301
|
Kaneda A, Kaminishi M, Sugimura T, Ushijima T. Decreased expression of the seven ARP2/3 complex genes in human gastric cancers. Cancer Lett 2004; 212:203-10. [PMID: 15279900 DOI: 10.1016/j.canlet.2004.03.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/10/2004] [Accepted: 03/17/2004] [Indexed: 12/21/2022]
Abstract
The Arp2/3 complex and filamins play important roles in organization of actin cytoskeleton, and thus in cellular morphology and locomotion. We recently identified decreased expression of a gene for one of seven subunits of the Arp2/3 complex, the p41-Arc gene, and silencing of a filamin gene, the FLNc gene, in human gastric cancers. In this study, gene expressions of the seven subunits of the Arp2/3 complex, including p41-Arc, and their methylation statuses were analyzed in human gastric cancers. Quantitative real-time RT-PCR analysis of 32 primary gastric cancer samples and eight gastric cancer cell lines revealed that expressions of all the seven genes were significantly decreased. All the 32 primary cancer samples showed decreased expression of at least one subunit, and 25 samples showed decreased expressions of four or more of the seven subunits. Methylation-specific PCR analysis showed that none of the CpG islands in the 5' regions of the six genes other than p41-Arc were methylated in primary gastric cancers or cell lines. The consistent decrease of the Arp2/3 complex genes and its important role in actin organization suggested that the decrease could be involved in cancer phenotypes, such as dysplastic morphology.
Collapse
Affiliation(s)
- Atsushi Kaneda
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
302
|
Travis MA, van der Flier A, Kammerer RA, Mould AP, Sonnenberg A, Humphries MJ. Interaction of filamin A with the integrin beta 7 cytoplasmic domain: role of alternative splicing and phosphorylation. FEBS Lett 2004; 569:185-90. [PMID: 15225631 DOI: 10.1016/j.febslet.2004.04.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/15/2004] [Accepted: 04/30/2004] [Indexed: 11/23/2022]
Abstract
Integrin-filamin binding plays an important role in adhesion-mediated control of the actin cytoskeleton. Here, using the interaction between recombinant fragments from the C-terminus of filamin A and the cytoplasmic tail of integrin beta 7 as a model, we report a negative regulatory role for filamin alternative splicing. Splice variant forms of filamin A lacking a 41-amino acid segment interacted more strongly than full-length fragments. In addition, we provide evidence that phosphorylation of the splice variant region is unlikely to represent the mechanism by which binding is reduced.
Collapse
Affiliation(s)
- Mark A Travis
- School of Biological Sciences, 2.205 Stopford Building, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
303
|
Abstract
Defective cell signalling during embryonic development is a well-recognized modus operandi of mutations in genes that lead to congenital malformations. This signalling occurs within and around a dynamic cellular cytoskeleton that is continuously under modulating influences during morphogenesis. Evidence is accumulating to suggest that filamin A, an actin-binding protein and the product of one of three paralogous filamin genes in humans, represents a key molecule that connects such signalling events to modulation of the cellular cytoskeletal architecture. This review summarizes the clinical consequences of mutations in the gene encoding filamin A, FLNA. The molecular pathology of this gene suggests remarkable functional pleiotropy, indicative of diverse roles in embryonic, fetal and postnatal development.
Collapse
Affiliation(s)
- Stephen P Robertson
- Department of Paediatrics and Child Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| |
Collapse
|
304
|
Bernier M, He HJ, Kwon YK, Jang HJ. The roles of phospholipase C-gamma 1 and actin-binding protein filamin A in signal transduction of the insulin receptor. VITAMINS AND HORMONES 2004; 69:221-47. [PMID: 15196884 DOI: 10.1016/s0083-6729(04)69008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Michel Bernier
- Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
305
|
Mohan M, Hurst AG, Malayer JR. Global gene expression analysis comparing bovine blastocysts flushed on day 7 or produced in vitro. Mol Reprod Dev 2004; 68:288-98. [PMID: 15112321 DOI: 10.1002/mrd.20086] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vitro produced (IVP) bovine embryos have darker cytoplasm, reduced buoyant density, fragile zonae pellucidae, chromosomal abnormalities, higher pregnancy failure rates, and altered gene expression compared to embryos produced in vivo. Characterization of early deviations in gene expression would enable us to better understand the biology of early embryo development and improve in vitro culture systems. Here we compared gene expression between Day 7 blastocysts generated in TCM199 with 5% FBS and Day 7 in vivo derived blastocysts and using suppression-subtractive hybridization (SSH). Pools of 25 embryos for both driver and tester were used in the RNA extraction process. The subtracted products were cloned and subjected to differential hybridization screening analysis. cDNAs were isolated, single-pass sequenced, and subjected to BLAST search. Of 32 in vivo ESTs (expressed sequence tags) that provided sequence information, 30 matched homologous sequences in GenBank. Of 32 in vitro ESTs, 22 provided specific matches while the remaining ten represented novel transcripts. Two in vivo ESTs, galectin-1 and fibronectin, and one in vitro EST, filamin A, were further characterized using real-time quantitative PCR. To further examine the reproducibility of the SSH data, three different pools of embryos with each pool containing ten embryos produced from each of the following production systems, namely, in vivo, IVP in TCM199 with 5% FBS and CR1aa with 5% FBS were used for real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmation studies. Significant increases in the expression level of galectin-1 and fibronectin were observed in the in vivo derived blastocysts compared to blastocysts produced in TCM199 with 5% FBS and CR1aa cultures. No significant difference in filamin A expression was found between blastocysts produced in vivo and those derived from either of the in vitro production systems. We conclude that these techniques are useful to characterize the transcriptome of the early preattachment embryo and observed deviations in mRNA expression may partially explain the differences in quality between in vivo and IVP embryos.
Collapse
Affiliation(s)
- M Mohan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078-2006, USA
| | | | | |
Collapse
|
306
|
Zenker M, Rauch A, Winterpacht A, Tagariello A, Kraus C, Rupprecht T, Sticht H, Reis A. A dual phenotype of periventricular nodular heterotopia and frontometaphyseal dysplasia in one patient caused by a single FLNA mutation leading to two functionally different aberrant transcripts. Am J Hum Genet 2004; 74:731-7. [PMID: 14988809 PMCID: PMC1181949 DOI: 10.1086/383094] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 01/15/2004] [Indexed: 11/03/2022] Open
Abstract
Two disorders, periventricular nodular heterotopia (PVNH) and a group of skeletal dysplasias belonging to the oto-palato-digital (OPD) spectrum, are caused by FLNA mutations. They are considered mutually exclusive because of the different presumed effects of the respective FLNA gene mutations, leading to loss of function (PVNH) and gain of function (OPD), respectively. We describe here the first patient manifesting PVNH in combination with frontometaphyseal dysplasia, a skeletal dysplasia of the OPD-spectrum. A novel de novo mutation, 7315C-->A in exon 45 of the FLNA gene, was identified. It leads to two aberrant transcripts, one full-length transcript with the point mutation causing a substitution of a highly conserved leucine residue (L2439M) and a second shortened transcript lacking 21 bp due to the creation of an ectopic splice donor site in exon 45. We propose that the dual phenotype is caused by two functionally different, aberrant filamin A proteins and therefore represents an exceptional model case of allelic gain-of-function and loss-of-function phenotypes due to a single mutational event.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Krakow D, Robertson SP, King LM, Morgan T, Sebald ET, Bertolotto C, Wachsmann-Hogiu S, Acuna D, Shapiro SS, Takafuta T, Aftimos S, Kim CA, Firth H, Steiner CE, Cormier-Daire V, Superti-Furga A, Bonafe L, Graham JM, Grix A, Bacino CA, Allanson J, Bialer MG, Lachman RS, Rimoin DL, Cohn DH. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 2004; 36:405-10. [PMID: 14991055 DOI: 10.1038/ng1319] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 01/29/2004] [Indexed: 11/09/2022]
Abstract
The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.
Collapse
Affiliation(s)
- Deborah Krakow
- Department of Obstetrics and Gynecology, Cedars-Sinai Research Institute, and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Stevens TA, Iacovoni JS, Edelman DB, Meech R. Identification of novel binding elements and gene targets for the homeodomain protein BARX2. J Biol Chem 2004; 279:14520-30. [PMID: 14744868 DOI: 10.1074/jbc.m310259200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BARX2 is a homeobox transcription factor that influences cellular differentiation in various developmental contexts. To begin to identify the gene targets that mediate its effects, chromatin immunoprecipitation (ChIP) was used to isolate BARX2 binding sites from the human MCF7 breast cancer cell line. Cloning and sequencing of BARX2-ChIP-derived DNA fragments identified 60 potential BARX2 target loci that were proximal to or within introns of genes involved in cytoskeletal organization, cell adhesion, growth factor signaling, transcriptional regulation, and RNA metabolism. The sequences of over half of the fragments showed homology with the mouse genome, and several sequences could be mapped to orthologous human and mouse genes. Binding of BARX2 to 21 genomic loci examined was confirmed quantitatively by replicate ChIP assays. A combination of sequence analysis and electrophoretic mobility shift assays revealed homeodomain binding sites within several fragments that bind to BARX2 in vitro. The majority of BARX2 binding fragments tested (14/19), also affected transcription in luciferase reporter gene assays. Mutation analyses of three fragments showed that their transcriptional activities required the HBS, and suggested that BARX2 regulates gene expression by binding to DNA elements containing paired TAAT motifs that are separated by a poly(T) sequence. Inhibition of BARX2 expression in MCF7 cells led to reduced expression of eight genes associated with BARX2 binding sites, indicating that BARX2 directly regulates their expression. The data suggest that BARX2 can coordinate the expression of a network of genes that influence the growth of MCF7 cells.
Collapse
Affiliation(s)
- Tracy A Stevens
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
309
|
Tseng Y, An KM, Esue O, Wirtz D. The Bimodal Role of Filamin in Controlling the Architecture and Mechanics of F-actin Networks. J Biol Chem 2004; 279:1819-26. [PMID: 14594947 DOI: 10.1074/jbc.m306090200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reconstituted actin filament networks have been used extensively to understand the mechanics of the actin cortex and decipher the role of actin cross-linking proteins in the maintenance and deformation of cell shape. However, studies of the mechanical role of the F-actin cross-linking protein filamin have led to seemingly contradictory conclusions, in part due to the use of ill-defined mechanical assays. Using quantitative rheological methods that avoid the pitfalls of previous studies, we systematically tested the complex mechanical response of reconstituted actin filament networks containing a wide range of filamin concentrations and compared the mechanical function of filamin with that of the cross-linking/bundling proteins alpha-actinin and fascin. At steady state and within a well defined linear regime of small non-destructive deformations, F-actin solutions behave as highly dynamic networks (actin polymers are still sufficiently mobile to relax the stress) below the cross-linking-to-bundling threshold filamin concentration, and they behave as covalently cross-linked gels above that threshold. Under large deformations, F-actin networks soften at low filamin concentrations and strain-harden at high filamin concentrations. Filamin cross-links F-actin into networks that are more resilient, stiffer, more solid-like, and less dynamic than alpha-actinin and fascin. These results resolve the controversy by showing that F-actin/filamin networks can adopt diametrically opposed rheological behaviors depending on the concentration in cross-linking proteins.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
310
|
Van den Veyver IB, Panichkul PP, Antalffy BA, Sun Y, Hunter JV, Armstrong DD. Presence of filamin in the astrocytic inclusions of Aicardi syndrome. Pediatr Neurol 2004; 30:7-15. [PMID: 14738943 DOI: 10.1016/s0887-8994(03)00311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aicardi syndrome affects only females and has been hypothesized to be an X-linked dominant male-lethal disorder. Because no familial cases can be studied for genetic linkage analysis, the mutated gene has remained elusive. With the goal of selecting genes for mutation analysis by a functional candidate approach, a detailed pathologic analysis of two brains from deceased Aicardi syndrome patients was performed. The presence of micrencephaly, absent or hypoplastic corpus callosum, polymicrogyria, heterotopia, ventriculomegaly, intracerebral cyst, and intracytoplasmic eosinophilic inclusions was confirmed in glial fibrillary acidic protein-positive astrocytes in the cortex and heterotopias, but not in white matter. The inclusions demonstrated strong immunolabeling with antibodies to filamin and vimentin but weak labeling with antibodies to proteins S100 and microtubule-associated protein 1. These findings suggested that an underlying defect in the cytoskeleton, which involves filamin, may cause this condition. Because the filamin A gene in Xq28 is mutated in another disorder with heterotopia, familial bilateral periventricular heterotopia, mutation analysis of filamin A in Aicardi syndrome patients was pursued. No mutations were found, and the full-length protein was expressed in both brain samples. Future studies will focus on investigation of X-linked genes that may affect function of filamin or other cytoskeletal proteins.
Collapse
Affiliation(s)
- Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
311
|
Hilpelä P, Vartiainen MK, Lappalainen P. Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 2004; 282:117-63. [PMID: 14594216 DOI: 10.1007/978-3-642-18805-3_5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,5)P2 and PI(3,4,5)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,5)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,5)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,5)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,5)P2. PI(3,4,5)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,5)P2 and PI(3,4,5)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.
Collapse
Affiliation(s)
- P Hilpelä
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
312
|
Onoprishvili I, Andria ML, Kramer HK, Ancevska-Taneva N, Hiller JM, Simon EJ. Interaction between the mu opioid receptor and filamin A is involved in receptor regulation and trafficking. Mol Pharmacol 2003; 64:1092-100. [PMID: 14573758 DOI: 10.1124/mol.64.5.1092] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The carboxyl tail of the human mu opioid receptor was shown to bind the carboxyl terminal region of human filamin A, a protein known to couple membrane proteins to actin. Results from yeast two-hybrid screening were confirmed by direct protein-protein binding and by coimmunoprecipitation of filamin and mu opioid receptor from cell lysates. To investigate the role of filamin A in opioid receptor function and regulation, we used the melanoma cell line M2, which does not express filamin A, and its subclone A7, transfected with human filamin A cDNA. Both cell lines were stably transfected with cDNA encoding myc-tagged human mu opioid receptor. Fluorescent studies, using confocal microscopy, provided evidence that filamin and mu opioid receptors were extensively colocalized on the membranes of filamin-expressing melanoma cells. The immunostaining of mu opioid receptors indicated that the lack of filamin had no detectable effect on membrane localization of the receptors. Moreover, mu opioid receptors function normally in the absence of filamin A, as evidenced by studies of opioid binding and DAMGO inhibition of forskolin-stimulated adenylyl cyclase. However, agonist-induced receptor down-regulation and functional desensitization were virtually abolished in cells lacking filamin A. The level of internalized mu-opioid receptors, after 30-min exposure to agonist, was greatly reduced, suggesting a role for filamin in mu opioid receptor trafficking. During these studies, we observed that forskolin activation of adenylyl cyclase was greatly reduced in filamin-lacking cells. An even more unexpected finding was the ability of long-term treatment with [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin of M2 cells, containing mu opioid receptors, to restore normal forskolin activation. The mechanism of this effect is currently unknown. It is postulated that the observed effects on mu opioid receptor regulation by filamin A and, by implication, of the actin cytoskeleton may be the result of its role in mu opioid receptor trafficking.
Collapse
Affiliation(s)
- Irma Onoprishvili
- Department of Psychiatry, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
313
|
Sampson LJ, Leyland ML, Dart C. Direct interaction between the actin-binding protein filamin-A and the inwardly rectifying potassium channel, Kir2.1. J Biol Chem 2003; 278:41988-97. [PMID: 12923176 DOI: 10.1074/jbc.m307479200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of filamins in actin cross-linking and membrane stabilization is well established, but recently their ability to interact with a variety of transmembrane receptors and signaling proteins has led to speculation of additional roles in scaffolding and signal transduction. Here we report a direct interaction between filamin-A and Kir2.1, an isoform of inwardly rectifying potassium channel expressed in vascular smooth muscle and an important regulator of vascular tone. Yeast two-hybrid screening of a porcine coronary artery cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding a fragment of filamin-A (residues 2481-2647). Interaction between filamin-A and Kir2.1 was confirmed by in vitro overlay assay of membrane-bound Kir2.1 with glutathione S-transferase fusion protein of the isolated filamin clone. Additionally, antibodies directed against Kir2.1 coimmunoprecipitated filamin-A from arterial smooth muscle cell lysates, and immunocytochemical analysis of individual arterial smooth muscle cells showed that Kir2.1 and filamin co-localize in "hotspots" at the cell membrane. Interaction with filamin-A was found to have no effect on Kir2.1 channel behavior but, rather, increased the number of functional channels resident within the membrane. We conclude that filamin-A is potentially an important regulator of Kir2.1 surface expression and location within vascular smooth muscle.
Collapse
Affiliation(s)
- Laura J Sampson
- Department of Cell Physiology and Pharmacology, University of Leicester, P. O. Box 138, Leicester LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
314
|
Feng S, Reséndiz JC, Lu X, Kroll MH. Filamin A binding to the cytoplasmic tail of glycoprotein Ibalpha regulates von Willebrand factor-induced platelet activation. Blood 2003; 102:2122-9. [PMID: 12791664 DOI: 10.1182/blood-2002-12-3805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the hypothesis that filamin A binding to the cytoplasmic tail of platelet glycoprotein Ibalpha (GpIbalpha) is regulated by pathologic shear stress and modulates von Willebrand factor (VWF)-induced platelet activation. To begin, we examined filamin binding to GpIbalpha in Chinese hamster ovary cells coexpressing mutant human GpIb-IX and wild-type human filamin A. We observed that many different deletions and truncations N-terminal to GpIbalpha's cytoplasmic domain residue 594 disrupted filamin A binding, but that binding was unaffected by 14 different point mutations in hydrophilic residues between amino acids 557 and 593. To try to narrow GpIbalpha's filamin A-binding domain, we next measured the effect of several cytoplasmic domain peptides on human filamin A binding to a GST-GpIbalpha cytoplasmic domain fusion protein. One peptide (residues 557-575; designated "A4 peptide") inhibited filamin A binding to the GST-GpIbalpha cytoplasmic domain fusion protein and competed with GpIbalpha for binding to filamin A. When the A4 peptide was delivered to intact human platelets using a carrier peptide, we observed the dose-dependent inhibition of VWF-induced platelet aggregation in response to both ristocetin and shear stress. The effect of the A4 peptide on shear-induced platelet aggregation was accompanied by the attenuation of shear-induced filamin A binding to GpIbalpha and diminished shear-dependent protein tyrosine phosphorylation. These results suggest that shear-dependent VWF-induced platelet activation affects filamin A binding to GpIb-IX-V, and that filamin A binding to the cytoplasmic tail of GpIbalpha regulates proaggregatory tyrosine kinase signaling.
Collapse
Affiliation(s)
- Shuju Feng
- Thrombosis Research (151), VA Medical Center, 2002 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
315
|
Yamazaki M, Furuike S, Ito T. Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton. J Muscle Res Cell Motil 2003; 23:525-34. [PMID: 12785102 DOI: 10.1023/a:1023418725001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Filamin A produces isotropic cross-linked three-dimensional orthogonal networks with actin filaments in the cortex and at the leading edge of cells. Filamin A also links the actin cytoskeleton to the plasma membrane via its association with various kinds of membrane proteins. Recent new findings strongly support that filamin A plays important roles in the mechanical stability of plasma membrane and cortex, formation of cell shape, mechanical responses of cells, and cell locomotion. To elucidate the mechanical properties of the actin/filamin A network and the complex of membrane protein-filamin A-actin cytoskeleton, the mechanical properties of single human filamin A (hsFLNa) molecules in aqueous solution were investigated using atomic force microscopy. Ig-fold domains of filamin A can be unfolded by the critical external force (50-220 pN), and this unfolding is reversible, i.e., the refolding of the unfolded chain of the filamin A occurs when the external force is removed. Due to this reversible unfolding of Ig-fold domains, filamin A molecule can be stretched to several times the length of its native state. Based on this new feature of filamin A as the 'large-extensible linker', we describe our hypothesis for the mechanical role of filamin A in the actin cytoskeletons in cells and discuss its biological implications. In this review, function of filamin A in actin cytoskeleton, mechanical properties of single filamin A proteins, and the hypothesis for the mechanical role of filamin A in the actin cytoskeletons are discussed.
Collapse
Affiliation(s)
- Masahito Yamazaki
- Graduate School of Science and Engineering, Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
316
|
Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R. New N-RAP-binding partners alpha-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. J Cell Sci 2003; 116:2169-78. [PMID: 12692149 DOI: 10.1242/jcs.00425] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-RAP, a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle, has been implicated in myofibril assembly. To discover more about the role of N-RAP in myofibril assembly, we used the yeast two-hybrid system to screen a mouse skeletal muscle cDNA library for proteins capable of binding N-RAP in a eukaryotic cell. From yeast two-hybrid experiments we were able to identify three new N-RAP binding partners: alpha-actinin, filamin-2, and Krp1 (also called sarcosin). In vitro binding assays were used to verify these interactions and to identify the N-RAP domains involved. Three regions of N-RAP were expressed as His-tagged recombinant proteins, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal LIM domain (N-RAP-LIM), and the region of N-RAP in between the super repeat region and the LIM domain (N-RAP-IB). We detected significant alpha-actinin binding to N-RAP-IB and N-RAP-LIM, filamin binding to N-RAP-SR, and Krp1 binding to N-RAP-SR and N-RAP-IB. During myofibril assembly in cultured chick cardiomyocytes, N-RAP and filamin appear to co-localize with alpha-actinin in the earliest myofibril precursors found near the cell periphery, as well as in the nascent myofibrils that form as these structures fuse laterally. In contrast, Krp1 is not localized until late in the assembly process, when it appears at the periphery of myofibrils that appear to be fusing laterally. The results suggest that sequential recruitment of N-RAP binding partners may serve an important role during myofibril assembly.
Collapse
Affiliation(s)
- Shajia Lu
- Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
317
|
Abstract
Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial roles in the integrin-actin connection by providing a high degree of regulation adjusted to the needs of the cell. In this review we present several examples of this paradigm and with special emphasis on the ILK-PINCH-parvin complex, which amply demonstrates how structural and signalling functions are linked together.
Collapse
Affiliation(s)
- Cord Brakebusch
- Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
318
|
Takafuta T, Saeki M, Fujimoto TT, Fujimura K, Shapiro SS. A new member of the LIM protein family binds to filamin B and localizes at stress fibers. J Biol Chem 2003; 278:12175-81. [PMID: 12496242 DOI: 10.1074/jbc.m209339200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human filamins are 280-kDa proteins containing an N-terminal actin-binding domain followed by 24 characteristic repeats. They also interact with a number of other cellular proteins. All of those identified to date, with the exception of actin, bind to the C-terminal third of a filamin. In a yeast two-hybrid search of a human placental library, using as bait repeats 10-18 of filamin B, we isolated a cDNA coding for a novel 374 amino acid protein containing a proline-rich domain near its N terminus and two LIM domains at its C terminus. We term this protein filamin-binding LIM protein-1, FBLP-1. Yeast two-hybrid studies with deletion mutants localized the areas of interaction in FBLP-1 to its N-terminal domain and in filamin B to repeats 10-13. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. We also have identified two FBLP-1 variants. Both contain three C-terminal LIM domains, but one lacks the N-terminal proline-rich domain. Transfection of FBLP-1 into 293A cells promoted stress fiber formation, and both FBLP-1 and filamin B localized to stress fibers in the transfected cells. The association between filamin B and FBLP-1 may play a hitherto unknown role in cytoskeletal function, cell adhesion, and cell motility.
Collapse
Affiliation(s)
- Toshiro Takafuta
- Department of Medicine, Cardeza Foundation for Hematologic Research, Jefferson Medical College, Philadelphia, Pennsylvania 19041, USA
| | | | | | | | | |
Collapse
|
319
|
Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 2003; 113:37-47. [PMID: 12679033 DOI: 10.1016/s0092-8674(03)00163-6] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell-extracellular matrix adhesion is an important determinant of cell morphology. We show here that migfilin, a LIM-containing protein, localizes to cell-matrix adhesions, associates with actin filaments, and is essential for cell shape modulation. Migfilin interacts with the cell-matrix adhesion protein Mig-2 (mitogen inducible gene-2), a mammalian homolog of UNC-112, and the actin binding protein filamin through its C- and N-terminal domains, respectively. Loss of Mig-2 or migfilin impairs cell shape modulation. Mig-2 recruits migfilin to cell-matrix adhesions, while the interaction with filamin mediates the association of migfilin with actin filaments. Migfilin therefore functions as an important scaffold at cell-matrix adhesions. Together, Mig-2, migfilin and filamin define a connection between cell matrix adhesions and the actin cytoskeleton and participate in the orchestration of actin assembly and cell shape modulation.
Collapse
Affiliation(s)
- Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
320
|
Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 2003; 48:401-15. [PMID: 12675800 DOI: 10.1046/j.1365-2958.2003.t01-1-03456.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A family of nine Salmonella typhimurium type III secretion effectors with a conserved amino-terminus have been defined. Three family members (SifA, SifB and SseJ) have previously been demonstrated to localize to the Salmonella-containing vacuole and to Salmonella-induced filaments. In contrast, we demonstrate that two other family members, SspH2 and SseI, co-localized with the polymerizing actin cytoskeleton. These proteins also interacted with the mammalian actin cross-linking protein filamin in the yeast two-hybrid assay through their highly conserved amino-terminal domains. This amino-terminus was sufficient to direct localization to the polymerizing actin cytoskeleton, suggesting that the interaction with filamin is important for this subcellular localization. In addition, SspH2 co-localized with vacuole-associated actin polymerizations (VAP) induced by intracellular bacteria through the Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS). SspH2 interacted with the actin-binding protein profilin in the yeast two-hybrid assay and by affinity chromatography. This interaction was highly specific to SspH2 and was mediated by its carboxy-terminus. Furthermore, SspH2 inhibited the rate of actin polymerization in vitro, suggesting that it functions to reduce or remodel VAP. Strains with mutations in sspH2 and sseI retained the ability to form VAP. However, a third intracellular virulence factor, spvB, which ADP-ribosylates actin, strongly inhibited VAP formation in HeLa cells, suggesting a more subtle effect for SspH2 and SseI on the actin cytoskeleton.
Collapse
Affiliation(s)
- Edward A Miao
- Department of Microbiology, University of Washington, HSB K-140, Box 357710, Seattle, WA 98195-7710, USA
| | | | | | | | | | | |
Collapse
|
321
|
Robertson SP, Twigg SRF, Sutherland-Smith AJ, Biancalana V, Gorlin RJ, Horn D, Kenwrick SJ, Kim CA, Morava E, Newbury-Ecob R, Orstavik KH, Quarrell OWJ, Schwartz CE, Shears DJ, Suri M, Kendrick-Jones J, Wilkie AOM. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 2003; 33:487-91. [PMID: 12612583 DOI: 10.1038/ng1119] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 01/29/2003] [Indexed: 11/08/2022]
Abstract
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.
Collapse
Affiliation(s)
- Stephen P Robertson
- Weatherall Institute of Molecular Medicine, Room 304, The John Radcliffe, Headley Way, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Seck T, Baron R, Horne WC. Binding of filamin to the C-terminal tail of the calcitonin receptor controls recycling. J Biol Chem 2003; 278:10408-16. [PMID: 12531889 DOI: 10.1074/jbc.m209655200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many G protein-coupled receptors undergo endocytosis, but the mechanisms involved in endocytic sorting and recycling remain to be fully elucidated. We found that the G protein-coupled calcitonin receptor (CTR) undergoes tonic internalization and accumulates within the cell. Using a fluorescence loss in photobleaching assay, we classified these vesicles functionally as recycling vesicles. In a two-hybrid screening, we found that the actin-binding protein filamin interacted with the C-terminal tail of the CTR. The degradation of the receptor was profoundly increased in the absence of filamin or the CTR-filamin interaction. The absence of filamin was also associated with a marked decrease in recycling of the receptor from the endosomes to the cell surface. In contrast, calcitonin-induced inhibition of spontaneous filamin proteolysis was associated with increased recycling of the receptor to the cell surface and decreased degradation of the CTR, suggesting an important role for filamin in the endocytic sorting and recycling of the internalized CTR.
Collapse
Affiliation(s)
- Thomas Seck
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
323
|
Bönnemann CG, Thompson TG, van der Ven PFM, Goebel HH, Warlo I, Vollmers B, Reimann J, Herms J, Gautel M, Takada F, Beggs AH, Fürst DO, Kunkel LM, Hanefeld F, Schröder R. Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci 2003; 206:71-8. [PMID: 12480088 DOI: 10.1016/s0022-510x(02)00341-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamin C is the muscle isoform of a group of large actin-crosslinking proteins. On the one hand, filamin C is associated with the Z-disk of the myofibrillar apparatus and binds to myotilin; on the other hand, it interacts with the sarcoglycan complex at the sarcolemma. Filamin C may be involved in reorganizing the cytoskeleton in response to signalling events and in muscle it may, in addition, fulfill structural functions at the Z-disk. An examination of biopsies from patients with multi-minicore myopathy, central core myopathy and neurogenic target fibers with core-like target formations (TF) revealed strong reactivity of all the cores and target formations with two different anti-filamin C antibodies. In all three conditions, the immunoreactivity in the cores for filamin C was considerably stronger than that for desmin. Only for alphaB-crystallin were comparable levels of immunoreactivity detected. There was no difference in intensity for filamin C between the three pathological conditions. Thus, filamin C along with alphaB-crystallin is a strong and robust, but nonspecific marker of core formation. The reason why filamin C accumulates in cores is unclear at present, but we postulate that it may be critically involved in the chain of events eventually leading to myofibrillar degeneration.
Collapse
Affiliation(s)
- C G Bönnemann
- Division of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, 34th Strteet and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Paranavitane V, Coadwell WJ, Eguinoa A, Hawkins PT, Stephens L. LL5beta is a phosphatidylinositol (3,4,5)-trisphosphate sensor that can bind the cytoskeletal adaptor, gamma-filamin. J Biol Chem 2003; 278:1328-35. [PMID: 12376540 DOI: 10.1074/jbc.m208352200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified a potential phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) binding pleckstrin homology domain in the data bases and have cloned and expressed its full coding sequence (LL5beta). The protein bound PtdIns(3,4,5)P(3) selectively in vitro. Strikingly, a substantial proportion of LL5beta became associated with an unidentified intracellular vesicle population in the context of low PtdIns(3,4,5)P(3) levels produced by the addition of wortmannin or LY294002. In addition, expression of platelet-derived growth factor-receptor mutants unable to activate type 1A phosphoinositide 3-kinase (PI3K) or serum starvation in porcine aortic endothelial cells lead to redistribution of LL5beta to this vesicle population. Importantly, pleckstrin homology domain mutants of LL5beta that could not bind PtdIns(3,4,5)P(3) were constitutively localized to this vesicle population. At increased PtdIns(3,4,5)P(3) levels, LL5beta was redirected to a predominantly cytoplasmic distribution, presumably through a PI3K-dependent block on its targeting to the vesicular compartment. Furthermore, at high, hormone-stimulated PtdIns(3,4,5)P(3) levels, it became significantly plasma-membrane localized. The distribution of LL5beta is thus dramatically and uniquely sensitive to low levels of PtdIns(3,4,5)P(3) indicating it can act as a sensor of both low and hormone-stimulated levels of PtdIns(3,4,5)P(3). In addition, LL5beta bound to the cytoskeletal adaptor, gamma-filamin, tightly and in a PI3K-independent fashion, both in vitro and in vivo. This interaction could co-localize heterologously expressed gamma-filamin with GFP-LL5beta in the unidentified vesicles.
Collapse
Affiliation(s)
- Varuni Paranavitane
- Inositide Laboratory, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
325
|
Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:175-84. [PMID: 12209937 DOI: 10.1002/jbm.10270] [Citation(s) in RCA: 450] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poor cell adhesion to orthopaedic and dental implants may result in implant failure. Cellular adhesion to biomaterial surfaces primarily is mediated by integrins, which act as signal transduction and adhesion proteins. Because integrin function depends on divalent cations, we investigated the effect of magnesium ions modified bioceramic substrata (Al(2)O(3)-Mg(2+)) on human bone-derived cell (HBDC) adhesion, integrin expression, and activation of intracellular signalling molecules. Immunohistochemistry, flow cytometry, cell adhesion, cell adhesion blocking, and Western blotting assays were used. Our findings demonstrated that adhesion of HBDC to Al(2)O(3)-Mg(2+) was increased compared to on the Mg(2+)-free Al(2)O(3). Furthermore, HBDC adhesion decreased significantly when the fibronectin receptor alpha5beta1- and beta1-integrins were blocked by functional blocking antibodies. HBDC grown on the Mg(2+)-modified bioceramic expressed significantly enhanced levels of beta1-, alpha5beta1-, and alpha3beta1-integrins receptors compared to those grown on the native unmodified Al(2)O(3). Tyrosine phosphorylation of intracellular integrin-dependent signalling proteins as well as the expression of key signalling protein Shc isoforms (p46, p52, p66), focal adhesion kinase, and extracellular matrix protein collagen type I were significantly enhanced when HBDC were grown on Al(2)O(3)-Mg(2+) compared to the native Al(2)O(3). We conclude that cell adhesion to biomaterial surfaces is probably mediated by alpha5beta1- and beta1-integrin. Cation-promoted cell adhesion depends on 5beta1- and beta1-integrins associated signal transduction pathways involving the key signalling protein Shc and results also in enhanced gene expression of extracellular matrix proteins. Therefore, Mg(2+) supplementation of bioceramic substrata may be a promising way to improve integration of implants in orthopaedic and dental surgery.
Collapse
Affiliation(s)
- H Zreiqat
- School of Pathology, UNSW, Sydney 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
326
|
Donaldson JC, Dise RS, Ritchie MD, Hanks SK. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem 2002; 277:29028-35. [PMID: 12006559 DOI: 10.1074/jbc.m111697200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nephrocystin is the protein product of the gene mutated in juvenile nephronophthisis, an autosomal recessive cystic kidney disease afflicting children and young adults. Because the normal cellular function of nephrocystin is largely unknown, the molecular defects underlying disease pathogenesis remain obscure. Analysis of nephrocystin amino acid sequences from human and other species revealed three distinct conserved domains including Src homology 3 and coil-coil domains in the N-terminal region, as well as a large highly conserved C-terminal region bearing no obvious homology to other proteins and hence referred to as the "nephrocystin homology domain" (NHD). The objective of this study was to gain insight into nephrocystin function by defining functional properties of the conserved domains. We analyzed a series of nephrocystin deletion mutants expressed in Madin-Darby canine kidney and COS-7 cells. This analysis revealed previously unrecognized functional attributes of the NHD, including abilities to promote both self-association and epithelial cell-cell junctional targeting. We further observed that Madin-Darby canine kidney cell lines stably expressing a nephrocystin mutant with a deletion of the Src homology 3 domain have reduced ability to establish tight junctions as measured by transepithelial electrical resistance. Finally, from a two-hybrid screen and coimmunoprecipitation studies we identified members of the filamin family of actin-binding proteins as having the capacity to interact with the NHD. These findings support a functional role for nephrocystin as a docking protein involved in organizing a protein complex to regulate the actin cytoskeleton at sites of epithelial cell-cell adhesion and further suggest that these properties are important for establishing epithelial cell polarity.
Collapse
Affiliation(s)
- John C Donaldson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
327
|
Chen YH, Chen SHM, Jong A, Zhou ZY, Li W, Suzuki K, Huang SH. Enhanced Escherichia coli invasion of human brain microvascular endothelial cells is associated with alternations in cytoskeleton induced by nicotine. Cell Microbiol 2002; 4:503-14. [PMID: 12174085 DOI: 10.1046/j.1462-5822.2002.00209.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although epidemiological studies have shown that exposure to tobacco smoking significantly increases the risk of bacterial meningitis, heretofore the pathogenic effects of smoking on this disease have been poorly understood. In order to dissect this issue, we have investigated the effects of nicotine, the major component of tobacco, on E. coli invasion of human brain microvascular endothelial cells (HBMEC). Our studies showed that E. coli invasion of HBMEC was significantly enhanced by nicotine in a dose-dependent manner. The nicotine-mediated enhancement was associated with actin cytoskeleton rearrangement and morphological changes in the eukaryotic host cell that are essential for bacterial entry. The recombinant IbeA protein and alpha-bungarotoxin (a nicotinic acetylcholine receptor antagonist) were able to efficiently block the nicotine-mediated cellular effects, suggesting the involvement of the IbeA and nicotinic receptors. Blocking of phosphatidylinositol 3-kinase (PI3K) by LY294002 abolished the entry of E. coli in HBMECs treated with nicotine in a dose-dependent manner. Inhibition of PI3K was associated with decreased phosphorylation of Akt and actin cytoskeletal rearrangement. In contrast to PI3K, blockage of Rho kinase (ROCK) by Y27632 upregulated both nicotine- and E. coli-mediated cellular responses. Thus, this study provides experimental evidence for the first time that the major component of tobacco, nicotine, enhances meningitic E. coli invasion of HBMEC through modulation of cytoskeleton.
Collapse
Affiliation(s)
- Yu-Hua Chen
- Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
328
|
Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC. Fascins, and their roles in cell structure and function. Bioessays 2002; 24:350-61. [PMID: 11948621 DOI: 10.1002/bies.10070] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fascins are a structurally unique and evolutionarily conserved group of actin cross-linking proteins. Fascins function in the organisation of two major forms of actin-based structures: dynamic, cortical cell protrusions and cytoplasmic microfilament bundles. The cortical structures, which include filopodia, spikes, lamellipodial ribs, oocyte microvilli and the dendrites of dendritic cells, have roles in cell-matrix adhesion, cell interactions and cell migration, whereas the cytoplasmic actin bundles appear to participate in cell architecture. We discuss the current understanding of the cellular mechanisms that regulate the binding of fascin to actin and how these processes contribute to the organisation or disassembly of cell protrusions. Although the in vivo roles of fascin have been studied principally in Drosophila, several human diseases are associated with inherited or acquired alterations in the expression of fascins. Strategies to modulate fascin-containing protrusions and thereby cell adhesive and migratory behaviour could have potential for therapeutic intervention in these conditions. The supplementary material referred to in this section can be found at http://www.interscience.wiley.com/jpages/0265-9247/suppmat/2002/v24.350.html
Collapse
Affiliation(s)
- Nina Kureishy
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London
| | | | | | | | | |
Collapse
|
329
|
Yoshida K, Suzuki Y, Honda E, Amemiya K, Nakatani T, Ebina M, Narumi K, Satoh K, Munakata H. Leucine-rich repeat region of decorin binds to filamin-A. Biochimie 2002; 84:303-8. [PMID: 12106908 DOI: 10.1016/s0300-9084(02)01391-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decorin is a member of the family of small leucine-rich proteoglycans found in the extracellular matrix and has an important role in promoting fiber formation and in controlling cell proliferation. Here, we have investigated whether the leucine-rich repeat (LRR) region of decorin interacts with proteins from human lung fibroblasts by using a yeast two-hybrid assay. We report that the LRR region of decorin interacts with the cytoskeletal protein, filamin-A (ABP-280), a peripheral cytoplasmic protein. This interaction is dependent on the 288 carboxyl-terminal amino acids of filamin-A, which correspond to repeats 22-24 of its conserved beta-sheet structure. We also show that the recombinant LRR region of decorin binds to filamin-A in vitro, and that the deglycosylated core protein of decorin coprecipitates with filamin-A, whereas intact decorin does not. Together, these results suggest that proteins containing the LRR motif that interact with filamin-A may be present in the cytoplasm or at the plasma membrane.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Biochemistry, Kinki University School of Medicine, Osaka-Sayama, 589-8511, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Nakamura F, Osborn E, Janmey PA, Stossel TP. Comparison of filamin A-induced cross-linking and Arp2/3 complex-mediated branching on the mechanics of actin filaments. J Biol Chem 2002; 277:9148-54. [PMID: 11786548 DOI: 10.1074/jbc.m111297200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Hematology Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
331
|
Abstract
Lamellipodia, filopodia and membrane ruffles are essential for cell motility, the organization of membrane domains, phagocytosis and the development of substrate adhesions. Their formation relies on the regulated recruitment of molecular scaffolds to their tips (to harness and localize actin polymerization), coupled to the coordinated organization of actin filaments into lamella networks and bundled arrays. Their turnover requires further molecular complexes for the disassembly and recycling of lamellipodium components. Here, we give a spatial inventory of the many molecular players in this dynamic domain of the actin cytoskeleton in order to highlight the open questions and the challenges ahead.
Collapse
Affiliation(s)
- J Victor Small
- Dept of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
332
|
van der Flier A, Kuikman I, Kramer D, Geerts D, Kreft M, Takafuta T, Shapiro SS, Sonnenberg A. Different splice variants of filamin-B affect myogenesis, subcellular distribution, and determine binding to integrin [beta] subunits. J Cell Biol 2002; 156:361-76. [PMID: 11807098 PMCID: PMC2199218 DOI: 10.1083/jcb.200103037] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Integrins connect the extracellular matrix with the cell interior, and transduce signals through interactions of their cytoplasmic tails with cytoskeletal and signaling proteins. Using the yeast two-hybrid system, we isolated a novel splice variant (filamin-Bvar-1) of the filamentous actin cross-linking protein, filamin-B, that interacts with the cytoplasmic domain of the integrin beta1A and beta1D subunits. RT-PCR analysis showed weak, but wide, expression of filamin-Bvar-1 and a similar splice variant of filamin-A (filamin-Avar-1) in human tissues. Furthermore, alternative splice variants of filamin-B and filamin-C, from which the flexible hinge-1 region is deleted (DeltaH1), were induced during in vitro differentiation of C2C12 mouse myoblasts. We show that both filamin-Avar-1 and filamin-Bvar-1 bind more strongly than their wild-type isoforms to different integrin beta subunits. The mere presence of the high-affinity binding site for beta1A is not sufficient for targeting the filamin-Bvar-1 construct to focal contacts. Interestingly, the simultaneous deletion of the H1 region is required for the localization of filamin-B at the tips of actin stress fibers. When expressed in C2C12 cells, filamin-Bvar-1(DeltaH1) accelerates their differentiation into myotubes. Furthermore, filamin-B variants lacking the H1 region induce the formation of thinner myotubes than those in cells containing variants with this region. These findings suggest that specific combinations of filamin mRNA splicing events modulate the organization of the actin cytoskeleton and the binding affinity for integrins.
Collapse
Affiliation(s)
- Arjan van der Flier
- Netherlands Cancer Institute, Division of Cell Biology, 1066 CX Amsterdams, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Calderwood DA, Huttenlocher A, Kiosses WB, Rose DM, Woodside DG, Schwartz MA, Ginsberg MH. Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 2001; 3:1060-8. [PMID: 11781567 DOI: 10.1038/ncb1201-1060] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicellular animal development depends on integrins. These adhesion receptors link to the actin cytoskeleton, transmitting biochemical signals and force during cell migration and interactions with the extracellular matrix. Many integrin-cytoskeleton connections are formed by filamins and talin. The beta7 integrin tail binds strongly to filamin and supports less migration, fibronectin matrix assembly and focal adhesion formation than either the beta1D tail, which binds strongly to talin, or the beta1A tail, which binds modestly to both filamin and talin. To probe the role of filamin binding, we mapped the filamin-binding site of integrin tails and identified amino acid substitutions that led to selective loss of filamin binding to the beta7 tail and gain of filamin binding to the beta1A tail. These changes affected cell migration and membrane protrusions but not fibronectin matrix assembly or focal adhesion formation. Thus, tight filamin binding restricts integrin-dependent cell migration by inhibiting transient membrane protrusion and cell polarization.
Collapse
Affiliation(s)
- D A Calderwood
- Department of Vascular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
334
|
Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH, Stossel TP. Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J Cell Biol 2001; 155:511-7. [PMID: 11706047 PMCID: PMC2198874 DOI: 10.1083/jcb.200105148] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Arp2/3 complex and filamin A (FLNa) branch actin filaments. To define the role of these actin-binding proteins in cellular actin architecture, we compared the morphology of FLNa-deficient human melanoma (M2) cells and three stable derivatives of these cells expressing normal FLNa concentrations. All the cell lines contain similar amounts of the Arp2/3 complex. Serum addition causes serum-starved M2 cells to extend flat protrusions transiently; thereafter, the protrusions turn into spherical blebs and the cells do not crawl. The short-lived lamellae of M2 cells contain a dense mat of long actin filaments in contrast to a more three-dimensional orthogonal network of shorter actin filaments in lamellae of identically treated FLNa-expressing cells capable of translational locomotion. FLNa-specific antibodies localize throughout the leading lamellae of these cells at junctions between orthogonally intersecting actin filaments. Arp2/3 complex-specific antibodies stain diffusely and label a few, although not the same, actin filament overlap sites as FLNa antibody. We conclude that FLNa is essential in cells that express it for stabilizing orthogonal actin networks suitable for locomotion. Contrary to some proposals, Arp2/3 complex-mediated branching of actin alone is insufficient for establishing an orthogonal actin organization or maintaining mechanical stability at the leading edge.
Collapse
Affiliation(s)
- L A Flanagan
- Hematology Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|