301
|
Francato Zancheta AC, De Abreu CA, Zambrosi FCB, de Magalhães Erismann N, Andrade Lagôa AMM. Cadmium accumulation by jack-bean and sorghum in hydroponic culture. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:298-303. [PMID: 25397989 DOI: 10.1080/15226514.2014.883492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L(-1) in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56-86%, stomatal conductance by 59-85% and transpiration by 48-80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.
Collapse
|
302
|
Yin Y, Wang Y, Liu Y, Zeng G, Hu X, Hu X, Zhou L, Guo Y, Li J. Cadmium accumulation and apoplastic and symplastic transport in Boehmeria nivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. RSC Adv 2015. [DOI: 10.1039/c5ra05717e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Cd-tolerant plant species named Boehmeria nivea (L.) Gaudich (ramie) was applied to study its Cd accumulation and translocation mechanisms with the addition of ethylene diamine tetracetic acid (EDTA) or nitrilotriacetic acid (NTA).
Collapse
Affiliation(s)
- Yicheng Yin
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yaqin Wang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yunguo Liu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Xinjiang Hu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Xi Hu
- College of Environmental Science and Engineering Research
- Central South University of Forestry and Technology
- Changsha 410004
- P.R. China
| | - Lu Zhou
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yiming Guo
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Jiang Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| |
Collapse
|
303
|
Kumar D, Singh VP, Tripathi DK, Prasad SM, Chauhan DK. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:128-34. [PMID: 25237723 DOI: 10.1080/15226514.2013.862205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroponic experiments were conducted to investigate the effect of arsenic on seedlings of Wrightia arborea and Holoptelea integrifolia. Results revealed that W. arborea could tolerate much higher arsenic concentration than H. integrifolia. Therefore, further investigations were focused on W. arborea using higher arsenic concentrations (0.2-2.0 mM). Seedlings of W. arborea accumulated about 312-2147 and 1048-5688 mg/kg dry weight of arsenic in shoots and roots, respectively, following treatments with 0.2-1.5 mM of arsenic without exhibiting arsenic toxicity signs. However, arsenic at 2.0 mM caused decline in growth. Macronutrients content such as Ca, S (except at 2.0 mM), and K (only in root) increased while Mg, P, and K (shoot) decreased by arsenic treatments. However, the content of micronutrients was enhanced under arsenic treatments. Non-protein thiols (NP-SH) showed positive correlations with arsenic doses up to 0.2-1.5 mM but at 2.0 mM there was a decline in NP-SH thus suggesting important role of NP-SH in imparting arsenic tolerance. This study demonstrated that W. arborea that could tolerate arsenic concentrations up to 0.2-1.5 mM may be useful in arsenic phytoremediation programs.
Collapse
Affiliation(s)
- Dharmendra Kumar
- a D D Pant Interdisciplinary Research Laboratory, Department of Botany , University of Allahabad , Allahabad , India
| | | | | | | | | |
Collapse
|
304
|
Chen J, Yang L, Gu J, Bai X, Ren Y, Fan T, Han Y, Jiang L, Xiao F, Liu Y, Cao S. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:570-82. [PMID: 25329733 DOI: 10.1111/nph.13101] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/03/2014] [Indexed: 05/08/2023]
Abstract
Pollution of soil by the heavy metal cadmium (Cd) is a global environmental problem. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is one of the most important mechanisms contributing to Cd accumulation and tolerance. However, the regulation of this pathway is poorly understood. Here, we identified an Arabidopsis thaliana cadmium-tolerant dominant mutant xcd1-D (XVE system-induced cadmium-tolerance 1) and cloned XCD1 gene (previously called MAN3), which encodes an endo-β-mannanase. Overexpression of MAN3 led to enhanced Cd accumulation and tolerance, whereas loss-of-function of MAN3 resulted in decreased Cd accumulation and tolerance. In the presence of estradiol, enhanced Cd accumulation and tolerance in xcd1-D was associated with GSH-dependent, Cd-activated synthesis of PCs, which was correlated with coordinated activation of gene expression. Cd stress-induced expression of MAN3 and the consequently increased mannanase activity, led to increased mannose content in cell walls. Moreover, mannose treatment not only rescued the Cd-sensitive phenotype of the xcd1-2 mutant, but also improved the Cd tolerance of wild-type plants. Significantly, this mannose-mediated Cd accumulation and tolerance is dependent on GSH-dependent PC concentrations via coordinated control of expression of genes involved in PC synthesis. Our results suggest that MAN3 regulates the GSH-dependent PC synthesis pathway that contributes to Cd accumulation and tolerance in A. thaliana by coordinated control of gene expression.
Collapse
Affiliation(s)
- Jian Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Li L, Hu L, Han LP, Ji H, Zhu Y, Wang X, Ge J, Xu M, Shen D, Dong H. Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:381. [PMID: 25547226 PMCID: PMC4310184 DOI: 10.1186/s12870-014-0381-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recently we showed that de novo expression of a turtle riboflavin-binding protein (RfBP) in transgenic Arabidopsis increased H2O2 concentrations inside leaf cells, enhanced the expression of floral regulatory gene FD and floral meristem identity gene AP1 at the shoot apex, and induced early flowering. Here we report that RfBP-induced H2O2 presumably results from electron leakage at the mitochondrial electron transport chain (METC) and this source of H2O2 contributes to the early flowering phenotype. RESULTS While enhanced expression of FD and AP1 at the shoot apex was correlated with early flowering, the foliar expression of 13 of 19 METC genes was repressed in RfBP-expressing (RfBP+) plants. Inside RfBP+ leaf cells, cytosolic H2O2 concentrations were increased possibly through electron leakage because similar responses were also induced by a known inducer of electron leakage from METC. Early flowering no longer occurred when the repression on METC genes was eliminated by RfBP gene silencing, which restored RfBP+ to wild type in levels of FD and AP1 expression, H2O2, and flavins. Flowering was delayed by the external riboflavin application, which brought gene expression and flavins back to the steady-state levels but only caused 55% reduction of H2O2 concentrations in RfBP+ plants. RfBP-repressed METC gene expression remedied the cytosolic H2O2 diminution by genetic disruption of transcription factor NFXLl and compensated for compromises in FD and AP1 expression and flowering time. By contrast, RfBP resembled a peroxisomal catalase mutation, which augments the cytosolic H2O2, to enhance FD and AP1 expression and induce early flowering. CONCLUSIONS RfBP-repressed METC gene expression potentially causes electron leakage as one of cellular sources for the generation of H2O2 with the promoting effect on flowering. The repressive effect on METC gene expression is not the only way by which RfBP induces H2O2 and currently unappreciated factors may also function under RfBP+ background.
Collapse
Affiliation(s)
- Liang Li
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li Hu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li-Ping Han
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Yueyue Zhu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Xiaobing Wang
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Jun Ge
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Manyu Xu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| |
Collapse
|
306
|
Mariem W, Kilani BR, Benet G, Abdelbasset L, Stanley L, Charlotte P, Chedly A, Tahar G. How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? CHEMOSPHERE 2014; 117:243-50. [PMID: 25104648 DOI: 10.1016/j.chemosphere.2014.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 05/27/2023]
Abstract
Sesuvium portulacastrum is a halophyte with considerable Cd tolerance and accumulation, especially under high salinity. The species seems a good candidate for phytoremediation of Cd-contaminated, saline soils. However, the mechanisms sustaining salt-induced alleviation of Cd toxicity remain unknown. Seedlings of S. portulacastrum were submitted hydroponically to different Cd concentrations (0, 25 and 50 μM Cd) in combination with low (0.09 mM), or high (200 mM) NaCl. Cadmium distribution within leaves and stems was assessed by total Cd, cell sap Cd, and Cd in different cell fractions. In plants with low salt supply (LS) Cd induced severe toxicity. The presence of 200 mM NaCl (HS) significantly alleviated Cd toxicity symptoms. HS drastically reduced both Cd-induced H2O2 production and membrane damage. In HS plants the reduced Cd uptake was only in part responsible for the lower Cd toxicity. Even at equal internal leaf Cd concentrations less Cd toxicity was observed in HS than in LS plants. In HS plants proportionally more Cd was bound in cell walls and proportionally less accumulated in the soluble fraction than in LS plants. Our results show that NaCl improves plant performance under Cd stress by both a decrease of Cd(2+) activity in the medium leading to less Cd uptake and a change of Cd speciation and compartmentation inside tissues. More efficient internal detoxification seems mainly brought about by preferential Cd binding to chloride and cell walls in plants treated with a high salt concentration.
Collapse
Affiliation(s)
- Wali Mariem
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia; Departamento de Fisiologia Vegetal, Facultad de Ciencias, Universidad Autonoma de Barcelona, E-08193 Bellaterra, Spain
| | - Ben Rjab Kilani
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Gunsé Benet
- Departamento de Fisiologia Vegetal, Facultad de Ciencias, Universidad Autonoma de Barcelona, E-08193 Bellaterra, Spain
| | - Lakdhar Abdelbasset
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Lutts Stanley
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Poschenrieder Charlotte
- Departamento de Fisiologia Vegetal, Facultad de Ciencias, Universidad Autonoma de Barcelona, E-08193 Bellaterra, Spain
| | - Abdelly Chedly
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Ghnaya Tahar
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia.
| |
Collapse
|
307
|
Xie L, He X, Shang S, Zheng W, Liu W, Zhang G, Wu F. Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance. Biometals 2014; 27:1277-89. [PMID: 25173101 DOI: 10.1007/s10534-014-9789-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 12/18/2022]
Abstract
Tobacco can easily accumulate cadmium (Cd) in leaves and thus poses a potential threat to human health. Cd-stress-hydroponic-experiments were performed, and the proteomic and transcriptional features of two contrasting tobacco genotypes Yun-yan2 (Cd-tolerant) and Guiyan1 (Cd-sensitive) were compared. We identified 18 Cd-tolerance-associated proteins in leaves, using 2-dimensional gel electrophoresis coupled with mass spectrometry, whose expression were significantly induced in Yunyan2 leaves but down-regulated/unchanged in Guiyan1, or unchanged in Yunyan2 but down-regulated in Guiyan1 under 50 µM Cd stress. They are including epoxide hydrolase, enoyl-acyl-carrier-protein reductase, NPALDP1, chlorophyll a-b binding protein 25, heat shock protein 70 and 14-3-3 proteins. They categorized as 8 groups of their functions: metabolism, photosynthesis, stress response, signal transduction, protein synthesis, protein processing, transport and cell structure. Furthermore, the expression patterns of three Cd-responsive proteins were validated by quantitative real-time PCR. Our findings provide an insight into proteomic basis for Cd-detoxification in tobacco which offers molecular resource for Cd-tolerance.
Collapse
Affiliation(s)
- Lupeng Xie
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
308
|
Marcelo MCA, Martins CA, Pozebon D, Dressler VL, Ferrão MF. Classification of yerba mate (Ilex paraguariensis) according to the country of origin based on element concentrations. Microchem J 2014. [DOI: 10.1016/j.microc.2014.06.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
309
|
Sasaki A, Yamaji N, Ma JF. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6013-21. [PMID: 25151617 PMCID: PMC4203134 DOI: 10.1093/jxb/eru340] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a member of the heavy metal ATPase (HMA) family, OsHMA3 is a tonoplast-localized transporter for Cd in the roots of rice (Oryza sativa). Overexpression of OsHMA3 selectively reduces Cd accumulation in the grain. Further characterization in the present study revealed that overexpression of OsHMA3 also enhances the tolerance to toxic Cd. The growth of both the roots and shoots was similar in the absence of Cd between an OsHMA3-overexpressed line and vector control, but the Cd-inhibited growth was significantly alleviated in the OsHMA3-overexpressed line. The overexpressed line showed higher Cd concentration in the roots, but lower Cd concentration in the shoots compared with the wild-type rice and vector control line, indicating that overexpression of OsHMA3 enhanced vacuolar sequestration of Cd in the roots. The Zn concentration in the roots of the OsHMA3-overexpressed line was constantly higher than that of vector control, but the Zn concentration in the shoots was similar between the overexpressed line and vector control. Five transporter genes belonging to the ZIP family were constitutively up-regulated in the OsHMA3-overexpressed line. These results suggest that shoot Zn level was maintained by up-regulating these genes involved in the Zn uptake/translocation. Taken together, overexpression of OsHMA3 is an efficient way to reduce Cd accumulation in the grain and to enhance Cd tolerance in rice.
Collapse
Affiliation(s)
- Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| |
Collapse
|
310
|
Guarino C, Conte B, Spada V, Arena S, Sciarrillo R, Scaloni A. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11487-11496. [PMID: 25203592 DOI: 10.1021/es502070m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding programs.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Sciences and Technologies, University of Sannio , 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|
311
|
Tan S, Li H, Jin Y, Yu H. In vitro and in vivo effects of sublethal cadmium on the expression of MT2 and ABCC2 genes in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:258-264. [PMID: 25103569 DOI: 10.1016/j.ecoenv.2014.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
To gain more knowledge about the physiological regulation of metal pollutant detoxification in grass carp, we examined Cd concentration and its the potential influence on the expression of metallothionein 2 (MT2) and multidrug resistance protein 2 (ABCC2) mRNA in the liver and kidney, using in vitro and in vivo experiments. First, the full-length of MT2 cDNA and partial ABCC2 cDNA was obtained, consisting 183bp and 366bp respectively. In vivo approach, grass carp received 96h exposure of Cd (1/10 LD50), and MT2 and ABCC2 mRNA expression were determined by qRT-PCR. The Cd treatment resulted in an increase of MT2 mRNA level in the liver with Cd accumulation. Nonetheless, the elevation ABCC2 mRNA in the liver was appeared at 48h after Cd exposure, as well as the expression of MT2 and ABCC2 mRNA in the kidney. The in vitro experiment was carried out using the hepatocyte (L86) and nephroblasts (CIK). The qRT-RCR results showed that MT2 and ABCC2 mRNA dramatically increased following Cd exposure (1/10 LD50); however, ABCC2 mRNA expression was suppressed in the L86 cell line at first (6h). In conclusion, this result suggested that both MT2 and ABCC2 mRNA may play important roles in the detoxification of toxic metals, and MT2 gene was more sensitive to Cd induction.
Collapse
Affiliation(s)
- Shuwen Tan
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Hua Li
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Ying Jin
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hui Yu
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China.
| |
Collapse
|
312
|
Marchand L, Nsanganwimana F, Lamy JB, Quintela-Sabaris C, Gonnelli C, Colzi I, Fletcher T, Oustrière N, Kolbas A, Kidd P, Bordas F, Newell P, Alvarenga P, Deletic A, Mench M. Root biomass production in populations of six rooted macrophytes in response to Cu exposure: intra-specific variability versus constitutive-like tolerance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:205-215. [PMID: 25058419 DOI: 10.1016/j.envpol.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/18/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
Intra-specific variability of root biomass production (RP) of six rooted macrophytes, i.e. Juncus effusus, Phragmites australis, Schoenoplectus lacustris, Typha latifolia, Phalaris arundinacea, and Iris pseudacorus grown from clones, in response to Cu exposure was investigated. Root biomass production varied widely for all these macrophytes in control conditions (0.08 μM) according to the sampling site. Root biomass production of T. latifolia and I. pseudacorus in the 2.5-25 μM Cu range depended on the sampling location but not on the Cu dose in the growth medium. For P. australis, J. effusus, S. lacustris, and P. arundinacea, an intra-specific variability of RP depending on both the sampling location and the Cu-dose was evidenced. This intra-specific variability of RP depending on the sampling location and of Cu-tolerance for these last four species suggests that Cu constitutive tolerance for all rooted macrophytes is not a species-wide trait but it exhibits variability for some species.
Collapse
Affiliation(s)
- L Marchand
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France.
| | - F Nsanganwimana
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France
| | - J B Lamy
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France; Ifremer, SG2M, LGPMM, Avenue Mus de Loup, F-17390, La Tremblade, France
| | - C Quintela-Sabaris
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnologia, Universidad del País Vasco/EHU, 48080, Bilbao, Spain
| | - C Gonnelli
- Dipartimento di Biologia, Laboratorio di Ecologia e Fisiologia Vegetale, Università degli Studi di Firenze, via Micheli 1, IT-50121, Firenze, Italy
| | - I Colzi
- Dipartimento di Biologia, Laboratorio di Ecologia e Fisiologia Vegetale, Università degli Studi di Firenze, via Micheli 1, IT-50121, Firenze, Italy
| | - T Fletcher
- Department of Civil Engineering, Monash University, Room 118, Building 60, Clayton Campus, Clayton Victoria, 3168, Melbourne, Australia; Melbourne School of Land & Environment, The University of Melbourne, 500 Yarra Boulevard, Burnley, 3121 and 221 Bouverie St, Parkville, Vic, 3010, Australia
| | - N Oustrière
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France
| | - A Kolbas
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France; Brest State University named after A.S. Pushkin, 21, Boulevard of Cosmonauts, 224016, Brest, Belarus
| | - P Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - F Bordas
- GRESE, Université de Limoges, 123 Avenue Albert Thomas, FR-87060, Limoges, France
| | - P Newell
- Department of Environment and Conservation, Contaminated Sites Branch, Locked Bag 104, Bentley, DC, 6983, Australia
| | - P Alvarenga
- Departamento de Tecnologias e Ciências Aplicadas, Escola Superior Agrária - Instituto Politécnico de Beja, Rua Pedro Soares - Campus do IPB, Apartado 6155, PT-7801-295, Beja, Portugal
| | - A Deletic
- Dipartimento di Biologia, Laboratorio di Ecologia e Fisiologia Vegetale, Università degli Studi di Firenze, via Micheli 1, IT-50121, Firenze, Italy
| | - M Mench
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, FR-33612, Cestas cedex, France; University of Bordeaux 1, UMR 1202 BIOGECO, Bât B2, Avenue des facultés, FR-33405, Talence, France
| |
Collapse
|
313
|
Shukla D, Huda KMK, Banu MSA, Gill SS, Gill SS, Tuteja R, Tuteja N. OsACA6, a P-type 2B Ca(2+) ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. PLANTA 2014; 240:809-24. [PMID: 25074587 DOI: 10.1007/s00425-014-2133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
MAIN CONCLUSION The present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd (2+) stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may become part of the food chain, thus causing detrimental effects to human health. Therefore, there is an urgent need to develop strategies for engineering plants for Cd(2+) tolerance and less accumulation. The members of P-type ATPases family transport metal ions including Cd(2+), and thus play important role an ion homeostasis. The present study elucidates the role of P-type 2B Ca(2+) ATPase (OsACA6) in Cd(2+) stress tolerance. The transcript levels of OsACA6 were up-regulated upon Cd(2+), Zn(2+) and Mn(2+) exposure. Transgenic tobacco expressing OsACA6 showed tolerance towards Cd(2+) stress as demonstrated by several physiological indices including root length, biomass, chlorophyll, malondialdehyde and hydrogen peroxide content. The roots of the transgenic lines accumulated more Cd(2+) as compared to shoot. Further, confocal laser scanning microscopy showed that Cd(2+) exposure altered Ca(2+) uptake in OsACA6 transgenic plants. OsACA6 expression in tobacco also protected the transgenic plants from oxidative stress by enhancing the activity of enzymatic (SOD, CAT, APX, GR) and non-enzymatic (GSH and AsA) antioxidant machinery. Transgenic lines also tolerated Zn(2+) and Mn(2+) stress; however, tolerance for these ions was not as significant as observed for Cd(2+) exposure. Thus, overexpression of OsACA6 confers Cd(2+) stress tolerance in transgenic lines by maintaining cellular ion homeostasis and modulating reactive oxygen species (ROS)-scavenging pathway. The results of the present study will help to develop strategies for engineering Cd(2+) stress tolerance in economically important crop plants.
Collapse
Affiliation(s)
- Devesh Shukla
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | |
Collapse
|
314
|
Boshoff M, De Jonge M, Scheifler R, Bervoets L. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil-plant transfer models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:862-871. [PMID: 25000582 DOI: 10.1016/j.scitotenv.2014.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/29/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to derive regression-based soil-plant models to predict and compare metal(loid) (i.e. As, Cd, Cu, Pb and Zn) concentrations in plants (grass Agrostis sp./Poa sp. and nettle Urtica dioica L.) among sites with a wide range of metal pollution and a wide variation in soil properties. Regression models were based on the pseudo total (aqua-regia) and exchangeable (0.01 M CaCl2) soil metal concentrations. Plant metal concentrations were best explained by the pseudo total soil metal concentrations in combination with soil properties. The most important soil property that influenced U. dioica metal concentrations was the clay content, while for grass organic matter (OM) and pH affected the As (OM) and Cu and Zn (pH). In this study multiple linear regression models proved functional in predicting metal accumulation in plants on a regional scale. With the proposed models based on the pseudo total metal concentration, the percentage of variation explained for the metals As, Cd, Cu, Pb and Zn were 0.56%, 0.47%, 0.59%, 0.61%, 0.30% in nettle and 0.46%, 0.38%, 0.27%, 0.50%, 0.28% in grass.
Collapse
Affiliation(s)
- Magdalena Boshoff
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Maarten De Jonge
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Renaud Scheifler
- Chrono-Environment, UMR 6249 University of Franche-Comté/CNRS Usc INRA, Place Leclerc, F-25030 Besançon Cedex, France
| | - Lieven Bervoets
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
315
|
Anjum NA, Umar S, Iqbal M. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10286-10293. [PMID: 24756685 DOI: 10.1007/s11356-014-2889-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/03/2014] [Indexed: 05/28/2023]
Abstract
This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg(-1) soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd concentrations can be of great help in elaborating the innovative plant-based remediation technologies for metal/metalloid-contaminated sites.
Collapse
Affiliation(s)
- Naser A Anjum
- Department of Botany, Faculty of Science, Hamdard University, New Delhi, 110062, India
| | | | | |
Collapse
|
316
|
Kutik J, Kuthanova A, Smertenko A, Fischer L, Opatrny Z. Cadmium-induced cell death in BY-2 cell culture starts with vacuolization of cytoplasm and terminates with necrosis. PHYSIOLOGIA PLANTARUM 2014; 151:423-33. [PMID: 24359567 DOI: 10.1111/ppl.12124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 05/22/2023]
Abstract
Cadmium is a potent inducer of programmed cell death (PCD) in plants but the morphological changes in cells exposed to cadmium are poorly characterized. Using light and transmission electron microscopy (TEM) we have investigated the changes in ultrastructure of tobacco BY-2 cells treated with 50 µM CdSO4. The cadmium-induced alterations in cell morphology occurred gradually over a period of 3-4 days and the first stages of the response resembled vacuolar type of cell death. The initial formation of numerous small cytoplasmic vacuoles and dilation of endoplasmic reticulum was followed first by fusion of smaller vacuoles with each other and with big vacuoles, and then by the appearance of autophagic vacuoles containing autophagic bodies. The final stages of cell death were accompanied by necrotic features including loss of plasmalemma integrity, shrinkage of the protoplast and unprocessed cellular components. In addition, we observed a gradual degradation of nuclear material. Our results demonstrate that cadmium-induced plant cell death is a slow process featuring elements of vacuolar cell death and terminating with necrosis.
Collapse
Affiliation(s)
- Jaromir Kutik
- Faculty of Science, Department of Experimental Plant Biology, Charles University in Prague, Vinicna 5, 12844, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
317
|
Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G. Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. PLANTA 2014; 240:291-308. [PMID: 24819712 DOI: 10.1007/s00425-014-2077-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
Rice plants employ two strategies to cope with Cr toxicity: immobilizing Cr ions into cell walls to reduce its translocation and activating antioxidant defense to mitigate Cr-induced oxidative stress. The investigation aimed at understanding the physiological and proteomic responses of rice seedlings to hexavalent chromium (Cr(6+)) stress was conducted using two rice genotypes, which differ in Cr tolerance and accumulation. Cr toxicity (200 µM) heavily increased the accumulation of H2O2 and [Formula: see text], enhanced lipid peroxidation, decreased cell viability and consequently inhibited rice plant growth. Proteomic analyses suggest that the response of rice proteome to Cr stress is genotype- and Cr dosage-dependent and tissue specific. Sixty-four proteins, which show more than fourfold difference under either two Cr levels, have been successfully identified. They are involved in a range of cellular processes, including cell wall synthesis, energy production, primary metabolism, electron transport and detoxification. Two proteins related to cell wall structure, NAD-dependent epimerase/dehydratase and reversibly glycosylated polypeptide were greatly up-regulated by Cr stress. Their enhancements coupled with callose accumulation by Cr suggest that cell wall is an important barrier for rice plants to resist Cr stress. Some enzymes involved in antioxidant defense, such as ferredoxin-NADP reductase, NADP-isocitrate dehydrogenase, glyoxalase I (Gly I) and glutamine synthetase 1 (GS1) have also been identified in response to Cr stress. However, they were only detected in Cr-tolerant genotype, indicating the genotypic difference in the capacity of activating the defense system to fight against Cr-induced oxidative stress. Overall, two strategies in coping with Cr stress in rice plants can be hypothesized: (i) immobilizing Cr ions into cell walls to reduce its translocation and (ii) activating antioxidant defense to mitigate Cr-induced oxidative stress.
Collapse
Affiliation(s)
- Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
318
|
Hermand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P. Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics 2014; 6:1427-40. [PMID: 24760325 PMCID: PMC4431542 DOI: 10.1039/c4mt00071d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) is a non-essential heavy metal, which is classified as a "known human carcinogen" by the International Agency for Research on Cancer (IARC). Understanding the mechanisms controlling Cd distribution in planta is essential to develop phytoremediation approaches as well as for food safety. Unlike most other plants, tobacco (Nicotiana tabacum) plants translocate most of the Cd taken up from the soil, out of the roots and into the shoots, leading to high Cd accumulation in tobacco shoots. Two orthologs of the Arabidopsis thaliana HMA2 and HMA4 Zn and Cd ATPases that are responsible for zinc (Zn) and Cd translocation from roots to shoots were identified in tobacco and sequenced. These genes, named NtHMAα and NtHMAβ, were more highly expressed in roots than in shoots. NtHMAα was expressed in the vascular tissues of both roots and leaves as well as in anthers. No visual difference was observed between wild-type plants and plants in which the NtHMAα and NtHMAβ genes were either mutated or silenced. These mutants showed reduced Zn and Cd accumulation in shoots as well as increased Cd tolerance. When both NtHMA genes were silenced, plant development was altered and pollen germination was severely impaired due to Zn deficiency. Interestingly, seeds from these lines also showed decreased Zn concentration but increased iron (Fe) concentration.
Collapse
Affiliation(s)
- Victor Hermand
- Institut National de la Recherche Agronomique, Montpellier SupAgro, Centre National de la Recherche Scientifique, Université Montpellier 2, UMR Biochimie et Physiologie Moléculaire des Plantes, Place Viala, 34060 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ. Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:22-28. [PMID: 24780229 DOI: 10.1016/j.ecoenv.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich, low molecular weight, heavy metal-binding protein molecules. Here, a full-length cDNA homologue of MT2a (type 2 metallothionein) was isolated from the cadmium-tolerant species Iris. lactea var. chinensis (I. lactea var. chinensis). Expression of IlMT2a in I. lactea var. chinensis roots and leaves was up-regulated in response to cadmium stress. When the gene was constitutively expressed in Arabidopsis thaliana (A. thaliana), root length of transgenic lines was longer than that of wild-type under 50μM or 100μM cadmium stress. However, there was no difference of cadmium absorption between wild-type and trangenic lines. Histochemical staining by 3,3-diaminobenzidine (DAB) and nitroblue tetrazoliu (NBT) clearly demonstrated that transgenic lines accumulated remarkably less H2O2 and O2(-) than wild-type. Together, IlMT2a may be a promising gene for the cadmium tolerance improvement.
Collapse
Affiliation(s)
- Chun-Sun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Liang-qin Liu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Yan-Hai Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Yan-ming Deng
- Institute of Agrobiotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xu-dong Zhu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Su-Zhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China.
| |
Collapse
|
320
|
Lim SD, Hwang JG, Han AR, Park YC, Lee C, Ok YS, Jang CS. Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. PLANT MOLECULAR BIOLOGY 2014; 85:365-379. [PMID: 24664473 DOI: 10.1007/s11103-014-0190-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/14/2014] [Indexed: 05/29/2023]
Abstract
The metalloid arsenic (As) and the heavy metal cadmium (Cd) are ubiquitously found at low concentrations in the earth. High concentrations of these elements in the soil and crops are severely dangerous to human health. We attempted to retrieve the RING E3 ubiquitin ligase gene for regulating As and Cd uptakes via the ubiquitin 26S proteasome system. Semi-quantitative reverse transcription polymerase chain reaction was conducted for a total of 47 Oryza sativa RING finger protein (OsRFP) genes to assess their expression patterns when exposed to As and Cd treatments. We identified one gene Oryza sativa heavy metal induced RING E3 ligase 1 (OsHIR1), which was significantly upregulated with both treatments. A yeast hybrid screen and a bimolecular fluorescence complementation assay showed that OsHIR1 clearly interacts with 5 substrate proteins, including tonoplast intrinsic protein 4;1 (OsTIP4;1) in the plasma membrane. In addition, OsHIR1 strongly degraded the protein level of OsTIP4;1 via the ubiquitin 26S proteasome system. Heterogeneous overexpression of OsHIR1 in Arabidopsis exhibited As- and Cd-insensitive phenotypes and resulted in decreased As and Cd accumulation in the shoots and roots, relative to the control. Herein, we report the novel finding that the OsHIR1 E3 ligase positively regulates OsTIP4;1 related to As and Cd uptakes.
Collapse
Affiliation(s)
- Sung Don Lim
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
321
|
Ghiani A, Fumagalli P, Nguyen Van T, Gentili R, Citterio S. The combined toxic and genotoxic effects of Cd and As to plant bioindicator Trifolium repens L. PLoS One 2014; 9:e99239. [PMID: 24914541 PMCID: PMC4051651 DOI: 10.1371/journal.pone.0099239] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to investigate combined toxic and genotoxic effects of cadmium (Cd) and arsenic (As) on white clover, a pollutant sensitive plant frequently used as environmental bioindicator. Plants were exposed to soil spiked with increasing concentrations of cadmium sulfate (20, 40 and 60 mg Kg−1) or sodium arsenite (5, 10 and 20 mg Kg−1) as well as with their combinations. Metal(loid) bioavailability was assessed after soil contamination, whereas plant growth, metal(loid) concentration in plant organs and DNA damage were measured at the end of plant exposition. Results showed that individual and joint toxicity and genotoxicity were related to the concentration of Cd and As measured in plant organs, and that As concentration was the most relevant variable. Joint effects on plant growth were additive or synergistic, whereas joint genotoxic effects were additive or antagonistic. The interaction between Cd and As occurred at both soil and plant level. In soil the presence of As limited the bioavailability of Cd, whereas the presence of Cd increased the bioavailability of As. Nevertheless only As biovailability determined the amount of As absorbed by plants. The amount of Cd absorbed by plant was not linearly correlated with the fraction of bioavailable Cd in soil suggesting the involvement of additional factors, such as plant uptake mechanisms. These results reveal that the simultaneous presence in soil of Cd and As, although producing an additive or synergistic toxic effect on Trifolium repens L. growth, generates a lower DNA damage.
Collapse
Affiliation(s)
- Alessandra Ghiani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Pietro Fumagalli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Tho Nguyen Van
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- * E-mail:
| |
Collapse
|
322
|
Tang Y, Cao Y, Qiu J, Gao Z, Ou Z, Wang Y, Zheng Y. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS One 2014; 9:e98830. [PMID: 24901737 PMCID: PMC4047006 DOI: 10.1371/journal.pone.0098830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC) assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+), Co(2+), Ni(2+), Zn(2+) and Cu(2+)) but not hard metal ions (Ca(2+) and Mg(2+)) in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+) or Cd(2+) stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES) analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+)) and copper (Cu(2+)) tolerance to plants by helping plants to sequester Cd(2+) or Cu(2+) in the root and reduce the amount of heavy metals transported to the shoots.
Collapse
Affiliation(s)
- Yulin Tang
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yan Cao
- The Key Laboratory for Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jianbin Qiu
- The Key Laboratory for Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhan Gao
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhonghua Ou
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yajing Wang
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yizhi Zheng
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
323
|
Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T. Accumulation of heavy metals using Sorghum sp. CHEMOSPHERE 2014; 104:15-24. [PMID: 24268752 DOI: 10.1016/j.chemosphere.2013.09.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 05/26/2023]
Abstract
The essential requirement for the effective phytoremediation is selection of a plant species which should be metal tolerant, with high biomass production and known agronomic techniques. The above mentioned criteria are met by crop plant sorghum (Sorghum bicolor). The response of hydroponically grown S. bicolor plants to cadmium and zinc stress was followed. The impact of metal application on physiological parameters, including changes in chlorophylls contents and antioxidative enzymes activities, was followed during the stress progression. Cadmium and zinc were accumulated primarily in the roots of sorghum plants. However, elevation of metal concentrations in the media promoted their transfer to the shoots. Toxic effects of metals applied at lower concentrations were less serious in the shoots in comparison with their influence to the roots. When applied at higher concentrations, transfer of the metals into the leaves increased, causing growth reduction and leading to Chl loss and metal-induced chlorosis. Moreover, higher metal levels in the roots overcame the quenching capacity of peroxidase and glutathione transferase, which was associated with reduction of their activities. Fortification of antioxidant system by addition of glutathione significantly increased the accumulation of cadmium in the roots as well as in the shoots at the highest cadmium concentration applied.
Collapse
Affiliation(s)
- Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Šarka Petrová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Radomíra Vaňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Jing Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, 210008 Nanjing, China
| | - Tomaš Vaněk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic.
| |
Collapse
|
324
|
Balestri M, Ceccarini A, Forino LMC, Zelko I, Martinka M, Lux A, Ruffini Castiglione M. Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. PLANTA 2014; 239:1055-64. [PMID: 24519545 DOI: 10.1007/s00425-014-2036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/21/2014] [Indexed: 05/08/2023]
Abstract
Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 μM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60 μM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.
Collapse
Affiliation(s)
- Mirko Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
325
|
Huang L, Yao L, He Z, Zhou C, Li G, Yang B, Deng X. Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by vegetables. CHEMOSPHERE 2014; 100:57-62. [PMID: 24461427 DOI: 10.1016/j.chemosphere.2013.12.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
Roxarsone is an organoarsenic feed additive which can be finally degraded to other higher toxic metabolites after excreted by animal. In this work, the uptake of As species by vegetables treated with chicken manure bearing roxarsone and its metabolites was investigated. It was showed that more than 96% of roxarsone added in chicken feed was degraded and converted to arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, 4-hydroxyphenylarsonic acid and other unknown As species. Arsenite and arsenate could be found in roots of vegetables but only arsenite transported up to shoots. Chicken manure bearing roxarsone and its metabolites increased 33-175% of arsenite and 28% ∼ seven times of arsenate in vegetable roots, 68-175% of arsenite in edible vegetable shoots. Arsenite, the most toxic As form, was the major extractable As species in vegetables accounted for 79-98%. The results reflected that toxic element As could be absorbed by vegetables via the way: roxarsone in feed → animal → animal manure → soil → crop and the uptake of As species would be enhanced by using chicken manure bearing roxarsone and its metabolites as organic fertilizer.
Collapse
Affiliation(s)
- Lianxi Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, China
| | - Lixian Yao
- South China Agricultural University, Guangzhou 510640, China.
| | - Zhaohuan He
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, China
| | - Guoliang Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, China
| | - Baomei Yang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, China
| | - Xiancai Deng
- South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
326
|
Halimaa P, Lin YF, Ahonen VH, Blande D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi SO, Laiho A, Aarts MGM, Pursiheimo JP, Schat H, Schmidt H, Tuomainen MH, Tervahauta AI. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3344-53. [PMID: 24559272 DOI: 10.1021/es4042995] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.
Collapse
Affiliation(s)
- Pauliina Halimaa
- Department of Biology, University of Eastern Finland , P.O. Box 1627, Kuopio, 70210, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Nayuki K, Chen B, Ohtomo R, Kuga Y. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes Environ 2014; 29:60-6. [PMID: 24499974 PMCID: PMC4041234 DOI: 10.1264/jsme2.me13093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/05/2013] [Indexed: 01/08/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi function as extended roots and take an active part in plant acquisition of nutrients and also soil pollutants, such as heavy metals. The objective of this study was to establish a method to observe the localization of cadmium (Cd) Kα at subcellular levels using X-ray fluorescence (XRF) imaging with a synchrotron irradiation microbeam in resin-embedded sections of mycorrhizas. To evaluate the methodology, distributions of Cd in high-pressure-frozen Lotus japonicus-Rhizophagus irregularis mycorrhizal roots were compared between two treatments; Cd was exposed either to the roots or to the extraradical hyphae. Results showed that, in the latter treatment, Cd was restricted to fungal structures, whereas in the former, Cd was detected in cell walls of the two organisms. Plunge-frozen extraradical mycelium of Gigaspora margarita exposed to Cd showed high signals of Cd in the cell walls and vacuoles, and low in the cytoplasm. With selective staining and elemental mapping by electron-dispersive X-ray spectrometry (EDS), a positive correlation between distributions of Cd and P was revealed in the vacuole, which suggested polyP as a counter ion of Cd. These results indicated that there was no Cd relocation in rapidly frozen resin-embedded materials, therefore supporting the usefulness of this methodology.
Collapse
Affiliation(s)
- Keiichiro Nayuki
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1–7–1 Kagamiyama, Higashihiroshima, Hiroshima, 739–8521 Japan
- Graduate School of Agriculture, Shinshu University, 8304 Minami-Minowa, Kamiina, Nagano 399–4598, Japan
| | - Baodong Chen
- Nasu Research Station, NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi, 329–2793 Japan
| | - Ryo Ohtomo
- Nasu Research Station, NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi, 329–2793 Japan
| | - Yukari Kuga
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1–7–1 Kagamiyama, Higashihiroshima, Hiroshima, 739–8521 Japan
| |
Collapse
|
328
|
Singh A, Prasad SM. Effect of agro-industrial waste amendment on Cd uptake in Amaranthus caudatus grown under contaminated soil: an oxidative biomarker response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:105-13. [PMID: 24239268 DOI: 10.1016/j.ecoenv.2013.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
In the present study phytoavailability of Cd, growth yield, cellular Cd accumulation and oxidative stress responses were studied in leafy vegetable Amaranthus caudatus under soil amendments. The test plant was cultivated in Cd contaminated soil (6 µgCdg(-1) soil) amended with different doses: 0.5, 2, 5 and 10 percent of rice husk (RH), saw dust (SD), farmyard manure (FYM), farmyard in combination with nitrogen, and phosphorus and potassium (FYM+NPK). Phytoavailability of Cd in amended soil and cellular Cd accumulation in edible parts (shoot) of A. caudatus declined maximally with 5 percent dose of each amendment, and decrease in Cd content in tissues was 36, 45, 23 and 14 percent under FYM, FYM+NPK, RH and SD amendments, respectively, over the value recorded in plants grown in Cd contaminated non-amended soil (Cd(+)NA soil). The shoot yield in control plant cultivated in the absence of Cd without amendment (Cd(-)NA soil) was 18.1 ± 0.98 gfwplant(-1) and it was declined up to 50 percent (9.2 ± 0.80 gfwplant(-1)) when plants were grown in Cd(+)NA soil. Amendments with 5 percent doses of FYM+NPK and FYM enhanced the yield up to 26.5 ± 0.57 and 20.5 ± 1.00 gfwplant(-1), respectively, which may be correlated with better mineral nutrients and organic carbon content in amended soil. RH and SD amendments with similar doses improved in yield up to 16.9 ± 0.43 and 15.2 ± 0.45 gfwplant(-1), respectively, however, it was still less than that of control. Further, correlation analysis of growth yield, Cd concentration and oxidative stress under these conditions suggest that with the decrease in cellular Cd concentration following amendment the level of oxidative markers (oxidants: O2(-) and H2O2 and lipid peroxidation: malondialdehyde; MDA) declined as a result of significant enhancement in the activity of enzymatic antioxidants (peroxidase, ascorbate peroxidase, superoxide dismutase, dyhydroascorbe reductase and catalase). Thus, the present technique can efficiently reduce the metal load in food chain and also increase plant yield, hence it could be applied in catchments area of urban cities where metal contamination has become an unavoidable factor.
Collapse
Affiliation(s)
- Anita Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
329
|
Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:154-63. [PMID: 24331431 PMCID: PMC3929167 DOI: 10.1016/j.jplph.2013.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell wall bound calcium. The antioxidants salicylic acid, ascorbic acid and glutathione were not able to ameliorate any of the investigated metal effects on the green alga Micrasterias when added to the culture medium.
Collapse
Affiliation(s)
- Stefanie Volland
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Elisabeth Bayer
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Verena Baumgartner
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Ancuela Andosch
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Cornelius Lütz
- Institute of Botany, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Evelyn Sima
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| |
Collapse
|
330
|
Ciurli A, Lenzi L, Alpi A, Pardossi A. Arsenic uptake and translocation by plants in pot and field experiments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:804-23. [PMID: 24933886 DOI: 10.1080/15226514.2013.856850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A work undertaken by pot and field experiments to assess the suitability of poplars and ferns for the in-situ, phytoextraction, of a dumping site with residues from the roasting process of arseno-pyrite is reported. The main characteristic of this site is the high content of both the As metalloid and heavy metals (e.g., Al, Fe, Cu, Co, Cr, Pb). Two poplar clones (Populus deltoides 'Dvina' and Populus x canadensis 'Orion') and Pteris vittata (Chinese brake fern) were planted in the contaminated soil both ex situ in pots and in situ. Plant survival, As accumulation in plant tissues, leaf content of pigments, soluble proteins, activity of catalase and SH-groups in both roots and leaves were evaluated during a 24-month study period. Both poplar and fern plants exhibited an increase in the activity of catalase and SH group contents when grown in the presence of pyrite ashes. The results showed that the co-planting system (arsenic-hyperaccumulator fern Pteris vittata and Populus clones) was suitable for phytoextraction of multi-contaminated dumping sites. Agronomic measures such as irrigation, soil tillage and amendments also seem to be necessary for the successful establishment of poplar trees and ferns in contaminated soils in order to enhance plant growth through the improvement of soil conditions.
Collapse
|
331
|
Tang L, Qiu R, Tang Y, Wang S. Cadmium–zinc exchange and their binary relationship in the structure of Zn-related proteins: a mini review. Metallomics 2014; 6:1313-23. [DOI: 10.1039/c4mt00080c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we give an overview of ongoing work on discovering the structural mechanisms of Cd–Zn exchange and the potentially diverse roles of Cd at Zn functional sites in proteins.
Collapse
Affiliation(s)
- Lu Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Yetao Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| |
Collapse
|
332
|
Marino D, Damiani I, Gucciardo S, Mijangos I, Pauly N, Puppo A. Inhibition of nitrogen fixation in symbiotic Medicago truncatula upon Cd exposure is a local process involving leghaemoglobin. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5651-60. [PMID: 24151304 PMCID: PMC3871818 DOI: 10.1093/jxb/ert334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leguminous biological nitrogen fixation (BNF) is very sensitive to environmental fluctuations. It is still contentious how BNF is regulated under stress conditions. The local or systemic control of BNF and the role played by reactive oxygen species (ROS) in such regulation have still not been elucidated completely. Cadmium, which belongs to the so-called heavy metals, is one of the most toxic substances released into the environment. The mechanisms involved in Cd toxicity are still not completely understood but the overproduction of ROS is one of its characteristic symptoms. In this work, we used a split-root system approach to study nodule BNF and the antioxidant machinery's response to the application of a mild Cd treatment on one side of a nodulated Medicago truncatula root system. Cd induced the majority of nodule antioxidants without generating any oxidative damage. Cd treatment also provoked BNF inhibition exclusively in nodules directly exposed to Cd, without provoking any effect on plant shoot biomass or chlorophyll content. The overall data suggest that the decline in BNF was not due to a generalized breakdown of the plant but to control exerted through leghaemoglobin/oxygen availability, affecting nitrogenase function.
Collapse
Affiliation(s)
- Daniel Marino
- Interactions Biotiques et Santé Végétale UMR INRA 1301 – CNRS 6243 – Université de Nice – Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain
- * To whom correspondence should be addressed. E-mail:
| | - Isabelle Damiani
- Interactions Biotiques et Santé Végétale UMR INRA 1301 – CNRS 6243 – Université de Nice – Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
| | - Sébastien Gucciardo
- Interactions Biotiques et Santé Végétale UMR INRA 1301 – CNRS 6243 – Université de Nice – Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
| | - Iker Mijangos
- NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, E-48160 Derio, Spain
| | - Nicolas Pauly
- Interactions Biotiques et Santé Végétale UMR INRA 1301 – CNRS 6243 – Université de Nice – Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
| | - Alain Puppo
- Interactions Biotiques et Santé Végétale UMR INRA 1301 – CNRS 6243 – Université de Nice – Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
| |
Collapse
|
333
|
Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S, Li Z, Han C, Zhou L, Huang Y, Luo Y, Christie P. Water management affects arsenic and cadmium accumulation in different rice cultivars. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:767-78. [PMID: 23719663 DOI: 10.1007/s10653-013-9533-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/26/2013] [Indexed: 05/10/2023]
Abstract
Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.
Collapse
Affiliation(s)
- Pengjie Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Hu H, Zhang J, Wang H, Li R, Pan F, Wu J, Feng Y, Ying Y, Liu Q. Effect of silicate supplementation on the alleviation of arsenite toxicity in 93-11 (Oryza sativa L. indica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8579-89. [PMID: 23686790 DOI: 10.1007/s11356-013-1811-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/06/2013] [Indexed: 05/23/2023]
Abstract
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.
Collapse
Affiliation(s)
- Haichao Hu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an Hangzhou, 311300, China
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
|
336
|
Liebeke M, Garcia-Perez I, Anderson CJ, Lawlor AJ, Bennett MH, Morris CA, Kille P, Svendsen C, Spurgeon DJ, Bundy JG. Earthworms produce phytochelatins in response to arsenic. PLoS One 2013; 8:e81271. [PMID: 24278409 PMCID: PMC3838358 DOI: 10.1371/journal.pone.0081271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.
Collapse
Affiliation(s)
- Manuel Liebeke
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Isabel Garcia-Perez
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Craig J. Anderson
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Alan J. Lawlor
- Centre for Ecology and Hydrology, Lancaster, United Kingdom
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ceri A. Morris
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Peter Kille
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | | | - Jacob G. Bundy
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
337
|
Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T. Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4517-27. [PMID: 24163402 PMCID: PMC3808331 DOI: 10.1093/jxb/ert267] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A rice cDNA, OsDEP1, encoding a highly cysteine (Cys)-rich G protein γ subunit, was initially identified as it conferred cadmium (Cd) tolerance on yeast cells. Of the 426 aa constituting OsDEP1, 120 are Cys residues (28.2%), of which 88 are clustered in the C-terminal half region (aa 170-426). To evaluate the independent effects of these two regions, two truncated versions of the OsDEP1-expressing plasmids pOsDEP1(1-169) and pOsDEP1(170-426) were used to examine their effects on yeast Cd tolerance. Although OsDEP1(170-426) conferred a similar level of Cd tolerance as the intact OsDEP1, OsDEP1(1-169) provided no such tolerance, indicating that the tolerance effect is localized to the aa 170-426 C-terminal peptide region. The Cd responses of transgenic Arabidopsis plants constitutively expressing OsDEP1, OsDEP1(1-169) or OsDEP1(170-426), were similar to the observations in yeast cells, with OsDEP1 and OsDEP1(170-426) transgenic plants displaying Cd tolerance but OsDEP1(1-169) plants showing no such tolerance. In addition, a positive correlation between the transcript levels of OsDEP1 or OsDEP1(170-426) in the transgenics and the Cd content of these plants upon Cd application was observed. As several Arabidopsis loss-of-function heterotrimeric G protein β and γ subunit gene mutants did not show differences in their Cd sensitivity compared with wild-type plants, we propose that the Cys-rich region of OsDEP1 may function directly as a trap for Cd ions.
Collapse
Affiliation(s)
- Shuta Kunihiro
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Tatsuhiko Saito
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Taiki Matsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Masataka Inoue
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Masato Kuramata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
- * Current address: National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | - Shohab Youssefian
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-7 Kaidobata Nishi, Akita 010-1095, Japan
| | - Thomas Berberich
- Biodiversity and Climate Research Center (BiK-F), D-60323 Frankfurt, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
- To whom correspondence should be addressed.
| |
Collapse
|
338
|
Hossain Z, Khatoon A, Komatsu S. Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 2013; 12:4670-84. [PMID: 24016329 DOI: 10.1021/pr400604b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant response to abiotic stresses depends upon the fast activation of molecular cascades involving stress perception, signal transduction, changes in gene and protein expression and post-translational modification of stress-induced proteins. Legumes are extremely sensitive to flooding, drought, salinity and heavy metal stresses, and soybean is not an exception of that. Invention of immobilized pH gradient strips followed by advancement in mass spectrometry has made proteomics a fast, sensitive and reliable technique for separation, identification and characterization of stress-induced proteins. As the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in stress tolerance mechanism. Identifying master regulator proteins that play key roles in the abiotic stress response pathway is fundamental in providing opportunities for developing genetically engineered stress-tolerant crop plants. This review highlights recent contributions in the field of soybean biology to comprehend the complex mechanism of abiotic stress acclimation. Furthermore, strengths and weaknesses of different proteomic methodologies of extracting complete proteome and challenges and future prospects of soybean proteome study both at organ and whole plant levels are discussed in detail to get new insights into the plant abiotic stress response mechanism.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University , Kolkata 700126, West Bengal, India
| | | | | |
Collapse
|
339
|
D'Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T. Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 2013; 12:4979-97. [PMID: 24074147 DOI: 10.1021/pr400793e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among heavy metal stressors, cadmium (Cd) pollution is one leading threat to the environment. In this view, research efforts have been increasingly put forward to promote the individuation of phytoextractor plants that are capable of accumulating and withstanding the toxic metals, including Cd, in the aerial parts. We hereby adopted the hyperaccumulator B. juncea (Indian mustard) as a model to investigate plant responses to Cd stress at low (25 μM) and high (100 μM) doses. Analytical strategies included mass-spectrometry-based determination of Cd and the assessment of its effect on the leaf proteome and metabolome. Results were thus integrated with routine physiological data. Taken together, physiology results highlighted the deregulation of photosynthesis efficiency, ATP synthesis, reduced transpiration, and the impairment of light-independent carbon fixation reactions. These results were supported at the proteomics level by the observed Cd-dependent alteration of photosystem components and the alteration of metabolic enzymes, including ATP synthase subunits, carbonic anhydrase, and enzymes involved in antioxidant responses (especially glutathione and phytochelatin homeostasis) and the Calvin cycle. Metabolomics results confirmed the alterations of energy-generating metabolic pathways, sulfur-compound metabolism (GSH and PCs), and Calvin cycle. Besides, metabolomics results highlighted the up-regulation of phosphoglycolate, a byproduct of the photorespiration metabolism. This was suggestive of the likely increased photorespiration rate as a means to cope with Cd-induced unbalance in stomatal conductance and deregulation of CO2 homeostasis, which would, in turn, promote CO2 depletion and O2 (and thus oxidative stress) accumulation under prolonged photosynthesis in the leaves from plants exposed to high doses of CdCl2. Overall, it emerges that Cd-stressed B. juncea might rely on photorespiration, an adaptation that would prevent the over-reduction of the photosynthetic electron transport chain and photoinhibition.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università, snc, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
340
|
Feng R, Qiu W, Lian F, Yu Z, Yang Y, Song Z. Field evaluation of in situ remediation of Cd-contaminated soil using four additives, two foliar fertilisers and two varieties of pakchoi. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 124:17-24. [PMID: 23603772 DOI: 10.1016/j.jenvman.2013.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/23/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
This study was conducted to determine the optimal planting mode for pakchoi (Brassica rapa chinensis) in Cd-contaminated soil to reduce the accumulation of Cd in the edible parts while maintaining yields. Four additives (red mud (RM), silicon calcium fertiliser (SC), spodium (SP) and calcium magnesium phosphate (CMP)), two foliar fertilisers (Ca and Zn) and two varieties of pakchoi (Aijiaohuang (AJ) and Baixuegongzhu (BX)) were used in this study. The results show that the addition of SC and RM had an effect, but the other additives did not appear to increase the biomasses of AJ and BX. In some cases, the growth responses of AJ and BX to the same treatment were different. Extra additions of Ca or Zn to additive-treated pakchoi did not help the additives stimulate the growth of AJ and BX, except for SC-treated AJ and BX and SP-treated AJ. The SC and CMP additives significantly reduced the available Cd concentration in both the AJ soil and the BX soil; however, they did not significantly decrease the Cd concentration in the aboveground parts of AJ and BX. The RM treatments (for both levels) and some treatments containing SP reduced the available Cd concentration in the soils and reduced the accumulation of Cd in the two pakchoi varieties. Additions of Ca or Zn fertiliser significantly reduced the Cd concentration in the aboveground parts of AJ and BX. However, when Ca or Zn was sprayed on the additive-treated AJ and BX, they did not help the additives reduce the Cd accumulation in the aboveground parts of AJ and BX, except for the additive CMP. This study shows that RM may be an optimal amendment to reduce the accumulation of Cd in the edible part of pakchoi while simultaneously maintaining yields. The utilisation of Ca or Zn as a foliar fertiliser to additive-treated pakchoi showed positive effects only under some conditions.
Collapse
Affiliation(s)
- Renwei Feng
- Centre for Research in Ecotoxicology and Environmental Remediation, Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | | | | | | | | | | |
Collapse
|
341
|
Tolerance to cadmium in plants: the special case of hyperaccumulators. Biometals 2013; 26:633-8. [DOI: 10.1007/s10534-013-9659-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
342
|
Konlechner C, Türktaş M, Langer I, Vaculík M, Wenzel WW, Puschenreiter M, Hauser MT. Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:121-7. [PMID: 23562959 PMCID: PMC3675671 DOI: 10.1016/j.envpol.2013.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 05/24/2023]
Abstract
Salix caprea is well suited for phytoextraction strategies. In a previous survey we showed that genetically distinct S. caprea plants isolated from metal-polluted and unpolluted sites differed in their zinc (Zn) and cadmium (Cd) tolerance and accumulation abilities. To determine the molecular basis of this difference we examined putative homologues of genes involved in heavy metal responses and identified over 200 new candidates with a suppression subtractive hybridization (SSH) screen. Quantitative expression analyses of 20 genes in leaves revealed that some metallothioneins and cell wall modifying genes were induced irrespective of the genotype's origin and metal uptake capacity while a cysteine biosynthesis gene was expressed constitutively higher in the metallicolous genotype. The third and largest group of genes was only induced in the metallicolous genotype. These data demonstrate that naturally adapted woody non-model species can help to discover potential novel molecular mechanisms for metal accumulation and tolerance.
Collapse
Affiliation(s)
- Cornelia Konlechner
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mine Türktaş
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ingrid Langer
- Department of Forest & Soil Sciences, BOKU – University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, SK-842 15 Bratislava, Slovakia
| | - Walter W. Wenzel
- Department of Forest & Soil Sciences, BOKU – University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Markus Puschenreiter
- Department of Forest & Soil Sciences, BOKU – University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
343
|
Zhang C, Zhang P, Mo C, Yang W, Li Q, Pan L, Lee DK. Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1459-65. [PMID: 23764771 DOI: 10.1039/c3em00002h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phytoremediation is a technology for extracting or inactivating pollutants in soil. Echinodorus osiris (E. osiris) is a fast growing perennial wetland plant that is common in tropical and subtropical areas and has a high tolerance to cadmium (Cd). However, the absorption dynamics, subcellular distribution and accumulation of Cd by E. osiris had not been investigated. In this paper, hydroponic experiments with different levels of Cd(2+) (0, 5.0, 15.0 mg L(-1)) were carried out to determine these characteristics of E. osiris. The results indicated that the Cd absorption rate of Echinodorus osiris decreased over time, and the absorption rate within 0.5-1.0 h was faster than after 1.0 h. In a 6.0 hour time period, the rate of Cd uptake fit a quadratic polynomial curve when E. osiris was grown under the 5 mg L(-1) Cd treatment. However, the rate of Cd uptake by E. osiris fit a cubic polynomial model with the 15 mg L(-1) Cd treatment. In the roots, the ethanol-extractable Cd, water-extractable Cd, and NaCl-extractable Cd were the largest proportions of the total Cd. The HAc-extractable Cd, HCl-extractable Cd, and residual-Cd represented a larger proportion of the total Cd in the leaves which was combined with phosphate including CdHPO4, Cd3 (PO4)2, and oxalic acid. When analyzing the subcellular distribution of Cd in the plant, the soluble fraction containing Cd accounted for the largest part (69.49-88.39%) followed by the Cd bound to the cell wall (8.44-25.62%). Both the lower and the higher Cd treatments demonstrated that compartmentation by the vacuole and cell wall binding were two effective defense mechanisms of the plant. However, the vacuole became the main site for Cd accumulation in the leaves under the 15 mg L(-1) Cd treatment. E. osiris was able to accumulate high concentrations of Cd in both the roots and the leaves. The Cd concentration reached 502.97 mg kg(-1) and 2742.95 mg kg(-1) in the shoots and roots, respectively, after 27 days of cultivation. It was concluded that E. osiris is a potential hyperaccumulator of Cd.
Collapse
Affiliation(s)
- Chaolan Zhang
- School of Environment, Guangxi University, Nanning, Guangxi 530004, PR China.
| | | | | | | | | | | | | |
Collapse
|
344
|
Gao J, Sun L, Yang X, Liu JX. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 2013; 8:e64643. [PMID: 23755133 PMCID: PMC3670878 DOI: 10.1371/journal.pone.0064643] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots.
Collapse
Affiliation(s)
- Jun Gao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Ling Sun
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JXL); (XY)
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JXL); (XY)
| |
Collapse
|
345
|
Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, Chen S. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:67-74. [PMID: 23416498 DOI: 10.1016/j.plaphy.2013.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/04/2013] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H2S) is emerging as a novel signalling molecule involved in plant growth and responses against abiotic stresses. However, little information is known about its role in cadmium (Cd) detoxification. In the present study, the effects of H2S on Cd toxicity were investigated in Populus euphratica cells using fluorescence imaging technique and a non-invasive vibrating ion-selective microelectrode. Pretreatment with a H2S donor, sodium hydrosulfide (NaHS), significantly mitigated the Cd-induced programmed cell death in P. euphratica cells. The alleviation effect of NaHS was more pronounced at 50-100 μM as compared to low (25 μM) and high doses (200 μM). Under Cd stress, total activities of antioxidant enzymes, such as ascorbate peroxidase, catalase and glutathione reductase, were significantly enhanced in NaHS-treated cells, leading to a decline of H2O2 accumulation and lipid peroxidation. Moreover, NaHS reduced Cd accumulation in the cytoplasm but increased the fraction of Cd in the vacuole. Cd flux profiles revealed that H2S inhibited the Cd influx through the plasma membrane (PM) calcium channels that activated by H2O2. NaHS enhanced Cd influx into the vacuole, and the Cd influx was dependent on the pH gradients across the tonoplast. Taken together, these results suggest that H2S alleviates Cd toxicity via the improvement of antioxidant system and cellular Cd homeostasis. The up-regulation of antioxidant enzymes by H2S reduced the accumulation of H2O2, and thus decreased Cd influx through the H2O2-activated PM calcium channels. The H2S-simulated vacuolar Cd sequestration was presumably due to the activation of tonoplast Cd(2+)/H(+) antiporters.
Collapse
Affiliation(s)
- Jian Sun
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | | | | | | | | | | | | |
Collapse
|
346
|
Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:584-96. [PMID: 23430410 DOI: 10.1007/s10646-013-1050-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in mitigating oxidative stress in wheat seedlings exposed to arsenic (As). Seedlings were treated with NO donor (0.25 mM sodium nitroprusside, SNP) and As (0.25 and 0.5 mM Na2HAsO4·7H2O) separately and/or in combination and grown for 72 h. Relative water content (RWC) and chlorophyll (chl) content were decreased by As treatment but proline (Pro) content was increased. The ascorbate (AsA) content was decreased significantly with increased As concentration. The imposition of As caused marked increase in the MDA and H2O2 content. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) significantly increased with an increase in the level of As (both 0.25 and 0.5 mM), while the GSH/GSSG ratio decreased at higher concentration (0.5 mM). The ascorbate peroxidase and glutathione S-transferase activities consistently increased with an increase in the As concentration, while glutathione reductase (GR) activities increased only at 0.25 mM. The monodehydroascorbate reductase (MDHAR) and catalase (CAT) activities were not changed upon exposure to As. The activities of dehydroascorbate reductase (DHAR) and glyoxalase I (Gly I) decreased at any levels of As, while glutathione peroxidase (GPX) and glyoxalase II (Gly II) activities decreased only upon 0.5 mM As. Exogenous NO alone had little influence on the non-enzymatic and enzymatic components compared to the control seedlings. These inhibitory effects of As were markedly recovered by supplementation with SNP; that is, the treatment with SNP increased the RWC, chl and Pro contents; AsA and GSH contents and the GSH/GSSG ratio as well as the activities of MDHAR, DHAR, GR, GPX, CAT, Gly I and Gly II in the seedlings subjected to As stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to As-induced oxidative damage by enhancing their antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan.
| | | |
Collapse
|
347
|
Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:804-17. [PMID: 22998565 DOI: 10.1111/pce.12016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.
Collapse
Affiliation(s)
- Hélène Molins
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
348
|
Austruy A, Wanat N, Moussard C, Vernay P, Joussein E, Ledoigt G, Hitmi A. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:28-34. [PMID: 23321366 DOI: 10.1016/j.ecoenv.2012.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species.
Collapse
Affiliation(s)
- A Austruy
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
349
|
Wang Y, Kroon JKM, Slabas AR, Chivasa S. Proteomics reveals new insights into the role of light in cadmium response inArabidopsiscell suspension cultures. Proteomics 2013; 13:1145-58. [DOI: 10.1002/pmic.201200321] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/26/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Wang
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang; China
| | - Johan K. M. Kroon
- School of Biological and Biomedical Sciences; Durham University; Durham; UK
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences; Durham University; Durham; UK
| | - Stephen Chivasa
- School of Biological and Biomedical Sciences; Durham University; Durham; UK
| |
Collapse
|
350
|
Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N. Importance of nitric oxide in cadmium stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:254-261. [PMID: 23313792 DOI: 10.1016/j.plaphy.2012.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Cadmium (Cd(2+)) is a widespread heavy metal pollutant in the environment with a long biological half-life, originating mainly from industrial processes and phosphate fertilizers. It is easily taken up by plants, resulting in toxicity symptoms, such as chlorosis, wilting, growth reduction, and cell death. This cellular toxicity might result from interactions with vital metabolic pathways, carboxyl or thiol groups of proteins and reactive oxygen species (ROS) burst in plants. Plant exposure even to low concentrations of Cd may lead to cell death but the mechanism of its toxicity is still debatable. Therefore, exploring various ways to improve crop productivity and/or alleviate Cd stress effects is one of the major areas of concern. Nitric oxide (NO) is a hydrophobic gaseous molecule involved in various physiological processes such as germination, root growth, stomatal closure, control of the flowering timing etc. NO also functions as cell signaling molecule in plants and play important roles in the regulation of plant responses to both abiotic and biotic stress conditions. At the molecular level, NO signaling includes protein modification by binding to critical cysteine residues, heme or iron-sulfur centers and tyrosine residue nitration via peroxynitrite formation (ONOO(-)), mobilization of secondary messengers (Ca(2+), cyclic GMP and cyclic ADP-Rib) and modulation of protein kinase activities. Significant research had been done to understand the NO biosynthesis and signaling in plants under stress, but several questions still need to be answered. The present review is focused specifically on the importance of NO as Cd stress modulator in crop plants.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Faculty of Life Sciences, MD University, Rohtak 124 001, India.
| | | | | | | | | |
Collapse
|