301
|
Billadeau DD, Burkhardt JK. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic 2006; 7:1451-60. [PMID: 16984404 PMCID: PMC1779662 DOI: 10.1111/j.1600-0854.2006.00491.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reorganization of actin cytoskeletal dynamics plays a critical role in controlling T-lymphocyte activation and effector functions. Interaction of T-cell receptors (TCR) with appropriate major histocompatibility complex-peptide complexes on antigen-presenting cells results in the activation of signaling cascades, leading to the accumulation of F-actin at the cell-cell contact site. This event is required for the formation and stabilization of the immune synapse (IS), a cellular structure essential for the modulation of T-cell responses. Analysis of actin cytoskeletal dynamics following engagement of the TCR has largely focused on the Arp2/3 regulator, WASp, because of its early identification and its association with human disease. However, recent studies have shown equally important roles for several additional actin regulatory proteins. In this review, we turn the spotlight on the expanding cast of actin regulatory proteins, which co-ordinate actin dynamics at the IS.
Collapse
Affiliation(s)
- Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
- *Corresponding author: Janis K. Burkhardt,
| |
Collapse
|
302
|
Durand CA, Westendorf J, Tse KWK, Gold MR. The Rap GTPases mediate CXCL13- and sphingosine1-phosphate-induced chemotaxis, adhesion, and Pyk2 tyrosine phosphorylation in B lymphocytes. Eur J Immunol 2006; 36:2235-49. [PMID: 16821235 DOI: 10.1002/eji.200535004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The localization of B cells to lymphoid organs where they can become activated and differentiate into antibody-secreting plasma cells is controlled by multiple chemoattractants that promote cell migration and integrin-mediated adhesion. CXCL13 and sphingosine 1-phosphate (S1P) are two important chemoattractants that control the trafficking of B cells. CXCL13 directs B lymphocytes to lymphoid follicles where they receive survival signals and, if activated, undergo a germinal center response. In contrast, S1P allows B cells and plasma cells to exit lymphoid organs and re-enter the circulation. The Rap1 GTPase is a key regulator of cell adhesion and cell migration in a number of systems. We now show that Rap activation is required for CXCL13 and S1P to induce B cell migration as well as adhesion to ICAM-1 and VCAM-1. We also show that Pyk2, a tyrosine kinase involved in cytoskeleton rearrangements and B cell migration, is a downstream target of both CXCL13 and S1P signaling and that Rap activation is important for CXCL13 and S1P to stimulate tyrosine phosphorylation of Pyk2, a modification that increases Pyk2 kinase activity. This suggests that the ability of CXCL13 and S1P to direct the trafficking and localization of B cells in vivo may be dependent on Rap activation.
Collapse
Affiliation(s)
- Caylib A Durand
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
303
|
Sixt M, Bauer M, Lämmermann T, Fässler R. Beta1 integrins: zip codes and signaling relay for blood cells. Curr Opin Cell Biol 2006; 18:482-90. [PMID: 16919433 DOI: 10.1016/j.ceb.2006.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/03/2006] [Indexed: 11/17/2022]
Abstract
At least eight of the twelve known members of the beta1 integrin family are expressed on hematopoietic cells. Among these, the VCAM-1 receptor alpha4beta1 has received most attention as a main factor mediating firm adhesion to the endothelium during blood cell extravasation. Therapeutic trials are ongoing into the use of antibodies and small molecule inhibitors to target this interaction and hence obtain anti-inflammatory effects. However, extravasation is only one possible process that is mediated by beta1 integrins and there is evidence that they also mediate leukocyte retention and positioning in the tissue, lymphocyte activation and possibly migration within the interstitium. Genetic mouse models where integrins are selectively deleted on blood cells have been used to investigate these functions and further studies will be invaluable to critically evaluate therapeutic trials.
Collapse
Affiliation(s)
- Michael Sixt
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | |
Collapse
|
304
|
Huelsmann S, Hepper C, Marchese D, Knöll C, Reuter R. The PDZ-GEF dizzy regulates cell shape of migrating macrophages via Rap1 and integrins in the Drosophila embryo. Development 2006; 133:2915-24. [PMID: 16818452 DOI: 10.1242/dev.02449] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila embryos, macrophages originate from the cephalic mesoderm and perform a complex migration throughout the entire embryo. The molecular mechanisms regulating this cell migration remain largely unknown. We identified the Drosophila PDZ G-nucleotide exchange factor (PDZ-GEF) Dizzy as a component essential for normal macrophage migration. In mutants lacking Dizzy, macrophages have smaller cellular protrusions, and their migration is slowed down significantly. This phenotype appears to be cell-autonomous, as it is also observed in embryos with a dsRNA-induced reduction of dizzy function in macrophages. In a complementary fashion, macrophages overexpressing Dizzy are vastly extended and form very long protrusions. These cell shape changes depend on the function of the small GTPase Rap1: in rap1 mutants, Dizzy is unable to induce the large protrusions. Furthermore, forced expression of a dominant-active form of Rap1, but not of the wild-type form, induces similar cell shape changes as Dizzy does overexpression. These findings suggest that Dizzy acts through Rap1. We propose that integrin-dependent adhesion is a Rap1-mediated target of Dizzy activity: in integrin mutants, neither Dizzy nor Rap1 can induce cell shape changes in macrophages. These data provide the first link between a PDZ-GEF, the corresponding small GTPase and integrin-dependent cell adhesion during cell migration in embryonic development.
Collapse
Affiliation(s)
- Sven Huelsmann
- Interfakultäres Institut für Zellbiologie, Abteilung Genetik der Tiere, Fakultät für Biologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
305
|
Kortholt A, Rehmann H, Kae H, Bosgraaf L, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM. Characterization of the GbpD-activated Rap1 pathway regulating adhesion and cell polarity in Dictyostelium discoideum. J Biol Chem 2006; 281:23367-76. [PMID: 16769729 DOI: 10.1074/jbc.m600804200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of cell polarity plays an important role in chemotaxis. GbpD, a putative nucleotide exchange factor for small G-proteins of the Ras family, has been implicated in adhesion, cell polarity, and chemotaxis in Dictyostelium. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. These cells overexpressing GbpD are severely impaired in chemotaxis, most likely due to the induction of many protrusions rather than an enhanced adhesion. The GbpD-overexpression phenotype is similar to that of cells overexpressing Rap1. Here we demonstrate that GbpD activates Rap1 both in vivo and in vitro but not any of the five other characterized Ras proteins. In a screen for Rap1 effectors, we overexpressed GbpD in several mutants defective in adhesion or cell polarity and identified Phg2 as Rap1 effector necessary for adhesion, but not cell polarity. Phg2, a serine/threonine-specific kinase, directly interacts with Rap1 via its Ras association domain.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Stradal T. Featuring... Theresia Stradal. Interview by Tine Walma. FEBS Lett 2006; 580:2810. [PMID: 16684528 DOI: 10.1016/j.febslet.2006.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
307
|
Chang H, Lee J, Poo H, Noda M, Diaz T, Wei B, Stetler-Stevenson WG, Oh J. TIMP-2 promotes cell spreading and adhesion via upregulation of Rap1 signaling. Biochem Biophys Res Commun 2006; 345:1201-6. [PMID: 16716258 DOI: 10.1016/j.bbrc.2006.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 05/01/2006] [Indexed: 01/24/2023]
Abstract
We previously demonstrated that TIMP-2 treatment of human microvascular endothelial cells (hMVECs) activates Rap1 via the pathway of paxillin-Crk-C3G. Here, we show that TIMP-2 overexpression in hMVECs by adenoviral infection enhances Rap1 expression, leading to further increase in Rap1-GTP. TIMP-2 expression, previously reported to inhibit cell migration, also leads to cell spreading accompanied with increased cell adhesion. HMVECs stably expressing Rap1 display a similar phenotype as hMVECs-TIMP-2, whereas the expression of inactive Rap1 mutant, Rap1(38N), leads to elongated appearance with greatly reduced cell adhesion. Furthermore, the phenotype of hMVECs-Rap1(38N) was not reversed by TIMP-2 overexpression. TIMP-2 greatly promotes the association of Rap1 with actin. Therefore, these findings suggest that TIMP-2 mediated alteration in cell morphology requires Rap1, TIMP-2 may recruit Rap1 to sites of actin cytoskeleton remodeling necessary for cell spreading, and enhanced cell adhesion by TIMP-2 expression may hinder cell migration.
Collapse
Affiliation(s)
- Hyeujin Chang
- Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI. MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 2006; 16:854-62. [PMID: 16618541 DOI: 10.1016/j.cub.2006.03.083] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 03/19/2006] [Accepted: 03/24/2006] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cytoplasmic C. elegans protein MIG-10 affects cell migrations and is related to mammalian proteins that bind phospholipids and Ena/VASP actin regulators. In cultured cells, mammalian MIG-10 promotes lamellipodial growth and Ena/VASP proteins induce filopodia. RESULTS We show here that during neuronal development, mig-10 and the C. elegans Ena/VASP homolog unc-34 cooperate to guide axons toward UNC-6 (netrin) and away from SLT-1 (Slit). The single mutants have relatively mild phenotypes, but mig-10; unc-34 double mutants arrest early in development with severe axon guidance defects. In axons that are guided toward ventral netrin, unc-34 is required for the formation of filopodia and mig-10 increases the number of filopodia. In unc-34 mutants, developing axons that lack filopodia are still guided to netrin through lamellipodial growth. In addition to its role in axon guidance, mig-10 stimulates netrin-dependent axon outgrowth in a process that requires the age-1 phosphoinositide-3 lipid kinase but not unc-34. CONCLUSIONS mig-10 and unc-34 organize intracellular responses to both attractive and repulsive axon guidance cues. mig-10 and age-1 lipid signaling promote axon outgrowth; unc-34 and to a lesser extent mig-10 promote filopodia formation. Surprisingly, filopodia are largely dispensable for accurate axon guidance.
Collapse
Affiliation(s)
- Chieh Chang
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
309
|
Quinn CC, Pfeil DS, Chen E, Stovall EL, Harden MV, Gavin MK, Forrester WC, Ryder EF, Soto MC, Wadsworth WG. UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin. Curr Biol 2006; 16:845-53. [PMID: 16563765 DOI: 10.1016/j.cub.2006.03.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.
Collapse
Affiliation(s)
- Christopher C Quinn
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Zhang Y, Tu Y, Gkretsi V, Wu C. Migfilin interacts with vasodilator-stimulated phosphoprotein (VASP) and regulates VASP localization to cell-matrix adhesions and migration. J Biol Chem 2006; 281:12397-407. [PMID: 16531412 DOI: 10.1074/jbc.m512107200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration is a complex process that is coordinately regulated by cell-matrix adhesion and actin cytoskeleton. We report here that migfilin, a recently identified component of cell-matrix adhesions, is a biphasic regulator of cell migration. Loss of migfilin impairs cell migration. Surprisingly, overexpression of migfilin also reduces cell migration. Molecularly, we have identified vasodilator-stimulated phosphoprotein (VASP) as a new migfilin-binding protein. The interaction is mediated by the VASP EVH1 domain and a single L104PPPPP site located within the migfilin proline-rich domain. Migfilin and VASP form a complex in both suspended and adhered cells, and in the latter, they co-localize in cell-matrix adhesions. Functionally, migfilin facilitates VASP localization to cell-matrix adhesions. Using two different approaches (VASP-binding defective migfilin mutants and small interfering RNA-mediated VASP knockdown), we show that the interaction with VASP is crucially involved in migfilin-mediated regulation of cell migration. Our results identify migfilin as an important regulator of cell migration and provide new information on the mechanism by which migfilin regulates this process.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
311
|
Kragtorp KA, Miller JR. Regulation of somitogenesis by Ena/VASP proteins and FAK during Xenopus development. Development 2006; 133:685-95. [PMID: 16421193 DOI: 10.1242/dev.02230] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metameric organization of the vertebrate body plan is established during somitogenesis as somite pairs sequentially form along the anteroposterior axis. Coordinated regulation of cell shape, motility and adhesion are crucial for directing the morphological segmentation of somites. We show that members of the Ena/VASP family of actin regulatory proteins are required for somitogenesis in Xenopus. Xenopus Ena (Xena) localizes to the cell periphery in the presomitic mesoderm (PSM), and is enriched at intersomitic junctions and at myotendinous junctions in somites and the myotome, where it co-localizes with β1-integrin, vinculin and FAK. Inhibition of Ena/VASP function with dominant-negative mutants results in abnormal somite formation that correlates with later defects in intermyotomal junctions. Neutralization of Ena/VASP activity disrupts cell rearrangements during somite rotation and leads to defects in the fibronectin (FN) matrix surrounding somites. Furthermore, inhibition of Ena/VASP function impairs FN matrix assembly, spreading of somitic cells on FN and autophosphorylation of FAK, suggesting a role for Ena/VASP proteins in the modulation of integrin-mediated processes. We also show that inhibition of FAK results in defects in somite formation, blocks FN matrix deposition and alters Xena localization. Together, these results provide evidence that Ena/VASP proteins and FAK are required for somite formation in Xenopus and support the idea that Ena/VASP and FAK function in a common pathway to regulate integrin-dependent migration and adhesion during somitogenesis.
Collapse
Affiliation(s)
- Katherine A Kragtorp
- Department of Genetics, Cell Biology and Development and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
312
|
Abstract
The small GTPase Rap1 has been involved in different cellular processes. Rap1 is known to increase cell adhesion by means of integrin activation, to induce cell spreading, and to regulate adherent junctions at cell-cell contacts. How Rap1 mediates these cell responses is poorly known, but currently developing evidence points to the involvement of different effector pathways. Recently, we described RIAM, a Rap1 interacting adaptor protein that regulates integrin activation and hence cell adhesion. RIAM is required for Rap1-induced adhesion and seems to control Rap1 localization at the plasma membrane, where Rap1 regulates integrin activation. In this chapter, we focus in the role of RIAM in regulating Rap1-mediated cell adhesion. We describe the method for studying the Rap1-RIAM interaction using in vitro and in vivo approaches such as yeast two hybrids, pull-down assays. and coimmunoprecipitation. The role of Rap1 and RIAM in integrin-mediated adhesion is studied by cell adhesion assays to immobilized integrin substrates and by changes in integrin activation as determined by activation epitope exposure. Finally, we describe an approach to determine the role of RIAM in regulating intracellular localization of active Rap1.
Collapse
Affiliation(s)
- Esther Lafuente
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
313
|
Kooistra MRH, Corada M, Dejana E, Bos JL. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 2005; 579:4966-72. [PMID: 16115630 DOI: 10.1016/j.febslet.2005.07.080] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that Rap1 as well as its guanine nucleotide exchange factor Epac1 increases cell-cell junction formation. Here, we show that activation of Epac1 with the exchange protein directly activated by cAMP (Epac)-specific cAMP analog 8CPT-2'O-Me-cAMP (007) resulted in a tightening of the junctions and a decrease in the permeability of the endothelial cell monolayer. In addition, 007 treatment resulted in the breakdown of actin stress fibers and the formation of cortical actin. These effects were completely inhibited by siRNA against Epac1. In VE-cadherin knock-out cells Epac1 did not affect cell permeability, whereas in cells re-expressing VE-cadherin this effect was restored. Finally, the effect of Epac activation on the actin cytoskeleton was independent of junction formation. From these results we conclude that in human umbilical vein endothelial cells Epac1 controls VE-cadherin-mediated cell junction formation and induces reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Matthijs R H Kooistra
- Department of Physiological Chemistry, Centre for Biomedical Genetics, University Medical Center, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
314
|
Finkelstein LD, Shimizu Y, Schwartzberg PL. Tec Kinases Regulate TCR-Mediated Recruitment of Signaling Molecules and Integrin-Dependent Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2005; 175:5923-30. [PMID: 16237085 DOI: 10.4049/jimmunol.175.9.5923] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.
Collapse
Affiliation(s)
- Lisa D Finkelstein
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
315
|
Medeiros RB, Dickey DM, Chung H, Quale AC, Nagarajan LR, Billadeau DD, Shimizu Y. Protein kinase D1 and the beta 1 integrin cytoplasmic domain control beta 1 integrin function via regulation of Rap1 activation. Immunity 2005; 23:213-26. [PMID: 16111639 DOI: 10.1016/j.immuni.2005.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 11/23/2022]
Abstract
The functional activity of integrins is dynamically regulated by T cell receptor stimulation and by protein kinase C (PKC). We report a novel function for the PKC effector protein kinase D1 (PKD1) in integrin activation. Constitutively active and kinase-inactive PKD1 mutants lacking the PKD1 pleckstrin homology (PH) domain block phorbol ester- and TCR-mediated activation and clustering of beta1 integrins. The PH domain of PKD1 mediates the association of PKD1 with the GTPase Rap1 and is central to Rap1 activation and membrane translocation in T cells. Furthermore, PKD1 and Rap1 associate with beta1 integrins in a manner that is dependent on the carboxy-terminal end of the beta1 integrin subunit cytoplasmic domain. beta1 integrin expression is required for Rap1 activation and membrane localization of the PKD1-Rap1 complex. Therefore, PKD1 promotes integrin activation in T cells by regulating Rap1 activation and membrane translocation via interactions with the beta1 integrin subunit cytoplasmic domain.
Collapse
Affiliation(s)
- Ricardo B Medeiros
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis,55455, USA
| | | | | | | | | | | | | |
Collapse
|
316
|
Xanthos JB, Wanner SJ, Miller JR. Cloning and developmental expression of Xenopus Enabled (Xena). Dev Dyn 2005; 233:631-7. [PMID: 15778995 DOI: 10.1002/dvdy.20358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Regulation of actin dynamics, organization, and interaction with cell surface adhesion proteins is critical for tissue morphogenesis during development. The Ena/VASP family of actin-binding proteins function in several cellular processes that involve dynamic regulation of the actin cytoskeleton, including axon guidance, platelet aggregation, cell migration, and cell adhesion. The vertebrate Ena/VASP family is composed of three genes: Ena (Enabled), VASP (Vasodilator Stimulated Phosphoprotein), and Evl (Ena/VASP-Like). To better understand the role of Ena/VASP proteins during vertebrate development, we have cloned and characterized the developmental expression of Ena in Xenopus laevis. Analysis of the temporal expression of Xenopus Ena (Xena) demonstrates that multiple isoforms of Xena are detected throughout embryogenesis and that the presence of different isoforms is developmentally regulated. In situ hybridization analyses reveal that Xena is broadly expressed throughout development. During gastrulation and neurulation, Xena is detected in the neuroepithelium, notochord, and somites. In tadpoles, Xena expression is restricted to dorsal regions of the brain, whereas it is expressed at lower levels throughout the spinal cord. Xena expression is also detected in the notochord, myotome, heart, pronephros, and cranial placodes, including the olfactory and otic placodes. Analysis of the subcellular localization of Xena using a GFP fusion protein revealed that Xena localizes to adherens junctions and focal adhesions in Xenopus animal caps and NIH3T3 fibroblasts, respectively. These results define spatiotemporal windows in which Xena may function during early Xenopus development to modulate actin-dependent processes such as cell adhesion and migration.
Collapse
Affiliation(s)
- Jennifer B Xanthos
- Department of Genetics, Cell Biology and Development, and Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
317
|
Affiliation(s)
- Lowenna J Holt
- Garvan Institute of Medical Research, St Vincent's Hospital, Cancer Research Program, Sydney, NSW, Australia
| | | |
Collapse
|
318
|
Stork PJS, Dillon TJ. Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood 2005; 106:2952-61. [PMID: 16076873 PMCID: PMC1895320 DOI: 10.1182/blood-2005-03-1062] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small G proteins serve as critical control points in signal transduction, integrating a wide range of stimuli to dictate discrete cellular outcomes. The outcomes of small G-protein signaling can both potentiate and antagonize one another. Studies in hematopoietic cells have uncovered multiple functions for the small G protein, Rap1 (Ras-proximate-1). Because Rap1 can regulate cell proliferation, differentiation, and adhesion through distinct mechanisms, it serves as a paradigm for the need for tight cellular control of small G-protein function. Rap1 has received recent attention for its role in enhancing integrin-dependent signals. This action of Rap1 augments a variety of processes that characterize hematopoietic-cell function, including aggregation, migration, extravasation, and homing to target tissues. Rap1 may also regulate cellular differentiation and proliferation via pathways that are distinct from those mediating adhesion, and involve regulation of the mitogen-activated protein (MAP) kinase or ERK (extracellular signal-regulated kinase) cascade. These actions of Rap1 occur in selected cell types to enhance or diminish ERK signaling, depending on the expression pattern of the MAP kinase kinase kinases of the Raf family: Raf-1 and B-Raf. This review will examine the functions of Rap1 in hematopoietic cells, and focus on 3 cellular scenarios where the multiple actions of Rap1 function have been proposed. Recent studies implicating Rap1 in the maturation of megakaryocytes, the pathogenesis of chronic myelogenous leukemia (CML), and activation of peripheral T cells will receive particular attention.
Collapse
Affiliation(s)
- Philip J S Stork
- Vollum Institute, L474, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | |
Collapse
|
319
|
Dupuy AG, L'Hoste S, Cherfils J, Camonis J, Gaudriault G, de Gunzburg J. Novel Rap1 dominant-negative mutants interfere selectively with C3G and Epac. Oncogene 2005; 24:4509-20. [PMID: 15856025 DOI: 10.1038/sj.onc.1208647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rap1 is a Ras-related GTPase that is principally involved in integrin- and E-cadherin-mediated adhesion. Rap1 is transiently activated in response to many incoming signals via a large family of guanine nucleotide exchange factors (GEFs). The lack of potent Rap1 dominant-negative mutants has limited our ability to decipher Rap1-dependent pathways; we have therefore developed a procedure to generate such mutants consisting in the oligonucleotide-mediated mutagenesis of residues 14-19, selection of mutants presenting an enhanced interaction with Epac2 by yeast two-hybrid screening and counter-screening for mutants still interacting with Rap effectors. In detail analysis of their interaction capacity with various Rap-GEFs in the yeast two-hybrid system revealed that mutants of residues 15 and 16 interacted with Epacs, C3G and CalDAG-GEFI, whereas mutants of position 17 had selectively lost their ability to bind CalDAG-GEFI as well as, for some, C3G. In cellular models where Rap1 is activated via endogenous GEFs, the Rap1[S17A] mutant inhibits both the cAMP-Epac and EGF-C3G pathways, whereas Rap1[G15D] selectively interferes with the latter. Finally, Rap1[S17A] is able to act as a bona fide dominant-negative mutant in vivo since it phenocopies the eye-reducing and lethal effects of D-Rap1 deficiency in Drosophila, effects that are overcome by the overexpression of D-Epac or D-Rap1.
Collapse
|
320
|
Zhang Z, Rehmann H, Price LS, Riedl J, Bos JL. AF6 negatively regulates Rap1-induced cell adhesion. J Biol Chem 2005; 280:33200-5. [PMID: 16051602 DOI: 10.1074/jbc.m505057200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AF6 is involved in the connection of membrane-associated proteins to the actin cytoskeleton. It binds to Ras-like small GTPases and is suggested to be an effector of both Ras and Rap. Here we show that knockdown of AF6 in T cells by RNA interference enhanced Rap1-induced integrin-mediated cell adhesion, whereas overexpression of AF6 had the opposite effect. Interestingly, AF6-induced inhibition of cell adhesion correlated with an increase in RapGTP levels. Like AF6, protein KIAA1849 contains a Ras association domain and interacted with Rap1. However, KIAA1849 did not inhibit Rap1-induced cell adhesion. We concluded that AF6 is a negative regulator of Rap-induced cell adhesion. We proposed that AF6 inhibits Rap-mediated cell adhesion by sequestering RapGTP in an unproductive complex and thus prevents the interaction of Rap1 not only with effectors that mediate adhesion but also with Rap GTPase-activating proteins. Thus, AF6 may buffer RapGTP in resting T cells and maintain them in a non-adherent state.
Collapse
Affiliation(s)
- Zhongchun Zhang
- Department of Physiological Chemistry and Centre of Biomedical Genetics, University Medical Centre, Utrecht 3508 AB, The Netherlands
| | | | | | | | | |
Collapse
|
321
|
Li L, Godfrey WR, Porter SB, Ge Y, June CH, Blazar BR, Boussiotis VA. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 2005; 106:3068-73. [PMID: 16020508 PMCID: PMC1895332 DOI: 10.1182/blood-2005-04-1531] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs) are essential negative regulators of immune responses. Here, we examined the signaling properties of human Tregs, using CD4+CD25+ Treg and CD4+CD25- control (Tcont) cell lines generated from cord blood. Treg cell lines were markedly hyporesponsive to stimulation with dendritic cells and with anti-CD3/CD28-coated beads. Hyporesponsiveness was reversed by exogenous interleukin-2 (IL-2). T-cell receptor (TCR)-CD3/CD28-mediated activation of Rap1 and Akt was retained in Tregs, but activation of Ras, mitogenactivated protein kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase 1/2 (Erk1/2) was impaired. Tregs were blocked from cell cycle progression due to decrease of cyclin E and cyclin A and increase of p27kip1 (p27kip cyclin dependent kinase inhibitor). IL-2 induced sustained increase of cyclin E and cyclin A and prevented up-regulation of p27kip1. Tregs had high susceptibility to apoptosis that was reversed by IL-2, which correlated with activation of Erk1/2, up-regulation of Bcl-x(L) (B-cell CLL/lymphoma 2-like nuclear gene encoding mitochondrial protein, transcript variant 2), and phosphorylation of Bad (Bcl2 antagonist of cell death) at Ser112. Thus, Tregs share biochemical characteristics of anergy, including abortive activation of Ras-MEK-Erk, increased activation of Rap1, and increased expression of p27kip1. In addition, our results indicate that TCR-CD3/CD28-mediated and IL-2 receptor-mediated signals converge at the level of MEK-Erk kinases to regulate Treg survival and expansion and suggest that manipulation of the MEK-Erk axis may represent a novel strategy for Treg expansion for immunotherapy.
Collapse
Affiliation(s)
- Lequn Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St, Rm Mayer 547, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
322
|
Abstract
Cell-cell adhesion is fundamental to multicellular architecture. Several classes of adhesion molecule are used to achieve this, and cadherins represent a major family of such molecules. The cadherin family has multiple subfamilies. Members of the Fat cadherin subfamily, which is conserved across species, have an extraordinarily large extracellular region, comprising 34 repeated domains, making them the largest cadherin molecules. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Recent studies of one of its mammalian homologs, Fat1, have revealed novel functions of this molecule. Fat1 binds to Ena/VASP proteins and regulates actin dynamics at both cell-cell contacts and leading edges. These observations suggest that Fat1 is an important regulator of actin dynamics and controls cell-cell interactions through this activity.
Collapse
Affiliation(s)
- Takuji Tanoue
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
323
|
Abstract
The small GTPase Rap1 is involved in several aspects of cell adhesion, including integrin-mediated cell adhesion and cadherin-mediated cell junction formation. Recently, several effector proteins for Rap1 have been identified providing a clear link between Rap1 and actin dynamics. Furthermore, evidence is accumulating that Rap1 functions in the spatial and temporal control of cell polarity.
Collapse
Affiliation(s)
- Johannes L Bos
- Department of Physiological Chemistry and Centre for Biomedical Genetics, UMC Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands.
| |
Collapse
|
324
|
Schultess J, Danielewski O, Smolenski AP. Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood 2005; 105:3185-92. [PMID: 15632203 DOI: 10.1182/blood-2004-09-3605] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Ras-like guanine-nucleotide-binding protein Rap1 controls integrin alpha(IIb)beta3 activity and platelet aggregation. Recently, we have found that Rap1 activation can be blocked by the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling pathway by type 1 cGMP-dependent protein kinase (cGKI). In search of possible targets of NO/cGMP/cGKI, we studied the expression of Rap1-specific GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) in platelets. We could detect mRNAs for a new protein most closely related to Rap1GAP and for postsynaptic density-95 discs-large and zona occludens protein 1 (PDZ)-GEF1 and CalDAG-GEFs I and III. Using 5'-rapid amplification of cDNA ends (RACE), we isolated the complete cDNA of the new GAP encoding a 715-amino acid protein, which we have termed Rap1GAP2. Rap1GAP2 is expressed in at least 3 splice variants, 2 of which are detectable in platelets. Endogenous Rap1GAP2 protein partially colocalizes with Rap1 in human platelets. In transfected cells, we show that Rap1GAP2 exhibits strong GTPase-stimulating activity toward Rap1. Rap1GAP2 is highly phosphorylated, and we have identified cGKI as a Rap1GAP2 kinase. cGKI phosphorylates Rap1GAP2 exclusively on serine 7, a residue present only in the platelet splice variants of Rap1GAP2. Phosphorylation of Rap1GAP2 by cGKI might mediate inhibitory effects of NO/cGMP on Rap1. Rap1GAP2 is the first GTPase-activating protein of Rap1 found in platelets and is likely to have an important regulatory role in platelet aggregation.
Collapse
Affiliation(s)
- Jan Schultess
- Institute for Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | |
Collapse
|
325
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
326
|
Otey CA, Rachlin A, Moza M, Arneman D, Carpen O. The palladin/myotilin/myopalladin family of actin-associated scaffolds. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:31-58. [PMID: 16164966 DOI: 10.1016/s0074-7696(05)46002-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The dynamic remodeling of the actin cytoskeleton plays a critical role in cellular morphogenesis and cell motility. Actin-associated scaffolds are key to this process, as they recruit cohorts of actin-binding proteins and associated signaling complexes to subcellular sites where remodeling is required. This review is focused on a recently discovered family of three proteins, myotilin, palladin, and myopalladin, all of which function as scaffolds that regulate actin organization. While myotilin and myopalladin are most abundant in skeletal and cardiac muscle, palladin is ubiquitously expressed in the organs of developing vertebrates. Palladin's function has been investigated primarily in the central nervous system and in tissue culture, where it appears to play a key role in cellular morphogenesis. The three family members each interact with specific molecular partners: all three bind to alpha-actinin; in addition, palladin also binds to vasodilator-stimulated phosphoprotein (VASP) and ezrin, myotilin binds to filamin and actin, and myopalladin also binds to nebulin and cardiac ankyrin repeat protein (CARP). Since mutations in myotilin result in two forms of muscle disease, an essential role for this family member in organizing the skeletal muscle sarcomere is implied.
Collapse
Affiliation(s)
- Carol A Otey
- Department of Cell and Molecular Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
327
|
Bussell K. The stretch effect. Nat Rev Mol Cell Biol 2005. [DOI: 10.1038/nrm1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
328
|
Jenzora A, Behrendt B, Small JV, Wehland J, Stradal TEB. PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Lett 2004; 579:455-63. [PMID: 15642358 DOI: 10.1016/j.febslet.2004.10.110] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 10/18/2004] [Accepted: 10/25/2004] [Indexed: 02/03/2023]
Abstract
Ena/VASP family proteins are important modulators of cell migration and localize to focal adhesions, stress fibres and the very tips of lamellipodia and filopodia. Proline-rich proteins like vinculin and zyxin are well established interaction partners, which mediate Ena/VASP-recruitment via their EVH1-domains to focal adhesions and stress fibres. However, it is still unclear, which binding partners Ena/VASP proteins may have at lamellipodia tips and how their recruitment to these cellular protrusions is regulated. Here, we report the identification of a novel protein with high similarity to the C. elegans MIG-10 protein, which we termed PREL1 (Proline Rich EVH1 Ligand). PREL1 is a 74 kDa protein and shares homology with the Grb7-family of signalling adaptors. We show that PREL1 directly binds to Ena/VASP proteins and co-localizes with them at lamellipodia tips and at focal adhesions in response to Ras activation. Moreover, PREL1 directly binds to activated Ras in a phosphoinositide-dependent manner. Thus, our data pinpoint PREL1 as the first direct link between Ras signalling and cytoskeletal remodelling via Ena/VASP proteins during cell migration and spreading.
Collapse
Affiliation(s)
- Andrea Jenzora
- Department of Cell Biology, German Research Centre for Biotechnology, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
329
|
Krause M, Leslie JD, Stewart M, Lafuente EM, Valderrama F, Jagannathan R, Strasser GA, Rubinson DA, Liu H, Way M, Yaffe MB, Boussiotis VA, Gertler FB. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 2004; 7:571-83. [PMID: 15469845 DOI: 10.1016/j.devcel.2004.07.024] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 05/25/2004] [Accepted: 07/19/2004] [Indexed: 01/20/2023]
Abstract
Lamellipodial protrusion is regulated by Ena/VASP proteins. We identified Lamellipodin (Lpd) as an Ena/VASP binding protein. Both proteins colocalize at the tips of lamellipodia and filopodia. Lpd is recruited to EPEC and Vaccinia, pathogens that exploit the actin cytoskeleton for their own motility. Lpd contains a PH domain that binds specifically to PI(3,4)P2, an asymmetrically localized signal in chemotactic cells. Lpd's PH domain can localize to ruffles in PDGF-treated fibroblasts. Lpd overexpression increases lamellipodial protrusion velocity, an effect observed when Ena/VASP proteins are overexpressed or artificially targeted to the plasma membrane. Conversely, knockdown of Lpd expression impairs lamellipodia formation, reduces velocity of residual lamellipodial protrusion, and decreases F-actin content. These phenotypes are more severe than loss of Ena/VASP, suggesting that Lpd regulates other effectors of the actin cytoskeleton in addition to Ena/VASP.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Biology and Center for Cancer Research, MIT, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Fujita H, Fukuhara S, Sakurai A, Yamagishi A, Kamioka Y, Nakaoka Y, Masuda M, Mochizuki N. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem 2004; 280:5022-31. [PMID: 15569673 DOI: 10.1074/jbc.m409701200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial cell migration is promoted by chemoattractants and is accompanied with microtubule extension toward the leading edge. Cytoskeletal microtubules polarize to function as rails for delivering a variety of molecules by motor proteins during cell migration. It remains, however, unclear how directional migration with polarized extension of microtubules is regulated. Here we report that Rap1 controls the migration of vascular endothelial cells. We found that Rap1-associating molecule, RAPL, which belongs to the Ras association domain family (Rassf), localized on microtubules and that activated Rap1 induced dissociation of RAPL from microtubules. A Rap1 activation-monitoring probe based on the fluorescence resonance energy transfer enabled us to demonstrate that local Rap1 activation occurs at the leading edge of the cells under the two types of cell migration, chemotaxis and wound healing. Time lapse imaging of microtubules marked by enhanced green fluorescent protein-RAPL showed the directional growth of microtubules toward the leading edge of the migrating cells. Using adenovirus, inactivation of Rap1 by expression of rap1GAPII inhibited wound healing. In addition, disconnection of Rap1 and RAPL by expression of a RAPL mutant also perturbed wound healing. Collectively, the locally activated Rap1 and its association with RAPL controls the directional migration of vascular endothelial cells.
Collapse
Affiliation(s)
- Hisakazu Fujita
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
331
|
|
332
|
Abstract
Linking external signals to remodeling of the cytoskeleton is essential to multiple processes during animal development and physiology. Two new studies have uncovered a new family of proteins that can regulate actin dynamics both locally at the membrane interface and globally throughout the cell.
Collapse
Affiliation(s)
- Maryse Bailly
- Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| |
Collapse
|