301
|
Garratt M, Bower B, Garcia GG, Miller RA. Sex differences in lifespan extension with acarbose and 17-α estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell 2017; 16:1256-1266. [PMID: 28834262 PMCID: PMC5676051 DOI: 10.1111/acel.12656] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male‐specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17‐α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male‐specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex‐specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex‐specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex‐specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Brian Bower
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Gonzalo G. Garcia
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
| | - Richard A. Miller
- Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
- University of Michigan Geriatrics Center Ann Arbor MI 48109 USA
| |
Collapse
|
302
|
Schyrr F, Wolfer A, Pasquier J, Nicoulaz AL, Lamy O, Naveiras O. Correlation study between osteoporosis and hematopoiesis in the context of adjuvant chemotherapy for breast cancer. Ann Hematol 2017; 97:309-317. [PMID: 29170810 PMCID: PMC5754401 DOI: 10.1007/s00277-017-3184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/13/2017] [Indexed: 11/26/2022]
Abstract
This retrospective study attempts to establish if a correlation exists between osteoporosis and hematopoiesis before and after adjuvant chemotherapy in the context of non-metastatic breast cancer. Osteoporosis is interpreted both as a direct marker of osteoblastic decline and as an indirect marker of increased bone marrow adiposity within the hematopoietic microenvironment. Patients from the “Centre du Sein” at CHUV (Centre Hospitalier Universitaire Vaudois) undergoing adjuvant chemotherapy were included in this study. Evolution of blood counts was studied in correlation with the osteoporosis status. Toxicity of chemotherapy was coded according to published probability of febrile neutropenia. One hundred forty-three women were included: mean age 52.1 ± 12.5 years, mean BMI (body mass index) 24.4 ± 4.1. BMD (bone mineral density) scored osteoporotic in 32% and osteopenic in 45%. Prior to chemotherapy, BMD was positively correlated with neutrophil (p < 0.001) and thrombocyte (p = 0.01) count; TBS (trabecular bone score) was not correlated with blood count. After the first cycle of chemotherapy, an increase of one point in TBS correlated with a decrease of 57% on the time to reach leucocyte nadir (p = 0.004). There was a positive correlation between BMD and risk of infection (p < 0.001). Our data demonstrates an association between osteoporosis and lower blood counts in a younger cohort than previously published, extending it for the first time to neutrophil counts in females. Our results suggest that the healthier the bone, the earlier the lowest leucocyte count value, prompting further research on this area.
Collapse
Affiliation(s)
- Frédérica Schyrr
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anita Wolfer
- Department of Oncology, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Jérôme Pasquier
- Institute of Social and Preventive Medicine (IUMSP), University Hospital, Lausanne, Switzerland
| | - Anne-Laure Nicoulaz
- Base de données des Centres Interdisciplinaires en Oncologie - CINO, CHUV, Lausanne, Switzerland
| | - Olivier Lamy
- Service de médecine interne, département de médecine, CHUV, Lausanne, Switzerland
- Centre des Maladies Osseuses (CMO), Département de l'Appareil Locomoteur, CHUV, Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Service d'Hématologie, Département d'Oncologie, CHUV, Lausanne, Switzerland.
| |
Collapse
|
303
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|
304
|
Abstract
Biological processes utilize energy and therefore must be prioritized based on fuel availability. Bone is no exception to this, and the benefit of remodeling when necessary outweighs the energy costs. Bone remodeling is important for maintaining blood calcium homeostasis, repairing micro cracks and fractures, and modifying bone structure so that it is better suited to withstand loading demands. Osteoclasts, osteoblasts, and osteocytes are the primary cells responsible for bone remodeling, although bone marrow adipocytes and other cells may also play an indirect role. There is a renewed interest in bone cell energetics because of the potential for these processes to be targeted for osteoporosis therapies. In contrast, due to the intimate link between bone and energy homeostasis, pharmaceuticals that treat metabolic disease or have metabolic side effects often have deleterious bone consequences. In this brief review, we will introduce osteoporosis, discuss how bone cells utilize energy to function, evidence for bone regulating whole body energy homeostasis, and some of the unanswered questions and opportunities for further research in the field.
Collapse
Affiliation(s)
- Katherine J Motyl
- 1 Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Anyonya R Guntur
- 2 Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Adriana Lelis Carvalho
- 3 Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Clifford J Rosen
- 2 Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
305
|
Kim TY, Schwartz AV, Li X, Xu K, Black DM, Petrenko DM, Stewart L, Rogers SJ, Posselt AM, Carter JT, Shoback DM, Schafer AL. Bone Marrow Fat Changes After Gastric Bypass Surgery Are Associated With Loss of Bone Mass. J Bone Miner Res 2017; 32:2239-2247. [PMID: 28791737 PMCID: PMC5685913 DOI: 10.1002/jbmr.3212] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
Bone marrow fat is a unique fat depot that may regulate bone metabolism. Marrow fat is increased in states of low bone mass, severe underweight, and diabetes. However, longitudinal effects of weight loss and improved glucose homeostasis on marrow fat are unclear, as is the relationship between marrow fat and bone mineral density (BMD) changes. We hypothesized that after Roux-en-Y gastric bypass (RYGB) surgery, marrow fat changes are associated with BMD loss. We enrolled 30 obese women, stratified by diabetes status. Before and 6 months after RYGB, we measured BMD by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and vertebral marrow fat content by magnetic resonance spectroscopy. At baseline, those with higher marrow fat had lower BMD. Postoperatively, total body fat declined dramatically in all participants. Effects of RYGB on marrow fat differed by diabetes status (p = 0.03). Nondiabetic women showed no significant mean change in marrow fat (+1.8%, 95% confidence interval [CI] -1.8% to +5.4%, p = 0.29), although those who lost more total body fat were more likely to have marrow fat increases (r = -0.70, p = 0.01). In contrast, diabetic women demonstrated a mean marrow fat change of -6.5% (95% CI -13.1% to 0%, p = 0.05). Overall, those with greater improvements in hemoglobin A1c had decreases in marrow fat (r = 0.50, p = 0.01). Increases in IGF-1, a potential mediator of the marrow fat-bone relationship, were associated with marrow fat declines (r = -0.40, p = 0.05). Spinal volumetric BMD decreased by 6.4% ± 5.9% (p < 0.01), and femoral neck areal BMD decreased by 4.3% ± 4.1% (p < 0.01). Marrow fat and BMD changes were negatively associated, such that those with marrow fat increases had more BMD loss at both spine (r = -0.58, p < 0.01) and femoral neck (r = -0.49, p = 0.01), independent of age and menopause. Our findings suggest that glucose metabolism and weight loss may influence marrow fat behavior, and marrow fat may be a determinant of bone metabolism. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tiffany Y Kim
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kaipin Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Dennis M Black
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Dimitry M Petrenko
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Lygia Stewart
- Department of Surgery, University of California, San Francisco, CA, USA
- Surgical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Stanley J Rogers
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Andrew M Posselt
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Jonathan T Carter
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Dolores M Shoback
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Anne L Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
306
|
Hui SCN, Zhang T, Shi L, Wang D, Ip CB, Chu WCW. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI. Magn Reson Imaging 2017; 45:97-104. [PMID: 29017799 DOI: 10.1016/j.mri.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a reliable and reproducible automatic technique to segment and measure SAT and VAT based on MRI. MATERIALS AND METHODS Chemical-shift water-fat MRI were taken on twelve obese adolescents (mean age: 16.1±0.6, BMI: 31.3±2.3) recruited under the health monitoring program. The segmentation applied a spoke template created using Midpoint Circle algorithm followed by Bresenham's Line algorithm to detect narrow connecting regions between subcutaneous and visceral adipose tissues. Upon satisfaction of given constrains, a cut was performed to separate SAT and VAT. Bone marrow was consisted in pelvis and femur. By using the intensity difference in T2*, a mask was created to extract bone marrow adipose tissue (MAT) from VAT. Validation was performed using a semi-automatic method. Pearson coefficient, Bland-Altman plot and intra-class coefficient (ICC) were applied to measure accuracy and reproducibility. RESULTS Pearson coefficient indicated that results from the proposed method achieved high correlation with the semi-automatic method. Bland-Altman plot and ICC showed good agreement between the two methods. Lowest ICC was obtained in VAT segmentation at lower regions of the abdomen while the rests were all above 0.80. ICC (0.98-0.99) also indicated the proposed method performed good reproducibility. CONCLUSION No user interaction was required during execution of the algorithm and the segmented images and volume results were given as output. This technique utilized the feature in the regions connecting subcutaneous and visceral fat and T2* intensity difference in bone marrow to achieve volumetric measurement of various types of adipose tissue in abdominal site.
Collapse
Affiliation(s)
- Steve C N Hui
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Teng Zhang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong; Chow Yuk Ho Technology Centre for Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Chei-Bing Ip
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong.
| |
Collapse
|
307
|
|
308
|
Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv 2017; 1:1760-1772. [PMID: 29296822 DOI: 10.1182/bloodadvances.2017004960] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) expands in various bone marrow (BM) sites of the body. We investigated whether different BM sites could differently modulate T-ALL propagation using in vivo animal models. We observed that mouse and human T-ALL develop slowly in the BM of tail vertebrae compared with the BM from thorax vertebrae. T-ALL recovered from tail BM displays lower cell-surface marker expression and decreased metabolism and cell-cycle progression, demonstrating a dormancy phenotype. Functionally, tail-derived T-ALL exhibit a deficient short-term ex vivo growth and a delayed in vivo propagation. These features are noncell-autonomous because T-ALL from tail and thorax shares identical genomic abnormalities and functional disparities disappear in vivo and in prolonged in vitro assays. Importantly tail-derived T-ALL displays higher intrinsic resistance to cell-cycle-related drugs (ie, vincristine sulfate and cytarabine). Of note, T-ALL recovered from gonadal adipose tissues or from cocultures with adipocytes shares metabolic, cell-cycle, and phenotypic or chemoresistance features, with tail-derived T-ALL suggesting adipocytes may participate in the tail BM imprints on T-ALL. Altogether these results demonstrate that BM sites differentially orchestrate T-ALL propagation stamping specific features to leukemic cells such as quiescence and decreased response to cell-cycle-dependent chemotherapy.
Collapse
|
309
|
Shigehara K, Konaka H, Koh E, Nakashima K, Iijima M, Nohara T, Izumi K, Kitagawa Y, Kadono Y, Sugimoto K, Iwamoto T, Mizokami A, Namiki M. Effects of testosterone replacement therapy on hypogonadal men with osteopenia or osteoporosis: a subanalysis of a prospective randomized controlled study in Japan (EARTH study). Aging Male 2017; 20:139-145. [PMID: 28347184 DOI: 10.1080/13685538.2017.1303829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE We investigated the effects of testosterone replacement therapy (TRT) on bone mineral density (BMD) among hypogonadal men with osteopenia/osteoporosis. METHODS From our previous EARTH study population, 74 patients with a clinical diagnosis of osteopenia or osteoporosis and hypogonadism were included in this study, as the TRT (n = 35) and control (n = 34) groups. The TRT group was administered 250 mg of testosterone enanthate injection every 4 weeks for 12 months. The BMD, waist circumference, body mass index, body fat percentage, and muscle volume were measured at baseline and at 12 months. Blood biochemical data, including total cholesterol, triglycerides, HDL-cholesterol, hemoglobin A1c, and adiponectin values were also evaluated. RESULTS At the 12-month visit, BMD significantly increased in both groups. However, comparisons on changes of parameter values from baseline to the 12-month visit between the TRT and control groups were significantly different in BMD (5.0 ± 5.0 vs. 3.0 ± 3.2; p = .0434) and in adiponectin value (-0.90 ± 3.33 vs. 0.10 ± 2.04; p = .0192). There were no significant changes in other parameters. CONCLUSIONS TRT for 12 months could improve BMD with a decrease in adiponectin levels among hypogonadal men with osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Kazuyoshi Shigehara
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Hiroyuki Konaka
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Eitetsu Koh
- b Komagane Urological Clinic , Nagano , Japan
| | - Kazufumi Nakashima
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Masashi Iijima
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Takahiro Nohara
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Koji Izumi
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Yasuhide Kitagawa
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Yoshifumi Kadono
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | | | - Teruaki Iwamoto
- d Division of Male Infertility , Center for Infertility and IVF, International University of Health and Welfare , Nasushiobara , Japan
| | - Atsushi Mizokami
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Mikio Namiki
- a Department of Integrative Cancer Therapy and Urology , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| |
Collapse
|
310
|
Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, Xie Z, Zong X, Styner MA, Rubin CT, Rubin J. Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice. J Bone Miner Res 2017; 32:1692-1702. [PMID: 28436105 PMCID: PMC5550355 DOI: 10.1002/jbmr.3159] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022]
Abstract
The relationship between marrow adipose tissue (MAT) and bone health is poorly understood. We used running exercise to ask whether obesity-associated MAT can be attenuated via exercise and whether this correlates with gains in bone quantity and quality. C57BL/6 mice were divided into diet-induced obesity (DIO, n = 14) versus low-fat diet (LFD, n = 14). After 3 months, 16-week-old mice were allocated to an exercise intervention (LFD-E, DIO-E) or a control group (LFD, DIO) for 6 weeks (4 groups, n = 7/group). Marrow adipocyte area was 44% higher with obesity (p < 0.0001) and after exercise 33% lower in LFD (p < 0.0001) and 39% lower in DIO (p < 0.0001). In LFD, exercise did not affect adipocyte number; however, in DIO, the adipocyte number was 56% lower (p < 0.0001). MAT was 44% higher in DIO measured by osmium-μCT, whereas exercise associated with reduced MAT (-23% in LFD, -48% in DIO, p < 0.05). MAT was additionally quantified by 9.4TMRI, and correlated with osmium-µCT (r = 0.645; p < 0.01). Consistent with higher lipid beta oxidation, perilipin 3 (PLIN3) rose with exercise in tibial mRNA (+92% in LFD, +60% in DIO, p < 0.05). Tibial µCT-derived trabecular bone volume (BV/TV) was not influenced by DIO but responded to exercise with an increase of 19% (p < 0.001). DIO was associated with higher cortical periosteal and endosteal volumes of 15% (p = 0.012) and 35% (p < 0.01), respectively, but Ct.Ar/Tt.Ar was lower by 2.4% (p < 0.05). There was a trend for higher stiffness (N/m) in DIO, and exercise augmented this further. In conclusion, obesity associated with increases in marrow lipid-measured by osmium-μCT and MRI-and partially due to an increase in adipocyte size, suggesting increased lipid uptake into preexisting adipocytes. Exercise associated with smaller adipocytes and less bone lipid, likely invoking increased ß-oxidation and basal lipolysis as evidenced by higher levels of PLIN3. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriel M Pagnotti
- Department of Biomedical Engineering, State University of New York, Stony Brook, Stony Brook, NY, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, Stony Brook, NY, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
311
|
Sontam DM, Vickers MH, Firth EC, O'Sullivan JM. A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet. Front Physiol 2017; 8:476. [PMID: 28736532 PMCID: PMC5500658 DOI: 10.3389/fphys.2017.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Studies have reported opposing effects of high-fat (HF) diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a HF diet has not been addressed. We investigated whether early-life (before onset of sexual maturity at 6 weeks of age) voluntary physical activity can modulate the effects of a HF diet on male Sprague Dawley rats. In the bone marrow, early-life HF diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. The bone marrow of the rats that undertook wheel exercise while on a HF diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise. Our results are consistent with the marrow adipose tissue having a unique response to HF feeding in the presence or absence of exercise.
Collapse
Affiliation(s)
- Dharani M Sontam
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Elwyn C Firth
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand.,Department of Sport and Exercise Science, University of AucklandAuckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| |
Collapse
|
312
|
Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS, Rosen CJ. Bone marrow adipocytes. Adipocyte 2017; 6:193-204. [PMID: 28872979 DOI: 10.1080/21623945.2017.1367881] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipocytes were identified in human bone marrow more than a century ago, yet until recently little has been known about their origin, development, function or interactions with other cells in the bone marrow. Little functional significance has been attributed to these cells, a paradigm that still persists today. However, we now know that marrow adipose tissue increases with age and in response to a variety of physiologic induction signals. Bone marrow adipocytes have recently been shown to influence other cell populations within the marrow and can affect whole body metabolism by the secretion of a defined set of adipokines. Recent research shows that marrow adipocytes are distinct from white, brown and beige adipocytes, indicating that the bone marrow is a distinct adipose depot. This review will highlight recent data regarding these areas and the interactions of marrow adipose tissue (MAT) with cells within and outside of the bone marrow.
Collapse
Affiliation(s)
- Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Berry
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Brandon Holtrup
- Department of Molecular, Cell, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Zachary Sebo
- Department of Molecular, Cell, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Tracy Nelson
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jackie A. Fretz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dieter Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jennifer L. Kaplan
- Department of Comparative Medicine and Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Gene Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, NY, USA
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Clifford J. Rosen
- The Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
313
|
JafariNasabian P, Inglis JE, Reilly W, Kelly OJ, Ilich JZ. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol 2017; 234:R37-R51. [PMID: 28442508 DOI: 10.1530/joe-16-0603] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022]
Abstract
Aging affects almost all physiological processes, but changes in body composition and body phenotype are most observable. In this review, we focus on these changes, including loss of bone and muscle and increase in body fat or redistribution of the latter, possibly leading to osteosarcopenic obesity syndrome. We also address low-grade chronic inflammation, prevalent in aging adults and a cause of many disorders including those associated with body composition. Changes in dietary intake and nutritional requirements of older individuals, that all may lead to some disturbances on tissue and organ levels, are discussed as well. Finally, we discuss the hormonal changes in the aging body, considering each of the tissues, bone, muscle and fat as separate endocrine organs, but yet in the continuous interface and communication with each other. Although there are still many unanswered questions in this field, this review will enable the readers to better understand the aging human body and measures needing to be implemented toward reducing impaired health and disability in older individuals.
Collapse
Affiliation(s)
- Pegah JafariNasabian
- Department of NutritionFood and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | - Julia E Inglis
- Department of NutritionFood and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | - Wendimere Reilly
- Department of NutritionFood and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | | | - Jasminka Z Ilich
- Department of NutritionFood and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
314
|
Bastos CM, Araújo IM, Nogueira-Barbosa MH, Salmon CEG, de Paula FJA, Troncon LEA. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission. Osteoporos Int 2017; 28:2167-2176. [PMID: 28405731 DOI: 10.1007/s00198-017-4014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Bone marrow adipose tissue has not been studied in patients with inactive inflammatory bowel disease. We found that these patients have preserved marrow adiposity even with low bone mass. Factors involved in bone loss in active disease may have long-lasting effects but do not seem to affect bone marrow adiposity. INTRODUCTION Reduced bone mass is known to occur at varying prevalence in patients with inflammatory bowel diseases (IBD) because of inflammation, malnutrition, and steroid therapy. Osteoporosis may develop in these patients as the result of an imbalanced relationship between osteoblasts and adipocytes in bone marrow. This study aimed to evaluate for the first time bone mass and bone marrow adipose tissue (BMAT) in a particular subgroup of IBD patients characterized by long-term, steroid-free remission. METHODS Patients with Crohn's disease (CD; N = 21) and ulcerative colitis (UC; N = 15) and controls (C; N = 65) underwent dual X-ray energy absorptiometry and nuclear magnetic resonance spectroscopy of the L3 lumbar vertebra for BMAT assessment. RESULTS Both the CD and UC subgroups showed significantly higher proportions of patients than controls with Z-score ≤-2.0 at L1-L4 (C 1.54%; CD 19.05%; UC 20%; p = 0.02), but not at other sites. The proportions of CD patients with a T-score ˂-1.0 at the femoral neck (C 18.46%; CD 47.62%; p = 0.02) and total hip (C 16.92%; CD 42.86%; p = 0.03) were significantly higher than among controls. There were no statistically significant differences between IBD patients and controls regarding BMAT at L3 (C 28.62 ± 8.15%; CD 29.81 ± 6.90%; UC 27.35 ± 9.80%; p = 0.67). CONCLUSIONS IBD patients in long-term, steroid-free remission may have a low bone mass in spite of preserved BMAT. These findings confirm the heterogeneity of bone disorders in IBD and may indicate that factors involved in bone loss in active disease may have long-lasting effects on these patients.
Collapse
Affiliation(s)
- C M Bastos
- Gastroenterology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - I M Araújo
- Endocrinology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M H Nogueira-Barbosa
- Radiology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C E G Salmon
- Department of Physics, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | - F J A de Paula
- Endocrinology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L E A Troncon
- Gastroenterology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
315
|
Suchacki KJ, Roberts F, Lovdel A, Farquharson C, Morton NM, MacRae VE, Cawthorn WP. Skeletal energy homeostasis: a paradigm of endocrine discovery. J Endocrinol 2017; 234:R67-R79. [PMID: 28455432 DOI: 10.1530/joe-17-0147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
Abstract
Throughout the last decade, significant developments in cellular, molecular and mouse models have revealed major endocrine functions of the skeleton. More recent studies have evolved the interplay between bone-specific hormones, the skeleton, marrow adipose tissue, muscle and the brain. This review focuses on literature from the last decade, addressing the endocrine regulation of global energy metabolism via the skeleton. In addition, we will highlight several recent studies that further our knowledge of new endocrine functions of some organs; explore remaining unanswered questions; and, finally, we will discuss future directions for this more complex era of bone biology research.
Collapse
Affiliation(s)
- Karla J Suchacki
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Fiona Roberts
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - Andrea Lovdel
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Colin Farquharson
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - Nik M Morton
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Vicky E MacRae
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - William P Cawthorn
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| |
Collapse
|
316
|
Quantification of Bone Fatty Acid Metabolism and Its Regulation by Adipocyte Lipoprotein Lipase. Int J Mol Sci 2017; 18:ijms18061264. [PMID: 28608812 PMCID: PMC5486086 DOI: 10.3390/ijms18061264] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Adipocytes are master regulators of energy homeostasis. Although the contributions of classical brown and white adipose tissue (BAT and WAT, respectively) to glucose and fatty acid metabolism are well characterized, the metabolic role of adipocytes in bone marrow remains largely unclear. Here, we quantify bone fatty acid metabolism and its contribution to systemic nutrient handling in mice. Whereas in parts of the skeleton the specific amount of nutrients taken-up from the circulation was lower than in other metabolically active tissues such as BAT or liver, the overall contribution of the skeleton as a whole organ was remarkable, placing it among the top organs involved in systemic glucose as well as fatty acid clearance. We show that there are considerable site-specific variations in bone marrow fatty acid composition throughout the skeleton and that, especially in the tibia, marrow fatty acid profiles resemble classical BAT and WAT. Using a mouse model lacking lipoprotein lipase (LPL), a master regulator of plasma lipid turnover specifically in adipocytes, we show that impaired fatty acid flux leads to reduced amounts of dietary essential fatty acids while there was a profound increase in de novo produced fatty acids in both bone marrow and cortical bone. Notably, these changes in fatty acid profiles were not associated with any gross skeletal phenotype. These results identify LPL as an important regulator of fatty acid transport to skeletal compartments and demonstrate an intricate functional link between systemic and skeletal fatty acid and glucose metabolism.
Collapse
|
317
|
Affiliation(s)
- Beate Lanske
- Harvard School of Dental Medicine, Boston, MA
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Clifford Rosen
- Harvard School of Dental Medicine, Boston, MA
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
318
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
319
|
Fairfield H, Rosen CJ, Reagan MR. Connecting Bone and Fat: The Potential Role for Sclerostin. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:114-121. [PMID: 28580233 PMCID: PMC5448707 DOI: 10.1007/s40610-017-0057-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sclerostin (SOST), a protein secreted from mature osteocytes in response to mechanical unloading and other stimuli, inhibits the osteogenic Wnt/β-catenin pathway in mesenchymal stem cells (MSCs) impeding their ability to differentiate into mineralizing osteoblasts. PURPOSE This review summarizes the crosstalk between adipose tissue and bone. It also reviews the origin, regulation, and role of SOST in osteogenesis and brings attention to an emerging role of this protein in the regulation of adipogenesis. RECENT FINDINGS Bone-derived molecules that drive MSC adipogenesis have not previously been identified, but recent findings suggest that SOST signaling may induce adipogenesis. In vivo SOST acts locally to induce changes in bone and, in vitro, increases adipogenesis in 3T3-L1 preadipocytes. SUMMARY SOST is able to induce adipogenesis in certain preadipocytes, however bone-specific studies are needed to determine the effect of local SOST concentrations in healthy and disease models on bone marrow adipose tissue.
Collapse
Affiliation(s)
- Heather Fairfield
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
| | - Clifford J. Rosen
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Michaela R. Reagan
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
320
|
Abstract
The adipokine adiponectin affects multiple target tissues and plays important roles in glucose metabolism and whole-body energy homeostasis. Circulating adiponectin levels in obese people are lower than in non-obese, and increased serum adiponectin is associated with weight loss. Numerous clinical studies have established that fat mass is positively related to bone mass, a relationship that is maintained by communication between the two tissues through hormones and cytokines. Since adiponectin levels inversely correspond to fat mass, its bone effects and its potential contribution to the relationship between fat and bone have been investigated. In clinical observational studies, adiponectin was found to be negatively associated with bone mineral density, suggesting it might be a negative regulator of bone metabolism. In order to identify the mechanisms that underlie the activity of adiponectin in bone, a large number of laboratory studies in vitro and in animal models of mice over-expressing or deficient of adiponectin have been carried out. Results of these studies are not entirely congruent, partly due to variation among experimental systems and partly due to the complex nature of adiponectin signaling, which involves a combination of multiple direct and indirect mechanisms.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - David S Musson
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
321
|
McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, Bone, and Myeloma: Contributions from the Microenvironment. Calcif Tissue Int 2017; 100:433-448. [PMID: 27343063 PMCID: PMC5396178 DOI: 10.1007/s00223-016-0162-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide (Podar et al. in Expert Opin Emerg Drugs 14:99-127, 2009). Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90 % of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes, and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies.
Collapse
Affiliation(s)
- Michelle M McDonald
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia.
| | - Heather Fairfield
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Carolyne Falank
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
322
|
Craft CS, Scheller EL. Evolution of the Marrow Adipose Tissue Microenvironment. Calcif Tissue Int 2017; 100:461-475. [PMID: 27364342 PMCID: PMC5618436 DOI: 10.1007/s00223-016-0168-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022]
Abstract
Adipocytes of the marrow adipose tissue (MAT) are distributed throughout the skeleton, are embedded in extracellular matrix, and are surrounded by cells of the hematopoietic and osteogenic lineages. MAT is a persistent component of the skeletal microenvironment and has the potential to impact local processes including bone accrual and hematopoietic function. In this review, we discuss the initial evolution of MAT in vertebrate lineages while emphasizing comparisons to the development of peripheral adipose, hematopoietic, and skeletal tissues. We then apply these evolutionary clues to define putative functions of MAT. Lastly, we explore the regulation of MAT by two major components of its microenvironment, the extracellular matrix and the nerves embedded within. The extracellular matrix and nerves contribute to both rapid and continuous modification of the MAT niche and may help to explain evolutionary conserved mechanisms underlying the coordinated regulation of blood, bone, and MAT within the skeleton.
Collapse
Affiliation(s)
- Clarissa S Craft
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA
| | - Erica L Scheller
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA.
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA.
| |
Collapse
|
323
|
Yu NY, Wolfson T, Middleton MS, Hamilton G, Gamst A, Angeles JE, Schwimmer JB, Sirlin CB. Bone marrow fat content is correlated with hepatic fat content in paediatric non-alcoholic fatty liver disease. Clin Radiol 2017; 72:425.e9-425.e14. [PMID: 28063601 PMCID: PMC5376517 DOI: 10.1016/j.crad.2016.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 10/03/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
AIM To investigate the relationship between bone marrow fat content and hepatic fat content in children with known or suspected non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS This was an institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant, cross-sectional, prospective analysis of data collected between October 2010 to March 2013 in 125 children with known or suspected NAFLD. Written informed consent was obtained for same-day research magnetic resonance imaging (MRI) of the lumbar spine, liver, and abdominal adiposity. Lumbar spine bone marrow proton density fat fraction (PDFF) and hepatic PDFF were estimated using complex-based MRI (C-MRI) techniques and magnitude-based MRI (M-MRI), respectively. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) were quantified using high-resolution MRI. All images were acquired by two MRI technologists. Hepatic M-MRI images were analysed by an image analyst; all other images were analysed by a single investigator. The relationship between lumbar spine bone marrow PDFF and hepatic PDFF was assessed with and without adjusting for the presence of covariates using correlation and regression analysis. RESULTS Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD prior to adjusting for covariates (r=0.33, p=0.0002). Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD (r=0.24, p=0.0079) after adjusting for age, sex, body mass index z-score, VAT, and SCAT in a multivariable regression analysis. CONCLUSION Bone marrow fat content is positively associated with hepatic fat content in children with known or suspected NAFLD. Further research is needed to confirm these results and understand their clinical and biological implications.
Collapse
Affiliation(s)
- N Y Yu
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - T Wolfson
- Computational and Applied Statistics Laboratory, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - M S Middleton
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - G Hamilton
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - A Gamst
- Computational and Applied Statistics Laboratory, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - J E Angeles
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - J B Schwimmer
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, USA; Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - C B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
324
|
Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA. Marrow adipose tissue composition in adults with morbid obesity. Bone 2017; 97:38-42. [PMID: 28043896 PMCID: PMC5367964 DOI: 10.1016/j.bone.2016.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have increased fracture risk despite normal or increased bone mineral density (BMD). Elevations in marrow adipose tissue (MAT) and declines in MAT unsaturation are both associated with increased skeletal fragility. The objective of our study was to characterize the quantity and composition of MAT in adults with morbid obesity and T2DM, and to evaluate determinants of MAT. We studied 21 adults with morbid obesity prior to bariatric surgery, 8 of whom had T2DM. All subjects underwent 1H-MR spectroscopy of the lumbar spine and femur for assessment of MAT and dual-energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT) of the lumbar spine and hip for assessment of areal BMD (aBMD) and volumetric BMD (vBMD). Visceral (VAT) and subcutaneous adipose tissue (SAT) were quantified by CT at L1-L2. Subjects with T2DM had higher vBMD of the femoral neck and higher total MAT at the lumbar spine and femoral metaphysis compared to non-diabetic controls (p≤0.04). Lipid unsaturation index (UI) was significantly lower at the femoral diaphysis in T2DM (p=0.03). Within the entire cohort, HbA1c was positively associated with MAT (p≤0.03), and age was associated with higher MAT and lower MAT unsaturation (p≤0.05). Lumbar spine vBMD was inversely associated with lumbar spine MAT (p=0.04). There was an inverse association between SAT and diaphyseal MAT (p<0.05) while there were no associations with VAT. Subjects with morbid obesity and T2DM have higher MAT with a lower proportion of unsaturated lipids, despite higher femoral neck vBMD. MAT is positively associated with age and HbA1c, and inversely associated with vBMD, suggesting that MAT may serve as an imaging biomarker of skeletal health and metabolic risk.
Collapse
Affiliation(s)
- Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Logan Greenblatt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Eajazi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
325
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
326
|
Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schürmann A, Saraiva LR, Schulz TJ. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell 2017; 20:771-784.e6. [PMID: 28330582 PMCID: PMC5459794 DOI: 10.1016/j.stem.2017.02.009] [Citation(s) in RCA: 586] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Aging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Antonio Scialdone
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SA, UK; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SD, UK
| | - Antonia Graja
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Sabrina Gohlke
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Anne-Marie Jank
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Carla Bocian
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Lena Woelk
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Hua Fan
- Charité Universitätsmedizin, Berlin 10117, Germany
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SA, UK; Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Luis R Saraiva
- Sidra Medical and Research Center, Qatar Foundation, P.O. Box 26999, Doha, Qatar
| | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
327
|
Sulston RJ, Cawthorn WP. Bone marrow adipose tissue as an endocrine organ: close to the bone? Horm Mol Biol Clin Investig 2017; 28:21-38. [PMID: 27149203 DOI: 10.1515/hmbci-2016-0012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) is a major endocrine organ, secreting a diverse range of hormones, lipid species, cytokines and other factors to exert diverse local and systemic effects. These secreted products, known as 'adipokines', contribute extensively to WAT's impact on physiology and disease. Adipocytes also exist in the bone marrow (BM), but unlike WAT, study of this bone marrow adipose tissue (MAT) has been relatively limited. We recently discovered that MAT contributes to circulating adiponectin, an adipokine that mediates cardiometabolic benefits. Moreover, we found that MAT expansion exerts systemic effects. Together, these observations identify MAT as an endocrine organ. Additional studies are revealing further secretory functions of MAT, including production of other adipokines, cytokines and lipids that exert local effects within bone. These observations suggest that, like WAT, MAT has secretory functions with diverse potential effects, both locally and systemically. A major limitation is that these findings are often based on in vitro approaches that may not faithfully recapitulate the characteristics and functions of BM adipocytes in vivo. This underscores the need to develop improved methods for in vivo analysis of MAT function, including more robust transgenic models for MAT targeting, and continued development of techniques for non-invasive analysis of MAT quantity and quality in humans. Although many aspects of MAT formation and function remain poorly understood, MAT is now attracting increasing research focus; hence, there is much promise for further advances in our understanding of MAT as an endocrine organ, and how MAT impacts human health and disease.
Collapse
|
328
|
Fan Y, Hanai JI, Le PT, Bi R, Maridas D, DeMambro V, Figueroa CA, Kir S, Zhou X, Mannstadt M, Baron R, Bronson RT, Horowitz MC, Wu JY, Bilezikian JP, Dempster DW, Rosen CJ, Lanske B. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab 2017; 25:661-672. [PMID: 28162969 PMCID: PMC5342925 DOI: 10.1016/j.cmet.2017.01.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 02/05/2023]
Abstract
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.
Collapse
Affiliation(s)
- Yi Fan
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Ichi Hanai
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Phuong T Le
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David Maridas
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | - Serkan Kir
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John P Bilezikian
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David W Dempster
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA.
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
329
|
Abstract
Marrow adipose tissue (MAT) is a recently identified endocrine organ capable of modulating a host of responses. Given its intimate proximity to the bone microenvironment, the impact marrow adipocytes exert on bone has attracted much interest and scientific inquiry. Although many questions and controversies remain about marrow adipocytes, multiple conditions/disease states in which alterations occur have provided clues about their function. The consensus is that MAT is associated inversely with bone density and quality. While further investigation is warranted, MAT has clearly been demonstrated as an active dynamic depot that contributes to bone turnover and overall metabolic homeostasis.
Collapse
Affiliation(s)
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| |
Collapse
|
330
|
Gelatinous Marrow Transformation Associated with Imatinib: Case Report and Literature Review. Case Rep Hematol 2017; 2017:1950724. [PMID: 28133556 PMCID: PMC5241459 DOI: 10.1155/2017/1950724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
Gelatinous marrow transformation (GMT) is a rare condition observed in severe illness or malnutrition, in which the bone marrow contains amorphous “gelatinous” extracellular material, and histopathology demonstrates varied degrees of fat cell atrophy and loss of hematopoietic elements. An association of GMT with imatinib use in chronic myeloid leukemia (CML) has been reported recently. The objective of this study is to describe a case of GMT associated with imatinib use and review the existing similar cases in the literature to identify epidemiological patterns and potential imatinib-induced mechanisms leading to gelatinous conversion.
Collapse
|
331
|
Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K, Mogushi K, Shikami M, Ruvolo V, Ishizawa J, Hail N, Kazuno S, Igarashi M, Matsushita H, Yamanaka Y, Arai H, Nagaoka I, Miida T, Hayashizaki Y, Konopleva M, Andreeff M. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. Cancer Res 2017; 77:1453-1464. [PMID: 28108519 DOI: 10.1158/0008-5472.can-16-1645] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023]
Abstract
Leukemia cells in the bone marrow must meet the biochemical demands of increased cell proliferation and also survive by continually adapting to fluctuations in nutrient and oxygen availability. Thus, targeting metabolic abnormalities in leukemia cells located in the bone marrow is a novel therapeutic approach. In this study, we investigated the metabolic role of bone marrow adipocytes in supporting the growth of leukemic blasts. Prevention of nutrient starvation-induced apoptosis of leukemic cells by bone marrow adipocytes, as well as the metabolic and molecular mechanisms involved in this process, was investigated using various analytic techniques. In acute monocytic leukemia (AMoL) cells, the prevention of spontaneous apoptosis by bone marrow adipocytes was associated with an increase in fatty acid β-oxidation (FAO) along with the upregulation of PPARγ, FABP4, CD36, and BCL2 genes. In AMoL cells, bone marrow adipocyte coculture increased adiponectin receptor gene expression and its downstream target stress response kinase AMPK, p38 MAPK with autophagy activation, and upregulated antiapoptotic chaperone HSPs. Inhibition of FAO disrupted metabolic homeostasis, increased reactive oxygen species production, and induced the integrated stress response mediator ATF4 and apoptosis in AMoL cells cocultured with bone marrow adipocytes. Our results suggest that bone marrow adipocytes support AMoL cell survival by regulating their metabolic energy balance and that the disruption of FAO in bone marrow adipocytes may be an alternative, novel therapeutic strategy for AMoL therapy. Cancer Res; 77(6); 1453-64. ©2017 AACR.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan.,Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Next Generation Hematology Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinichi Yamamoto
- Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kaori Saitoh
- Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumasa Sekihara
- Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Norikazu Monma
- Center for Information Biology, National Institute of Genetics, Sizuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Sizuoka, Japan
| | - Kaoru Mogushi
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masato Shikami
- Department of Hematology, Aichi Medical University, Aichi, Japan
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Numsen Hail
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saiko Kazuno
- Division of Proteomics and BioMolecular Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yasunari Yamanaka
- Preventive Medicine and Diagnosis Innovation Program, RIKEN, Kanagawa, Japan
| | - Hajime Arai
- Division of Proteomics and BioMolecular Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
332
|
Li G, Xu Z, Zhuang A, Chang S, Hou L, Chen Y, Polat M, Wu D. Magnetic Resonance Spectroscopy-Detected Change in Marrow Adiposity Is Strongly Correlated to Postmenopausal Breast Cancer Risk. Clin Breast Cancer 2017; 17:239-244. [PMID: 28188108 DOI: 10.1016/j.clbc.2017.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine whether marrow fat fraction (FF) is correlated with postmenopausal breast cancer risk and clinicopathological characteristics of breast cancer. METHODS Fifty-six patients with newly diagnosed and histologically confirmed postmenopausal breast cancer and 56 healthy controls underwent serologic test and magnetic resonance spectroscopy-based FF measurements. Data were analyzed by logistic multivariate regression models to determine the independent predictors of breast cancer risk and clinicopathological characters of breast cancer. RESULTS Patients with breast cancer had higher FF than that of the controls. Marrow FF showed positive association with serum leptin levels (r = 0.607, P < .001) in the cases, but no relationship was found in the controls. In the univariate analysis, both levels of leptin and marrow FF were significantly associated with breast cancer risk and clinicopathological characteristics of breast cancer. In the multivariable model with adjustment for established breast cancer risk factors, serum leptin was a significant predictor of breast cancer risk (OR 1.746; 95% CI, 1.226-2.556) and clinicopathological characteristics of breast cancer including TNM, tumor size, lymph node status, and histological grade (OR 1.461-1.695); but when marrow FF was additionally added to the regression model, marrow FF but not leptin levels was observed to be an independent risk factor for breast cancer risk (OR 1.940; 95% CI, 1.306-2.910) and clinicopathological characteristics of breast cancer (OR 1.770-1.903). CONCLUSION Marrow adiposity is a predictor of postmenopausal breast cancer risk and clinicopathological characteristics of breast cancer.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai, China
| | - Alex Zhuang
- Department of Radiology, Wayne State University, Detroit, MI
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingmi Hou
- Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Yongsheng Chen
- Department of Radiology, Wayne State University, Detroit, MI
| | - Maki Polat
- School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| |
Collapse
|
333
|
Singer K, Lumeng CN. The initiation of metabolic inflammation in childhood obesity. J Clin Invest 2017; 127:65-73. [PMID: 28045405 DOI: 10.1172/jci88882] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An understanding of the events that initiate metabolic inflammation (metainflammation) can support the identification of targets for preventing metabolic disease and its negative effects on health. There is ample evidence demonstrating that the initiating events in obesity-induced inflammation start early in childhood. This has significant implications on our understanding of how early life events in childhood influence adult disease. In this Review we frame the initiating events of metainflammation in the context of child development and discuss what this reveals about the mechanisms by which this unique form of chronic inflammation is initiated and sustained into adulthood.
Collapse
|
334
|
Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 2017; 129:1320-1332. [PMID: 28049638 DOI: 10.1182/blood-2016-08-734798] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Despite currently available therapies, most patients diagnosed with acute myeloid leukemia (AML) die of their disease. Tumor-host interactions are critical for the survival and proliferation of cancer cells; accordingly, we hypothesize that specific targeting of the tumor microenvironment may constitute an alternative or additional strategy to conventional tumor-directed chemotherapy. Because adipocytes have been shown to promote breast and prostate cancer proliferation, and because the bone marrow adipose tissue accounts for up to 70% of bone marrow volume in adult humans, we examined the adipocyte-leukemia cell interactions to determine if they are essential for the growth and survival of AML. Using in vivo and in vitro models of AML, we show that bone marrow adipocytes from the tumor microenvironment support the survival and proliferation of malignant cells from patients with AML. We show that AML blasts alter metabolic processes in adipocytes to induce phosphorylation of hormone-sensitive lipase and consequently activate lipolysis, which then enables the transfer of fatty acids from adipocytes to AML blasts. In addition, we report that fatty acid binding protein-4 (FABP4) messenger RNA is upregulated in adipocytes and AML when in coculture. FABP4 inhibition using FABP4 short hairpin RNA knockdown or a small molecule inhibitor prevents AML proliferation on adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA in an AML patient-derived xenograft model improves survival. Here, we report the first description of AML programming bone marrow adipocytes to generate a protumoral microenvironment.
Collapse
|
335
|
Jasinski-Bergner S, Büttner M, Quandt D, Seliger B, Kielstein H. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin. Obes Facts 2017; 10:569-583. [PMID: 29207395 PMCID: PMC5836243 DOI: 10.1159/000481732] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adiponectin is secreted by adipose tissue and exerts high abundance and an anti-inflammatory potential. However, only little information exists about the expression profiles of adiponectin and its recently identified receptor CDH13 in non-tumorous human tissues and their association to clinical parameters. METHODS The expression levels of adiponectin and CDH13 were analyzed in heart, liver, kidney, spleen, skin, blood vessels, peripheral nerve and bone marrow of 21 human body donors, in 12 human cell lines, and in purified immune effector cell populations of healthy blood donors by immunohistochemistry, Western-blot, and semi-quantitative PCR. The obtained results were then correlated to clinical parameters, including age, sex and known diseases like cardiovascular and renal diseases. RESULTS Adiponectin expression in renal corpuscles was significantly higher in humans with known renal diseases. A coordinated expression of adiponectin and CDH13 was observed in the myocard. High levels of adiponectin could be detected in the bone marrow, in certain lymphoid tumor cell lines and in purified immune effector cell populations of healthy donors, in particular in cytotoxic T cells. CONCLUSION For the first time, the expression profiles of adiponectin and CDH13 are analyzed in many human tissues in correlation to each other and to clinical parameters.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Maximilian Büttner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- *Prof. Dr. Heike Kielstein, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Große Steinstraße 52, 06108 Halle (Saale), Germanye,
| |
Collapse
|
336
|
de Araújo IM, Salmon CEG, Nahas AK, Nogueira-Barbosa MH, Elias J, de Paula FJA. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur J Endocrinol 2017; 176:21-30. [PMID: 27707768 DOI: 10.1530/eje-16-0448] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/29/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To assess the association of bone mass and marrow adipose tissue (MAT) with other fat depots, insulin resistance, bone remodeling markers, adipokines and glucose control in type 2 diabetes and obesity. DESIGN AND METHODS The study groups comprised 24 controls (C), 26 obese (O) and 28 type 2 diabetes. Dual-energy X-ray absorptiometry was used to determine bone mineral density (BMD). Blood samples were collected for biochemical measurements. 1H Magnetic resonance spectroscopy was used to assess MAT in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids in visceral (VAT) and subcutaneous adipose tissue. Regression analysis models were used to test the association between parameters. RESULTS At all sites tested, BMD was higher in type 2 diabetes than in O and C subjects. The C group showed lower VAT values than the type 2 diabetes group and lower IHL than the O and type 2 diabetes groups. However, MAT was similar in the 3 groups. Osteocalcin and C-terminal telopeptide of type 1 collagen were lower in type 2 diabetes than those in C and O subjects. Moreover, at all sites, BMD was negatively associated with osteocalcin. No association was observed between MAT and VAT. No relationship was observed among MAT and HOMA-IR, leptin, adiponectin or Pref-1, but MAT was positively associated with glycated hemoglobin. CONCLUSIONS MAT is not a niche for fat accumulation under conditions of energy surplus and type 2 diabetes, also is not associated with VAT or insulin resistance. MAT is associated with glycated hemoglobin.
Collapse
Affiliation(s)
| | - Carlos E G Salmon
- Department of PhysicsFaculty of Philosophy, Sciences and Arts of Ribeirao Preto
| | - Andressa K Nahas
- Department of EpidemiologySchool of Public Health, USP, Ribeirão Preto, Sao Paulo,, Brazil
| | | | - Jorge Elias
- Department of Internal MedicineRibeirao Preto Medical School
| | | |
Collapse
|
337
|
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow Adipose Tissue: Skeletal Location, Sexual Dimorphism, and Response to Sex Steroid Deficiency. Front Endocrinol (Lausanne) 2017; 8:188. [PMID: 28824548 PMCID: PMC5543291 DOI: 10.3389/fendo.2017.00188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023] Open
Abstract
Marrow adipose tissue (MAT) is unique with respect to origin, metabolism, and function. MAT is characterized with high heterogeneity which correlates with skeletal location and bone metabolism. This fat depot is also highly sensitive to various hormonal, environmental, and pharmacologic cues to which it responds with changes in volume and/or metabolic phenotype. We have demonstrated previously that MAT has characteristics of both white (WAT) and brown (BAT)-like or beige adipose tissue, and that beige phenotype is attenuated with aging and in diabetes. Here, we extended our analysis by comparing MAT phenotype in different locations within a tibia bone of mature C57BL/6 mice and with respect to the presence of sex steroids in males and females. We report that MAT juxtaposed to trabecular bone of proximal tibia (pMAT) is characterized by elevated expression of beige fat markers including Ucp1, HoxC9, Prdm16, Tbx1, and Dio2, when compared with MAT located in distal tibia (dMAT). There is also a difference in tissue organization with adipocytes in proximal tibia being dispersed between trabeculae, while adipocytes in distal tibia being densely packed. Higher trabecular bone mass (BV/TV) in males correlates with lower pMAT volume and higher expression of beige markers in the same location, when compared with females. However, there is no sexual divergence in the volume and transcriptional profile of dMAT. A removal of ovaries in females resulted in decreased cortical bone mass and increased volume of both pMAT and dMAT, as well as volume of gonadal WAT (gWAT). Increase in pMAT volume was associated with marked increase in Fabp4 and Adiponectin expression and relative decrease in beige fat gene markers. A removal of testes in males resulted in cortical and trabecular bone loss and the tendency to increased volume of both pMAT and dMAT, despite a loss of gWAT. Orchiectomy did not affect the expression of white and beige adipocyte gene markers. In conclusion, expression profile of beige adipocyte gene markers correlates with skeletal location of active bone remodeling and higher BV/TV, however bone loss resulted from sex steroid deficiency is not proportional to MAT expansion at the same skeletal location.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
- *Correspondence: Beata Lecka-Czernik,
| | - Lance A. Stechschulte
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Piotr J. Czernik
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shermel B. Sherman
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shilong Huang
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Amrei Krings
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| |
Collapse
|
338
|
Alund AW, Mercer KE, Pulliam CF, Suva LJ, Chen JR, Badger TM, Ronis MJJ. Partial Protection by Dietary Antioxidants Against Ethanol-Induced Osteopenia and Changes in Bone Morphology in Female Mice. Alcohol Clin Exp Res 2016; 41:46-56. [PMID: 27987315 DOI: 10.1111/acer.13284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic alcohol consumption leads to increased fracture risk and an elevated risk of osteoporosis by decreasing bone accrual through increasing osteoclast activity and decreasing osteoblast activity. We have shown that this mechanism involves the generation of reactive oxygen species (ROS) produced by NADPH oxidases. It was hypothesized that different dietary antioxidants, N-acetyl cysteine (NAC; 1.2 mg/kg/d), and α-tocopherol (Vit.E; 60 mg/kg/d) would be able to attenuate the NADPH oxidase-mediated ROS effects on bone due to chronic alcohol intake. METHODS To study the effects of these antioxidants, female mice received a Lieber-DeCarli liquid diet containing ethanol (EtOH) with or without additional antioxidant for 8 weeks. RESULTS Tibias displayed decreased cortical bone mineral density in both the EtOH and EtOH + antioxidant groups compared to pair-fed (PF) and PF + antioxidant groups (p < 0.05). However, there was significant protection from trabecular bone loss in mice fed either antioxidant (p < 0.05). Microcomputed tomography analysis demonstrated a significant decrease in bone volume (bone volume/tissue volume) and trabecular number (p < 0.05), along with a significant increase in trabecular separation in the EtOH compared to PF (p < 0.05). In contrast, the EtOH + NAC and EtOH + Vit.E did not statistically differ from their respective PF controls. Ex vivo histologic sections of tibias were stained for nitrotyrosine, an indicator of intracellular damage by ROS, and tibias from mice fed EtOH exhibited significantly more staining than PF controls. EtOH treatment significantly increased the number of marrow adipocytes per mm as well as mRNA expression of aP2, an adipocyte marker in bone. Only NAC was able to reduce the number of marrow adipocytes to PF levels. EtOH-fed mice exhibited reduced bone length (p < 0.05) and had a reduced number of proliferating chondrocytes within the growth plate. NAC and Vit.E prevented this (p < 0.05). CONCLUSIONS These data show that alcohol's pathological effects on bone extend beyond decreasing bone mass and suggest a partial protective effect of the dietary antioxidants NAC and Vit.E at these doses with regard to alcohol effects on bone turnover and bone morphology.
Collapse
Affiliation(s)
- Alexander W Alund
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Larry J Suva
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| |
Collapse
|
339
|
Abstract
PURPOSE OF REVIEW This study aims to describe bone marrow fat changes in diabetes and to discuss the potential role of marrow fat in skeletal fragility. RECENT FINDINGS Advances in non-invasive imaging have facilitated marrow fat research in humans. In contrast to animal studies which clearly demonstrate higher levels of marrow fat in diabetes, human studies have shown smaller and less certain differences. Marrow fat has been reported to correlate with A1c, and there may be a distinct marrow lipid saturation profile in diabetes. Greater marrow fat is associated with impaired skeletal health. Marrow fat may be a mediator of skeletal fragility in diabetes. Circulating lipids, growth hormone alterations, visceral adiposity, and hypoleptinemia have been associated with greater marrow fat and may represent potential mechanisms for the putative effects of diabetes on marrow fat, although other factors likely contribute. Additional research is needed to further define the role of marrow fat in diabetic skeletal fragility and to determine whether marrow fat is a therapeutic target.
Collapse
Affiliation(s)
- Tiffany Y Kim
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Anne L Schafer
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
340
|
Ge C, Wang Z, Zhao G, Li B, Liao J, Sun H, Franceschi RT. Discoidin Receptor 2 Controls Bone Formation and Marrow Adipogenesis. J Bone Miner Res 2016; 31:2193-2203. [PMID: 27341689 PMCID: PMC5135576 DOI: 10.1002/jbmr.2893] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
Abstract
Cell-extracellular matrix (ECM) interactions play major roles in controlling progenitor cell fate and differentiation. The receptor tyrosine kinase, discoidin domain receptor 2 (DDR2), is an important mediator of interactions between cells and fibrillar collagens. DDR2 signals through both ERK1/2 and p38 MAP kinase, which stimulate osteoblast differentiation and bone formation. Here we show that DDR2 is critical for skeletal development and differentiation of marrow progenitor cells to osteoblasts while suppressing marrow adipogenesis. Smallie mice (Ddr2slie/slie ), which contain a nonfunctional Ddr2 allele, have multiple skeletal defects. A progressive decrease in tibial trabecular bone volume/total volume (BV/TV) was observed when wild-type (WT), Ddr2wt/slie , and Ddr2slie/slie mice were compared. These changes were associated with reduced trabecular number (Tb.N) and trabecular thickness (Tb.Th) and increased trabecular spacing (Tb.Sp) in both males and females, but reduced cortical thickness only in Ddr2slie/slie females. Bone changes were attributed to decreased bone formation rather than increased osteoclast activity. Significantly, marrow fat and adipocyte-specific mRNA expression were significantly elevated in Ddr2slie/slie animals. Additional skeletal defects include widened calvarial sutures and reduced vertebral trabecular bone. To examine the role of DDR2 signaling in cell differentiation, bone marrow stromal cells (BMSCs) were grown under osteogenic and adipogenic conditions. Ddr2slie/slie cells exhibited defective osteoblast differentiation and accelerated adipogenesis. Changes in differentiation were related to activity of runt-related transcription factor 2 (RUNX2) and PPARγ, transcription factors that are both controlled by MAPK-dependent phosphorylation. Specifically, the defective osteoblast differentiation in calvarial cells from Ddr2slie/slie mice was associated with reduced ERK/MAP kinase and RUNX2-S319 phosphorylation and could be rescued with a constitutively active phosphomimetic RUNX2 mutant. Also, DDR2 was shown to increase RUNX2-S319 phosphorylation and transcriptional activity while also increasing PPARγ-S112 phosphorylation, but reducing its activity. DDR2 is, therefore, important for maintenance of osteoblast activity and suppression of marrow adipogenesis in vivo and these actions are related to changes in MAPK-dependent RUNX2 and PPARγ phosphorylation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
| | - Zhengyan Wang
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
| | - Guisheng Zhao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
| | - Binbin Li
- Department of Oral Pathology, Peking University School of Stomatology, Beijing 10081, P.R.China
| | - Jinhui Liao
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
| | - Hanshi Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109-0600
| |
Collapse
|
341
|
Hardouin P, Marie PJ, Rosen CJ. New insights into bone marrow adipocytes: Report from the First European Meeting on Bone Marrow Adiposity (BMA 2015). Bone 2016; 93:212-215. [PMID: 26608519 DOI: 10.1016/j.bone.2015.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Pierre Hardouin
- PMOI, Université de Lille and Université du Littoral Côte d'Opale, Boulogne sur Mer, France
| | - Pierre J Marie
- UMR-1132 INSERM and Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Clifford J Rosen
- Maine Medical Center Research Institute Scarborough, ME 04074, USA
| |
Collapse
|
342
|
Li G, Xu Z, Hou L, Li X, Li X, Yuan W, Polat M, Chang S. Differential effects of bisphenol A diglicydyl ether on bone quality and marrow adiposity in ovary-intact and ovariectomized rats. Am J Physiol Endocrinol Metab 2016; 311:E922-E927. [PMID: 27756728 DOI: 10.1152/ajpendo.00267.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
Bisphenol A diglycidyl ether (BADGE), a PPARγ2 antagonist, has been shown to inhibit marrow adipogenesis and promote bone formation in intact animals. We investigated the impact of BADGE on a new and more clinically relevant physiological model, the ovariectomized (OVX) rat model. Forty female Wistar rats were divided into four treatment groups for 12 wk (n = 10/group): sham+vehicle, sham+BADGE, OVX+vehicle, and OVX+BADGE. Postmortem analyses included MRI, micro-CT, serological test, histomorphometry, biomechanical tests, RT-PCR, and Western blot. Overall, OVX induced a sequential marrow fat expansion accompanied by bone deterioration. Compared with OVX controls, BADGE reduced fat fraction of the distal femur by 36.3%, adipocyte density by 33.0%, adipocyte size by 28.6%, adipocyte volume percentage by 57.8%, and adipogenic markers PPARγ2 and C/EBPα by ∼50% in OVX rats. Similar results were observed in sham rats vs. vehicle. BADGE could promote bone quality in sham rats; however, BADGE did not significantly improve trabecular microarchitecture, biomechanical strength, and dynamic histomorphometric parameters except for trabecular separation in OVX rats. We concluded that early BADGE treatment at a dose of 30 mg/kg attenuates marrow adiposity in ovary-intact and OVX rats and stimulates bone formation in ovary-intact rats but does not significantly rescue bone quality in OVX rats.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai, China
| | - Lingmi Hou
- Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Gerontology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Maki Polat
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
343
|
Chkourko Gusky H, Diedrich J, MacDougald OA, Podgorski I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes Rev 2016; 17:1015-1029. [PMID: 27432523 PMCID: PMC5056818 DOI: 10.1111/obr.12450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the metastatic niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells.
Collapse
Affiliation(s)
- H Chkourko Gusky
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - O A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - I Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
344
|
Naot D, Watson M, Callon KE, Tuari D, Musson DS, Choi AJ, Sreenivasan D, Fernandez J, Tu PT, Dickinson M, Gamble GD, Grey A, Cornish J. Reduced Bone Density and Cortical Bone Indices in Female Adiponectin-Knockout Mice. Endocrinology 2016; 157:3550-61. [PMID: 27384302 DOI: 10.1210/en.2016-1059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A positive association between fat and bone mass is maintained through a network of signaling molecules. Clinical studies found that the circulating levels of adiponectin, a peptide secreted from adipocytes, are inversely related to visceral fat mass and bone mineral density, and it has been suggested that adiponectin contributes to the coupling between fat and bone. Our study tested the hypothesis that adiponectin affects bone tissue by comparing the bone phenotype of wild-type and adiponectin-knockout (APN-KO) female mice between the ages of 8-37 weeks. Using a longitudinal study design, we determined body composition and bone density using dual energy x-ray absorptiometry. In parallel, groups of animals were killed at different ages and bone properties were analyzed by microcomputed tomography, dynamic histomorphometry, 3-point bending test, nanoindentation, and computational modelling. APN-KO mice had reduced body fat and decreased whole-skeleton bone mineral density. Microcomputed tomography analysis identified reduced cortical area fraction and average cortical thickness in APN-KO mice in all the age groups and reduced trabecular bone volume fraction only in young APN-KO mice. There were no major differences in bone strength and material properties between the 2 groups. Taken together, our results demonstrate a positive effect of adiponectin on bone geometry and density in our mouse model. Assuming adiponectin has similar effects in humans, the low circulating levels of adiponectin associated with increased fat mass are unlikely to contribute to the parallel increase in bone mass. Therefore, adiponectin does not appear to play a role in the coupling between fat and bone tissue.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Maureen Watson
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Karen E Callon
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Donna Tuari
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - David S Musson
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Ally J Choi
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Dharshini Sreenivasan
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Justin Fernandez
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Pao Ting Tu
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Michelle Dickinson
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Greg D Gamble
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Andrew Grey
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine (D.N., M.W., K.E.C., D.T., D.S.M., A.J.C., G.D.G., A.G., J.C.), University of Auckland, Auckland 1142, New Zealand; Auckland Bioengineering Institute (D.S., J.F.), University of Auckland, Auckland 1142, New Zealand; Department of Engineering Science (J.F.), University of Auckland, Auckland 1142, New Zealand; and Department of Chemical and Materials Engineering (P.T.T., M.D.), University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
345
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
346
|
Scheller EL, Burr AA, MacDougald OA, Cawthorn WP. Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 2016; 5:251-69. [PMID: 27617171 PMCID: PMC5014002 DOI: 10.1080/21623945.2016.1149269] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 02/09/2023] Open
Abstract
The adipocyte-derived hormone adiponectin mediates beneficial cardiometabolic effects, and hypoadiponectinemia is a biomarker for increased metabolic and cardiovascular risk. Indeed, circulating adiponectin decreases in obesity and insulin-resistance, likely because of impaired production from white adipose tissue (WAT). Conversely, lean states such as caloric restriction (CR) are characterized by hyperadiponectinemia, even without increased adiponectin production from WAT. The reasons underlying this paradox have remained elusive, but our recent research suggests that CR-associated hyperadiponectinemia derives from an unexpected source: bone marrow adipose tissue (MAT). Herein, we elaborate on this surprising discovery, including further discussion of potential mechanisms influencing adiponectin production from MAT; additional evidence both for and against our conclusions; and observations suggesting that the relationship between MAT and adiponectin might extend beyond CR. While many questions remain, the burgeoning study of MAT promises to reveal further key insights into MAT biology, both as a source of adiponectin and beyond.
Collapse
|
347
|
Giralt M, Cereijo R, Villarroya F. Adipokines and the Endocrine Role of Adipose Tissues. Handb Exp Pharmacol 2016; 233:265-82. [PMID: 25903415 DOI: 10.1007/164_2015_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.
Collapse
Affiliation(s)
- Marta Giralt
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| |
Collapse
|
348
|
Sawamoto R, Nozaki T, Furukawa T, Tanahashi T, Morita C, Hata T, Nakashima M, Komaki G, Sudo N. A change in objective sleep duration is associated with a change in the serum adiponectin level of women with overweight or obesity undergoing weight loss intervention. Obes Sci Pract 2016; 2:180-188. [PMID: 27812383 PMCID: PMC5069573 DOI: 10.1002/osp4.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although the serum adiponectin level is inversely correlated to body mass index and closely associated with obesity and related diseases, neither the impact of weight loss on the adiponectin level nor other factors that might influence the adiponectin level during weight loss intervention are well documented. OBJECTIVE The objective of the study is to assess the change in the serum adiponectin level during weight loss intervention and to determine if sleep parameters affect the serum adiponectin level. METHODS Ninety women with overweight or obesity aged 25 to 65 years completed a 7-month cognitive behavioural therapy based weight loss intervention that included dieting, exercise and stress management. Serum adiponectin level, body fat percent, symptoms of depression and anxiety and objective sleep parameters, assessed by actigraphy, were measured at baseline and at the end of the intervention. RESULTS The serum adiponectin level was significantly increased after the weight loss intervention (P < 0.001). In a multiple regression analysis, the change of the adiponectin level was positively associated with the magnitude of body fat loss (β = -0.317, P < 0.001) and an increase of sleep minutes (β = 0.210, P = 0.043). CONCLUSION An increase in objective sleep duration was related to a significantly increased serum adiponectin level independently of the change of body fat during the weight loss intervention.
Collapse
Affiliation(s)
- R Sawamoto
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T Nozaki
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T Furukawa
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T Tanahashi
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - C Morita
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - M Nakashima
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - G Komaki
- School of Health Sciences Fukuoka International University of Health and Welfare Fukuoka Japan
| | - N Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
349
|
Devlin MJ, Brooks DJ, Conlon C, Vliet MV, Louis L, Rosen CJ, Bouxsein ML. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice. J Endocrinol 2016; 229:295-306. [PMID: 27340200 PMCID: PMC5171226 DOI: 10.1530/joe-15-0473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
Starvation induces low bone mass and high bone marrow adiposity in humans, but the underlying mechanisms are poorly understood. The adipokine leptin falls in starvation, suggesting that hypoleptinemia may be a link between negative energy balance, bone marrow fat accumulation, and impaired skeletal acquisition. In that case, treating mice with leptin during caloric restriction (CR) should reduce marrow adipose tissue (MAT) and improve bone mass. To test this hypothesis, female C57Bl/6J mice were fed a 30% CR or normal (N) diet from 5 to 10 weeks of age, with daily injections of vehicle (VEH), 1mg/kg leptin (LEP1), or 2mg/kg leptin (LEP2) (N=6-8/group). Outcomes included body mass, body fat percentage, and whole-body bone mineral density (BMD) via peripheral dual-energy X-ray absorptiometry, cortical and trabecular microarchitecture via microcomputed tomography (μCT), and MAT volume via μCT of osmium tetroxide-stained bones. Overall, CR mice had lower body mass, body fat percentage, BMD, and cortical bone area fraction, but more connected trabeculae, vs N mice (P<0.05 for all). Most significantly, although MAT was elevated in CR vs N overall, leptin treatment blunted MAT formation in CR mice by 50% vs VEH (P<0.05 for both leptin doses). CR LEP2 mice weighed less vs CR VEH mice at 9-10 weeks of age (P<0.05), but leptin treatment did not affect body fat percentage, BMD, or bone microarchitecture within either diet. These data demonstrate that once daily leptin bolus during CR inhibits bone marrow adipose expansion without affecting bone mass acquisition, suggesting that leptin has distinct effects on starvation-induced bone marrow fat formation and skeletal acquisition.
Collapse
Affiliation(s)
- M J Devlin
- Department of AnthropologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - D J Brooks
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C Conlon
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - M van Vliet
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - L Louis
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C J Rosen
- Maine Medical Center Research InstituteScarborough, Maine, USA
| | - M L Bouxsein
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA Harvard Medical SchoolBoston, Massachusetts, USA
| |
Collapse
|
350
|
Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow Adipose Tissue: Trimming the Fat. Trends Endocrinol Metab 2016; 27:392-403. [PMID: 27094502 PMCID: PMC4875855 DOI: 10.1016/j.tem.2016.03.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and the development of bone metastases. The diversity of these functions highlights the breadth of the potential impact of MAT on health and disease.
Collapse
Affiliation(s)
- Erica L Scheller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO 63110, USA.
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aaron A Burr
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|