301
|
Bai J, Liu C, Zhu P, Li Y. Novel Insights Into Molecular Mechanism of Mitochondria in Diabetic Cardiomyopathy. Front Physiol 2021; 11:609157. [PMID: 33536936 PMCID: PMC7849834 DOI: 10.3389/fphys.2020.609157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complication is one of the significant causes of death in diabetic mellitus (DM) in which diabetic cardiomyopathy, independent of hypertension, cardiac valvular disease, and coronary atherosclerosis, occupies an important position. Although the detailed pathogenesis of diabetic cardiomyopathy remains unclear currently, mitochondrial morphological abnormality and dysfunction were observed in diabetic cardiomyopathy animal models according to much research, suggesting that mitochondrial structural and functional impairment played an integral role in the formation of diabetic cardiomyopathy. Thus, we have summarized the effect of mitochondria on the process of diabetic cardiomyopathy, including abnormal mitochondrial morphology, mitochondrial energy metabolism disorder, enhanced mitochondrial oxidative stress, mitochondrial unbalanced calcium homeostasis, and mitochondrial autophagy. Based on the above mechanisms and the related evidence, more therapeutic strategies targeting mitochondria in diabetic cardiomyopathy have been and will be proposed to delay the progression of the disease.
Collapse
Affiliation(s)
- Jing Bai
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
302
|
Song J, Li Y, Zhao C, Zhou Q, Zhang J. Interaction of BDE-47 with nuclear receptors (NRs) based on the cytotoxicity: In vitro investigation and molecular interaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111390. [PMID: 33049448 DOI: 10.1016/j.ecoenv.2020.111390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that possess neuroendocrine and reproductive toxicity to humans and disturb thyroid hormone homeostasis, neurobehavior, and development. The most predominant congener of PBDEs in humans and other organisms is 2,2',4,4'-tetrabromodiphenyl ether (BDE-47); however, the molecular mechanisms underlying its cytotoxicity remain largely unknown. Here, we evaluated the toxic effect and underlying mechanism of nuclear receptors (NRs) induced by BDE-47 in SK-N-SH human neuroblastoma cells. The CCK-8 cell viability assay showed that the proliferation of human SK-N-SH cells exposed to BDE-47 was significantly inhibited in time- and dose-dependent manners, and flow cytometry showed that cell cycle was arrested at the S phase after BDE-47 exposure. Moreover, compared with the control group, the expression of retinoic acid receptor alpha (RXRα), pregnane X receptor (PXR), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) at the mRNA and protein levels was significantly increased, as determined by quantitative PCR and western blot analysis, demonstrating that BDE-47 activated the NRs in vitro. Moreover, BDE-47 could bind to all four NRs in the affinity order of PPARγ > PXR > TRβ > RXRα under molecular dynamics. Because RXR is the promiscuous dimerization partner for a large number of NRs, ZDock was used to calculate its interaction with other three NRs. Taking the number of hydrogen bonds and ZDock scores into account, the rank of docking ability between RXRα and the NRs was PXR > TRβ > PPARγ. Further analysis of the interaction between BDE-47 and dimerized-NRs, the affinity order was RXRα > TRβ > PXR > PPARγ via Glide. The results of this study demonstrated that BDE-47 interfered the cross-talk among NRs, especially the promiscuous RXRα, which might be critical for the harmonized re-adjustment of cytotoxicity and biological regulation. Our findings provide a better understanding of the mechanisms underlying toxic effects and intermolecular interaction induced by BDE-47.
Collapse
Affiliation(s)
- Jiayi Song
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunxiu Li
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqing Zhang
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
303
|
Okamura S, Yoshino H, Kuroshima K, Tsuruda M, Osako Y, Sakaguchi T, Yonemori M, Yamada Y, Tatarano S, Nakagawa M, Enokida H. EHHADH contributes to cisplatin resistance through regulation by tumor-suppressive microRNAs in bladder cancer. BMC Cancer 2021; 21:48. [PMID: 33430801 PMCID: PMC7798329 DOI: 10.1186/s12885-020-07717-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cisplatin-based chemotherapy is recommended as the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, the benefits are limited due to the acquisition of drug resistance. The mechanisms of resistance remain unclear. Although there are some reports that some molecules are associated with cisplatin resistance in advanced BC, those reports have not been fully investigated. Therefore, we undertook a new search for cisplatin resistance-related genes targeted by tumor suppressive microRNAs as well as genes that were downregulated in cisplatin-resistant BC cells and clinical BC tissues. Methods First, we established cisplatin-resistant BOY and T24 BC cell lines (CDDP-R-BOY, CDDP-R-T24). Then, Next Generation Sequence analysis was performed with parental and cisplatin-resistant cell lines to search for the microRNAs responsible for cisplatin resistance. We conducted gain-of-function analysis of microRNAs and their effects on cisplatin resistance, and we searched target genes comprehensively using Next Generation mRNA sequences. Results A total of 28 microRNAs were significantly downregulated in both CDDP-R-BOY and CDDP-R-T24. Among them, miR-486-5p, a tumor suppressor miRNA, was negatively correlated with the TNM classification of clinical BC samples in The Cancer Genome Atlas (TCGA) database. Transfection of miRNA-486-5p significantly inhibited cancer cell proliferation, migration, and invasion, and also improved the cells’ resistance to cisplatin. Among the genes targeted by miRNA-486-5p, we focused on enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), which is involved in the degradation of fatty acids. EHHADH was directly regulated by miRNA-486-5p as determined by a dual-luciferase reporter assay. Loss-of-function study using EHHADH si-RNA showed significant inhibitions of cell proliferation, migration, invasion and the recovery of cisplatin sensitivity. Conclusion Identification of EHHADH as a target of miRNA-486-5p provides novel insights into the potential mechanisms of cisplatin resistance in BC.
Collapse
Affiliation(s)
- Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kazuki Kuroshima
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masafumi Tsuruda
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|
304
|
Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:599995. [PMID: 33833983 PMCID: PMC8021859 DOI: 10.3389/fonc.2021.599995] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. PPAR modulators may hold great potential for the management of cancer patients. Indeed, PPARs are critical sensors and regulators of lipid, and they are able to promote eNOS activation, regulate immunity and inflammation response, and affect proliferation and differentiation of cancer cells. Cancer, a name given to a group of diseases, is characterized by multiple distinctive biological behaviors, including angiogenesis, abnormal cell proliferation, aerobic glycolysis, inflammation, etc. In the last decade, emerging evidence has shown that PPAR-α, a nuclear hormone receptor, can modulate carcinogenesis via exerting effects on one or several characteristic pathological behaviors of cancer. Therefore, the multi-functional PPAR modulators have substantial promise in various types of cancer therapies. This review aims to consolidate the functions of PPAR-α, as well as discuss the current and potential applications of PPAR-α agonists and antagonists in tackling cancer.
Collapse
Affiliation(s)
- Yan Tan
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
- Zehuan Liao
| | - Peng Wei
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei
| |
Collapse
|
305
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
306
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
307
|
Bai L, Wang M, Zhang S, Yue M, Guo Y, Wang P, Liu H. AT1-receptor autoantibody exposure in utero contributes to cardiac dysfunction and increased glycolysis in fetal mice. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1373-1381. [PMID: 33231607 DOI: 10.1093/abbs/gmaa131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to adverse factors in utero may lead to adaptive changes in cardiac structure and metabolism, which increases the risk of chronic cardiovascular disease later in life. Studies showed that the angiotensin II type 1 receptor autoantibodies (AT1-AAs) are able to cross the placenta into the circulation of pregnant rodents' embryo, which adversely affects embryogenesis. However, the effects of AT1-AA exposure on the fetal heart in utero are still unknown. In this study, we investigated whether intrauterine AT1-AA exposure has adverse effects on fetal heart structure, function and metabolism. AT1-AA-positive pregnant mouse models were successfully established by passive immunity, evidenced by increased AT1-AA content. Morphological and ultrasonic results showed that the fetal mice on embryonic day 18 (E18) of AT1-AA group have loose and disordered myocardial structure, and decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), compared with control groups. The myocardium of AT1-AA group fetal mice on E18 exhibited increased expression of the key molecules in the glycolytic pathway, pyruvate and lactic acid content and ATP production, suggesting that the glycolysis rate was enhanced. Furthermore, the enhanced effect of glycolysis caused by AT1-AA is mainly through the PPARβ/δ pathway. These data confirmed that fetus exposure to AT1-AA in utero developed left ventricular dysfunction, myocardial structural arrangement disorders, and enhanced glycolysis on E18. Our results support AT1-AA being a potentially harmful factor for cardiovascular disease in fetal mice.
Collapse
Affiliation(s)
- Lina Bai
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| | - Meili Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| | - Mingming Yue
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| | - Yuhao Guo
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pengli Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Diseases, Capital Medical University, Beijing 100069, China
| |
Collapse
|
308
|
Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2020; 78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.
Collapse
Affiliation(s)
- Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Bryce Jones
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Isabel Lopez-Santiago
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Emma Rowland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| |
Collapse
|
309
|
Wang K, Zhang B, Song D, Xi J, Hao W, Yuan J, Gao C, Cui Z, Cheng Z. Alisol A Alleviates Arterial Plaque by Activating AMPK/SIRT1 Signaling Pathway in apoE-Deficient Mice. Front Pharmacol 2020; 11:580073. [PMID: 33224034 PMCID: PMC7667245 DOI: 10.3389/fphar.2020.580073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alismatis Rhizoma (zexie), an herb used in traditional Chinese medicine, exhibits hypolipemic, anti-inflammation and anti-atherosclerotic activities. Alisol A is one of the main active ingredients in Alismatis Rhizoma extract. In this study, we investigate the role of alisol A in anti-atherosclerosis (AS). Our study demonstrated that alisol A can effectively inhibit the formation of arterial plaques and blocked the progression of AS in ApoE−/− mice fed with high-fat diet and significantly reduced the expression of inflammatory cytokins in aorta, including ICAM-1, IL-6, and MMP-9. In addition, we found that alisol A increased the expression of PPARα and PPARδ proteins in HepG2 cells and in liver tissue from ApoE−/− mice. Alisol A activated the AMPK/SIRT1 signaling pathway and NF-κB inhibitor IκBα in HepG2 cells. Our results suggested that alisol A is a multi-targeted agent that exerts anti-atherosclerotic action by regulating lipid metabolism and inhibiting inflammatory cytokine production. Therefore, alisol could be a promising lead compound to develop drugs for the treatment of AS.
Collapse
Affiliation(s)
- Ke Wang
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Beibei Zhang
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Dingzhong Song
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Jianqiang Xi
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Wusi Hao
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Jie Yuan
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Chenyu Gao
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Zhongbao Cui
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Zhihong Cheng
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| |
Collapse
|
310
|
Hwang SB, Lee BH. Anti-Obesity and Antidiabetic Effects of Nelumbinis Semen Powder in High-Fat Diet-Induced Obese C57BL/6 Mice. Nutrients 2020; 12:E3576. [PMID: 33266423 PMCID: PMC7700195 DOI: 10.3390/nu12113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Nelumbinis Semen (NS, the seeds of Nelumbo nucifera) extract is a traditional Korean medicine with anti-oxidant activity. The present study examined the anti-obesity and antidiabetic effects of NS powder in high-fat diet (HFD)-induced obese C57BL/6 mice. Mice (n = 8/group) were fed a normal diet (CON), HFD, HFD containing 5% NS powder (HFD-NS5%), or HFD containing 10% NS powder (HFD-NS10%) for 12 weeks. Food intake was relatively higher in groups HFD-NS5% and HFD-NS10%, while the food efficiency ratio was highest in group HFD (p < 0.05). HFD-NS5% reduced the body weight (-39.1%) and fat weight (-26.6%), including epididymal fat and perirenal fat, and lowered the serum triglyceride levels (-20.6%) compared with HFD. Groups HFD-NS5% and HFD-NS10% showed hepatoprotective properties, reducing the serum ALT levels (p < 0.05) and fat globules (size and number) in the liver compared with group HFD. HFD-NS5% and HFD-NS10% regulated the blood glucose, improved the glucose intolerance, and showed a 12.5% and 15.0% reduction in the area under the curve (AUC) of intraperitoneal glucose tolerance test (IPGTT), and a 26.8% and 47.3% improvement in homeostatic model assessment insulin resistance (HOMA-IR), respectively, compared with HFD (p < 0.05). Regarding the expressions of genes related to anti-obesity and antidiabetes, there was a 1.7- and 1.3-fold increase in PPAR-α protein expression, 1.4- and 1.6-fold increase in PPAR-γ protein expression, and 0.7- and 0.6-fold decrease in TNF-α protein expression, respectively, following HFD-NS5% and HFD-NS10% treatments, compared with HFD, and GLUT4 protein expression increased relative to CON (p < 0.05). These results comprehensively provide the fundamental data for NS powder's functional and health-promoting benefits associated with anti-obesity and antidiabetes.
Collapse
Affiliation(s)
| | - Bog-Hieu Lee
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Korea;
| |
Collapse
|
311
|
|
312
|
Sertorio M, Nowrouzi A, Akbarpour M, Chetal K, Salomonis N, Brons S, Mascia A, Ionascu D, McCauley S, Kupneski T, Köthe A, Debus J, Perentesis JP, Abdollahi A, Zheng Y, Wells SI. Differential transcriptome response to proton versus X-ray radiation reveals novel candidate targets for combinatorial PT therapy in lymphoma. Radiother Oncol 2020; 155:293-303. [PMID: 33096164 DOI: 10.1016/j.radonc.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge of biological responses to proton therapy (PT) in comparison to X-ray remains in its infancy. Identification of PT specific molecular signals is an important opportunity for the discovery of biomarkers and synergistic drugs to advance clinical application. Since PT is used for the treatment of lymphoma, we report here transcriptomic responses of lymphoma cell lines to PT vs X-ray and identify potential therapeutic targets. MATERIALS AND METHODS Two lymphoma cell lines of human (BL41) and murine (J3D) origin were irradiated by X-ray and PT. Differential transcriptome regulation was quantified by RNA sequencing for each radiation type at 12 hours post irradiation. Gene-set enrichment analysis revealed deregulated molecular pathways and putative targets for lymphoma cell sensitization to PT. RESULTS Transcriptomic gene set enrichment analyses uncovered pathways that contribute to the unfolded protein response (UPR) and mitochondrial transport. Functional validation at multiple time points demonstrated increased UPR activation and decreased protein translation, perhaps due to increased oxidative stress and oxidative protein damage after PT. PPARgamma was identified as a potential regulator of the PT transcriptomic response. Inhibition of PPARgamma by two compounds, T0070907 and SR2595, sensitized lymphoma cells to PT. CONCLUSIONS Proton vs X-ray radiation leads to the transcriptional regulation of a specific subset of genes in line with diminished protein translation and UPR activation that may be due to oxidative stress. This study demonstrates that different radiation qualities trigger distinct cellular responses in lymphoma cells, and identifies PPARgamma inhibition as a potential strategy for the sensitization of lymphoma to PT.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Ali Nowrouzi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Mahdi Akbarpour
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Shelby McCauley
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Taylor Kupneski
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Andreas Köthe
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Yi Zheng
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| |
Collapse
|
313
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
314
|
Wang L, Shan T. Factors inducing transdifferentiation of myoblasts into adipocytes. J Cell Physiol 2020; 236:2276-2289. [PMID: 32989814 DOI: 10.1002/jcp.30074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Fat infiltration in skeletal muscle is observed in several myopathies, is associated with muscular dysfunction, and is strongly correlated with insulin resistance, diabetes, obesity, and aging. In animal production, skeletal muscle fat (also known as intermuscular and intramuscular fat) is positively related to meat quality including tenderness, flavor, and juiciness. Thus, understanding the cell origin and regulation mechanism of skeletal muscle fat infiltration is important for developing therapies against human myopathies as well as for improving meat quality. Notably, age, sarcopenia, oxidative stress, injury, and regeneration can activate adipogenic differentiation potential in myoblasts and affect fat accumulation in skeletal muscle. In addition, several transcriptional and nutritional factors can directly induce transdifferentiation of myoblasts into adipocytes. In this review, we focused on the recent progress in understanding the muscle-to-adipocyte differentiation and summarized and discussed the genetic, nutritional, and physiological factors that can induce transdifferentiation of myoblasts into adipocytes. Moreover, the regulatory roles and mechanisms of these factors during the transdifferentiation process were also discussed.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
315
|
The Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Pan-Cancer. PPAR Res 2020; 2020:6527564. [PMID: 33029111 PMCID: PMC7528029 DOI: 10.1155/2020/6527564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of nuclear transcription factors. The functions of the PPAR family (PPARA, PPARD, and PPARG) and their coactivators (PPARGC1A and PPARGC1B) in maintenance of lipid and glucose homeostasis have been unveiled. However, the roles of PPARs in cancer development remain elusive. In this work, we made use of 11,057 samples across 33 TCGA tumor types to analyze the relationship between PPAR transcriptional expression and tumorigenesis as well as drug sensitivity. We performed multidimensional analyses on PPARA, PPARG, PPARD, PPARGC1A, and PPARGC1B, including differential expression analysis in pan-cancer, immune subtype analysis, clinical analysis, tumor purity analysis, stemness correlation analysis, and drug responses. PPARs and their coactivators expressed differently in different types of cancers, in different immune subtypes. This analysis reveals various expression patterns of the PPAR family at a level of pan-cancer and provides new clues for the therapeutic strategies of cancer.
Collapse
|
316
|
Farias-Pereira R, Savarese J, Yue Y, Lee SH, Park Y. Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Curr Res Food Sci 2020; 2:70-76. [PMID: 32914113 PMCID: PMC7473354 DOI: 10.1016/j.crfs.2019.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Isorhamnetin (3-O-methylquercetin), a flavonol found in dill weed, sea buckthorn berries, kale and onions, has been suggested to have anti-obesity effects, but there is limited evidence of its mechanisms of action on lipid metabolism. The goal of this study was to investigate the effects of isorhamnetin on lipid metabolism using Caenorhabditis elegans as an animal model. Isorhamnetin reduced fat accumulation without affecting food intake or energy expenditure in C. elegans. The isorhamnetin's fat-lowering effects were dependent on nhr-49, a homolog of the human peroxisome proliferator-activated receptor alpha (PPARα). Isorhamnetin upregulated an enoyl-CoA hydratase (ech-1.1, involved in fatty acid β-oxidation) and adipose triglyceride lipase (atgl-1, involved in lipolysis) via NHR-49-dependent pathway at transcriptional levels. Isorhamnetin also upregulated the C. elegans AMP-activated protein kinase (AMPK) subunits homologs (aak-1 and aak-2), involved in energy homeostasis. These results suggest that isorhamnetin reduces body fat by increasing fat oxidation in part via NHR-49/PPARα-dependent pathway. Isorhamnetin reduced fat accumulation in Caenorhabditis elegans. Food intake and energy expenditure were not changed by isorhamnetin. Isorhamnetin's fat-lowering effects were dependent on nhr-49/PPARα. Isorhamnetin upregulated transcriptionally AAK/AMPK, which may activate NHR-49. Isorhamnetin increased fat breakdown by upregulating ech-1.1/HADHA and atgl-1/ATGL.
Collapse
Affiliation(s)
| | - Jessica Savarese
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
317
|
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020; 113:102510. [PMID: 32622513 PMCID: PMC7327470 DOI: 10.1016/j.jaut.2020.102510] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Autoimmune diseases are common diseases of the immune system that are characterized by the loss of self-tolerance and the production of autoantibodies; the breakdown of immune tolerance and the prolonged inflammatory reaction are undisputedly core steps in the initiation and maintenance of autoimmunity. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that belong to the nuclear hormone receptor family and act as ligand-activated transcription factors. There are three different isotypes of PPARs: PPARα, PPARγ, and PPARβ/δ. PPARγ is an established regulator of glucose homeostasis and lipid metabolism. Recent studies have demonstrated that PPARγ exhibits anti-inflammatory and anti-fibrotic effects in multiple disease models. PPARγ can also modulate the activation and polarization of macrophages, regulate the function of dendritic cells and mediate T cell survival, activation, and differentiation. In this review, we summarize the signaling pathways and biological functions of PPARγ and focus on how PPARγ and its agonists play protective roles in autoimmune diseases, including autoimmune thyroid diseases, multiple sclerosis, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, primary Sjogren syndrome and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Jiayu Wang
- Xiangya Medical School, Central South University, #176 Tongzipo Rd, Changsha, Hunan, 410013, PR China
| | - Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
318
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
319
|
Villa ALP, Parra RS, Feitosa MR, de Camargo HP, Machado VF, Tirapelli DPDC, da Rocha JJR, Feres O. PPARG expression in colorectal cancer and its association with staging and clinical evolution. Acta Cir Bras 2020; 35:e202000708. [PMID: 32813759 PMCID: PMC7433669 DOI: 10.1590/s0102-865020200070000008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To evaluate the gene expression of peroxisome proliferator activated receptors gamma (PPARG) in colorectal tumors and to correlate this data with clinical variables of the patients. Methods We analyzed the gene expression of PPARG in 50 samples of colorectal tumors using real-time reverse transcription polymerase chain reaction, and 20 adjacent normal tissue samples as control. The results of these quantifications were correlated with the respective patients' medical records' clinical information. Results PPARG expression was not different in the tumor tissue compared to the control tissue. Patients older than 60 years, histological type with mucinous differentiation, more advanced staging at the time of diagnosis, and patients who evolved with recurrence of the disease or death did not present higher PPARG expression. Conclusion Expression of PPARGD was not associated with worse prognosis.
Collapse
Affiliation(s)
- Andre Luiz Prezotto Villa
- MSc, Division of Coloproctology, Department of Anatomy and Surgery , Medical School , Universidade de São Paulo (USP), Ribeirao Preto - SP , Brazil . Conception and design of the study; acquisition, analysis and interpretation of data, manuscript writing
| | - Rogério Serafim Parra
- PhD, Division of Coloproctology, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Manuscript writing, critical revision
| | - Marley Ribeiro Feitosa
- PhD, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Analysis and interpretation of data, statistics analysis
| | - Hugo Parra de Camargo
- MD, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Analysis of data
| | - Vanessa Foresto Machado
- MD, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Analysis and interpretation of data
| | - Daniela Pretti da Cunha Tirapelli
- PhD, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Analysis and interpretation of data, critical revision
| | - José Joaquim Ribeiro da Rocha
- PhD, Associated Professor, Head, Division of Coloproctology, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Critical revision, final approval
| | - Omar Feres
- PhD, Associated Professor, Division of Coloproctology, Department of Anatomy and Surgery , Medical School , USP , Ribeirao Preto - SP , Brazil . Conception and design of the study, analysis and interpretation of data, critical revision, final approval
| |
Collapse
|
320
|
Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A. Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 2020; 140:104814. [PMID: 32758586 DOI: 10.1016/j.neuint.2020.104814] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is one of the ligand-activated transcription factors which regulates a number of central events and considered as a promising target for various neurodegenerative disease conditions. Numerous reports implicate that PPAR-γ agonists have shown neuroprotective effects by regulating genes transcription associated with the pathogenesis of neurodegeneration. In regards, this review critically appraises the recent knowledge of PPAR-γ receptors in neuroprotection in order to hypothesize potential neuroprotective mechanism of PPAR-γ agonism in chronic neurological conditions. Of note, the PPAR-γ's interaction dynamics with PPAR-γ coactivator-1α (PGC-1α) has gained significant attention for neuroprotection. Likewise, a plethora of studies suggest that the PPAR-γ pathway can be actuated by the endogenous ligands present in the CNS and thus identification and development of novel agonist for the PPAR-γ receptor holds a vow to prevent neurodegeneration. Together, the critical insights of this review enlighten the translational possibilities of developing novel neuroprotective therapeutics targeting PPAR-γ for various neurodegenerative disease conditions.
Collapse
Affiliation(s)
- B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jincy A Jose
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - S Yuvaraj
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Victoria Jeyarani
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Chennu Manisha
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Sayani Banerjee
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - S P Dhanabal
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Antony Justin
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India.
| |
Collapse
|
321
|
Liu X, Qian D, Liu H, Abbruzzese JL, Luo S, Walsh KM, Wei Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol Carcinog 2020; 59:930-939. [PMID: 32367578 PMCID: PMC7592725 DOI: 10.1002/mc.23208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Because the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Danwen Qian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - James L. Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M. Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
322
|
Абатуров А, Никулина А. Antibiotic Therapy as a Risk Factor of Obesity Development in Children. ПЕДИАТРИЯ. ВОСТОЧНАЯ ЕВРОПА 2020:268-290. [DOI: 10.34883/pi.2020.8.2.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Настоящий обзор научной литературы посвящен вопросам, связанным с механизмами антибактериально-индуцированного адипогенеза. Антибиотиками, наиболее высоко ассоциированными с развитием ожирения у детей, считают: амоксициллин, цефотаксим, макролиды, тетрациклины, ванкомицин. На основании результатов филогенетических, метагеномных исследований эффектов антибиотиков установлено, что их применение в антенатальном, раннем постнатальном периоде приводит к пролонгированным изменениям как состава, так и функционирования микробиома, которые ассоциированы с повышенным риском последующего увеличения массы тела ребенка. Механизмы непосредственного влияния антибиотиков на адипогенез связаны с их способностью повышать аппетит за счет стимуляции высвобождения орексина и меланин-концентрирующего гормона; увеличивать абсорбцию пищевых ингредиентов; активировать липогенез; индуцировать митохондриальную дисфункцию и тем самым способствовать накоплению жирных кислот. Применение антибиотиков существенно изменяет структуру микробиома кишечника, а именно: развитие ожирения связано с высоким уровнем представительства бактерий филюмов Actinobacteria и Firmicutes в сочетании со снижением численности бактерий Bacteroidetes, Verrucomicrobia и Faecalibacterium prausnitzii. Антибиотик-индуцированные изменения микробиома могут существенно влиять на аппетит, так как уровень грелина, вызывающего аппетит, положительно коррелирует с представительством бактерий Bacteroides и Prevotella, и отрицательно – с численностью бактерий Bifidobacterium, Lactobacillus, Blautia coccoides и Eubacterium rectale. Доказано, что применение некоторых антибиотиков сопровождается не только накоплением висцерального жира, но и приводит к развитию как неалкогольной болезни печени, так и инсулинорезистентности. Рецепторы FXR и TGR5 являются сенсорами изменений микробиоты кишечника, которые участвуют в регуляции метаболических процессов макроорганизма. Развитие ожирения характеризуется наличием низкоуровневого системного воспаления. При развитии ожирения по мере увеличения размеров адипоцитов фенотип макрофагов меняется на провоспалительный фенотип М1. Накопление провоспалительных клеток в висцеральной жировой ткани является важной причиной развития инсулинорезистентности. В настоящее время необходимость применения антибиотиков при лечении инфекционных заболеваний, вызванных бактериальными агентами, не вызывает никаких клинических сомнений. Однако появление научных сведений о метаболических эффектах, возникновение которых ассоциировано с антибиотикотерапией, ставит клинические новые задачи, решение которых, вероятно, лежит в оптимизации режимов применения антибиотиков и выборе сопровождающих лекарственных средств.
This review of scientific literature is devoted to issues related to the mechanisms of antibacterial- induced adipogenesis. The antibiotics most highly associated with the development of obesity in children are the following: amoxicillin, cefotaxime, macrolides, tetracyclines, vancomycin. On the base of the results of phylogenetic, metagenomic studies of the effects of antibiotics, it was found that their use in the antenatal, early postnatal period leads to prolonged changes in both the composition and functioning of the microbiome, which is associated with the increased risk of subsequent increase of body weight of the child. The mechanisms of direct effect of antibiotics on adipogenesis are associated with their ability to increase appetite, by stimulating the release of orexin and melanin-concentrating hormone; increase the absorption of food ingredients; activate lipogenesis; induce mitochondrial dysfunction and thereby contribute to accumulation of fatty acids. The use of antibiotics significantly changes the structure of the intestinal microbiome, namely, the development of obesity is associated with a high representation of phylum bacteria Actinobacteria and Firmicutes in combination with the decrease of the number of bacteria Bacteroidetes, Verrucomicrobia and Faecalibacterium prausnitzii. Antibiotic-induced changes in the microbiome can significantly affect appetite, because the level of ghrelin that causes appetite positively correlates with the presence of bacteria Bacteroides and Prevotella, and negatively with the number of bacteria Bifidobacterium, Lactobacillus, Blautia coccoides and Eubacterium rectale. It was proved that the use of certain antibiotics is accompanied not only by the accumulation of visceral fat, but also leads to the development of both non-alcoholic liver disease and insulin resistance. The FXR and TGR5 receptors are the sensors of changes in the intestinal microbiota, which is involved in the regulation of the metabolic processes of the macroorganism. The development of obesity is characterized by the presence of low-level systemic inflammation. With the development of obesity, as the size of adipocytes increases, the macrophage phenotype changes to the pro- inflammatory M1 phenotype. The accumulation of pro-inflammatory cells in visceral adipose tissue is an important reason for development of insulin resistance. Currently, the need for antibiotics in the treatment of infectious diseases caused by bacterial agents does not raise any clinical doubts. However, the emergence of scientific information about metabolic effects, the occurrence of which is associated with antibiotic therapy, presents new clinical challenges, the solution of which probably lies in optimizing antibiotic regimens and choosing the accompanying drugs.
Collapse
|
323
|
The retinoid X receptor: a nuclear receptor that modulates the sleep-wake cycle in rats. Psychopharmacology (Berl) 2020; 237:2055-2073. [PMID: 32472163 DOI: 10.1007/s00213-020-05518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. OBJECTIVES We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. METHODS The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. RESULTS Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. CONCLUSIONS The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.
Collapse
|
324
|
Nakashima KI, Yamaguchi E, Noritake C, Mitsugi Y, Goto M, Hirai T, Abe N, Sakai E, Oyama M, Itoh A, Inoue M. Discovery and SAR of Natural-Product-Inspired RXR Agonists with Heterodimer Selectivity to PPARδ-RXR. ACS Chem Biol 2020; 15:1526-1534. [PMID: 32374156 DOI: 10.1021/acschembio.0c00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A known natural product, magnaldehyde B, was identified as an agonist of retinoid X receptor (RXR) α. Magnaldehyde B was isolated from Magnolia obovata (Magnoliaceae) and synthesized along with more potent analogs for screening of their RXRα agonistic activities. Structural optimization of magnaldehyde B resulted in the development of a candidate molecule that displayed a 440-fold increase in potency. Receptor-ligand docking simulations indicated that this molecule has the highest affinity with the ligand binding domain of RXRα among the analogs synthesized in this study. Furthermore, the selective activation of the peroxisome proliferator-activated receptor (PPAR) δ-RXR heterodimer with a stronger efficacy compared to those of PPARα-RXR and PPARγ-RXR was achieved in luciferase reporter assays using the PPAR response element driven reporter (PPRE-Luc). The PPARδ activity of the molecule was significantly inhibited by the antagonists of both RXR and PPARδ, whereas the activity of GW501516 was not affected by the RXR antagonist. Furthermore, the molecule exhibited a particularly weak PPARδ agonistic activity in reporter gene assays using the Gal4 hybrid system. The obtained data therefore suggest that the weak PPARδ agonistic activity of the optimized molecule is synergistically enhanced by its own RXR agonistic activity, indicating the potent agonistic activity of the PPARδ-RXR heterodimer.
Collapse
Affiliation(s)
- Ken-ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | - Chihaya Noritake
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | - Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
325
|
Li Z, Xu Y, Cai Z, Wang X, Ren Q, Zhou Z, Xie R. Discovery of novel dual PPARα/δ agonists based on benzimidazole scaffold for the treatment of non-alcoholic fatty liver disease. Bioorg Chem 2020; 99:103803. [PMID: 32251945 DOI: 10.1016/j.bioorg.2020.103803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
|
326
|
Parvez MK, Al-Dosari MS, Ahmed S, Rehman MT, Al-Rehaily AJ, Alajmi MF. Oncoglabrinol C, a new flavan from Oncocalyx glabratus protects endothelial cells against oxidative stress and apoptosis, and modulates hepatic CYP3A4 activity. Saudi Pharm J 2020; 28:648-656. [PMID: 32550794 PMCID: PMC7292873 DOI: 10.1016/j.jsps.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Active herbal or natural compounds have high chemical diversity and specificity than synthetic drugs. Recently, we have validated the hypoglycemic salutation of Oncocalyx glabratus in rodent model, and demonstrated the activation of PPARα/γ by its newly ioslated flavan derivative Oncoglabrinol C (5,3'-Dihydroxyflavan 7-4'-O-digallate) in liver cells (HepG2). Here we evaluated the potential of Oncoglabrinol C against Dichlorofluorescin (DCFH) and Methylglyoxal (MGO) induced endothelial cells (HUVEC) oxidative and apoptotic damage, including activation of PXR-mediated hepatic CYP3A4. Our MTT assay showed protection of ~57% and ~63.5% HUVEC cells by 10 and 20 μg/ml doses of Oncoglabrinol C, respectively through attenuating DCFH triggered free-radicals. Also, the two doses effectively protected ~53% and ~65.5% cells, respectively by reversing MGO toxicity. In DCFH and MGO treated cells, Oncoglabrinol C (20 μg/ml) effectively downregulated caspase 3/7 activity by ~33% and ~43.5%, respectively. Moreover, in reporter gene (dual-luciferase) assay, Oncoglabrinol C (20 μg/ml) moderately activated hepatic CYP3A4. Molecular docking of Oncoglabrinol C indicated its strong interactions with cellular caspase 3/7, PPARα/γ and PXR proteins, which supported its anti-apoptotic (antagonistic) as well as pro-hypoglycemic and PXR/CYP activating (agonistic) activities. Taken together, our findings demonstrated the potential of Oncoglabrinol C in reversing the endothelial oxidative and apoptotic damage as well as in the activation of hepatic CYP3A4. This warrants further evaluations of Oncoglabrinol C and related compounds towards developing effective and safe drugs against diabetes associated cardiovascular disorders.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
327
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
328
|
Matrisciano F, Pinna G. PPAR and functional foods: Rationale for natural neurosteroid-based interventions for postpartum depression. Neurobiol Stress 2020; 12:100222. [PMID: 32426424 PMCID: PMC7226878 DOI: 10.1016/j.ynstr.2020.100222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
329
|
Yao PL, Peavey J, Malek G. Leveraging Nuclear Receptors as Targets for Pathological Ocular Vascular Diseases. Int J Mol Sci 2020; 21:ijms21082889. [PMID: 32326149 PMCID: PMC7215709 DOI: 10.3390/ijms21082889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.
Collapse
Affiliation(s)
- Pei-Li Yao
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27503, USA
- Correspondence: ; Tel.: +919-684-0820
| |
Collapse
|
330
|
Yabuki A, Uehara Y, Ichii O, Yoshida C, Yamato O. Expression of Peroxisome Proliferator-activated Receptor-γ in the Kidneys of Cats with Chronic Kidney Disease. J Comp Pathol 2020; 176:81-85. [PMID: 32359640 DOI: 10.1016/j.jcpa.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ plays an important role in various cellular functions and its activation exerts protective effects in kidney diseases. In the present study, chronic kidney disease in cats was examined, and changes in renal expression of PPARγ were observed by use of immunohistochemistry. In normal kidneys, nuclei of the superficial cortical tubules, medullary tubules and glomerular cells expressed PPARγ. The vascular walls (tunica media) also showed positive expression. In diseased kidneys, the expression of PPARγ varied between the cases. Some cases showed strong expression, while others had weak expression. PPARγ expression in the nuclei of infiltrating mononuclear cells was also detected in over half of the cases. Although there was no significant relationship between the expression of renal PPARγ and the severity of kidney disease, the fact that there were many cases where the expression of renal PPARγ was reduced was an important finding, and might be one of the possible mechanisms underlying feline chronic kidney diseases.
Collapse
Affiliation(s)
- A Yabuki
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan.
| | - Y Uehara
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan
| | - O Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Japan
| | - C Yoshida
- Boehringer Ingelheim Animal Health Japan, Osaki, 2-1-1, Shinagawa-ku, Tokyo, Japan
| | - O Yamato
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan
| |
Collapse
|
331
|
Leuci R, Brunetti L, Laghezza A, Tortorella P, Loiodice F, Piemontese L. A Review of Recent Patents (2016-2019) on Plant Food Supplements with Potential Application in the Treatment of Neurodegenerative and Metabolic Disorders. Recent Pat Food Nutr Agric 2020; 11:145-153. [PMID: 32167437 DOI: 10.2174/2212798411666200313145824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
In the near future, it is expected that the prevalence of illnesses related to the increasing life expectancies and quality of life, such as neurodegenerative diseases and cardiovascular diseases related to metabolic disorders, will soar to unprecedented levels, leading to high socioeconomic costs. To address this rising threat, natural products are emerging as a novel strategy for the prevention and therapy of these ages- and lifestyle-related diseases, thanks to their high marketability and few side effects. In this patent review, we summarize selected patents for food supplements, functional and fortified foods, filed from 2016 to 2019, categorizing them based on the biological activity of their components.
Collapse
Affiliation(s)
- Rosalba Leuci
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
332
|
Induction of peroxisome proliferator activated receptor γ (PPARγ) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf. BMC Complement Med Ther 2020; 20:80. [PMID: 32164648 PMCID: PMC7076844 DOI: 10.1186/s12906-020-2856-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The health benefits of botanicals is linked to their phytochemicals that often exert pleiotropic effects via targeting multiple molecular signaling pathways such as the peroxisome proliferator-activated receptors (PPARs) and the nuclear factor kappaB (NFκB). The PPARs are transcription factors that control metabolic homeostasis and inflammation while the NF-κB is a master regulator of inflammatory genes such as the inducible nitric-oxide synthase that result in nitric oxide (NO) overproduction. METHODS Extracts of Maerua subcordata (MS) and selected candidate constituents thereof, identified by liquid chromatography coupled to mass spectroscopy, were tested for their ability to induce PPARγ mediated gene expression in U2OS-PPARγ cells using luciferase reporter gene assay and also for their ability to inhibit lipopolysaccharide (LPS) induced NO production in RAW264.7 macrophages. While measuring the effect of test samples on PPARγ mediated gene expression, a counter assay that used U2OS-Cytotox cells was performed to monitor cytotoxicity or any non-specific changes in luciferase activity. RESULTS The results revealed that the fruit, root, and seed extracts were non-cytotoxic up to a concentration of 30 g dry weight per litre (gDW/L) and induced PPARγ mediated gene expression but the leaf extract showed some cytotoxicity and exhibited minimal induction. Instead, all extracts showed concentration (1-15 gDW/L) dependent inhibition of LPS induced NO production. The root extract showed weaker inhibition. Among the candidate constituents, agmatine, stachydrine, trigonelline, indole-3-carboxyaldehyde, plus ethyl-, isobutyl-, isopropyl, and methyl-isothiocyanates showed similar inhibition, and most showed increased inhibition with increasing concentration (1-100 μM) although to a lesser potency than the positive control, aminoguanidine. CONCLUSION The present study demonstrated for the first time the induction of PPARγ mediated gene expression by MS fruit, root, and seed extracts and the inhibition of LPS induced NO production by MS fruit, leaf, root, and seed extracts and some candidate constituents thereof.
Collapse
|
333
|
Abstract
Abdominal aortic aneurysms (AAA) pose a considerable health burden and at present are only managed surgically since there is no proven pharmacotherapy that will retard their expansion or reduce the incidence of fatal rupture. This pathology shares several pathophysiological mechanisms with atherosclerosis, such as macrophage infiltration, inflammation, and degradation of extracellular matrix. Therefore, therapeutic targets proven effective in the treatment of atherosclerosis could also be considered for treatment of AAA. Different members of the nuclear receptor (NR) superfamily have been extensively studied as potential targets in the treatment of cardiovascular disease (CVD) and therefore might also be suited for AAA treatment. In this context, this review summarizes the role of different NRs in CVD, mostly atherosclerosis, and discusses in detail the current knowledge of their implications in AAA. From this overview it becomes apparent that NRs that were attributed a beneficial or adverse role in CVD have similar roles in AAA. Together, this overview provides compelling evidence to consider several NRs as attractive targets for future treatment of AAA.
Collapse
|
334
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
335
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
336
|
Zhou J, Zhe R, Guo X, Chen Y, Zou Y, Zhou L, Wang Z. The Role of PPARδ Agosnist GW501516 in Rats with Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:2307-2316. [PMID: 32669864 PMCID: PMC7335770 DOI: 10.2147/dmso.s251491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a disorder of glucose metabolism that occurs or is found for the first time during pregnancy. GDM is very harmful and urgently needs drug treatment to improve pregnancy outcome. PPARδ is involved in a variety of biological processes related to glycolipid metabolism in the body, suggesting that it may be closely related to insulin resistance and impaired glucose tolerance. The role of PPARδ agonist GW501516 in gestational diabetes has not been studied. METHODS Firstly, the rat model of GDM was established. Then, fasting blood-glucose (FGB), fasting insulin (FINS), HOMA-islet resistance index (HOMA-IR) and insulin sensitivity index (ISI) of GDM rats treated with GW501516 were measured on day 3, day 10 and day 17. Glucose tolerance test was performed on the 20th day of gestation to measure glucose tolerance in rats. The expression of PPARδ and Angptl8 in islet tissues of rats was detected by Western blot and immunohistochemistry (IHC). Histopathological changes of islet were detected by HE stain; apoptosis rate of islet cells was detected by Tunel; and expression of apoptosis-related proteins in the cells was detected by Western blot. The biochemical kits were used to detect the expression of lipid metabolism-related factors in blood of GDM rats after the PPARδ agonist GW501516 treatment. Finally, the expression of SREBP-1c and GLUT2 in islet tissues was detected by RT-qPCR and IHC. RESULTS The PPARδ agonist GW501516 decreased the expression of FGB, FINS and HOMA-IR in GDM rats, and we found that GW501516 decreased ISI in GDM rats. GW501516 increased glucose tolerance in GDM rats too. In GDM rats, the expression of PPARδ in islet decreased and the expression of Angptl8 increased, which was reversed by GW501516. In addition, we also found that GW501516 can improve the damaged islet tissue of GDM rats, reduce the apoptosis rate of islet cells and inhibit the expression of lipid metabolism-related factors in the blood. Finally, we found that GW501516 inhibited the expression of SREBP-1c and promoted the expression of GLUT2 in the islet tissue. CONCLUSION The PPARδ agonist GW501516 could improve the blood glucose level, damaged islet tissue and increase the insulin content in the rats with GDM, possibly by regulating the SREBP-1c/GLUT2 pathway. Our study provided a new basis for clinical treatment of GDM in pregnant women with PPARδ agonist GW501516.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Ruilian Zhe
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Xiaohui Guo
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Yuying Chen
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Yan Zou
- Emergency Department of Shenzhen Maternal and Child Health Hospital, Shenzhen518000, People’s Republic of China
| | - Li Zhou
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510510, People’s Republic of China
- Correspondence: Zhijian Wang Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Number 1838, North Guangzhou Avenue, Guangzhou, Guangdong510515, People’s Republic of China Email
| |
Collapse
|
337
|
Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat 2019; 30:1-13. [PMID: 31825687 DOI: 10.1080/13543776.2020.1703952] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARδ, and PPARγ, play an important role in the regulation of various physiological processes, specifically lipid and energy metabolism and immunity. PPARα agonists (fibrates) and PPARγ agonists (thiazolidinediones) are used for the treatment of hypertriglyceridemia and type 2 diabetes, respectively. PPARδ activation enhances mitochondrial and energy metabolism but PPARδ-acting drugs are not yet available. Many synthetic ligands for PPARs have been developed to expand their therapeutic applications.Areas covered: The authors searched recent patent activity regarding PPAR ligands. Novel PPARα agonists, PPARδ agonists, PPARγ agonists, PPARα/γ dual agonists, and PPARγ antagonists have been claimed for the treatment of metabolic disease and inflammatory disease. Methods for the combination of PPAR ligands with other drugs and expanded application of PPAR agonists for bone and neurological disease have been also claimed.Expert opinion: Novel PPAR ligands and the combination of PPAR ligands with other drugs have been claimed for the treatment of mitochondrial disease, inflammatory/autoimmune disease, neurological disease, and cancer in addition to metabolic diseases including dyslipidemia and type 2 diabetes. Selective therapeutic actions of PPAR ligands should be exploited to avoid adverse effects. More basic studies are needed to elucidate the molecular mechanisms of selective actions.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
338
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
339
|
Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, Bai M, Zhang Z. Weighted Gene Co-Expression Network Analysis Identifies Critical Genes in the Development of Heart Failure After Acute Myocardial Infarction. Front Genet 2019; 10:1214. [PMID: 31850068 PMCID: PMC6889910 DOI: 10.3389/fgene.2019.01214] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The development of heart failure (HF) remains a common complication following an acute myocardial infarction (AMI), and is associated with substantial adverse outcomes. However, the specific predictive biomarkers and candidate therapeutic targets for post-infarction HF have not been fully established. We sought to perform a weighted gene co-expression network analysis (WGCNA) to identify key modules, hub genes, and possible regulatory targets involved in the development of HF following AMI. Methods: Genes exhibiting the most (top 50%) variation in expression levels across samples in a GSE59867 dataset were imported to the WGCNA. Gene Ontology and pathway enrichment analyses were performed on genes identified in the key module by Metascape. Gene regulatory networks were constructed using the microarray probe reannotation and bioinformatics database. Hub genes were screened out from the key module and validated using other datasets. Results: A total of 10,265 most varied genes and six modules were identified between AMI patients who developed HF within 6 months of follow-up and those who did not. Specifically, the blue module was found to be the most significantly related to the development of post-infarction HF. Functional enrichment analysis revealed that the blue module was primarily associated with the inflammatory response, immune system, and apoptosis. Seven transcriptional factors, including SPI1, ZBTB7A, IRF8, PPARG, P65, KLF4, and Fos, were identified as potential regulators of the expression of genes identified in the blue module. Further, non-coding RNAs, including miR-142-3p and LINC00537, were identified as having close interactions with genes from the blue module. A total of six hub genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B) were identified and validated for their predictive value in identifying future HFs. Conclusions: By using the WGCNA, we provide new insights into the underlying molecular mechanism and molecular markers correlated with HF development following an AMI, which may serve to improve risk stratification, therapeutic decisions, and prognosis prediction in AMI patients.
Collapse
Affiliation(s)
- Xiaowei Niu
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Jingjing Zhang
- Department of Internal Medicine, Baiyin Second People's Hospital, Baiyin, China
| | - Lanlan Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Yangfan Hou
- Department of Digestive, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuangshuang Pu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Aiai Chu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ming Bai
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
340
|
Belloni E, Di Matteo A, Pradella D, Vacca M, Wyatt CDR, Alfieri R, Maffia A, Sabbioneda S, Ghigna C. Gene Expression Profiles Controlled by the Alternative Splicing Factor Nova2 in Endothelial Cells. Cells 2019; 8:cells8121498. [PMID: 31771184 PMCID: PMC6953062 DOI: 10.3390/cells8121498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) plays an important role in expanding the complexity of the human genome through the production of specialized proteins regulating organ development and physiological functions, as well as contributing to several pathological conditions. How AS programs impact on the signaling pathways controlling endothelial cell (EC) functions and vascular development is largely unknown. Here we identified, through RNA-seq, changes in mRNA steady-state levels in ECs caused by the neuro-oncological ventral antigen 2 (Nova2), a key AS regulator of the vascular morphogenesis. Bioinformatics analyses identified significant enrichment for genes regulated by peroxisome proliferator-activated receptor-gamma (Ppar-γ) and E2F1 transcription factors. We also showed that Nova2 in ECs controlled the AS profiles of Ppar-γ and E2F dimerization partner 2 (Tfdp2), thus generating different protein isoforms with distinct function (Ppar-γ) or subcellular localization (Tfdp2). Collectively, our results supported a mechanism whereby Nova2 integrated splicing decisions in order to regulate Ppar-γ and E2F1 activities. Our data added a layer to the sequential series of events controlled by Nova2 in ECs to orchestrate vascular biology.
Collapse
Affiliation(s)
- Elisa Belloni
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Anna Di Matteo
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Davide Pradella
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Margherita Vacca
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Christopher D. R. Wyatt
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Roberta Alfieri
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Antonio Maffia
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy; (E.B.); (A.D.M.); (D.P.); (M.V.); (R.A.); (A.M.); (S.S.)
- Correspondence:
| |
Collapse
|
341
|
Linciano P, De Filippis B, Ammazzalorso A, Amoia P, Cilurzo F, Fantacuzzi M, Giampietro L, Maccallini C, Petit C, Amoroso R. Druggability profile of stilbene-derived PPAR agonists: determination of physicochemical properties and PAMPA study. MEDCHEMCOMM 2019; 10:1892-1899. [PMID: 32206235 PMCID: PMC7069374 DOI: 10.1039/c9md00286c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
PPAR agonists represent a new therapeutic opportunity for the prevention and treatment of neurodegenerative disorders, but their pharmacological success depends on favourable pharmacokinetic properties and capability to cross the BBB. In this study, we assayed some PPAR agonists previously synthesized by us for their physicochemical properties, with particular references to lipophilicity, solubility and permeability profiles, using the PAMPA. Although tested compounds showed high lipophilicity and low aqueous solubility, the results revealed a good overall druggability profile, encouraging further studies in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences , University of Modena , via Giuseppe Campi 103 , 41125 Modena , Italy
| | - Barbara De Filippis
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Alessandra Ammazzalorso
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Pasquale Amoia
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Felisa Cilurzo
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Marialuigia Fantacuzzi
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Letizia Giampietro
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Cristina Maccallini
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| | - Charlotte Petit
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , CMU - 1 rue Michel-Servet , 1211 Geneva , Switzerland
| | - Rosa Amoroso
- Department of Pharmacy , University "G. d'Annunzio" , via dei Vestini 31 , 66100 Chieti , Italy .
| |
Collapse
|
342
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
343
|
Jin M, Zhang B, Sun Y, Zhang S, Li X, Sik A, Bai Y, Zheng X, Liu K. Involvement of peroxisome proliferator-activated receptor γ in anticonvulsant activity of α-asaronol against pentylenetetrazole-induced seizures in zebrafish. Neuropharmacology 2019; 162:107760. [PMID: 31493468 DOI: 10.1016/j.neuropharm.2019.107760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
In mammals, peroxisome proliferators activated receptors (PPARs), the nuclear hormone receptors, have been reported to be involved in seizure control. Selective agonists and antagonists of PPARs raise seizure thresholds and suppress seizures, respectively. In this study, we evaluated the anticonvulsant effects of α-asaronol, a metabolic product of α-asarone, on pentylenetetrazole (PTZ)-induced seizures in zebrafish and investigated the underlying mechanisms. As a result, α-asaronol ameliorated seizures with increase of seizure latency, as well as decrease of seizure-like behavior, c-fos expression, and abnormal neuronal discharge in a concentration dependent manner. By comparing gene expression profiles of zebrafish undergoing seizures and α-asaronol pretreated zebrafish, we found that α-asaronol attenuate seizures through increase of PPAR γ expression, while PPAR γ antagonist GW9662 inhibit the anti-seizures actions of α-asaronol. Moreover, molecular docking simulation implied the physical interaction between α-asaronol and PPAR γ. The overall results indicated that the anticonvulsant effects of α-asaronol are regulated through PPAR γ-mediated pathway, which shed light on development of α-asaronol as a potential antiepileptic drug. In addition, it is for first time to report that PPAR γ is associated with seizures in zebrafish, supporting previous evidence that zebrafish is a suitable alternative for studying seizures.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ying Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO.44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
344
|
Ammazzalorso A, Maccallini C, Amoia P, Amoroso R. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem 2019; 173:261-273. [DOI: 10.1016/j.ejmech.2019.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023]
|
345
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
346
|
Fantacuzzi M, De Filippis B, Amoroso R, Giampietro L. PPAR Ligands Containing Stilbene Scaffold. Mini Rev Med Chem 2019; 19:1599-1610. [PMID: 31161987 DOI: 10.2174/1389557519666190603085026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/26/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors which belong to the ligand-activated nuclear receptor superfamily. They are ubiquitously expressed throughout the body. So far, three major subtypes have been identified, PPARα, PPARβ/δ and PPARγ. They are crucial for lipid and glucose metabolism and are also involved in the regulation of several types of tumors, inflammation, cardiovascular diseases and infertility. The importance of these transcription factors in physiology and pathophysiology has been largely investigated. Synthetic PPAR ligands are widely used in the treatment of dyslipidemia (e.g. fibrates - PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones - PPARγ agonists) while a new generation of dual agonists reveals hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action. Many natural ligands, including polyphenolic compounds, influence the expression of these receptors. They have several health-promoting properties, including antioxidant, anti-inflammatory, and antineoplastic activities. Resveratrol, a stilbene polyphenol, is a biological active modulator of several signaling proteins, including PPARs. Given the enormous pharmacological potential of resveratrol, stilbene-based medicinal chemistry had a rapid increase covering various areas of research. The present review discusses ligands of PPARs that contain stilbene scaffold and summarises the different types of compounds on the basis of chemical structure.
Collapse
Affiliation(s)
| | - Barbara De Filippis
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
347
|
Astaxanthin as a Peroxisome Proliferator-Activated Receptor (PPAR) Modulator: Its Therapeutic Implications. Mar Drugs 2019; 17:md17040242. [PMID: 31018521 PMCID: PMC6521084 DOI: 10.3390/md17040242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are part of the nuclear hormone receptors superfamily that plays a pivotal role in functions such as glucose and lipid homeostasis. Astaxanthin (ASX) is a lipid-soluble xanthophyll carotenoid synthesized by many microorganisms and various types of marine life that is known to possess antioxidant, anti-inflammatory, antidiabetic, anti-atherosclerotic, and anticancer activities. As such, it is a promising nutraceutical resource. ASX-mediated modulation of PPARs and its therapeutic implications in various pathophysiological conditions are described in this review. ASX primarily enhances the action of PPARα and suppresses that of PPARβ/δ and PPARγ, but it has also been confirmed that ASX displays the opposite effects on PPARs, depending on the cell context. Anti-inflammatory effects of ASX are mediated by PPARγ activation, which induces the expression of pro-inflammatory cytokines in macrophages and gastric epithelial cells. The PPARγ-agonistic effect of ASX treatment results in the inhibition of cellular growth and apoptosis in tumor cells. Simultaneous and differential regulation of PPARα and PPARγ activity by ASX has demonstrated a hepatoprotective effect, maintaining hepatic lipid homeostasis and preventing related hepatic problems. Considering additional therapeutic benefits of ASX such as anti-gastric, cardioprotective, immuno-modulatory, neuroprotective, retinoprotective, and osteogenic effects, more studies on the association between ASX-mediated PPAR regulation and its therapeutic outcomes in various pathophysiological conditions are needed to further elucidate the role of ASX as a novel nutraceutical PPAR modulator.
Collapse
|