301
|
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015; 36:1219-27. [PMID: 26388155 PMCID: PMC4648179 DOI: 10.1038/aps.2015.92] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies.
Collapse
|
302
|
Jousma E, Rizvi TA, Wu J, Janhofer D, Dombi E, Dunn RS, Kim MO, Masters AR, Jones DR, Cripe TP, Ratner N. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr Blood Cancer 2015; 62:1709-16. [PMID: 25907661 PMCID: PMC4546559 DOI: 10.1002/pbc.25546] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model. PROCEDURES We studied effects of MEK inhibition using 1.5 mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 (flox/flox); Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5 mg/kg/day doses of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints. RESULTS Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage. CONCLUSIONS Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design.
Collapse
Affiliation(s)
- Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Janhofer
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Richard S. Dunn
- Division of Imaging Resource Center, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mi-Ok Kim
- Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea R. Masters
- Indiana University Simon Cancer Center, Indiana University School of Medicine
| | - David R. Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine
| | - Timothy P. Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Correspondence to
| |
Collapse
|
303
|
Oscillation of p38 activity controls efficient pro-inflammatory gene expression. Nat Commun 2015; 6:8350. [PMID: 26399197 PMCID: PMC4598561 DOI: 10.1038/ncomms9350] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
The p38 MAP kinase signalling pathway controls inflammatory responses and is an important target of anti-inflammatory drugs. Although pro-inflammatory cytokines such as interleukin-1β (IL-1β) appear to induce only transient activation of p38 (over ∼60 min), longer cytokine exposure is necessary to induce p38-dependent effector genes. Here we study the dynamics of p38 activation in individual cells using a Förster resonance energy transfer (FRET)-based p38 activity reporter. We find that, after an initial burst of activity, p38 MAPK activity subsequently oscillates for more than 8 h under continuous IL-1β stimulation. However, as this oscillation is asynchronous, the measured p38 activity population average is only slightly higher than basal level. Mathematical modelling, which we have experimentally verified, indicates that the asynchronous oscillation of p38 is generated through a negative feedback loop involving the dual-specificity phosphatase MKP-1/DUSP1. We find that the oscillatory p38 activity is necessary for efficient expression of pro-inflammatory genes such as IL-6, IL-8 and COX-2. The prolonged presence of cytokines is necessary to produce a robust pro-inflammatory response through the activation of p38 MAPK. Here, Tomida et al. show that asynchronous oscillatory activation of p38 MAPK occurs at the single-cell level and is necessary for the proper expression of pro-inflammatory genes.
Collapse
|
304
|
Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 2015; 15:515-27. [PMID: 26289315 DOI: 10.1038/nrc3983] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is often considered a genetic disease. However, much of the enormous plasticity of cancer cells to evolve different phenotypes, to adapt to challenging microenvironments and to withstand therapeutic assaults is encoded by the structure and spatiotemporal dynamics of signal transduction networks. In this Review, we discuss recent concepts concerning how the rich signalling dynamics afforded by these networks are regulated and how they impinge on cancer cell proliferation, survival, invasiveness and drug resistance. Understanding this dynamic circuitry by mathematical modelling could pave the way to new therapeutic approaches and personalized treatments.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Marina Granovskaya
- Roche Moscow Limited, Business Center Neglinnaya Plaza, Building 2, Trubnaya Square, 107031 Moscow, Russia
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
305
|
Sparta B, Pargett M, Minguet M, Distor K, Bell G, Albeck JG. Receptor Level Mechanisms Are Required for Epidermal Growth Factor (EGF)-stimulated Extracellular Signal-regulated Kinase (ERK) Activity Pulses. J Biol Chem 2015; 290:24784-92. [PMID: 26304118 DOI: 10.1074/jbc.m115.662247] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
In both physiological and cell culture systems, EGF-stimulated ERK activity occurs in discrete pulses within individual cells. Many feedback loops are present in the EGF receptor (EGFR)-ERK network, but the mechanisms driving pulsatile ERK kinetics are unknown. Here, we find that in cells that respond to EGF with frequency-modulated pulsatile ERK activity, stimulation through a heterologous TrkA receptor system results in non-pulsatile, amplitude-modulated activation of ERK. We further dissect the kinetics of pulse activity using a combination of FRET- and translocation-based reporters and find that EGFR activity is required to maintain ERK activity throughout the 10-20-minute lifetime of pulses. Together, these data indicate that feedbacks operating within the core Ras-Raf-MEK-ERK cascade are insufficient to drive discrete pulses of ERK activity and instead implicate mechanisms acting at the level of EGFR.
Collapse
Affiliation(s)
- Breanne Sparta
- From the Departments of Molecular and Cellular Biology and
| | | | - Marta Minguet
- From the Departments of Molecular and Cellular Biology and
| | - Kevin Distor
- From the Departments of Molecular and Cellular Biology and
| | - George Bell
- Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - John G Albeck
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|
306
|
Abstract
Cell signaling pathways control cells' responses to their environment through an intricate network of proteins and small molecules partitioned by intracellular structures, such as the cytoskeleton and nucleus. Our understanding of these pathways has been revised recently with the advent of more advanced experimental techniques; no longer are signaling pathways viewed as linear cascades of information flowing from membrane-bound receptors to the nucleus. Instead, such pathways must be understood in the context of networks, and studying such networks requires an integration of computational and experimental approaches. This understanding is becoming more important in designing novel therapies for diseases such as cancer. Using the MAPK (mitogen-activated protein kinase) and PI3K (class I phosphoinositide-3' kinase) pathways as case studies of cellular signaling, we give an overview of these pathways and their functions. We then describe, using a number of case studies, how computational modeling has aided in understanding these pathways' deregulation in cancer, and how such understanding can be used to optimally tailor current therapies or help design new therapies against cancer.
Collapse
Affiliation(s)
- Julio Saez-Rodriguez
- Current address: Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom;
| | - Aidan MacNamara
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom;
| | - Simon Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom;
| |
Collapse
|
307
|
Abstract
Convergent advances in optical imaging and genetic engineering have fueled the development of new technologies for biological visualization. Those technologies include genetically encoded indicators based on fluorescent proteins (FPs) for imaging ions, molecules, and enzymatic activities "to spy on cells," as phrased by Roger Tsien, by sneaking into specific tissues, cell types, or subcellular compartments, and reporting on specific intracellular activities. Here we review the current range of unimolecular indicators whose working principle is the conversion of a protein conformational change into a fluorescence signal. Many of the indicators have been developed from fluorescence resonance energy transfer- and single-FP-based approaches.
Collapse
|
308
|
Flusberg DA, Sorger PK. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 2015; 25:446-58. [PMID: 25920803 PMCID: PMC4570028 DOI: 10.1016/j.tcb.2015.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as Nuclear Factor (NF)-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival and/or pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
309
|
Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front Pharmacol 2015; 6:149. [PMID: 26257652 PMCID: PMC4513555 DOI: 10.3389/fphar.2015.00149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/09/2015] [Indexed: 11/28/2022] Open
Abstract
Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein–coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2). Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY) motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that dephosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.
Collapse
Affiliation(s)
- Michael Mutlak
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel
| | - Izhak Kehat
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel ; Department of Cardiology and the Clinical Research Institute at Rambam, Rambam Medical Center , Haifa, Israel
| |
Collapse
|
310
|
Gross SM, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci 2015; 128:2509-19. [PMID: 26040286 DOI: 10.1242/jcs.168773] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/28/2015] [Indexed: 12/30/2022] Open
Abstract
The protein kinase Akt (for which there are three isoforms) is a key intracellular mediator of many biological processes, yet knowledge of Akt signaling dynamics is limited. Here, we have constructed a fluorescent reporter molecule in a lentiviral delivery system to assess Akt kinase activity at the single cell level. The reporter, a fusion between a modified FoxO1 transcription factor and clover, a green fluorescent protein, rapidly translocates from the nucleus to the cytoplasm in response to Akt stimulation. Because of its long half-life and the intensity of clover fluorescence, the sensor provides a robust readout that can be tracked for days under a range of biological conditions. Using this reporter, we find that stimulation of Akt activity by IGF-I is encoded into stable and reproducible analog responses at the population level, but that single cell signaling outcomes are variable. This reporter, which provides a simple and dynamic measure of Akt activity, should be compatible with many cell types and experimental platforms, and thus opens the door to new insights into how Akt regulates its biological responses.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
311
|
Micali G, Aquino G, Richards DM, Endres RG. Accurate encoding and decoding by single cells: amplitude versus frequency modulation. PLoS Comput Biol 2015; 11:e1004222. [PMID: 26030820 PMCID: PMC4452646 DOI: 10.1371/journal.pcbi.1004222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms. Signals, and hence information, can generally be transmitted either by amplitude (AM) or frequency (FM) modulation, as used, for example, in the transmission of radio waves since the 1930s. Both types of modulation are known to play a role in biology with AM conventionally associated with signaling and gene expression, and FM used to reliably transmit electrical signals over large distances between neurons. Surprisingly, FM was recently also observed in gene regulation, making their roles less distinct than previously thought. Although the engineering advantages and disadvantages of AM and FM are well understood, the equivalent question in biological systems is still largely unsolved. Here, we propose a simple model of signaling by receptors (or ion channels) with subsequent gene regulation, thus implementing both AM and FM in different types of biological pathways. We then compare the accuracy in the production of target proteins. We find that FM can be more accurate than AM only for a single receptor with fast signaling, whereas AM is more accurate in slow gene regulation and with signaling by multiple receptors. Finally, we propose possible reasons that cells use FM despite the potential decrease in accuracy.
Collapse
Affiliation(s)
- Gabriele Micali
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Gerardo Aquino
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
| | - David M. Richards
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
| | - Robert G. Endres
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
312
|
A single-cell model of PIP3 dynamics using chemical dimerization. Bioorg Med Chem 2015; 23:2868-76. [DOI: 10.1016/j.bmc.2015.04.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/22/2022]
|
313
|
Hansen AS, O'Shea EK. Limits on information transduction through amplitude and frequency regulation of transcription factor activity. eLife 2015; 4. [PMID: 25985085 PMCID: PMC4468373 DOI: 10.7554/elife.06559] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Signaling pathways often transmit multiple signals through a single shared transcription factor (TF) and encode signal information by differentially regulating TF dynamics. However, signal information will be lost unless it can be reliably decoded by downstream genes. To understand the limits on dynamic information transduction, we apply information theory to quantify how much gene expression information the yeast TF Msn2 can transduce to target genes in the amplitude or frequency of its activation dynamics. We find that although the amount of information transmitted by Msn2 to single target genes is limited, information transduction can be increased by modulating promoter cis-elements or by integrating information from multiple genes. By correcting for extrinsic noise, we estimate an upper bound on information transduction. Overall, we find that information transduction through amplitude and frequency regulation of Msn2 is limited to error-free transduction of signal identity, but not signal intensity information.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
314
|
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42:216-226. [PMID: 25692699 DOI: 10.1016/j.immuni.2015.01.020] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/14/2023]
Abstract
Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens, and infectious agents, and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair, and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the epidermal growth factor (EGF)-like molecule Amphiregulin (AREG) might be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2s), and a subset of tissue-resident regulatory CD4(+) T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation and propose a model for the function of this pathway in the context of resistance and tissue tolerance.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Lisa C Osborne
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
315
|
Kellogg RA, Tay S. Noise facilitates transcriptional control under dynamic inputs. Cell 2015; 160:381-92. [PMID: 25635454 DOI: 10.1016/j.cell.2015.01.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/02/2014] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
Abstract
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments.
Collapse
Affiliation(s)
- Ryan A Kellogg
- Department of Biosystems Science and Engineering, ETH Zürich 4058, Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering, ETH Zürich 4058, Switzerland.
| |
Collapse
|
316
|
Kearns JD, Bukhalid R, Sevecka M, Tan G, Gerami-Moayed N, Werner SL, Kohli N, Burenkova O, Sloss CM, King AM, Fitzgerald JB, Nielsen UB, Wolf BB. Enhanced Targeting of the EGFR Network with MM-151, an Oligoclonal Anti-EGFR Antibody Therapeutic. Mol Cancer Ther 2015; 14:1625-36. [PMID: 25911688 DOI: 10.1158/1535-7163.mct-14-0772] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/17/2015] [Indexed: 12/16/2022]
Abstract
Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions. Model simulations suggested that an oligoclonal antibody combination may overcome signal amplification within the EGFR:ERK pathway driven by all EGFR ligands. Based on this, we designed MM-151, a combination of three fully human IgG1 monoclonal antibodies that can simultaneously engage distinct, nonoverlapping epitopes on EGFR with subnanomolar affinities. In signaling studies, MM-151 antagonized high-affinity EGFR ligands more effectively than cetuximab, leading to an approximately 65-fold greater decrease in signal amplification to ERK. In cell viability studies, MM-151 demonstrated antiproliferative activity against high-affinity EGFR ligands, either singly or in combination, while cetuximab activity was largely abrogated under these conditions. We confirmed this finding both in vitro and in vivo in a cell line model of autocrine high-affinity ligand expression. Together, these preclinical studies provide rationale for the clinical study of MM-151 and suggest that high-affinity EGFR ligand expression may be a predictive response marker that distinguishes MM-151 from other anti-EGFR therapeutics.
Collapse
Affiliation(s)
| | | | - Mark Sevecka
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | - Gege Tan
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Neeraj Kohli
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Anne M King
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Beni B Wolf
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| |
Collapse
|
317
|
Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 2015; 4:e05178. [PMID: 25668746 PMCID: PMC4337632 DOI: 10.7554/elife.05178] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/09/2015] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. DOI:http://dx.doi.org/10.7554/eLife.05178.001 Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles. DOI:http://dx.doi.org/10.7554/eLife.05178.002
Collapse
Affiliation(s)
- Toru Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Fujita
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Honda Naoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Aoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
318
|
Li S, Bhave D, Chow JM, Riera TV, Schlee S, Rauch S, Atanasova M, Cate RL, Whitty A. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem 2015; 290:10018-36. [PMID: 25635057 DOI: 10.1074/jbc.m114.602268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/16/2023] Open
Abstract
A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.
Collapse
Affiliation(s)
- Simin Li
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Devayani Bhave
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Jennifer M Chow
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Thomas V Riera
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Sandra Schlee
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Simone Rauch
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Mariya Atanasova
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Richard L Cate
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Adrian Whitty
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
319
|
English JG, Shellhammer JP, Malahe M, McCarter PC, Elston TC, Dohlman HG. MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast. Sci Signal 2015; 8:ra5. [PMID: 25587192 DOI: 10.1126/scisignal.2005774] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling pathways can behave as switches or rheostats, generating binary or graded responses to a given cell stimulus. We evaluated whether a single signaling pathway can simultaneously encode a switch and a rheostat. We found that the kinase Hog1 mediated a bifurcated cellular response: Activation and commitment to adaptation to osmotic stress are switchlike, whereas protein induction and the resolution of this commitment are graded. Through experimentation, bioinformatics analysis, and computational modeling, we determined that graded recovery is encoded through feedback phosphorylation and a gene induction program that is both temporally staggered and variable across the population. This switch-to-rheostat signaling mechanism represents a versatile stress adaptation system, wherein a broad range of inputs generate an "all-in" response that is later tuned to allow graded recovery of individual cells over time.
Collapse
Affiliation(s)
- Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Malahe
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick C McCarter
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
320
|
Tomida T. Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques. J Physiol Sci 2015; 65:37-49. [PMID: 25145828 PMCID: PMC10716987 DOI: 10.1007/s12576-014-0332-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Conserved mitogen-activated protein kinase (MAPK) signaling pathways are major mechanisms through which cells perceive and respond properly to their surrounding environment. Such homeostatic responses maintain the life of the organism. Since errors in MAPK signaling pathways can lead to cancers and to defects in immune responses, in the nervous system and metabolism, these pathways have been extensively studied as potential therapeutic targets. Although much has been studied about the roles of MAPKs in various cellular functions, less is known regarding regulation of MAPK in living organisms. This review will focus on the latest understanding of the dynamic regulation of MAPK signaling in intact cells that was revealed by using novel fluorescence imaging techniques and advanced systems-analytical methods. These techniques allowed quantitative analyses of signal transduction in situ with high spatio-temporal resolution and have revealed the nature of the molecular dynamics that determine cellular responses and fates.
Collapse
Affiliation(s)
- Taichiro Tomida
- Division of Molecular Cell Signaling, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan,
| |
Collapse
|
321
|
Wang J, Chen P, Xu J, Zou J, Wang H, Chen HW. Transporting Cells in Semi-Solid Gel Condition and at Ambient Temperature. PLoS One 2015; 10:e0128229. [PMID: 26098554 PMCID: PMC4476595 DOI: 10.1371/journal.pone.0128229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023] Open
Abstract
Mammalian cells including human cancer cells are usually transported in cryovials on dry ice or in a liquid nitrogen vapor shipping vessel between different places at long distance. The hazardous nature of dry ice and liquid nitrogen, and the associated high shipping cost strongly limit their routine use. In this study, we tested the viability and properties of cells after being preserved or shipped over long distance in Matrigel mixture for different days. Our results showed that cells mixed with Matrigel at suitable ratios maintained excellent viability (>90%) for one week at room temperature and preserved the properties such as morphology, drug sensitivity and metabolism well, which was comparable to cells cryopreserved in liquid nitrogen. We also sent cells in the Matrigel mixture via FedEx service to different places at ambient temperature. Upon arrival, it was found that over 90% of the cells were viable and grew well after replating. These data collectively suggested that our Matrigel-based method was highly convenient for shipping live cells for long distances in semi-solid gel condition and at ambient temperature.
Collapse
Affiliation(s)
- Junjian Wang
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, 95817, United States of America
| | - Peng Chen
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, United States of America
- First Clinical Medicine School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianzhen Xu
- Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China
| | - June.X Zou
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, 95817, United States of America
| | - Haibin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- * E-mail: (HWC); (HW)
| | - Hong-Wu Chen
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, 95817, United States of America
- * E-mail: (HWC); (HW)
| |
Collapse
|
322
|
Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, Tsimring L, Wollman R. Systems biology. Accurate information transmission through dynamic biochemical signaling networks. Science 2014; 346:1370-3. [PMID: 25504722 DOI: 10.1126/science.1254933] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.
Collapse
Affiliation(s)
- Jangir Selimkhanov
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Brooks Taylor
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Jason Yao
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Anna Pilko
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA
| | - Alexander Hoffmann
- San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA
| | - Lev Tsimring
- San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
323
|
Macromolecular transport in synapse to nucleus communication. Trends Neurosci 2014; 38:108-16. [PMID: 25534890 DOI: 10.1016/j.tins.2014.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling.
Collapse
|
324
|
Isomura A, Kageyama R. Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development 2014; 141:3627-36. [PMID: 25249457 PMCID: PMC4197574 DOI: 10.1242/dev.104497] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological clocks play key roles in organismal development, homeostasis and function. In recent years, much work has focused on circadian clocks, but emerging studies have highlighted the existence of ultradian oscillators – those with a much shorter periodicity than 24 h. Accumulating evidence, together with recently developed optogenetic approaches, suggests that such ultradian oscillators play important roles during cell fate decisions, and analyzing the functional links between ultradian oscillation and cell fate determination will contribute to a deeper understanding of the design principle of developing embryos. In this Review, we discuss the mechanisms of ultradian oscillatory dynamics and introduce examples of ultradian oscillators in various biological contexts. We also discuss how optogenetic technology has been used to elucidate the biological significance of ultradian oscillations.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
325
|
Banks AS, McAllister FE, Camporez JPG, Zushin PJH, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP, Spiegelman BM. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 2014; 517:391-5. [PMID: 25409143 PMCID: PMC4297557 DOI: 10.1038/nature13887] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023]
Abstract
Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARγ at serine 273 by Cdk5 stimulates diabetogenic gene expression in adipose tissues1. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic PPARγ ligand drugs, such as the thiazolidinediones and PPARγ partial/non-agonists2. To better understand the importance of this obesity-linked PPARγ phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. Surprisingly, these mice have both a paradoxical increase in PPARγ phosphorylation at S273 and worsened insulin resistance. Unbiased proteomic studies show that ERK kinases are activated in these KO animals. We show here that ERK directly phosphorylates S273 of PPARγ in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MEK, the ERK kinase. Importantly, pharmacological MEK and ERK inhibition markedly improves insulin resistance in both obese wild type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARγ function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Alexander S Banks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fiona E McAllister
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - João Paulo G Camporez
- Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Peter-James H Zushin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael J Jurczak
- Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Gerald I Shulman
- Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce M Spiegelman
- 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
326
|
Single-cell mass cytometry of TCR signaling: amplification of small initial differences results in low ERK activation in NOD mice. Proc Natl Acad Sci U S A 2014; 111:16466-71. [PMID: 25362052 DOI: 10.1073/pnas.1419337111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates.
Collapse
|
327
|
Holland WS, Chinn DC, Lara PN, Gandara DR, Mack PC. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol 2014; 141:615-26. [PMID: 25323938 DOI: 10.1007/s00432-014-1855-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE Acquired resistance to erlotinib in patients with EGFR-mutant non-small cell lung cancer can result from aberrant activation of alternative receptor tyrosine kinases, such as the HGF-driven c-MET receptor. We sought to determine whether inhibition of AKT signaling could augment erlotinib activity and abrogate HGF-mediated resistance. METHODS The effects of MK-2206, a selective AKT inhibitor, were evaluated in combination with erlotinib on a large panel of 13 lung cancer cell lines containing different EGFR or KRAS abnormalities. The activity of the combination was assessed using proliferation assays, flow cytometry and immunoblotting. The MEK inhibitor PD0325901 was used to determine the role of the MAP kinase pathway in erlotinib resistance. RESULTS The combination of MK-2206 and erlotinib resulted in synergistic growth inhibition independent of EGFR mutation status. In cell lines where HGF blocked the anti-proliferative and cytotoxic effects of erlotinib, MK-2206 could restore cell cycle arrest, but MEK inhibition was required for erlotinib-dependent apoptosis. Both AKT and MEK inhibition contributed to cell death independent of erlotinib in the T790M-containing H1975 and the EGFR-WT cell lines tested. CONCLUSIONS These findings illustrate the potential advantages and challenges of combined signal transduction inhibition as a generalized strategy to circumvent acquired erlotinib resistance.
Collapse
Affiliation(s)
- William S Holland
- Comprehensive Cancer Center, University of California, Davis, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | | | | | | | | |
Collapse
|
328
|
Sands B, Jenkins P, Peria WJ, Naivar M, Houston JP, Brent R. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes. PLoS One 2014; 9:e109940. [PMID: 25302964 PMCID: PMC4193854 DOI: 10.1371/journal.pone.0109940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/04/2014] [Indexed: 01/03/2023] Open
Abstract
Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.
Collapse
Affiliation(s)
- Bryan Sands
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patrick Jenkins
- Department of Chemical Engineering, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - William J. Peria
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark Naivar
- Darkling X, LLC, Los Alamos, New Mexico, United States of America
| | - Jessica P. Houston
- Department of Chemical Engineering, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
329
|
Marquèze-Pouey B, Mailfert S, Rouger V, Goaillard JM, Marguet D. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations. PLoS One 2014; 9:e106803. [PMID: 25265278 PMCID: PMC4179260 DOI: 10.1371/journal.pone.0106803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.
Collapse
Affiliation(s)
- Béatrice Marquèze-Pouey
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
- * E-mail:
| | - Sébastien Mailfert
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Vincent Rouger
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Jean-Marc Goaillard
- INSERM, UMR_S 1072, Marseille, France
- Aix-Marseille Université, UNIS, Marseille, France
| | - Didier Marguet
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| |
Collapse
|
330
|
Davis DM, Purvis JE. Computational analysis of signaling patterns in single cells. Semin Cell Dev Biol 2014; 37:35-43. [PMID: 25263011 DOI: 10.1016/j.semcdb.2014.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 01/19/2023]
Abstract
Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.
Collapse
Affiliation(s)
- Denise M Davis
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, United States
| | - Jeremy E Purvis
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, United States.
| |
Collapse
|
331
|
Abstract
The protein kinase Hog1 (high osmolarity glycerol 1) was discovered 20 years ago, being revealed as a central signaling mediator during osmoregulation in the budding yeast Saccharomyces cerevisiae. Homologs of Hog1 exist in all evaluated eukaryotic organisms, and this kinase plays a central role in cellular responses to external stresses and stimuli. Here, we highlight the mechanism by which cells sense changes in extracellular osmolarity, the method by which Hog1 regulates cellular adaptation, and the impacts of the Hog1 pathway upon cellular growth and morphology. Studies that have addressed these issues reveal the influence of the Hog1 signaling pathway on diverse cellular processes.
Collapse
Affiliation(s)
- Jay L Brewster
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA.
| | - Michael C Gustin
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77251, USA
| |
Collapse
|
332
|
Pulsatile dynamics in the yeast proteome. Curr Biol 2014; 24:2189-2194. [PMID: 25220054 DOI: 10.1016/j.cub.2014.07.076] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 02/04/2023]
Abstract
The activation of transcription factors in response to environmental conditions is fundamental to cellular regulation. Recent work has revealed that some transcription factors are activated in stochastic pulses of nuclear localization, rather than at a constant level, even in a constant environment [1-12]. In such cases, signals control the mean activity of the transcription factor by modulating the frequency, duration, or amplitude of these pulses. Although specific pulsatile transcription factors have been identified in diverse cell types, it has remained unclear how prevalent pulsing is within the cell, how variable pulsing behaviors are between genes, and whether pulsing is specific to transcriptional regulators or is employed more broadly. To address these issues, we performed a proteome-wide movie-based screen to systematically identify localization-based pulsing behaviors in Saccharomyces cerevisiae. The screen examined all genes in a previously developed fluorescent protein fusion library of 4,159 strains [13] in multiple media conditions. This approach revealed stochastic pulsing in ten proteins, all transcription factors. In each case, pulse dynamics were heterogeneous and unsynchronized among cells in clonal populations. Pulsing is the only dynamic localization behavior that we observed, and it tends to occur in pairs of paralogous and redundant proteins. Taken together, these results suggest that pulsatile dynamics play a pervasive role in yeast and may be similarly prevalent in other eukaryotic species.
Collapse
|
333
|
Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 2014; 157:1724-34. [PMID: 24949979 DOI: 10.1016/j.cell.2014.04.039] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/19/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Increasing evidence has shown that population dynamics are qualitatively different from single-cell behaviors. Reporters to probe dynamic, single-cell behaviors are desirable yet relatively scarce. Here, we describe an easy-to-implement and generalizable technology to generate reporters of kinase activity for individual cells. Our technology converts phosphorylation into a nucleocytoplasmic shuttling event that can be measured by epifluorescence microscopy. Our reporters reproduce kinase activity for multiple types of kinases and allow for calculation of active kinase concentrations via a mathematical model. Using this technology, we made several experimental observations that had previously been technicallyunfeasible, including stimulus-dependent patterns of c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) activation. We also measured JNK, p38, and ERK activities simultaneously, finding that p38 regulates the peak number, but not the intensity, of ERK fluctuations. Our approach opens the possibility of analyzing a wide range of kinase-mediated processes in individual cells.
Collapse
Affiliation(s)
- Sergi Regot
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Jacob J Hughey
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bryce T Bajar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Silvia Carrasco
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
334
|
Housden BE, Perrimon N. Spatial and temporal organization of signaling pathways. Trends Biochem Sci 2014; 39:457-64. [PMID: 25155749 DOI: 10.1016/j.tibs.2014.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
The development and maintenance of the many different cell types in metazoan organisms requires robust and diverse intercellular communication mechanisms. Relatively few such signaling pathways have been identified, leading to the question of how such a broad diversity of output is generated from relatively simple signals. Recent studies have revealed complex mechanisms integrating temporal and spatial information to generate diversity in signaling pathway output. We review some general principles of signaling pathways, focusing on transcriptional outputs in Drosophila. We consider the role of spatial and temporal aspects of different transduction pathways and then discuss how recently developed tools and approaches are helping to dissect the complex mechanisms linking pathway stimulation to output.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
335
|
Balenga NA, Jester W, Jiang M, Panettieri RA, Druey KM. Loss of regulator of G protein signaling 5 promotes airway hyperresponsiveness in the absence of allergic inflammation. J Allergy Clin Immunol 2014; 134:451-9. [PMID: 24666695 PMCID: PMC4119844 DOI: 10.1016/j.jaci.2014.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although eosinophilic inflammation typifies allergic asthma, it is not a prerequisite for airway hyperresponsiveness (AHR), suggesting that underlying abnormalities in structural cells, such as airway smooth muscle (ASM), contribute to the asthmatic diathesis. Dysregulation of procontractile G protein-coupled receptor (GPCR) signaling in ASM could mediate enhanced contractility. OBJECTIVE We explored the role of a regulator of procontractile GPCR signaling, regulator of G protein signaling 5 (RGS5), in unprovoked and allergen-induced AHR. METHODS We evaluated GPCR-evoked Ca(2+) signaling, precision-cut lung slice (PCLS) contraction, and lung inflammation in naive and Aspergillus fumigatus-challenged wild-type and Rgs5(-/-) mice. We analyzed lung resistance and dynamic compliance in live anesthetized mice using invasive plethysmography. RESULTS Loss of RGS5 promoted constitutive AHR because of enhanced GPCR-induced Ca(2+) mobilization in ASM. PCLSs from naive Rgs5(-/-) mice contracted maximally at baseline independently of allergen challenge. RGS5 deficiency had little effect on the parameters of allergic inflammation, including cell counts in bronchoalveolar lavage fluid, mucin production, ASM mass, and subepithelial collagen deposition. Unexpectedly, induced IL-13 and IL-33 levels were much lower in challenged lungs from Rgs5(-/-) mice relative to those seen in wild-type mice. CONCLUSION Loss of RGS5 confers spontaneous AHR in mice in the absence of allergic inflammation. Because it is selectively expressed in ASM within the lung and does not promote inflammation, RGS5 might be a therapeutic target for asthma.
Collapse
Affiliation(s)
- Nariman A Balenga
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md
| | - William Jester
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Meiqi Jiang
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md.
| |
Collapse
|
336
|
Kwong LN, Heffernan TP, Chin L. A systems biology approach to personalizing therapeutic combinations. Cancer Discov 2014; 3:1339-44. [PMID: 24327696 DOI: 10.1158/2159-8290.cd-13-0394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification of evidence-based, efficacious drug combinations for each cancer, among thousands of potential permutations, is a daunting task. In this perspective, we propose a systematic approach to defining such combinations by molecularly benchmarking a drug against a desired state of efficacy using model systems.
Collapse
Affiliation(s)
- Lawrence N Kwong
- 1Department of Genomic Medicine and 2Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
337
|
Dynamic signal encoding--from cells to organisms. Semin Cell Dev Biol 2014; 34:91-8. [PMID: 25008461 DOI: 10.1016/j.semcdb.2014.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/15/2014] [Accepted: 06/30/2014] [Indexed: 02/01/2023]
Abstract
Encoding information at the level of signal dynamics is characterized by distinct features, such as robustness to noise and high information content. Currently, a growing number of studies are unravelling the functional importance of signalling dynamics at the single cell level. In addition, first insights are emerging into how the principles of dynamic signal encoding apply to a multicellular context, such as development. In this review, we will first discuss general concepts of information transmission via signalling dynamics and recent experimental examples focusing on underlying principles, including the role of intracellular network topologies. How multicellular organisms use temporal modulation of specific signalling pathways, such as signalling gradients or oscillations, to faithfully control cell fate decisions and pattern formation will also be addressed. Finally, we will consider how technical advancements in the detection and perturbation of signalling dynamics contribute to reshaping our understanding of dynamic signalling in developing organisms.
Collapse
|
338
|
Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Inglés-Prieto Á, Janovjak H. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 2014; 33:1713-26. [PMID: 24986882 DOI: 10.15252/embj.201387695] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.
Collapse
Affiliation(s)
- Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Robert Riedler
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Reichhart
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Christopher Differ
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Álvaro Inglés-Prieto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
339
|
Kellogg RA, Gómez-Sjöberg R, Leyrat AA, Tay S. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nat Protoc 2014; 9:1713-26. [DOI: 10.1038/nprot.2014.120] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
340
|
Yun MH, Gates PB, Brockes JP. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts. Stem Cell Reports 2014; 3:15-23. [PMID: 25068118 PMCID: PMC4110794 DOI: 10.1016/j.stemcr.2014.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species. Sustained ERK activation is required for serum reprogramming of salamander cells Only transient ERK activation is observed in their mammalian counterparts Constant ERK activation promotes expression of S phase genes in mammalian myotubes The extent of ERK activation could underlie differences in regenerative competence
Collapse
Affiliation(s)
- Maximina H Yun
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Phillip B Gates
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jeremy P Brockes
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
341
|
Nikonova E, Tsyganov MA, Kolch W, Fey D, Kholodenko BN. Control of the G-protein cascade dynamics by GDP dissociation inhibitors. MOLECULAR BIOSYSTEMS 2014; 9:2454-62. [PMID: 23872884 DOI: 10.1039/c3mb70152b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A network of the Rho family GTPases, which cycle between inactive GDP-bound and active GTP-bound states, controls key cellular processes, including proliferation and migration. Activating and deactivating GTPase transitions are controlled by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and GDP dissociation inhibitors (GDIs) that sequester GTPases from the membrane to the cytoplasm. Here we show that a cascade of two Rho family GTPases, RhoA and Rac1, regulated by RhoGDI1, exhibits distinct modes of the dynamic behavior, including abrupt, bistable switches, excitable overshoot transitions and oscillations. The RhoGDI1 abundance and signal-induced changes in the RhoGDI1 affinity for GTPases control these different dynamics, enabling transitions from a single stable steady state to bistability, to excitable pulses and to sustained oscillations of GTPase activities. These RhoGDI1-controlled dynamic modes of RhoA and Rac1 activities form the basis of cell migration behaviors, including protrusion-retraction cycles at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Elena Nikonova
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
342
|
Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 2014; 15:939-51. [PMID: 23908594 DOI: 10.1593/neo.13804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Oncogenic receptor tyrosine kinase (RTK) signaling through the Ras-Raf-Mek-Erk (Ras-MAPK) pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs) are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC) subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD), synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN). This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations), MDA-MB-468 [epidermal growth factor receptor (EGFR) overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2) overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb) signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.
Collapse
|
343
|
Abstract
Some chemicals used in consumer products or manufacturing (e.g. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (e.g. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Guangzhen Hu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Adriana A Paulucci-Holthauzen
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
344
|
Toettcher JE, Weiner OD, Lim WA. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 2014; 155:1422-34. [PMID: 24315106 DOI: 10.1016/j.cell.2013.11.004] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/05/2013] [Accepted: 10/30/2013] [Indexed: 02/04/2023]
Abstract
The complex, interconnected architecture of cell-signaling networks makes it challenging to disentangle how cells process extracellular information to make decisions. We have developed an optogenetic approach to selectively activate isolated intracellular signaling nodes with light and use this method to follow the flow of information from the signaling protein Ras. By measuring dose and frequency responses in single cells, we characterize the precision, timing, and efficiency with which signals are transmitted from Ras to Erk. Moreover, we elucidate how a single pathway can specify distinct physiological outcomes: by combining distinct temporal patterns of stimulation with proteomic profiling, we identify signaling programs that differentially respond to Ras dynamics, including a paracrine circuit that activates STAT3 only after persistent (>1 hr) Ras activation. Optogenetic stimulation provides a powerful tool for analyzing the intrinsic transmission properties of pathway modules and identifying how they dynamically encode distinct outcomes.
Collapse
Affiliation(s)
- Jared E Toettcher
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2517, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-2517, USA; Department of Biochemistry, University of California San Francisco, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|
345
|
Abstract
Traditionally, scientific research has focused on studying individual events, such as single mutations, gene function, or the effect that mutating one protein has on a biological phenotype. A range of technologies is beginning to provide information that will enable a holistic view of how genomic and epigenetic aberrations in cancer cells can alter the homeostasis of signalling networks within these cells, between cancer cells and the local microenvironment, and at the organ and organism level. This process, termed Systems Biology, needs to be integrated with an iterative approach wherein hypotheses and predictions that arise from modelling are refined and constrained by experimental evaluation. Systems biology approaches will be vital for developing and implementing effective strategies to deliver personalized cancer therapy. Specifically, these approaches will be important to select those patients who are most likely to benefit from targeted therapies and for the development and implementation of rational combinatorial therapies. Systems biology can help to increase therapy efficacy or bypass the emergence of resistance, thus converting the current-often short term-effects of targeted therapies into durable responses, ultimately to improve patient quality of life and provide a cure.
Collapse
|
346
|
Ahmed S, Grant KG, Edwards LE, Rahman A, Cirit M, Goshe MB, Haugh JM. Data-driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol Syst Biol 2014; 10:718. [PMID: 24489118 PMCID: PMC4023404 DOI: 10.1002/msb.134708] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extracellular signal‐regulated kinase (ERK) signaling pathway controls cell proliferation and differentiation in metazoans. Two hallmarks of its dynamics are adaptation of ERK phosphorylation, which has been linked to negative feedback, and nucleocytoplasmic shuttling, which allows active ERK to phosphorylate protein substrates in the nucleus and cytosol. To integrate these complex features, we acquired quantitative biochemical and live‐cell microscopy data to reconcile phosphorylation, localization, and activity states of ERK. While maximal growth factor stimulation elicits transient ERK phosphorylation and nuclear translocation responses, ERK activities available to phosphorylate substrates in the cytosol and nuclei show relatively little or no adaptation. Free ERK activity in the nucleus temporally lags the peak in nuclear translocation, indicating a slow process. Additional experiments, guided by kinetic modeling, show that this process is consistent with ERK's modification of and release from nuclear substrate anchors. Thus, adaptation of whole‐cell ERK phosphorylation is a by‐product of transient protection from phosphatases. Consistent with this interpretation, predictions concerning the dose‐dependence of the pathway response and its interruption by inhibition of MEK were experimentally confirmed.
Collapse
Affiliation(s)
- Shoeb Ahmed
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
347
|
Abstract
A fundamental problem in biology is to understand how genetic circuits implement core cellular functions. Time-lapse microscopy techniques are beginning to provide a direct view of circuit dynamics in individual living cells. Unexpectedly, we are discovering that key transcription and regulatory factors pulse on and off repeatedly, and often stochastically, even when cells are maintained in constant conditions. This type of spontaneous dynamic behavior is pervasive, appearing in diverse cell types from microbes to mammalian cells. Here, we review recent work showing how pulsing is generated and controlled by underlying regulatory circuits and how it provides critical capabilities to cells in stress response, signaling, and development. A major theme is the ability of pulsing to enable time-based regulation analogous to strategies used in engineered systems. Thus, pulsatile dynamics is emerging as a central, and still largely unexplored, layer of temporal organization in the cell.
Collapse
Affiliation(s)
- Joe H Levine
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
348
|
Abstract
The extensive lengths of neuronal processes necessitate efficient mechanisms for communication with the cell body. Neuronal regeneration after nerve injury requires new transcription; thus, long-distance retrograde signalling from axonal lesion sites to the soma and nucleus is required. In recent years, considerable progress has been made in elucidating the mechanistic basis of this system. This has included the discovery of a priming role for early calcium waves; confirmation of central roles for mitogen-activated protein kinase signalling effectors, the importin family of nucleocytoplasmic transport factors and molecular motors such as dynein; and demonstration of the importance of local translation as a key regulatory mechanism. These recent findings provide a coherent mechanistic framework for axon-soma communication in the injured nerve and shed light on the integration of cytoplasmic and nuclear transport in all eukaryotic cells.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
349
|
Yvert G. 'Particle genetics': treating every cell as unique. Trends Genet 2013; 30:49-56. [PMID: 24315431 DOI: 10.1016/j.tig.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 12/18/2022]
Abstract
Genotype-phenotype relations are usually inferred from a deterministic point of view. For example, quantitative trait loci (QTL), which describe regions of the genome associated with a particular phenotype, are based on a mean trait difference between genotype categories. However, living systems comprise huge numbers of cells (the 'particles' of biology). Each cell can exhibit substantial phenotypic individuality, which can have dramatic consequences at the organismal level. Now, with technology capable of interrogating individual cells, it is time to consider how genotypes shape the probability laws of single cell traits. The possibility of mapping single cell probabilistic trait loci (PTL), which link genomic regions to probabilities of cellular traits, is a promising step in this direction. This approach requires thinking about phenotypes in probabilistic terms, a concept that statistical physicists have been applying to particles for a century. Here, I describe PTL and discuss their potential to enlarge our understanding of genotype-phenotype relations.
Collapse
Affiliation(s)
- Gaël Yvert
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France.
| |
Collapse
|
350
|
Jeschke M, Baumgärtner S, Legewie S. Determinants of cell-to-cell variability in protein kinase signaling. PLoS Comput Biol 2013; 9:e1003357. [PMID: 24339758 PMCID: PMC3854479 DOI: 10.1371/journal.pcbi.1003357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/06/2013] [Indexed: 12/28/2022] Open
Abstract
Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds (‘pathway sensitivity’) and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability. Cells sense their surroundings and respond to soluble factors in the extracellular space. Extracellular factors frequently induce heterogeneous responses, thereby restricting the biological outcome to a fraction of the cell population. However, the question arises how such cell-to-cell variability can be controlled, because some cellular systems show a very homogenous response at a defined level of an extracellular stimulus. We derived an analytical framework to systematically characterize the cell-to-cell variability of intracellular signaling pathways which transduce external signals. We analyzed how heterogeneity arises from fluctuations in the total concentrations of signaling proteins because this is the main source of variability in eukaryotic systems. We find that signaling pathways can be highly variable or inherently invariant, depending on the kinetic parameters and the structural features of the cascade. Our results indicate that the cell-to-cell variability can be reduced by negative feedback in the cascade or by signaling crosstalk between parallel pathways. We precisely define the role of negative feedback loops in variability suppression, and show that different aspects of the dose-response curve can be controlled, depending on the feedback kinetics and site of action in the cascade. This work constitutes a first step towards a systematic understanding of cell-to-cell variability in signal transduction.
Collapse
Affiliation(s)
| | | | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany
- * E-mail:
| |
Collapse
|