receptor agonist N6-cyclopentyladenosine reduced Gw in a dose-dependent manner, whereas the A1-receptor specific antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked both the adenosine- and anoxic-mediated changes in Gw. These data suggest a mechanism involving A1-receptor-mediated changes in intracellular [Ca2+] that result in acute changes in Gw with the onset of anoxia.
Collapse
Affiliation(s)
- H S Ghai
- Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | | |
Collapse
|
350
|
Gasparini S, DiFrancesco D. Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons. Eur J Neurosci 1999; 11:3093-100. [PMID: 10510173 DOI: 10.1046/j.1460-9568.1999.00728.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We studied the effects of serotonin (5-HT) on hippocampal CA1 pyramidal neurons. In current-clamp mode, 5-HT induced a hyperpolarization and reduction of excitability due to the opening of inward rectifier K+ channels, followed by a late depolarization and partial restoration of excitability. These two components could be dissociated, as in the presence of BaCl2 to block K+ channels, 5-HT induced a depolarization accompanied by a reduction of membrane resistance, whereas in the presence of ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride], a selective blocker of the hyperpolarization-activated cation current (Ih), 5-HT only hyperpolarized neurons. We then studied the action of 5-HT on Ih in voltage-clamp conditions. 5-HT increased Ih at -90 mV by 29.1 +/- 2.9% and decreased the time constant of activation by 20.1 +/- 1.7% (n = 16), suggesting a shift in the voltage dependence of the current towards more positive potentials; however, the fully activated current measured at -140 mV also increased (by 14.1 +/- 1.7%, n = 14); this increase was blocked by ZD 7288, implying an effect of 5-HT on the maximal conductance of Ih. Both the shift of activation curve and the increase in maximal conductance were confirmed by data obtained with ramp protocols. Perfusion with the membrane-permeable analogue of cAMP, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), increased Ih both at -90 and -140 mV, although the changes induced were smaller than those due to 5-HT. Our data indicate that 5-HT modulates Ih by shifting its activation curve to more positive voltages and by increasing its maximal conductance, and that this action is likely to contribute to the 5-HT modulation of excitability of CA1 cells.
Collapse
Affiliation(s)
- S Gasparini
- Università degli Studi di Milano, Dipartimento di Fisiologia e Biochimica General, Elettrofisiologia, Italy.
| | | |
Collapse
|